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1  |  INTRODUC TION

Depicting the branching pattern of taxa, phylogeny represents a hy-
pothesis of evolutionary relationships based on shared similarities 
derived from common ancestry (Hennig, 1966). From conservation 
to zoology, phylogenetic relationships are critical for interpreting 
study results and implications in the biological sciences. One area, 
however, where this hierarchical information has yet to be fully 
incorporated is that of machine learning and image classification. 

Deep neural networks have found immense success in image clas-
sification problems with state-of-the-art ConvNet models (e.g. 
GoogleNet (Szegedy et al., 2015), AlexNet (Krizhevsky et al., 2012) 
and VGGNet (Simonyan & Zisserman,  2014)) reaching unprece-
dented performance on large-scale benchmark datasets such as 
ImageNet (Deng et al., 2009) and CIFAR (Krizhevsky, 2009). By de-
sign, deep neural networks function similarly to phylogenetic anal-
yses by extracting a hierarchy of simpler to more complex forms 
of abstraction in hidden layers—simpler features at lower depths 
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Abstract
1.	 Species classification is an important task which is the foundation of industrial, 

commercial, ecological and scientific applications involving the study of species 
distributions, dynamics and evolution.

2.	 While conventional approaches for this task use off-the-shelf machine learning 
(ML) methods such as existing Convolutional Neural Network (ConvNet) archi-
tectures, there is an opportunity to inform the ConvNet architecture using our 
knowledge of biological hierarchies among taxonomic classes.

3.	 In this work, we propose a new approach for species classification termed 
hierarchy-guided neural network (HGNN), which infuses hierarchical taxonomic 
information into the neural network's training to guide the structure and rela-
tionships among the extracted features. We perform extensive experiments on 
an illustrative use-case of classifying fish species to demonstrate that HGNN 
outperforms conventional ConvNet models in terms of classification accuracy, 
especially under scarce training data conditions.

4.	 We also observe that HGNN shows better resilience to adversarial occlusions, 
when some of the most informative patch regions of the image are intentionally 
blocked and their effect on classification accuracy is studied.
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(e.g. edges and texture) are nonlinearly composed to form complex 
features at higher depths (e.g. eyes and fins). This has motivated 
several recent architectural innovations in deep learning such as 
ResNet (He et al., 2016), ResNeXt (Xie et al., 2017) and DenseNet 
(Huang et al., 2017), which have enabled the learning of deep and 
complex hierarchy of hidden features. However, the innate hierar-
chy extracted by neural networks from data is not necessarily tied 
to known evolutionary relationships in real-world applications. In 
this work, we explore the question: Is it possible to make use of known 
phylogenetic classes to inform the learning of features, and can it lead 
to better generalization and robustness?

Image classification in real-world biological problems such as 
species classification is fraught with several challenges that limit 
the usefulness of state-of-the-art deep learning methods trained on 
benchmark datasets. First, real-world images of specimens suffer 
from various data quality issues such as damaged specimens and oc-
clusions of key morphological features (Fox & Hartman, 2019), which 
can crucially impact classification performance. Figure  1 shows 
some relevant examples. Second, real-world datasets for classifica-
tion are limited in their scale in comparison to benchmark datasets, 
with limited representative power in terms of number of species 
(Allken et  al.,  2019; Costa et  al.,  2013; Ding et  al.,  2017; Larsen 
et al., 2009; Lee et al., 2008; Ogunlana et al., 2015; Rathi et al., 2018; 
Rauf et al., 2019), or number of images per species (Lee et al., 2003; 
Rodrigues et al., 2010). This is especially true for rare species (Villon 
et al., 2021). Third, the hierarchy of features extracted by conven-
tional deep learning frameworks, while useful for prediction, do not 
conform to known biological hierarchies and hence do not directly 
translate to advancing scientific knowledge, which is often a more 
important goal than improving predictive performance for a scientist 
(Karpatne et al., 2017). While these challenges are applicable to spe-
cies classification problems involving a variety of taxa, in this study 
we focus on the problem of classifying the species of a fish specimen 
given a 2D image. We selected fishes for our study because they are 
a highly diverse, well studied and an ancient group of animals that 
comprise almost half of all vertebrate species (Helfman et al., 2009). 
Furthermore, the phylogenetic relationships of fishes are well stud-
ied (Betancur-R et al., 2017; Hughes et al., 2018), and the taxonomic 
classification of fishes is generally aligned with phylogeny.

Early work on automated fish classification used basic com-
puter vision and image processing techniques to extract shape fea-
tures such as landmarks and measurements and used tools such 
as decision trees, discriminant function analysis and support vec-
tor machines to classify species based on these features (Larsen 

et al., 2009; Lee et al., 2003, 2008; Ogunlana et al., 2015). Others 
have applied scale-invariant feature transform (SIFT) and principal 
component analysis (PCA), and then used nearest neighbour search 
for classification (Rodrigues et al., 2010). Only recently has the use 
of raw image features in its intrinsic high dimensionality become 
more feasible, likely because of advances in computational capabil-
ities. For example, Hasija et al.  (2017) employed graph-embedding 
discriminant analysis, which reduces the image set matching prob-
lem to a point-to-point classification problem.

Advances in computing power have also enabled researchers to use 
more flexible and powerful classification methods such as ConvNets, 
especially designed to work with high-dimensional images. The basic 
idea of a ConvNet is to learn convolutional kernels (or filters) of a fixed 
size at every layer, that are applied to the input image to generate mul-
tiple channels of image outputs for the next layer, followed by a final 
block of a max-pooling layer and a softmaxed fully connected layer to 
return class labels (Goodfellow et al., 2016). The number of feature 
maps is referred to as the width of the ConvNet, while the number 
of layers is termed as its depth. To further boost ConvNet's perfor-
mance, image pre-processing techniques can be used. For example, 
Rathi et al. (2018) pre-processed the fish images by means of Gaussian 
blurring, erosion and dilation and Otsu thresholding (Otsu, 1979).

More recently, researchers have taken advantage of state-of-
the-art architectures available in the field of deep learning for bi-
ological classification. For example, in a work by Rauf et al. (2019), 
the technique of transfer learning was explored for fish classifica-
tion, where neural network models pre-trained over large and di-
verse benchmark datasets were used as building blocks and then 
fine-tuned on the fish images. Transfer learning eliminates much of 
the arduous task of hyper-parameter tuning otherwise required in 
the field of deep learning, and allows researchers to build on top of 
well-tested benchmark neural network models. It also saves model 
development time and boosts classification performance, especially 
when the available task-specific training sets are small (Yosinski 
et al., 2014). This technique has already been successfully applied in 
other prior works on fish classification (Allken et al., 2019; Siddiqui 
et al., 2018) and fish detection (Salman et al., 2019).

Extensions of ConvNets have also been used for several tasks 
such as fish detection, counting and classification. For example, 
Salman et al.  (2019) have used R-CNNs (Girshick et al., 2014) along 
with background subtraction and optical flow features to detect fish 
in underwater videos. Similarly, Jalal et al. (2020) attack the problems 
of fish detection and classification using a YOLO deep neural network 
(Redmon et al., 2016) combined with a mixture of Gaussians model 

F I G U R E  1  Fish images from museum collections, demonstrating the challenges of curating fish image datasets
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and optical flow features. In a different approach, Villon et al. (2020) 
post-process the prediction of a deep learning model with confidence 
thresholding to obtain a misclassification risk estimation, which is par-
ticularly useful for identifying rare species. Finally, Villon et al. (2021) 
have proposed using few-shot learning (Wang et al., 2020) to achieve 
better results on rare species. This, however, is at the expense of less 
robustness at distinguishing species that look too similar.

Our current method aims for a generic method that incorporates 
hierarchy to improve neural network models. Here we use taxonomic 
relationships from fish classification to serve as an example training 
dataset. Specifically, we present a novel deep learning architecture 
termed hierarchy-guided neural network (HGNN) that incorporates 
known hierarchy among classes (available as a two-level taxonomy: 
genus and species) to guide the learning of features at the hidden lay-
ers of the neural network. This work builds on a history of multi-label 
and hierarchical classification techniques using pre-built taxonomies 
(Silla & Freitas, 2011; Zhang & Zhou, 2013). Our proposed architec-
ture shown in Figure 2 consists of two sub-modules (top and bottom 
rows) of ResNet models operating in parallel. We use the ResNet ar-
chitecture in our work because it is currently among the most widely 
used and best-performing ConvNet models for benchmark computer 
vision problems, including fish identification (Ditria et al., 2020; Jalal 
et al., 2020; Khan et al., 2020; Villon et al., 2020), although our pro-
posed idea of HGNN is generic and can work with any deep learning 
architecture. In Figure  2, the top row ResNet predicts the species 
class s of the input fish image x, while the bottom row predicts the 
genus class g. These ResNets learn a hierarchy of features (from sim-
ple to complex) at their hidden layers useful for the tasks of species 
and genus classification, respectively. While both these sub-modules 
can be viewed as learning separate features, we know that the genus 
features learned in the bottom ResNet represents features at a higher 
level of abstraction that are directly useful for the task of species 
classification. Building upon this knowledge in our proposed HGNN 
framework, we harness the genus features learned at an intermedi-
ate depth Hg of the genus sub-module, and aggregate them with the 
species features learned at the Hs depth of the species sub-modules. 

The combination of both species and genus features is then used for 
the task of species prediction.

While using taxonomic information for automated fish classifi-
cation is not novel (Kutlu et al., 2017), to our knowledge, the only 
body of work that has researched it before in the context of deep 
learning is by dos Santos & Gonçalves  (2019). However, our pro-
posed method is distinguished in two ways. First, while they have 
used the family and order information, we use the genus informa-
tion. We argue that incorporating the genus yields more information 
gain as it involves more discriminative features than the order and 
family. Second, their model only uses the taxonomic information in 
the last fully connected layer, while our philosophy is to use it at a 
convolutional level of the network as that allows for capturing local-
ized visual features that are taxonomically plausible.

We demonstrate the effectiveness of our proposed HGNN 
model in learning meaningful, diverse and robust features at the 
hidden layers of the neural network leading to better generalization 
performance in the target application of fish species classification, 
even in the paucity of training data. We also empirically test the ro-
bustness of our model to synthetically generated image occlusions, 
where salient regions of the input images were intentionally oc-
cluded to adversely affect classification performance. We observe 
that by anchoring our learned features to the biologically known hi-
erarchy among genus and species classes, our model is much more 
robust to occlusions as compared to a data-only ‘black-box’ model 
that only uses image data and predicts the species with no genus 
information (i.e. using only the top ResNet in Figure 2).

2  |  MATERIAL S AND METHODS

2.1  |  HGNN framework

We first present our proposed HGNN architecture that incorporates 
hierarchy among genus and species classes in neural network con-
struction. We consider the problem of predicting the target species 

F I G U R E  2  Schematic diagram of hierarchy-guided neural network. The top ResNet predicts the species (s) of the input fish image (x), 
while the bottom ResNet predicts the genus (g). To leverage the relationship between genus and species classes for guiding the hidden 
features of our neural network, we harness the genus features learned at an intermediate depth (yg) of the genus ResNet and aggregate 
them with the species features learned at the ys level of the species ResNet. The combination of both species and genus features is then 
used to make species class predictions. This architecture is described in detail in Section 2
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s given input image x using a composition of neural network layers. 
We are also given the genus-level class g for every input x.

We make two observations to motivate our proposed HGNN 
framework. First, we assume that the hierarchical taxonomy of 
genus and species classes captures a notion of derived similarity in 
terms of the discriminatory input features of every class. This is true, 
as illustrated in Figure 3, in the context of fish classification because 
species classes that belong to the same genus are more closely re-
lated phylogenetically than species classified in different genera. In 
the case of the species and genera analysed here, with only a few 
exceptions, this is the case (Table S1). As a result, species that map 
to the same genus g should generally share similar features at the 
internal representation of the neural network (e.g. filters learned 
at the convolutional layers). These observations seem to align with 
some earlier work (dos Santos & Gonçalves, 2019). Second, while the 
mapping from s to g is one-to-one, the inverse mapping from g to s is 
not unique. Hence, along with the shared features learned for every 
g, we also need to learn unique features for every s to differentiate 
between species belonging to the same genus.

Building upon these two observations, we consider the following 
architectural composition of our neural network as shown in Figure 2. 
First, we use a functional block of layers Hg to extract hidden features 
at some intermediate depth of the neural network that are useful for 
predicting g as well as s. These hidden features are passed to another 
functional block Gg that predicts g. The complete chain of function 
compositions from x to g can be represented as Fg(x), where Fg = Gg ◦Hg 
and ◦ represents the function composition operator. Second, we learn 
another functional block Hs that extracts hidden features unique to 
every species. Finally, the features from Hs and Hg are combined using 
matrix addition and fed to another functional block of layers, Gs that 
predicts the target species s. The composition of functions mapping x 
to s can thus be given by f(x), where F = Gs ◦ (Hg + Hs).

To train the functional blocks in the complete HGNN architec-
ture, we consider minimizing the following objective function:

where Ls and Lg are loss (or error) functions defined on the space 
of species labels and genus labels, respectively, on the training set. 

Specifically, these loss functions act as a measure of difference be-
tween the correct classification (ts and tg), and the prediction (s and 
g) on the training samples, respectively. We used the cross-entropy 
function as our preferred choice of loss function. Furthermore, λs 
and λg are trade-off hyper-parameters balancing the relative im-
portance of Ls and Lg, respectively; their values are automatically 
assigned using the adaptive smoothing algorithm proposed in 
Murugesan et al. (2016). Both the softmaxed outputs of our neural 
network model, s and g, are probability vectors whose entries range 
from 0 to 1 proportional to the model's credence about each species 
and genus class, respectively.

As mentioned in Section 1, our model is composed of two iden-
tical ResNets. The first ResNet comprises of Hg and Gg, while Hs 
and Gs constitute the other. In our experiments, we found that the 
best point to extract the intermediate genus features (i.e. the point 
between Hg and Gg) is right before the final max-pooling layer. The 
same point in the other ResNet is used to combine the genus and 
species features. Instead of initializing our neural network parame-
ters (or weights) with arbitrary values, we used pre-trained weights 
of ResNet trained on the ImageNet benchmark dataset as a good 
starting solution for our target problem of fish classification. Then, 
by optimizing the loss function in Equation  (1) on the fish training 
dataset of interest, we fine-tuned the parameters of the entire net-
work to be more specialized for our target task. This technique, 
which is called transfer learning (Tan, Sun, et  al.,  2018), is widely 
adopted in the field of deep learning particularly in applications of 
computer vision, and has proven its effectiveness in scenarios with 
data paucity. In our preliminary experiments, as shown in Figure 4, 
we have found using this mode of transfer learning to increase the 
model's average performance by about 35%.

2.2  |  Evaluation

2.2.1  |  Data collection and pre-processing

Our dataset comprises of images contributed by five museums that 
participated in the Great Lakes Invasives Network Project (GLIN). 
More information about this project can be found in the Data 

(1)min
Hs ,Hg ,Gs ,Gg

�sLs
(

s, ts
)

+ �gLg
(

g, tg
)

,

F I G U R E  3  Species that belong to the same genus exhibit features that are similar because of common ancestry
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Availability Statement section. This dataset, as is typical for biologi-
cal species images, is highly imbalanced; some species have only a 
few images, while others have thousands. To alleviate this problem, 
and for computational feasibility, we created a number of subsets of 
the dataset for the purpose of training and evaluation. Specifically, 
we created two subsets that differ in terms of classification com-
plexity (or difficulty). The first subset is called Easy and comes from 
a single museum (Illinois Natural History Survey). Therefore, its im-
ages are homogeneous in terms of lighting and camera conditions. 
The second is called Hard and its images are aggregated from across 
all museums, making it a larger, more diverse and more complex 
dataset. Comparing results from these two datasets helps illustrate 
the effects of dataset complexity on classification performance. We 
further created two subsets of the Easy dataset by capping the num-
ber of images per species in the Easy dataset to 50 or 100. These dif-
ferent dataset sizes help illustrate how training data paucity impacts 
the model's classification performance. Henceforth, the suffix of the 
dataset will refer to the number of images per species. For example, 
Easy/100 has 100 images per species. Table 1 gives a statistical sum-
mary of each dataset considered in this study. More details can be 
found in Tables S2–S4.

The acquired fish images typically contained a ruler, specimen 
label(s) and species tags along with the fish specimen. To retain 
only the fish region in the images, we trained a 2D Unet model 
(Goodfellow et  al.,  2016) using a small portion of our data in the 
ANTsRNet software (Tustison et al., 2018). We manually segmented 
the background, fish, scale bar and field notes on 550 images using 
3D Slicer (Kikinis et  al.,  2014). We used weights from the trained 
model to automatically mask and crop the fish specimen portion of 
the remainder images. With the exception of rare cases where the 
fish overlapped the scale bar and/or the field notes, which were dis-
carded, this pipeline resulted in successful generation of RGB fish-
only images at the original resolution. The pipeline was implemented 
in R using ANTsR (Avants, 2019) and ANTsRNet.

Once the cropped fish images were obtained, we performed data 
augmentation by randomly applying standard image transformations 
used in deep learning for computer vision, including translations of 
up to 0.25 of the image dimension, flips with a probability of 30%, ro-
tations of up to 60° and Gaussian random intensity variations using 
PCA with σ = 0.1 of the color channel value (Krizhevsky et al., 2012). 
Data augmentation is critical when using ConvNets for image pro-
cessing and is a common practice for fish classification (Villon et al., 

2020, 2021), especially when the available data are limited (Shorten 
& Khoshgoftaar, 2019). By training the model on variations of the 
same image, the model is deterred from learning nuanced patterns 
in the images that can lead to spurious performance, such as the in-
tensity of the background, and encouraged to be robust under vari-
able input conditions. Our preliminary results, as shown in Figure 4, 
indicate that data augmentation boosted the model's accuracy by 
about 2.8%.

2.2.2  |  Evaluation setup for comparing classification 
performance

In the process of training black-box neural network architectures, it 
is common to observe higher generalization errors when the amount 
of training data is small. However, in HGNN, we show that by includ-
ing a biological knowledge-guided loss term (see Equation 1) in the 
learning objective of neural networks, we can achieve reasonably 
good generalization performance even in situations where training 
data are scarce. This is in alignment with the observations made in 
a previous work by (Jia et al., 2019). To test for this hypothesis in 
the context of fish classification, we compared the classification 
performance of our proposed model to a baseline black-box neural 
network architecture (termed Blackbox-NN) comprising of a ResNet 
of the same size and shape as that of one of the ResNets of our pro-
posed model. Specifically, we compared the performance of HGNN 
and Blackbox-NN on each of the three data subsets mentioned in 
Table 1. For each of these subsets, we used 64% of the data for train-
ing, 16% for validation and the remainder for testing. To measure 
classification performance, we used the f1-score of the correct spe-
cies class (Tan et al., 2018b) introduction. Throughout this paper, we 

F I G U R E  4  Comparison among 
different models, showing the impact of 
data augmentation and transfer learning 
on the classification performance of 
hierarchy-guided neural network (HGNN) 
models

TA B L E  1  Statistics of the subsets of the Great Lakes Invasives 
Network (GLIN) dataset used in this study for training and 
evaluation

Dataset
No. of 
images

No. of 
species

No. of 
genera

No. of images 
per species

GLIN (All) 63,758 575 187 1–7,935

Hard 4,882 102 26 30–50

Easy/100 3,762 38 11 63–100

Easy/50 1,900 38 11 50
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used box plots to show the model's performance over five random 
runs of neural network training. To obtain the best-performing neu-
ral network models, we performed an explorative Naïve-Bayes ap-
proach for hyper-parameter search and fine-tuning. Then, we picked 
those parameters that performed best on the validation set.

2.2.3  |  Tools for deep learning visualization and 
assessing robustness to adversarial occlusions

Saliency maps (Simonyan et  al.,  2014) are heatmaps of the gradi-
ents of a neural network model's output with respect to its input. 
In other words, a saliency map shows how strongly do changes in 
pixel values of a certain region of the image cause a change in the 
species' probability, highlighting the areas of the image that are most 
decisive for the classification problem. While other tools, such as 
GradCAM (Selvaraju et al., 2017), have been used for the same pur-
pose (dos Santos & Gonçalves, 2019), we found saliency maps to be 
more powerful and capable of detecting the most subtle visual fea-
tures. Figure 5 shows some examples of saliency maps obtained for 
Blackbox-NN. The code we used for generating these saliency maps 
is inspired by FlashTorch (Ogura & Jain, 2020), an implementation 
tool based on Guided Back-propagation (Springenberg et al., 2015). 
As we can see in Figure 5, the baseline model is quite sensitive to dif-
ferent features of the input fish image for different species, includ-
ing barbels and fins in Figure 5a and the eye in Figure 5b. Saliency 
maps are also a good debugging tool as they can reveal cases where 
the model is ‘cheating’ or looking at irrelevant features of the image 
that are not biologically meaningful for the purpose of fish classifica-
tion. An example of such a case is presented in Figure 5c, where the 
model is incorrectly picking up pixels around the note on the label 
paper in the image as regions with high saliency scores. In this way, 
saliency maps can be used for ‘interpreting’ the learned features of 
neural network models.

Along with offering interpretability, saliency maps can also be 
used for investigating the resiliency (or robustness) of neural net-
works to adversarial occlusions. For example, by occluding regions 
(or patches) in the input image with high saliency scores, a neural 
network model's reliability at making correct predictions can be 
stress-tested even when it is starved off information from salient 
image regions. To measure the robustness of a model at every round 
of adversarial occlusions, we calculated the average probability of 
the correct class predicted by the model on an input image x, aver-
aged over all test images as �x(Pts

(x)). The higher this metric, the less 
confused the model is about the input. Furthermore, by measuring 
drops in this metric as a consequence of adversarial occlusions, we 
can evaluate if a model is too sensitive to selective regions of the 
input image (with the highest saliency score contributions), which 
when obstructed can confuse a model into making incorrect pre-
dictions. We make use of this metric to assess the robustness of 
Blackbox-NN and HGNN in our experiments.

3  |  RESULTS

3.1  |  Effect of dataset complexity and training size

Figure 6 shows the comparison between HGNN and Blackbox-NN 
on three subsets of the GLIN dataset: Easy/100, Easy/50 and Hard. 
Two observations can be made from this figure. First, as datasets 
become more complex (e.g. the Hard dataset) and/or subject to less 
training data (e.g. the Easy/50), the performance of the model dete-
riorates. Second, and more importantly, the impact of our method 
is more pronounced exactly when data are scarce and the dataset 
is complex. As Figure  6 shows, while the median performance of 
HGNN is almost equal to that of Blackbox-NN for Easy/100, which 
is the easiest of the datasets, the former clearly outperforms the 
latter on both Easy/50 and Hard. This highlights our model's power 

F I G U R E  5  Saliency maps of different fish images obtained for black-box neural network. Pixels in red denote image regions with high 
saliency scores, indicating higher importance of those regions for fish classification as perceived by the model. (a) Barbels and fins, (b) Eye, (c) 
Label paper
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and ability to compensate for the relative lack of data with respect to 
dataset complexity by incorporating biological knowledge.

3.2  |  Effect of adversarial occlusion

To demonstrate HGNN's resiliency to adversarial occlusions, we it-
eratively cover regions (or patches) in an image with the highest sali-
ency scores and report the probability of the correct class predicted 
by the model over the occluded image. Figure 7 shows an example of 
this process on an illustrative fish specimen from the Easy/50 data-
set. From left to right, the figure shows a progression from an image 
with no occlusion towards applying more patches of adversarial oc-
clusions (seen as green square patches) on the same image. Below 
each image is the model's predicted probabilities over the five most 
probable species sorted in descending order, for both HGNN (top 
row) and Blackbox-NN (bottom row). We make a number of obser-
vations here. First, all of the saliency maps highlight the features of 
importance for classifying this fish, namely the eye, nostrils and the 
dorsal fin. However, notice that the saliency maps for HGNN are 
slightly different from that of Blackbox-NN, demonstrating that the 
two models are not looking at the image in the exact same way (i.e. 
they have distinct saliency maps). This difference is important for 
making a fair comparison between the two models. Second, even 
when there is no occlusion, while Blackbox-NN makes the correct 
prediction, its probability of the correct species class is significantly 
lower than that of HGNN's. This demonstrates HGNN's ability to 
extract more useful and generalizable features from images for fish 
classification. Third, after applying two patches of occlusions (in the 
middle column), we notice that even though both models get the 
species right, Blackbox-NN's second guess is not within the correct 
genus. Finally, and most importantly, after applying four patches of 
occlusions (in rightmost column), we notice that while both models 
start predicting the wrong class, HGNN is still within the correct 
genus, while Blackbox-NN is not. It follows that the Blackbox-NN 
model is not learning phylogenetic features that could be used in 
other tasks, such as trait segmentation. To drive this point home, 

we automate this process for the entire dataset and compute the 
average predicted probability of the correct class across all images, 
as a function of the number of adversarial occlusions applied to the 
images. Table 2 reports the results for each number of patches rang-
ing from 0 (no occlusion) to 4. We can see that HGNN shows higher 
average probability of the correct class across all number of patches 
in comparison with Blackbox-NN. This demonstrates HGNN's abil-
ity to generalize and handle image imperfections better, especially 
when the most informative (or salient) regions of the image are 
occluded.

4  |  DISCUSSION

In this paper, we have shown that embedding the hierarchical tax-
onomy of the genus and species classes in the design and learning 
of neural networks leads to solutions with better generalization, 
superior accuracy and better resiliency to adversarial occlusions. 
Most of the deep learning methods currently in the literature per-
form tasks without learning biologically relevant features. Our pro-
posed method leverages a particularly important aspect of species 
classification—the hierarchical arrangement of taxon names—which 
improves model interpretability and biological validity. The aim of 
our method is to provide biologists not only with the correct clas-
sification, but also with a plausible one when it fails.

An ultimate goal of this research is to augment biological informa-
tion on the connections among phenotype, genotype and environment 
into deep learning so that an understanding of genealogical relation-
ships among species is discovered by our neural networks. While we 
have not fully investigated these relationships here, a future direction 
of our project is to explore how the anatomical features of species 
learned by our models relate to the environments the species were 
collected from and how closely related the species are. This would in-
crease understanding of how the environment and genealogy shape 
the phenotypes of species. Moreover, we plan to investigate how such 
learned features aid us in other relevant tasks, such as segmenting the 
phenotypic traits of species. Finally, we also plan to exploit other forms 

F I G U R E  6  Classification performance across different subsets of the Great Lakes Invasives Network dataset for hierarchy-guided 
neural network (HGNN) and black-box neural network (Blackbox-NN). By definition, as the boxes for the two models do not overlap for 
Easy/50 and Hard, it means there is at least 95% confidence (McGill et al., 1978) variations that the median accuracy of HGNN is higher than 
Blackbox-NN
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F I G U R E  7  Saliency maps showing the effect of adversarial occlusions (shown as green square patches) on the predicted probabilities 
of the species class produced by hierarchy-guided neural network (HGNN) (top row) and black-box neural network (Blackbox-NN) (bottom 
row) on an example fish image. The left-most column corresponds to the case with no occlusion, while the number of occlusions increase as 
we go from left column to the middle column (2 patches) to the right-most column (4 patches)
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TA B L E  2  Average probability of the correct species class predicted by black-box neural network (Blackbox-NN) and hierarchy-guided 
neural network (HGNN) over Easy/50, as a function of the number of adversarial occlusions applied to every image. From left to right, we 
start with non-occluded images and progressively add more patches of occlusions

Model

Number of occlusion patches

0 1 2 3 4

Blackbox-NN 0.473 0.355 0.291 0.232 0.187

HGNN 0.482 0.369 0.307 0.256 0.215
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of hierarchical information such as phylogenetic tree-based distances 
among species to better understand how this informs biologically in-
formed neural network feature learning.

Recent advances in image computation are enabling automated 
methods of extracting phenotypic data from specimen images. We 
hope that our present framework for leveraging biological informa-
tion in training machine learning models will have a direct impact 
on several biologically relevant computer vision tasks, including spe-
cies detection (Li et  al.,  2016), tracking and counting (Spampinato 
et al., 2008), segmentation (Chuang et al., 2013; Yao et al., 2013), 
and classification (Ding et al., 2017; Rathi et al., 2018; Sarigul, 2017). 
This automation effort is essential as manual annotation is laborious 
and requires expertise (Villon et al., 2020), especially with the large 
amount of data that has become recently available (Ditria, Sievers, 
et  al.,  2020). Moreover, it has been shown that automation can 
be more accurate than human annotation (Ditria, Lopez-Marcano, 
et al., 2020).

In this paper, we have focused on teleost fishes as a model sys-
tem for species classification due to their high diversity and im-
portance economically and scientifically. Fishes are the targets of 
recreation (Arlinghaus & Cooke,  2009), aquaculture and fisheries 
(Lynch et al., 2016) and conservation (Arthington et al., 2016). Fishes 
make up more than half of all vertebrates and they play critical roles 
in Earth ecosystems (Near et al., 2012; Villon et al., 2020). However, 
our framework of HGNN is quite generic and can be potentially ap-
plied to incorporate hierarchical knowledge into machine learning 
models for a broad variety of other biological problems involving 
phenotypic trait discovery and understanding in other taxonomic 
groups.
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