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Abstract

1. Species classification is an important task which is the foundation of industrial,
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commercial, ecological and scientific applications involving the study of species

distributions, dynamics and evolution.

. While conventional approaches for this task use off-the-shelf machine learning

(ML) methods such as existing Convolutional Neural Network (ConvNet) archi-
tectures, there is an opportunity to inform the ConvNet architecture using our

knowledge of biological hierarchies among taxonomic classes.

. In this work, we propose a new approach for species classification termed

hierarchy-guided neural network (HGNN), which infuses hierarchical taxonomic
information into the neural network's training to guide the structure and rela-
tionships among the extracted features. We perform extensive experiments on
an illustrative use-case of classifying fish species to demonstrate that HGNN
outperforms conventional ConvNet models in terms of classification accuracy,

especially under scarce training data conditions.

. We also observe that HGNN shows better resilience to adversarial occlusions,

when some of the most informative patch regions of the image are intentionally

blocked and their effect on classification accuracy is studied.
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1 | INTRODUCTION

Depicting the branching pattern of taxa, phylogeny represents a hy-
pothesis of evolutionary relationships based on shared similarities
derived from common ancestry (Hennig, 1966). From conservation
to zoology, phylogenetic relationships are critical for interpreting
study results and implications in the biological sciences. One area,
however, where this hierarchical information has yet to be fully
incorporated is that of machine learning and image classification.

machine learning, neural networks, science guided machine learning, species classification,

Deep neural networks have found immense success in image clas-
sification problems with state-of-the-art ConvNet models (e.g.
GoogleNet (Szegedy et al., 2015), AlexNet (Krizhevsky et al., 2012)
and VGGNet (Simonyan & Zisserman, 2014)) reaching unprece-
dented performance on large-scale benchmark datasets such as
ImageNet (Deng et al., 2009) and CIFAR (Krizhevsky, 2009). By de-
sign, deep neural networks function similarly to phylogenetic anal-
yses by extracting a hierarchy of simpler to more complex forms
of abstraction in hidden layers—simpler features at lower depths
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(e.g. edges and texture) are nonlinearly composed to form complex
features at higher depths (e.g. eyes and fins). This has motivated
several recent architectural innovations in deep learning such as
ResNet (He et al., 2016), ResNeXt (Xie et al., 2017) and DenseNet
(Huang et al., 2017), which have enabled the learning of deep and
complex hierarchy of hidden features. However, the innate hierar-
chy extracted by neural networks from data is not necessarily tied
to known evolutionary relationships in real-world applications. In
this work, we explore the question: Is it possible to make use of known
phylogenetic classes to inform the learning of features, and can it lead
to better generalization and robustness?

Image classification in real-world biological problems such as
species classification is fraught with several challenges that limit
the usefulness of state-of-the-art deep learning methods trained on
benchmark datasets. First, real-world images of specimens suffer
from various data quality issues such as damaged specimens and oc-
clusions of key morphological features (Fox & Hartman, 2019), which
can crucially impact classification performance. Figure 1 shows
some relevant examples. Second, real-world datasets for classifica-
tion are limited in their scale in comparison to benchmark datasets,
with limited representative power in terms of number of species
(Allken et al., 2019; Costa et al., 2013; Ding et al., 2017; Larsen
etal, 2009; Lee et al., 2008; Ogunlana et al., 2015; Rathi et al., 2018;
Rauf et al., 2019), or number of images per species (Lee et al., 2003;
Rodrigues et al., 2010). This is especially true for rare species (Villon
et al., 2021). Third, the hierarchy of features extracted by conven-
tional deep learning frameworks, while useful for prediction, do not
conform to known biological hierarchies and hence do not directly
translate to advancing scientific knowledge, which is often a more
important goal than improving predictive performance for a scientist
(Karpatne et al., 2017). While these challenges are applicable to spe-
cies classification problems involving a variety of taxa, in this study
we focus on the problem of classifying the species of a fish specimen
given a 2D image. We selected fishes for our study because they are
a highly diverse, well studied and an ancient group of animals that
comprise almost half of all vertebrate species (Helfman et al., 2009).
Furthermore, the phylogenetic relationships of fishes are well stud-
ied (Betancur-R et al., 2017; Hughes et al., 2018), and the taxonomic
classification of fishes is generally aligned with phylogeny.

Early work on automated fish classification used basic com-
puter vision and image processing techniques to extract shape fea-
tures such as landmarks and measurements and used tools such
as decision trees, discriminant function analysis and support vec-

tor machines to classify species based on these features (Larsen

Damaged specimen

et al., 2009; Lee et al., 2003, 2008; Ogunlana et al., 2015). Others
have applied scale-invariant feature transform (SIFT) and principal
component analysis (PCA), and then used nearest neighbour search
for classification (Rodrigues et al., 2010). Only recently has the use
of raw image features in its intrinsic high dimensionality become
more feasible, likely because of advances in computational capabil-
ities. For example, Hasija et al. (2017) employed graph-embedding
discriminant analysis, which reduces the image set matching prob-
lem to a point-to-point classification problem.

Advances in computing power have also enabled researchers to use
more flexible and powerful classification methods such as ConvNets,
especially designed to work with high-dimensional images. The basic
idea of a ConvNet is to learn convolutional kernels (or filters) of a fixed
size at every layer, that are applied to the input image to generate mul-
tiple channels of image outputs for the next layer, followed by a final
block of a max-pooling layer and a softmaxed fully connected layer to
return class labels (Goodfellow et al., 2016). The number of feature
maps is referred to as the width of the ConvNet, while the number
of layers is termed as its depth. To further boost ConvNet's perfor-
mance, image pre-processing techniques can be used. For example,
Rathi et al. (2018) pre-processed the fish images by means of Gaussian
blurring, erosion and dilation and Otsu thresholding (Otsu, 1979).

More recently, researchers have taken advantage of state-of-
the-art architectures available in the field of deep learning for bi-
ological classification. For example, in a work by Rauf et al. (2019),
the technique of transfer learning was explored for fish classifica-
tion, where neural network models pre-trained over large and di-
verse benchmark datasets were used as building blocks and then
fine-tuned on the fish images. Transfer learning eliminates much of
the arduous task of hyper-parameter tuning otherwise required in
the field of deep learning, and allows researchers to build on top of
well-tested benchmark neural network models. It also saves model
development time and boosts classification performance, especially
when the available task-specific training sets are small (Yosinski
et al., 2014). This technique has already been successfully applied in
other prior works on fish classification (Allken et al., 2019; Siddiqui
et al., 2018) and fish detection (Salman et al., 2019).

Extensions of ConvNets have also been used for several tasks
such as fish detection, counting and classification. For example,
Salman et al. (2019) have used R-CNNs (Girshick et al., 2014) along
with background subtraction and optical flow features to detect fish
in underwater videos. Similarly, Jalal et al. (2020) attack the problems
of fish detection and classification using a YOLO deep neural network

(Redmon et al., 2016) combined with a mixture of Gaussians model

Missing Features Occluded Features

FIGURE 1 Fishimages from museum collections, demonstrating the challenges of curating fish image datasets
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and optical flow features. In a different approach, Villon et al. (2020)
post-process the prediction of a deep learning model with confidence
thresholding to obtain a misclassification risk estimation, which is par-
ticularly useful for identifying rare species. Finally, Villon et al. (2021)
have proposed using few-shot learning (Wang et al., 2020) to achieve
better results on rare species. This, however, is at the expense of less
robustness at distinguishing species that look too similar.

Our current method aims for a generic method that incorporates
hierarchy to improve neural network models. Here we use taxonomic
relationships from fish classification to serve as an example training
dataset. Specifically, we present a novel deep learning architecture
termed hierarchy-guided neural network (HGNN) that incorporates
known hierarchy among classes (available as a two-level taxonomy:
genus and species) to guide the learning of features at the hidden lay-
ers of the neural network. This work builds on a history of multi-label
and hierarchical classification techniques using pre-built taxonomies
(Silla & Freitas, 2011; Zhang & Zhou, 2013). Our proposed architec-
ture shown in Figure 2 consists of two sub-modules (top and bottom
rows) of ResNet models operating in parallel. We use the ResNet ar-
chitecture in our work because it is currently among the most widely
used and best-performing ConvNet models for benchmark computer
vision problems, including fish identification (Ditria et al., 2020; Jalal
et al., 2020; Khan et al., 2020; Villon et al., 2020), although our pro-
posed idea of HGNN is generic and can work with any deep learning
architecture. In Figure 2, the top row ResNet predicts the species
class s of the input fish image x, while the bottom row predicts the
genus class g. These ResNets learn a hierarchy of features (from sim-
ple to complex) at their hidden layers useful for the tasks of species
and genus classification, respectively. While both these sub-modules
can be viewed as learning separate features, we know that the genus
features learned in the bottom ResNet represents features at a higher
level of abstraction that are directly useful for the task of species
classification. Building upon this knowledge in our proposed HGNN
framework, we harness the genus features learned at an intermedi-
ate depth Hg of the genus sub-module, and aggregate them with the
species features learned at the H, depth of the species sub-modules.

Ys

The combination of both species and genus features is then used for
the task of species prediction.

While using taxonomic information for automated fish classifi-
cation is not novel (Kutlu et al., 2017), to our knowledge, the only
body of work that has researched it before in the context of deep
learning is by dos Santos & Gongalves (2019). However, our pro-
posed method is distinguished in two ways. First, while they have
used the family and order information, we use the genus informa-
tion. We argue that incorporating the genus yields more information
gain as it involves more discriminative features than the order and
family. Second, their model only uses the taxonomic information in
the last fully connected layer, while our philosophy is to use it at a
convolutional level of the network as that allows for capturing local-
ized visual features that are taxonomically plausible.

We demonstrate the effectiveness of our proposed HGNN
model in learning meaningful, diverse and robust features at the
hidden layers of the neural network leading to better generalization
performance in the target application of fish species classification,
even in the paucity of training data. We also empirically test the ro-
bustness of our model to synthetically generated image occlusions,
where salient regions of the input images were intentionally oc-
cluded to adversely affect classification performance. We observe
that by anchoring our learned features to the biologically known hi-
erarchy among genus and species classes, our model is much more
robust to occlusions as compared to a data-only ‘black-box’ model
that only uses image data and predicts the species with no genus

information (i.e. using only the top ResNet in Figure 2).

2 | MATERIALS AND METHODS

2.1 | HGNN framework

We first present our proposed HGNN architecture that incorporates
hierarchy among genus and species classes in neural network con-
struction. We consider the problem of predicting the target species

Gs
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]
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FIGURE 2 Schematic diagram of hierarchy-guided neural network. The top ResNet predicts the species (s) of the input fish image (x),
while the bottom ResNet predicts the genus (g). To leverage the relationship between genus and species classes for guiding the hidden
features of our neural network, we harness the genus features learned at an intermediate depth (yg) of the genus ResNet and aggregate
them with the species features learned at the y, level of the species ResNet. The combination of both species and genus features is then
used to make species class predictions. This architecture is described in detail in Section 2
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s given input image x using a composition of neural network layers.
We are also given the genus-level class g for every input x.

We make two observations to motivate our proposed HGNN
framework. First, we assume that the hierarchical taxonomy of
genus and species classes captures a notion of derived similarity in
terms of the discriminatory input features of every class. This is true,
as illustrated in Figure 3, in the context of fish classification because
species classes that belong to the same genus are more closely re-
lated phylogenetically than species classified in different genera. In
the case of the species and genera analysed here, with only a few
exceptions, this is the case (Table S1). As a result, species that map
to the same genus g should generally share similar features at the
internal representation of the neural network (e.g. filters learned
at the convolutional layers). These observations seem to align with
some earlier work (dos Santos & Goncalves, 2019). Second, while the
mapping from s to g is one-to-one, the inverse mapping from g to s is
not unique. Hence, along with the shared features learned for every
g, we also need to learn unique features for every s to differentiate
between species belonging to the same genus.

Building upon these two observations, we consider the following
architectural composition of our neural network as shown in Figure 2.
First, we use a functional block of layers Hg to extract hidden features
at some intermediate depth of the neural network that are useful for
predicting g as well as s. These hidden features are passed to another
functional block Gg that predicts g. The complete chain of function
compositions from x to g can be represented as Fg(x), whereF; = G, oH,
and o represents the function composition operator. Second, we learn
another functional block H, that extracts hidden features unique to
every species. Finally, the features from H, and Hg are combined using
matrix addition and fed to another functional block of layers, G, that
predicts the target species s. The composition of functions mapping x
to s can thus be given by f(x), where F = G, o (Hg + H,).

To train the functional blocks in the complete HGNN architec-

ture, we consider minimizing the following objective function:

min
Hy G

591 1g) s

Asks () + Aglg (8 1) (1)

H s

where L  and Lg are loss (or error) functions defined on the space

of species labels and genus labels, respectively, on the training set.

Specifically, these loss functions act as a measure of difference be-
tween the correct classification (t, and tg), and the prediction (s and
g) on the training samples, respectively. We used the cross-entropy
function as our preferred choice of loss function. Furthermore, A
and Ag are trade-off hyper-parameters balancing the relative im-
portance of L, and Lg, respectively; their values are automatically
assigned using the adaptive smoothing algorithm proposed in
Murugesan et al. (2016). Both the softmaxed outputs of our neural
network model, s and g, are probability vectors whose entries range
from O to 1 proportional to the model's credence about each species
and genus class, respectively.

As mentioned in Section 1, our model is composed of two iden-
tical ResNets. The first ResNet comprises of Hg and Gg, while H,
and G, constitute the other. In our experiments, we found that the
best point to extract the intermediate genus features (i.e. the point
between H‘g and Gg) is right before the final max-pooling layer. The
same point in the other ResNet is used to combine the genus and
species features. Instead of initializing our neural network parame-
ters (or weights) with arbitrary values, we used pre-trained weights
of ResNet trained on the ImageNet benchmark dataset as a good
starting solution for our target problem of fish classification. Then,
by optimizing the loss function in Equation (1) on the fish training
dataset of interest, we fine-tuned the parameters of the entire net-
work to be more specialized for our target task. This technique,
which is called transfer learning (Tan, Sun, et al., 2018), is widely
adopted in the field of deep learning particularly in applications of
computer vision, and has proven its effectiveness in scenarios with
data paucity. In our preliminary experiments, as shown in Figure 4,
we have found using this mode of transfer learning to increase the
model's average performance by about 35%.

2.2 | Evaluation

2.2.1 | Data collection and pre-processing

Our dataset comprises of images contributed by five museums that
participated in the Great Lakes Invasives Network Project (GLIN).

More information about this project can be found in the Data
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FIGURE 3 Species that belong to the same genus exhibit features that are similar because of common ancestry
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FIGURE 4 Comparison among
different models, showing the impact of
data augmentation and transfer learning
on the classification performance of
hierarchy-guided neural network (HGNN)
models
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Availability Statement section. This dataset, as is typical for biologi-
cal species images, is highly imbalanced; some species have only a
few images, while others have thousands. To alleviate this problem,
and for computational feasibility, we created a number of subsets of
the dataset for the purpose of training and evaluation. Specifically,
we created two subsets that differ in terms of classification com-
plexity (or difficulty). The first subset is called Easy and comes from
a single museum (lllinois Natural History Survey). Therefore, its im-
ages are homogeneous in terms of lighting and camera conditions.
The second is called Hard and its images are aggregated from across
all museums, making it a larger, more diverse and more complex
dataset. Comparing results from these two datasets helps illustrate
the effects of dataset complexity on classification performance. We
further created two subsets of the Easy dataset by capping the num-
ber of images per species in the Easy dataset to 50 or 100. These dif-
ferent dataset sizes help illustrate how training data paucity impacts
the model's classification performance. Henceforth, the suffix of the
dataset will refer to the number of images per species. For example,
Easy/100 has 100 images per species. Table 1 gives a statistical sum-
mary of each dataset considered in this study. More details can be
found in Tables S2-S4.

The acquired fish images typically contained a ruler, specimen
label(s) and species tags along with the fish specimen. To retain
only the fish region in the images, we trained a 2D Unet model
(Goodfellow et al., 2016) using a small portion of our data in the
ANTsRNet software (Tustison et al., 2018). We manually segmented
the background, fish, scale bar and field notes on 550 images using
3D Slicer (Kikinis et al., 2014). We used weights from the trained
model to automatically mask and crop the fish specimen portion of
the remainder images. With the exception of rare cases where the
fish overlapped the scale bar and/or the field notes, which were dis-
carded, this pipeline resulted in successful generation of RGB fish-
only images at the original resolution. The pipeline was implemented
in R using ANTsR (Avants, 2019) and ANTsRNet.

Once the cropped fish images were obtained, we performed data
augmentation by randomly applying standard image transformations
used in deep learning for computer vision, including translations of
up to 0.25 of the image dimension, flips with a probability of 30%, ro-
tations of up to 60° and Gaussian random intensity variations using
PCA with ¢ = 0.1 of the color channel value (Krizhevsky et al., 2012).
Data augmentation is critical when using ConvNets for image pro-
cessing and is a common practice for fish classification (Villon et al.,

TABLE 1 Statistics of the subsets of the Great Lakes Invasives
Network (GLIN) dataset used in this study for training and
evaluation

No. of No. of No. of No. of images
Dataset images species genera per species
GLIN (All) 63,758 575 187 1-7,935
Hard 4,882 102 26 30-50
Easy/100 3,762 38 11 63-100
Easy/50 1,900 38 11 50

2020, 2021), especially when the available data are limited (Shorten
& Khoshgoftaar, 2019). By training the model on variations of the
same image, the model is deterred from learning nuanced patterns
in the images that can lead to spurious performance, such as the in-
tensity of the background, and encouraged to be robust under vari-
able input conditions. Our preliminary results, as shown in Figure 4,
indicate that data augmentation boosted the model's accuracy by
about 2.8%.

2.2.2 | Evaluation setup for comparing classification
performance

In the process of training black-box neural network architectures, it
is common to observe higher generalization errors when the amount
of training data is small. However, in HGNN, we show that by includ-
ing a biological knowledge-guided loss term (see Equation 1) in the
learning objective of neural networks, we can achieve reasonably
good generalization performance even in situations where training
data are scarce. This is in alignment with the observations made in
a previous work by (Jia et al., 2019). To test for this hypothesis in
the context of fish classification, we compared the classification
performance of our proposed model to a baseline black-box neural
network architecture (termed Blackbox-NN) comprising of a ResNet
of the same size and shape as that of one of the ResNets of our pro-
posed model. Specifically, we compared the performance of HGNN
and Blackbox-NN on each of the three data subsets mentioned in
Table 1. For each of these subsets, we used 64% of the data for train-
ing, 16% for validation and the remainder for testing. To measure
classification performance, we used the fl1-score of the correct spe-
cies class (Tan et al., 2018b) introduction. Throughout this paper, we
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used box plots to show the model's performance over five random
runs of neural network training. To obtain the best-performing neu-
ral network models, we performed an explorative Naive-Bayes ap-
proach for hyper-parameter search and fine-tuning. Then, we picked
those parameters that performed best on the validation set.

2.2.3 | Tools for deep learning visualization and
assessing robustness to adversarial occlusions

Saliency maps (Simonyan et al., 2014) are heatmaps of the gradi-
ents of a neural network model's output with respect to its input.
In other words, a saliency map shows how strongly do changes in
pixel values of a certain region of the image cause a change in the
species' probability, highlighting the areas of the image that are most
decisive for the classification problem. While other tools, such as
GradCAM (Selvaraju et al., 2017), have been used for the same pur-
pose (dos Santos & Gongalves, 2019), we found saliency maps to be
more powerful and capable of detecting the most subtle visual fea-
tures. Figure 5 shows some examples of saliency maps obtained for
Blackbox-NN. The code we used for generating these saliency maps
is inspired by FlashTorch (Ogura & Jain, 2020), an implementation
tool based on Guided Back-propagation (Springenberg et al., 2015).
As we can see in Figure 5, the baseline model is quite sensitive to dif-
ferent features of the input fish image for different species, includ-
ing barbels and fins in Figure 5a and the eye in Figure 5b. Saliency
maps are also a good debugging tool as they can reveal cases where
the model is ‘cheating’ or looking at irrelevant features of the image
that are not biologically meaningful for the purpose of fish classifica-
tion. An example of such a case is presented in Figure 5c, where the
model is incorrectly picking up pixels around the note on the label
paper in the image as regions with high saliency scores. In this way,
saliency maps can be used for ‘interpreting’ the learned features of

neural network models.

(@) (b)

Along with offering interpretability, saliency maps can also be
used for investigating the resiliency (or robustness) of neural net-
works to adversarial occlusions. For example, by occluding regions
(or patches) in the input image with high saliency scores, a neural
network model's reliability at making correct predictions can be
stress-tested even when it is starved off information from salient
image regions. To measure the robustness of a model at every round
of adversarial occlusions, we calculated the average probability of
the correct class predicted by the model on an input image x, aver-
aged over all test images as [EX(Pts(x)). The higher this metric, the less
confused the model is about the input. Furthermore, by measuring
drops in this metric as a consequence of adversarial occlusions, we
can evaluate if a model is too sensitive to selective regions of the
input image (with the highest saliency score contributions), which
when obstructed can confuse a model into making incorrect pre-
dictions. We make use of this metric to assess the robustness of
Blackbox-NN and HGNN in our experiments.

3 | RESULTS

3.1 | Effect of dataset complexity and training size

Figure 6 shows the comparison between HGNN and Blackbox-NN
on three subsets of the GLIN dataset: Easy/100, Easy/50 and Hard.
Two observations can be made from this figure. First, as datasets
become more complex (e.g. the Hard dataset) and/or subject to less
training data (e.g. the Easy/50), the performance of the model dete-
riorates. Second, and more importantly, the impact of our method
is more pronounced exactly when data are scarce and the dataset
is complex. As Figure 6 shows, while the median performance of
HGNN is almost equal to that of Blackbox-NN for Easy/100, which
is the easiest of the datasets, the former clearly outperforms the

latter on both Easy/50 and Hard. This highlights our model's power

(c)

AT
=

FIGURE 5 Saliency maps of different fish images obtained for black-box neural network. Pixels in red denote image regions with high
saliency scores, indicating higher importance of those regions for fish classification as perceived by the model. (a) Barbels and fins, (b) Eye, (c)

Label paper
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FIGURE 6 Classification performance across different subsets of the Great Lakes Invasives Network dataset for hierarchy-guided
neural network (HGNN) and black-box neural network (Blackbox-NN). By definition, as the boxes for the two models do not overlap for
Easy/50 and Hard, it means there is at least 95% confidence (McGill et al., 1978) variations that the median accuracy of HGNN is higher than

Blackbox-NN

and ability to compensate for the relative lack of data with respect to
dataset complexity by incorporating biological knowledge.

3.2 | Effect of adversarial occlusion

To demonstrate HGNN's resiliency to adversarial occlusions, we it-
eratively cover regions (or patches) in an image with the highest sali-
ency scores and report the probability of the correct class predicted
by the model over the occluded image. Figure 7 shows an example of
this process on an illustrative fish specimen from the Easy/50 data-
set. From left to right, the figure shows a progression from an image
with no occlusion towards applying more patches of adversarial oc-
clusions (seen as green square patches) on the same image. Below
each image is the model's predicted probabilities over the five most
probable species sorted in descending order, for both HGNN (top
row) and Blackbox-NN (bottom row). We make a number of obser-
vations here. First, all of the saliency maps highlight the features of
importance for classifying this fish, namely the eye, nostrils and the
dorsal fin. However, notice that the saliency maps for HGNN are
slightly different from that of Blackbox-NN, demonstrating that the
two models are not looking at the image in the exact same way (i.e.
they have distinct saliency maps). This difference is important for
making a fair comparison between the two models. Second, even
when there is no occlusion, while Blackbox-NN makes the correct
prediction, its probability of the correct species class is significantly
lower than that of HGNN's. This demonstrates HGNN's ability to
extract more useful and generalizable features from images for fish
classification. Third, after applying two patches of occlusions (in the
middle column), we notice that even though both models get the
species right, Blackbox-NN's second guess is not within the correct
genus. Finally, and most importantly, after applying four patches of
occlusions (in rightmost column), we notice that while both models
start predicting the wrong class, HGNN is still within the correct
genus, while Blackbox-NN is not. It follows that the Blackbox-NN
model is not learning phylogenetic features that could be used in
other tasks, such as trait segmentation. To drive this point home,

we automate this process for the entire dataset and compute the
average predicted probability of the correct class across all images,
as a function of the number of adversarial occlusions applied to the
images. Table 2 reports the results for each number of patches rang-
ing from O (no occlusion) to 4. We can see that HGNN shows higher
average probability of the correct class across all number of patches
in comparison with Blackbox-NN. This demonstrates HGNN's abil-
ity to generalize and handle image imperfections better, especially
when the most informative (or salient) regions of the image are

occluded.

4 | DISCUSSION

In this paper, we have shown that embedding the hierarchical tax-
onomy of the genus and species classes in the design and learning
of neural networks leads to solutions with better generalization,
superior accuracy and better resiliency to adversarial occlusions.
Most of the deep learning methods currently in the literature per-
form tasks without learning biologically relevant features. Our pro-
posed method leverages a particularly important aspect of species
classification—the hierarchical arrangement of taxon names—which
improves model interpretability and biological validity. The aim of
our method is to provide biologists not only with the correct clas-
sification, but also with a plausible one when it fails.

An ultimate goal of this research is to augment biological informa-
tion on the connections among phenotype, genotype and environment
into deep learning so that an understanding of genealogical relation-
ships among species is discovered by our neural networks. While we
have not fully investigated these relationships here, a future direction
of our project is to explore how the anatomical features of species
learned by our models relate to the environments the species were
collected from and how closely related the species are. This would in-
crease understanding of how the environment and genealogy shape
the phenotypes of species. Moreover, we plan to investigate how such
learned features aid us in other relevant tasks, such as segmenting the
phenotypic traits of species. Finally, we also plan to exploit other forms
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FIGURE 7 Saliency maps showing the effect of adversarial occlusions (shown as green square patches) on the predicted probabilities

of the species class produced by hierarchy-guided neural network (HGNN) (top row) and black-box neural network (Blackbox-NN) (bottom
row) on an example fish image. The left-most column corresponds to the case with no occlusion, while the number of occlusions increase as
we go from left column to the middle column (2 patches) to the right-most column (4 patches)

TABLE 2 Average probability of the correct species class predicted by black-box neural network (Blackbox-NN) and hierarchy-guided
neural network (HGNN) over Easy/50, as a function of the number of adversarial occlusions applied to every image. From left to right, we
start with non-occluded images and progressively add more patches of occlusions

Number of occlusion patches

Model 0 1 2 3 4

Blackbox-NN 0.473 0.355 0.291 0.232 0.187
HGNN 0.482 0.369 0.307 0.256 0.215
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of hierarchical information such as phylogenetic tree-based distances
among species to better understand how this informs biologically in-
formed neural network feature learning.

Recent advances in image computation are enabling automated
methods of extracting phenotypic data from specimen images. We
hope that our present framework for leveraging biological informa-
tion in training machine learning models will have a direct impact
on several biologically relevant computer vision tasks, including spe-
cies detection (Li et al., 2016), tracking and counting (Spampinato
et al., 2008), segmentation (Chuang et al., 2013; Yao et al., 2013),
and classification (Ding et al., 2017; Rathi et al., 2018; Sarigul, 2017).
This automation effort is essential as manual annotation is laborious
and requires expertise (Villon et al., 2020), especially with the large
amount of data that has become recently available (Ditria, Sievers,
et al.,, 2020). Moreover, it has been shown that automation can
be more accurate than human annotation (Ditria, Lopez-Marcano,
etal., 2020).

In this paper, we have focused on teleost fishes as a model sys-
tem for species classification due to their high diversity and im-
portance economically and scientifically. Fishes are the targets of
recreation (Arlinghaus & Cooke, 2009), aquaculture and fisheries
(Lynch et al., 2016) and conservation (Arthington et al., 2016). Fishes
make up more than half of all vertebrates and they play critical roles
in Earth ecosystems (Near et al., 2012; Villon et al., 2020). However,
our framework of HGNN is quite generic and can be potentially ap-
plied to incorporate hierarchical knowledge into machine learning
models for a broad variety of other biological problems involving
phenotypic trait discovery and understanding in other taxonomic
groups.
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