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As interest in DNA-based information storage grows, the costs of synthesis have been identified as a key
bottleneck. A potential direction is to tune synthesis for data. Data strands tend to be composed of a small
set of recurring code word sequences, and they contain longer sequences of repeated data. To exploit these
properties, we propose a new framework called DINOS. DINOS consists of three key parts: (i) The first is a
hierarchical strand assembly algorithm, inspired by gene assembly techniques that can assemble arbitrary
data strands from a small set of primitive blocks. (ii) The assembly algorithm relies on our novel formulation
for how to construct primitive blocks, spanning a variety of useful configurations from a set of code words
and overhangs. Each primitive block is a code word flanked by a pair of overhangs that are created by a cyclic
pairing process that keeps the number of primitive blocks small. Using these primitive blocks, any data strand
of arbitrary length can be assembled, theoretically. We show a minimal system for a binary code with as few
as six primitive blocks, and we generalize our processes to support an arbitrary set of overhangs and code
words. (iii) We exploit our hierarchical assembly approach to identify redundant sequences and coalesce the
reactions that create them to make assembly more efficient.

We evaluate DINOS and describe its key characteristics. For example, the number of reactions needed to
make a strand can be reduced by increasing the number of overhangs or the number of code words, but
increasing the number of overhangs offers a small advantage over increasing code words while requiring
substantially fewer primitive blocks. However, density is improved more by increasing the number of code
words. We also find that a simple redundancy coalescing technique is able to reduce reactions by 90.6% and
41.2% on average for decompressed and compressed data, respectively, even when the smallest data fragments
being assembled are 16 bits. With a simple padding heuristic that finds even more redundancy, we can further
decrease reactions for the same operating point up to 91.1% and 59% for decompressed and compressed data,
respectively, on average. Our approach offers greater density by up to 80% over a prior general purpose gene
assembly technique. Finally, in an analysis of synthesis costs in which we make 1 GB volume using de novo
synthesis versus making only the primitive blocks with de novo synthesis and otherwise assembling using
DINOS, we estimate DINOS as 10°x cheaper than de novo synthesis.
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1 INTRODUCTION

The exponential growth of data in the world is expected to reach 175 ZB by 2025 [32]. To meet
this growing demand, DNA has emerged as a viable medium for high-density storage of archival
information, with lifetimes over 100,000 years [17] and storage densities seven orders of magni-
tude larger than magnetic tape [11]. However, a major impediment to the adoption of DNA is
the seven orders of magnitude higher cost of DNA synthesis as compared to DNA sequencing [9].
Hence, large breakthroughs in synthesis technology that substantially lower costs are paramount.
The high costs of synthesis stem, in part, from the goal of producing arbitrary genetic sequences,
where the sequence has a specific biological meaning. The production of such sequences needs
high fidelity so it can be integrated into biological systems and achieve the desired result. How-
ever, DNA-based storage systems are not similarly constrained, opening the door to data-centric
synthesis approaches.

Data INspired Oligo Synthesis (DINOS) builds on top of two main observations to form a
data-driven approach to synthesis. The first observation is that DNA-based storage systems have
the freedom to select arbitrary sequences to represent information. This provides the flexibility to
allow sequence design to aid the process of synthesis. With the observation that DNA is capable of
self-assembling thanks to Watson-Crick pairings among single strands of DNA, it has been shown
that long linear assemblies can be constructed from a set of DNA parts [5, 6, 22, 28, 36-38, 43, 44, 46].
Thus, the customization of strand design for data storage can be leveraged so strands self-assemble
messages of information. Although DNA assembly is well studied, little if any work has been done
on leveraging DNA assembly specifically for creating data strands.

The second observation is that data contains a substantial amount of redundancy and repetition.
There is one level of repetition formed by the repeated use of the same symbols at the bit or byte
granularity. For example, only two DNA sequences are needed to represent a binary code, and
these two sequences can be assembled to form arbitrary binary messages. Such an approach has the
potential of decreasing synthesis costs greatly due to the fact that creating many copies of a small
set of DNA sequences can be considerably cheaper than synthesizing many unique instances as is
done in current synthesis techniques [1, 2]. Such an approach is also being explored by emerging
DNA information storage companies such as Catalog Technologies Inc. [34].

Data redundancy also occurs at larger granularity. Sequences of bits are often repeated both
within and across strands and files. Rather than separately and repeatedly assembling the same
sequences of bits, we should consolidate redundant assemblies to streamline and reduce the num-
ber of reactions and time required. With an appropriate representation of strand assembly, we can
identify redundant assemblies and consolidate them into a single reaction, in much the same way
that compiler algorithms identify redundant expressions and eliminate them [21].

DINOS consists of three key parts that are co-designed to work together and offer several tunable
features that allow it to be optimized for lower or higher information density, longer or shorter
strands, or reduced assembly reactions. First, DINOS is built on top of a set of primitive DNA blocks
with properties that enable the assembly of arbitrary data strands. These primitive blocks consist
of two parts: a code word sequence and a special overhang sequence on each end. Each symbol
of information is represented by a code word, and assembly of strands is enabled by the overhang
regions. A unique aspect of our approach is how we combine code words and overhangs. Rather
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than requiring all possible combinations, we only require |Q| - 2F primitive blocks, where |O| is
the number of overhangs and 2* is the number of unique code words.! Our approach allows us to
describe a range of systems that can be constructed with varying numbers of primitive blocks by
independently choosing the number of code words or overhangs. We study a range of choices for
k and |O| and explain their merits and tradeoffs.

The second part of DINOS is the hierarchical assembly algorithm. The hierarchical assembly al-
gorithm is conceived of as an n-ary tree data structure. Primitive blocks are arranged at the leaves
of the tree, and the tree’s nodes represent reactions. Internal nodes represent reactions that pro-
duce sub-strands using the results of children, and the root reaction provides the final assembly of
the target DNA strand. The assembly algorithm relies on Watson-Crick pairings between primi-
tive blocks in a reaction, and hence our algorithm ensures that primitive blocks are chosen in such
a way to encode the desired data and assemble in the proper order. The depth and degree of the
tree is determined by the number of overhangs, which is one of our tunable design parameters.
This allows for tradeoffs between tall binary trees with relatively more reactions versus shorter
|(O — 1)|-ary trees with fewer reactions. Our assembly algorithm when paired together with our
primitive block design leads to storage densities up to 80% better than a state-of-the-art gene as-
sembly approach.

The third part of DINOS is the detection and elimination of reactions that produce redundant
data [21, 45, 47]. The tree representation for assembly makes it possible to identify nodes of the
tree that produce the same information. Rather than producing them many times, we can coa-
lesce reactions to make assembly quicker and costeffective. We perform both an ideal study and a
practical implementation for exploiting this redundancy. We show that a simple search over all sub-
trees that produce the same data along with an alignment algorithm to ensure they have matching
overhangs can be effective in reducing the number of reactions performed across a corpus of infor-
mation. When evaluating our redundancy elimination approaches, we show that searching for all
redundancy can reduce reactions by 91% and 41.2% for decompressed and compressed data, respec-
tively, when using a system with 16 overhangs and 1-bit code words. We show that an alignment
technique can be used to further increase these reductions to 91.1% and 59%, for decompressed
files and compressed files, respectively, for the same conditions. During our analysis of redundant
reactions on compressed and uncompressed data, we have found that there are records in which
synthesizing the decompressed version can reduce reactions by 60% compared to its compressed
version. This motivates the need for further work to understand how the inherent entropy of in-
formation should be leveraged during the synthesis process.

We also studied the impact of the composition of the primitive block set from the three perspec-
tives of physical space, storage density, and cost. We find that larger overhang sets more effectively
decrease reaction count by performing more assemblies at once, while a larger number of code
word symbols primarily increases storage density. However, cost of synthesis is largely affected
by both parameters, and in fact requires a careful balance of both to minimize the cost associated
with some fixed primitive set size. Our cost analysis also shows that with current costs of de novo
synthesis, a ligation implemented assembly approach that leverages the ability to use primitive
blocks many times after they are created with de novo synthesis can be five orders of magnitude
cheaper than using de novo synthesis for an entire set of data, even if that dataset is only 1 GB and
the primitive block set is the minimum of six blocks.

We organize the article as follows: Section 2 describes how data is typically encoded in DNA and
the model of assembly we assume. Section 3 describes the key parts of DINOS in detail as well as

1\We parameterize this term using 2 as a convenience for mapping back to k-bits of binary storage, but our technique is
not restricted to a power of two.
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proofs of correctness. Next, Section 4 describes how to exploit redundancy in data during assembly
to further reduce reactions, and Section 5 evaluates DINOS over a number of configurations. We
then discuss practical considerations in Section 6 when implementing DINOS in a wet lab. Finally,
we frame our work in the context of existing DNA assembly work and redundancy reduction
techniques in Section 7, and Section 8 concludes.

2 BACKGROUND
2.1 Encoding a File as a Collection of DNA Strands

Information in conventional electronic storage media is usually stored as ordered sequence of bi-
nary digits, namely, {0, 1}%. We define the bits for a file F to be the ordered set Fg = {bg, b1, ...b,_1}
where z is the length of the record in bits. Due to the high error rates constructing long strands
using current synthesis technologies, we cannot make a single DNA strand long enough to
hold a large file. Fp is divided into chunks of length n’ bits that are feasible to synthesize. The
length n’ can be chosen arbitrarily, even if n” does not divide z evenly, and the last strand can
be padded with extra bits if fixed length payloads are needed. Now file F is a set of chunks
Fc ={Co,C1,...Crz/n1-2,Clz/n1-1}- Each chunk will eventually become a DNA strand.

An important consideration in the design of these chunks is the method by which chunks are
reassembled into a complete file after sequencing and decoding, since the process of synthesis and
sequencing does not preserve order. There are a variety of approaches that are possible. The most
prevalent and densest approach adds additional bits to each strand to represent the index of the
chunk within the file [19]. The index of each strand, i, represents its order in the file, and it can
be represented with a fixed number of bits, {ao, . . ., @jog,([z/n)-1}- Hence, all chunks C; € Fc can
be represented as follows: C; = {ao, . . ., jog,([z/n'7)~15 Pi-n’» - - - b (i+1)-1}. Note, the placement of
the index vector, a, can be anywhere in the strand as long as the decoder knows where to find
it during decoding. It is trivial to re-assemble the correct ordering of all bits in Fp by placing all
chunks in order according to their index.

It is also common to add error correction bits to a chunk or to append or insert additional
chunks into a file that contain error correction codes for detecting and correcting errors. Such
approaches may further increase the size of each chunk or the number of chunks that are ultimately
synthesized into DNA [10, 17, 27].

From here on, we will not distinguish indexing bits and error correction bits from the data pay-
load bits, and we will only consider a chunk as an arbitrary sequence of bits, C = {cg, c1,...,cn-1},
and each chunk has n ordered bits. With each chunk partitioned, they can be encoded as a strand
of DNA through an encoding function Ec : € — § that represents binary information on the
DNA nucleotide alphabet 3 = {A, G, C, T}, where € is the set of all possible chunks and S € %' is
the set of all strands of length L base pairs that represent each chunk, and we use =’ to denote all
possible length L strands on the four-base DNA nucleotide alphabet.

We assume that the encoding process E¢ adopts a code word based approach in its construction
of each DNA strand S; € S. That is, the encoder maintains a set of code words C C >, where each
code word is a t-nucleotide DNA-string. For each of the code words E¢ maintains a bijective map-
ping function f : C < {0, 1}* that maps each code word uniquely to a k-bit symbol such that all
k-bit strings have a corresponding code word. This mapping is also known as a codebook. Using
the codebook, the encoder Ec creates each strand S; € S by dividing each corresponding chunk
into a string of k-bit symbols defined as Z = {so, $1,...,S[n/k1-1} | S0,51, ... € {0, 1}k, Through a
lookup operation in the codebook, each of the symbols s; € Z is assigned its corresponding code

2Storage media can alternatively be seen as an arbitrary sequence of symbols (e.g., bytes) over a fixed alphabet (e.g., bytes
have 2% possible values), but it is more convenient for us to describe our approaches in terms of bits.
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Fig. 1. Example flow of information for a code-word-based encoding process. Note, the code words of the
DNA-Binary Digit Codebook are only for demonstration purposes. Not shown, but for random access, ad-
ditional sub-sequences of 20 nucleotides are pre-pended and appended to the final concatenation of code
words.

word from C. With each symbol assigned its code word, all code words can be concatenated to
create the final strand S; € S. A small example that shows the encoding process from chunks to
symbols and DNA codewords is given in Figure 1. Constructions of the code word set customar-
ily avoid problematic secondary structures such as long homopolymers that reduce sequencing
accuracy and sequences used for addressing mechanisms [10, 14, 16, 17, 27, 39].

After encoding all of the strands associated with a single file, they are bookended by a pair
of 20 nucleotide DNA sequences known as primers that are common across all strands in the same
file. These primers act as addressing mechanisms that allow biochemical processes to implement
random access in the sense that all strands pertaining to a certain file can be separated from the
strands encoding other files [10, 23, 27, 39, 40].

2.2 Assembly Model

In a computational sense, assembly of DNA fragments for the purposes of gene assembly or assem-
bling long DNA strings for data storage can be thought of as a concatenation operation that joins
together input DNA strings in a specified order. The order is specified in the bio-chemical process
by overlapping regions across sub-sequences that are Watson-Crick pairs. An example illustration
of how Watson-Crick pairs drive the assembly order of DNA strands is shown in Figure 2. In this
example, the DNA structure consists of three distinct regions as indicated by three unique colors
on each initial fragment. The inner black double strand region represents either a sub-sequence
that may have been assembled in a previous reaction or a primitive DNA code word representing
some symbol of k-bits as described in the previous section. On each side of the double strand are
single-stranded regions, denoted as o;, which drive the ordering of assembly. Each single strand
region o;, known hereafter as overhangs, will join with its Watson-Crick complement overlapping
region of the same color notated as 0;. This process, known as hybridization, ultimately creates
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Fig. 2. Single pot assembly of DNA fragments. An initial set of fragments are mixed into a single pot reaction
that assembles the strands in an order dictated by the overhangs at the end of each fragment, e.g., the first
fragment in the assembly has overhangs oy and o7 (07 indicates the complementary sequence of o7).

a double strand of DNA. After all complementary overhangs join, the complete final assembly
is constructed. This final assembly will have two overhangs itself such that it can be used as sub-
assembly in a subsequent reaction. Note that, since the black region is double stranded, it is blocked
from participating in anymore hybridization, and thus the single stranded overhangs are the sole
determiner of ordering. We refer to a set of all possible overlapping regions that can be used in the
process of assembly as O and the cardinality of the set as |O|.

Because overhangs dictate the ordering of fragments within a strand, repeating an overhang
sequence within a reaction will result in an ambiguous ordering amongst fragments and create
undesired product. It follows that there is a limit on the length of a strand that can be assembled in a
single pot. To construct strands of arbitrary length, hierarchical approaches have been developed to
use multiple separate intermediate reactions whose outputs are combined to create longer strands
[22,36,37]. When designing sets of overhangs, they must be different enough to ensure that there is
no non-specific hybridization. If this occurs, like the case of repeating an overhang, then there will
be an ambiguous ordering of information. It has been shown in Reference [30] that overhang sets
can be constructed such that non-specific hybridization is negligible. Hence, we do not consider
effects of non-specific hybridization in our models, but they are an important consideration in the
design of such a system.

To this point, we have described a general model that just uses hybridization to concatenate
smaller strings together to generate a longer output. In a biological context, one last step is needed
to permanently join the fragments together to create one single long linear DNA strand. This
can be implemented by designing the overlapping sequences to be four-base sequences that fa-
cilitate ligation reactions using a ligase enzyme as is done in Golden Gate Assembly approaches
[22, 30, 36, 37], or by designing longer overhang sequences so they can be used as start points for
polymerase chain reaction (PCR) as is done in CPEC [31]. However, in all of these approaches,
the hybridization of overlapping Watson-Crick sequences is all that is needed to understand the
outcome of an assembly. So, we will not cover all of the requisite biochemistry, and we direct the
reader to the referenced material.

3 DATA-INSPIRED OLIGO SYNTHESIS FOR DNA DATA STORAGE
3.1 Overview

Figure 3 gives an illustration of the simplest DINOS configuration using a binary code and three
overhangs. As in Section 2.2, we assume that assembly is governed solely by hybridization de-
termined by exactly matching Watson-Crick pairs. With only three overhangs, we can at most
assemble two oligos at a time to ensure that there is no ambiguity of assembly from repeated over-
hangs. We refer to such reactions that have no ambiguity in how overhangs should assemble as
well formed reactions. Two overhangs are reserved for connecting with adjacent reactions, and one
is reserved to connect the oligos together. Hence, we form a binary assembly tree, wherein each
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€ =10101001 Z={1,0,1,0,1,0,0,1} 0 = {0y, 01,0,}

Fig. 3. An 8-bit chunk C = 10101001 is broken into a set of 1-bit symbols Z = {1,0,1,0,1,0,0, 1}. Each
symbol is converted into a DNA code word that is double-stranded (ds), and each code word is assigned
single-stranded (ss) overhangs at each end. This ss-ds-ss DNA structure is a primitive block. Overhangs are
assigned in a cyclic manner that ensures each code word can be connected with adjacent ones. Code words
form groups of two from left to right to create the first layer of reactions in the tree. The grouping process
continues until the entire 8-bit assembly is achieved.

reaction takes two oligos and produces a single product. We convert a chunk of 8 bits into a data
strand by assembling eight 1-bit code words. Let 0 denote a complementary sequence to o. Starting
from the first code word, we assign overhangs to each end of the code word in a cyclic manner,
ensuring that the overhang between two adjacent code words are complementary. For example,
the first code word will have left and right overhangs o, and o7, respectively, and the second code
word will have left and right overhangs 0; and o0,. When the last overhang, o,, appears as the left
overhang at the third code word, the right side wraps around back to o,.

Our arrangement of overhangs has an important key property, namely, it ensures that the entire
assembly tree is well formed. Not only are the first set of reactions trivially well formed due to
the cyclic assignment of overhangs, but all reactions above them are also well formed. The cyclic
arrangement of overhangs ensures that the proper permutation of overhangs is used each reaction
such that an overhang is never repeated after grouping two reactions for the next layer of the tree.
Furthermore, since each reaction will inherit the left and right overhangs of their left and rightmost
children, respectively, the overhang assignment ensures every adjacent reaction will have proper
overhangs that can join their products together.

In this system, we only need six basic DNA structures to assemble strands that represent arbi-
trarily long permutations of symbols. We refer to these basic structures as primitive blocks. There
are only three ways that overhangs can be paired, and we need all combinations of code words
and these three pairs, resulting in six. For this case, the number of primitive blocks needed is equal
to the product of the number of code words and number of overhangs. Next, we generalize this
result beyond binary symbols and a set of three overhangs.

3.2 Assembly Algorithm and Primitive Set Construction
We extend the process in Figure 3 to arbitrary overhang sets, strand lengths, and code word

sets. Recall from Section 2.1 that we assume an encoding process that breaks chunks of bits
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into k-bit symbols such that a chunk can be represented by a multiset of binary symbols: Z =
{50,815 - -5 Stn/k1=1} | S0, 81, . . . € {0, l}k. Also recall that we assume that the encoder maintains a
set of DNA strings C such that each string maps uniquely to each k-bit symbol.

Now, we define the set of primitive blocks, U, that we use to construct arbitrary sequences.
Because we use a cyclic overhang assignment, there are |O| distinct left and right overhang pairs.
Therefore, we need |O| versions of each code word for each possible overhang pair. Formally, this
setis described as U = { 0j-c-0(j+1ymod|0| V¢ € C | 0j € O,0 < j < |O|}, where - is used to explicitly
identify the concatenation of the left overhang, code word, and right overhang. Specifying the
primitive block like this abstracts away the underlying structure, e.g., a two-strand structure like
Figure 2. However, it still conveys the information that an assembly approach must have two
complementary versions of an overhang to allow construction to occur. Now, for each symbol in
the set Z that represents a chunk, we assign the primitive block from 2/ that has the appropriate
encoding portion and overhang pairs based on the symbol’s position in the set. This in turn creates
an ordered multiset of primitive blocks, Z,,, that has a one-to-one correspondence with Z, and can
be expressed as Zy, = {ux | ux € U,0 < x < [n/k],Ux = 0x mod |0] - Cx - O(x+1)mod|0| } Where ¢y €
C is the DNA code word of the corresponding symbol s, € Z at position x in the ordered set Z.

Now, we construct an assembly tree of degree |O] — 1. We collect the primitive blocks at the base
of the tree, from left to right, into groups of size |O| — 1. These groups serve as the inputs to the
leaf reactions at the base of the tree. This left-to-right grouping is done at each layer of the tree
until the root reaction is reached and a complete tree with degree |O| — 1 is created. The growth
rate, the factor by which the assembled strands grow each layer, is |O| — 1. Hence, the required
height is h = log|p|_;([n/k]), and the number of reactions at layer p, |R?|, can be calculated as

%, assuming p = 0 for the leaf layer.

Because reactions in the tree only require a topological ordering, all reactions at layer p, R?,
can be performed in parallel. Therefore, the time complexity of assembling a strand will be
O(log| |- (n)) compared to O(n) for sequential de novo approaches. Furthermore, the number of

nodes in a g-ary tree is known to be %, so it follows from our definition of height that the
space complexity for synthesizing a single strand is O(n) for DINOS compared to O(1) for de novo
synthesis assuming that strands can grow longer without increasing the required space.

Figure 4 illustrates the complete process of implementing four different configurations of our
algorithm to assemble the same 32-bit chunk. First, the chunk is divided into symbols with the size
of k = log, |C| bits. Each symbol is used to generate a 2-tuple where the first value represents the
symbol (base-10 in Figure 4) and the second part of the tuple describes the symbol’s position calcu-
lated as i (mod |O|) for the ith symbol in the chunk. With the tuples generated for the chunk, each
tuple is used to look up the primitive block in the codebook (top left table for each configuration).
These primitive blocks from the codebook are then organized into leaf reactions as indicated by
the table on the right of each configuration, where L; is the jth leaf from the left of the base of the
tree. With the primitive block sets constructed for each leaf, the assembly tree is constructed with
a certain height, degree, and reaction count dictated by the configuration. Clearly, each different
configuration leads to a different number of primitive block sets per leaf reaction, changes the
height of the reaction tree, changes the number of reactions, and leads to different DNA strand
(codebook) sizes. We investigate the cost and space implications of each of these configurations
along with others in Section 5.

3.3 Formalizing DNA Fragment Assembly

In this section, we provide rigorous definitions for terms used to construct our assembly algorithm.
Furthermore, once these definitions are described, we are able to formally define the exact problem
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Chunk = 00001000010111101101001000010011
Tuple Lists : (symbol value, symbol index mod |0|)
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Fig. 4. Four applications of the assembly algorithm with varying code word and overhang set sizes.

that our assembly algorithm targets. We begin by describing the basic building block of assembly
synthesis, the primitive block.

Definition 3.1 (Primitive Blocks). A primitive block p is a DNA string on the alphabet X that can
be represented by the concatenation, denoted as A - B for two strings A and B, of three distinct
sub-strings: p := op - c-0g | ¢ € C,or € O,0r € O,01 # ogr. Where o1 and og represent the left
and right overhangs that facilitate its connection with other primitive blocks.

In other words, primitive blocks are the most basic building block of assembly, since they are indi-
vidual code words that encode each {0, 1}* of the primitive k-bit symbols. Thus, these blocks serve
as the starting point of assembly and are joined together by reactions that perform concatenations.
The definition for such reactions aims to be as abstract as possible to allow any biochemical pro-
cess that fits these descriptions. We start with a definition for a special concatenation operation,
referred to as hybridization concatenation, which reflects the product produced by the hybridiza-
tion of overlapping Watson-Crick pairs as shown in Figure 2.

Definition 3.2 (Hybridization Concatenation). Let A := o0,, - a - ox and B := o, - b - 0, be two
DNA strings with A[L] := o,,, B[L] := 0, and A[R] := 0y, B[R] := 0, denoting each of the strings’
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left and right substrings, respectively, in the concatenation. Let @ denote the empty string. The
hybridization concatenation of the two strings, denoted with the symbol ®, is defined as A® B :=

0y -a-0x-b-0, iff A[R] = B[L] and A ® B := @ otherwise. The hybridization concatenation operation
output can be defined for more than two strings, say, AQC® B, as long as A[R] = C[L], C[R] = B[L].

There are several characteristics to point out about hybridization concatenations. One, the out-
put of the operation is only defined if the right and left overhangs for the first and second strings,
respectively, are Watson-Crick complements.® This captures the fact that two overlapping regions
will not join together due to a lack of Watson-Crick pairing. Second, since the overhang regions
necessarily start as single-stranded DNA to enable connections, the hybridization turns these re-
gions into double-strand segments after hybridization (Figure 2).

Definition 3.3 (Reaction). Given an ordered set of DNA strings D = {d, d1, . . . dn—_1} where each
string d; has a left and right overhang denoted by indexing as d;[L] € O and d;[R] € O, a reaction
R takes as input D and produces an output DNA string that is a hybridization concatenation of all
DNA strings in D: R(D) :=d; ® dj ® d ... ®d; | i := 0(0),j := 0(1),k := 0(2),...1 := o(N - 1).
Where o is a permutation function that maps the indices of the hybridization function to the indices
of the input set D of strings such that the definition of hybridization concatenation is satisfied. For
example, o(0) maps the first string in the operation to some index [0, N — 1] that represents an
input string d;.

A major component of a reaction is being able to define what the permutation function o is.
This function defines the output string as it determines the positioning of each input string d; in
the series of hybridization concatenations that define the output R(D), and is driven solely by the
overlapping regions at each end of each input string. Since we are interested in deterministically
producing one unique product for a given reaction, there must exist one unique function o for a
given set of input strings D. If there is, however, more than one possible ¢ that may be defined for
a set D, then there is more than one possible arrangement that will occur with high probability
when biochemically implemented. This will also occur if there does not exist a maximal o that
includes all of the d; € D input strings in the set of hybridization concatenations. The existence of
a maximal and unique o leads us to definition of a well formed reaction.

Definition 3.4 (Well Formed Reactions). A reaction R is said to be well formed if there exists, for
some input of strings D = {dy, d,...dn-1}, a unique permutation function o for R such that all
N input strings can be hybridization concatenated with an output that is not the empty string.

The existence of a permutation function o depends on the overhangs of each input string, as
these determine the possible biochemical interactions that may occur. The following theorem
states the overhang requirements for a set D to ensure a maximal unique o, along with a max-
imum value for the size of the input set D given a starting overhang set O. From this point on, it
is assumed that each input string in D must have a left and right overhang.

THEOREM 3.1. A reaction R is well formed for an input set of N strings, D, if and only if across
all input strings d; € D there are exactly N + 1 unique overhang strings that form a set Y such that
there are N — 1 unique overhang strings that form a set X C Y where for each overhang ox € X,
ox appears exactly once as a right overhang for d; and a left overhang for d; when i # j. In other
words, for an overhang set O that has |O| unique overhang strings, a reaction R may have at most
only |O| — 1 possible input strings.

3In a real reaction, it would be important to design overhang sequences to have a much higher affinity for on-target binding
as compared to off-target binding.
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ProOF. We first show that a well formed reaction implies the existence of sets M/ and X, and then
show that if sets Y/ and X exist then R must be well formed. By the definition of well formed, for the
input set of strings D there must be a unique permutation such that the hybridization concatena-
tion of all N strings is defined so the output is not the empty string. For this to occur, by definition
of the hybridization concatenation operation, each string and its neighbors in the sequence of hy-
bridization concatenations for reaction R must having matching overhang strings. For example,
let i denote the index representing a string’s positioning in the sequence of hybridization concate-
nations for R, then d;_1 ® d; ® d;+1 and d;_1[R] = d;[L], d;[R] = d;+1[L]. Therefore, there are N — 1
unique overhangs that are shared between each string, and this set of overhangs forms X. Since
the reaction is assumed to be well formed, the permutation must be unique, and thus each overhang
must occur exactly once as a left and right overhang. Last, since the first and last strings in the
sequence of hybridization concatenations do not have left and right neighbors, respectively, these
overhangs are not shared with any other string in D and thus are two more unique overhangs that
can be added to X to construct Y.

However, if across all input strings d; € D there is a set of N + 1 unique overhangs to construct
set Y, then we can allow two overhangs to be allocated to the strings in D that will be placed as the
first and last arguments for R’s hybridization concatenation. Thus, given that the remaining N — 1
overhangs that constitute X all occur exactly once as a left and right overhang, there is only exactly
one permutation of input strings such that the series of hybridization concatenation operations
are not @. It is also easy to see that for N — 1 shared overhangs, the hybridization concatenation
of all N can be achieved. Thus, the reaction is well formed for this input. This concludes the proof,
and it follows that if a set of unique overhangs O of size |O| exists, then there can only ever be at
most N +1=|0] = N =|0| - 1 input strings. O

By defining well formed reaction and how to construct a set of input strings to a reaction so it is
well formed, and by observing that the output strings of reactions can be used as input strings to
subsequent reactions, since each output string has a left and right overhang as determined by the
corresponding overhangs of the first and last strings in the reaction’s hybridization concatenation
sequence, the definition of a well formed reaction network can be constructed.

Definition 3.5 (Well Formed Reaction Networks). A well formed reaction network is a directed
acyclic graph of reactions G(V, E) with a set of vertices V representing the reactions of the network,
and edge set E where each edge represented by an ordered pair (v;,v;) | v; # v; indicates that
reaction v; produces a string used as input in reaction v;. Such a network must have a set of
leaf reactions in which their input strings are primitive blocks, a set of intermediate reactions
with input strings of other intermediates or leaf reactions, and a single terminating reaction that
constructs the final target assembly. A terminating reaction may be a leaf reaction where its inputs
are primitive blocks, or such that its inputs are produced by intermediate reactions. A reaction
network is well formed if for each reaction is well formed itself.

Finally, this leads us to the definition of the precise problem statement that our algorithm ad-
dresses:

Definition 3.6 (DNA Strand Assembly Problem). Define a well formed reaction network Ry and
a set of primitive blocks U such that any possible permutation of code words in C of any length
can be assembled in the order as specified by the symbols of any arbitrary chunk of data C.

Next, we show that our assembly algorithm satisfies the DNA Strand Assembly Problem.
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3.4 Proof of Correct Assembly

THEOREM 3.2. Any arbitrary tree of height h and degree |O| — 1 can be implemented with |O| >
3 overhangs, given a sufficient overhang assignment that does not repeat any overhang across all
children of some parent node y.

Proor. We use proof by induction. Let h denote the height of a tree, relative to the root node. We
start with a base case: a tree with h = 1. The root node has |O| — 1 primitive block children. Each
child needs two bookend overhangs, but adjacent children share an complementary overhangs to
ensure assembly. Furthermore, all overhangs must be unique to avoid improper assemblies. This is
equivalent to each child having a unique overhang on the left, and the rightmost child also having
a unique overhang on the right. So, |O| — 1 children use |O| — 1 + 1 = |O| overhangs. Thus, a tree
of h = 1 can assemble |O| — 1 children. Now, we will use this base case to show that if a tree of
height h and degree |O| — 1 can use |O| overhangs, then a tree of height h + 1 is also an assembly
tree that uses |O| overhangs.

For the inductive step, consider the tree of height h. For each leaf at this h layer, we can add
|O| — 1 children to complete the h + 1 level. Let us take one node from the h level that we extend,
call it y. It is now the parent of |O| — 1 nodes. Its left-most child would share y’s left overhang. The
right-most child must share y’s right overhang. This ensures proper assembly at level h.

We know that the sub-tree centered at y is equivalent to the base case and can therefore be
assembled with |O| overhangs. Once assembled, only y’s left and right overhangs will be exposed.
Hence, we need only assign overhangs for each of y’s children in such a way as to ensure each
overhang is used once and that the y’s left and right overhangs only appear at the left-most and
right-most overhangs of the first and last child. We can easily do this, since we have |O| unique
overhangs. We can repeat this process for all parent nodes at level h to make h + 1. Finally, since
the simplest assembly of two strands requires two unique end overhangs and a unique overhang
to join them together, |O| must be at least 3. ]

In other words, starting from the root, each node can be treated like a leaf node. Given a node
with an arbitrary left and right overhangs, |O| overhangs can be used to ensure the assembly
of its |O| — 1 children. This process can be repeated down the tree until the overhangs of each
code word are specified, thus specifying the set of primitive blocks needed to assemble a complete
strand. We are now interested in knowing an overhang assignment that minimizes ||, the size
of the primitive block set.

The size of the primitive block set for tree assembly is upper bounded by (|O|* — |O|) - 2k and
lower bounded by |O| - 2. The upper bound arises from a naive overhang assignment that allows
for any two unique overhangs to be assigned to the left and right overhangs of a child. Thus, given
the fact an overhang cannot repeat such that the left and right overhangs are equal, there are
(|O|% - |0|) possible overhang pairs for each code word. The primitive block set cannot be lower
than |O| - 2%, because there needs to be at least |O| — 1 versions of a given code word to assemble a
|O| -1 long repetition of the same code word in a leaf reaction. Furthermore, the fact that the right
overhang is unique in the leaf reaction implies that there is at least one more version of the code
word with this overhang as its left overhang. This other version would be required to to facilitate
the assembly of a |O|-run of a code word, because the assembly of the first |O| — 1 would need to
be subsequently assembled with |O|-th code word.

THEOREM 3.3. |O| ordered overhangs arranged sequentially in a repeating pattern across the bot-
tom of an |O|—1 degree tree will always generate primitive blocks that result in a well formed reaction
network for any sequence of symbols Z and minimizes |U|.
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Proor. It is well known that for any n € Z | n > 1, n and n + 1 are coprime. Hence, |O| and
|O| — 1 are coprime. Furthermore, without loss of generality, we can lay out the overhangs as an
ordered set of magnitude |O| and simply refer to them by their index, 0 to |O| — 1. These indices
form the finite cyclic group Zg), e.g., the set of remainders under mod-|O| addition.

It is also well known that if a number n is coprime to m, then addition by n is a generator of the
finite cyclic group Z,,. By repeatedly adding n modulo m, all members of Z,, will be enumerated
before a repeat is observed.

The leaf level of the tree has a stride of 1 that is trivially coprime with all integers. Therefore,
addition by 1 will generate all |O| overhangs of O without repeat. This guarantees proper assembly
of each reaction at the leaves.

The next level of the tree is equivalent to a stride of (|O| — 1)! | [ > 1, where [ is the level,
counted from the bottom of the tree. Since (|O| — 1)! must also be coprime with respect to |0,
addition by (]O| — 1)! modulo |O| will also generate all |O| overhangs without repeat. This proves
that a sequential group of |O| — 1 reactions at level / will assemble properly, since it satisfies that
each overhang from O occurs exactly once, and every consecutive reaction will have appropriate
complementary overhangs due to the complementary assignment at the bottom of the tree.

Because each level of the tree is a power of |O] — 1 and coprime to |O|, all levels of the tree meet
this criteria and will assemble properly. Last, since the assignment of overhangs to code words is
cyclic, there are only |O| possible overhang pairs and thus only |O| versions of each code word
required. This achieves the previously mentioned lower bound. O

4 ELIMINATING REDUNDANT REACTIONS

Due to the inherent redundancy found in information, it is likely that there will be many redundant
reactions that assemble the same data. This redundancy offers opportunities for decreasing the
costs of synthesis by sharing the output of a reaction amongst more than one parent node. We
refer to this as coalescing, since we are literally joining the two reactions to happen at the same
time, thereby eliminating one of them from the assembly tree.

Coalescing two reactions requires two criteria to be met. First, the two reactions must assemble
the same data sequence. Note, we can search for matching data sequences at any level of the assem-
bly tree. Intuitively, we will expect to find more repetition near the leaves of the tree where there
are fewer possible data sequences than near the root of the tree. Second, the strands produced from
both reactions must have the same bookend overhangs. The second requirement is important to
respect, as replacing a reaction with another that has different overhangs will result in a reaction
that is not well formed. This is because in each reaction all |O| overhangs occur exactly once and re-
placement of any reaction by another with different overhangs will result in duplicated overhangs
at the next level in the tree, leading to multiple fragments competing at a common overhang site.

In a data storage system that is processing large files or many files at the same time, we need not
restrict the search for redundancy to a single strand. Redundancy can be eliminated across strands
within a record or across records. This is because reactions can be viewed as producing generic
sequences of information, and each strand produced by a reaction does not inherently include any
specific strand or record identifier like primers that are used for random access [10, 27, 39, 40]. In
fact, sequences like primers do not need to be added to a strand until the root node is assembled, al-
lowing all products produced under the root to be shareable to any other strand in any other record.

4.1 Optimization Techniques

We identify three different optimization techniques for coalescing reactions. The ideal optimiza-
tion allows for two reactions to be coalesced if they produce the same data even if they do not
necessarily share the same bookend overhangs. This serves as a lower bound on the number of
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Rp+1
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Fig. 5. Reactions 7{11.7 and Rf produce the same data, 0OxBEEF, but have different left and right overhangs
when |O| = 4. The left and right overhangs of Rf, (00, 01), are converted to the left and right overhangs of
Rf, (02,03), by inserting two NOP reactions at level p in the tree. The NOPs move the overhangs of ‘Rf along
the cyclic overhang assignment until the desired overhangs are reached. Once reached, the output of Rf can

replace Rf. The adjacent NOPs with left and right overhangs (09, 01) and (01, 02) can be compressed into a
single NOP with overhangs (09, 02) if such a strand is included in the primitive block set.

reactions that are needed to synthesize some data. This technique is not implementable in a real
system but is useful for analysis. We also consider an optimization that searches through all of
the reactions of an un-optimized assembly tree and coalesces all reactions that share the same
overhangs and produce the same data. We call this base optimization base-opt. In our studies, a
significant gap exists between the ideal and base-opt, and to address this, we study an alignment
technique to facilitate more reaction coalescing.

4.2 Alignment Padding

To facilitate more occurrences of reactions producing the same data with matching overhangs,
we develop an alignment technique that trades off storage density and primitive block set size
for reaction elimination opportunities. The key idea of alignment padding is that we can leverage
the cyclic assignment to adjust overhangs of an arbitrary reaction by inserting padding to its left,
thereby shifting overhang assignment and creating a match that enables coalescing. We refer to
such padding as a no-operation (NOP) reaction, since it represents no symbol. Figure 5 illustrates
the idea by inserting NOP reactions into the assembly tree to shift a reaction’s overhangs to align
with the overhangs of another reaction producing the same data. These NOP reactions can be
thought of as a subtree that has reactions that only assemble NOP strands. All reactions to the
right of the NOP will be shifted by the same amount as the target reaction.

To the level of the tree of which padding reactions are added, they are interpreted like any other
reaction. So, if NOP reactions are added to layer p, then there must be an appropriate number
of reactions at layer p + 1 to handle the additional load. Thus, NOP padding adds reactions to
the tree. However, the NOP reactions of multiple alignment transformations can be effectively
bundled together, limiting the number of new reactions added at layer p + 1. Because reactions
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group |O| — 1 children, if multiple alignment transformations collectively add less NOP reactions
than |O| — 1, then only one additional reaction is needed at p + 1. Thus, for the overhead of one
additional reaction, multiple reactions can be transformed to be redundant and optimized out. Note,
this bundling is only possible if the padding reactions for multiple transformations are inserted for
data that are assembled on the same strand. This is because insertions on the assembly tree of one
strand are not visible to the grouping process of an assembly tree for another strand of data. So,
insertions must be applied appropriately so the overall number of reactions do not increase.

To avoid such situations, we propose a heuristic based on two metrics: distance and re-use count
before padding. Distance is the number of NOPs that must be inserted to transform the overhangs
of certain reactions. Placing an upper bound on the distance helps avoid using too many NOPs for
any one redundancy operation and allows more redundancy operations to be bundled together in
areaction. Through experimentation, we found that the distance must be less than (|O|—1)/4. This
means that each padding operation at most takes up 1/4 of the capacity of a parent node. Given
enough opportunity in a single strand, at least four padding transformations can be amortized for
a single overhead parent reaction.

We also consider the number of times a reaction is re-used in the base-opt case. The reason to
consider this count is that it reflects the amount of times that a single transformation will have
to be applied. Applying a transformation to an already highly redundant base-opt reaction may
simply add overhead. Through experimentation, we determined that if the re-use count exceeds
a threshold of 10, then it is already sufficiently redundant, and we do not perform any alignment
padding, since it may only increase reactions.

There are also several optimizations that can be applied to NOP trees so reaction count increases
and density loss is limited. For NOP reactions, no physical reaction must be implemented. Instead,
only a single NOP primitive block need be inserted at the root of the NOP sub-tree. For example,
from Figure 5, the NOP sub-trees for N OP{7 and N OPé7 can be replaced by NOP primitives with
(left,right) overhang pairs (o, 01) and (01, 02), respectively. From Corollary A.1, we show that there
are two unique possible rotations through the set of overhangs at any level in the tree. So, to have
enough NOP strands for each rotation, the primitive set will need to be expanded by 2|0| strands.
Furthermore, as shown in Figure 5, consecutive NOP strands in a reaction may be compressed to
one single strand. However, this requires an additional |O|? —|O| primitive blocks to accommodate
all possible overhang permutations that may arise from this optimization.

5 EVALUATION

We evaluate DINOS on the Silesia Corpus that is commonly used to benchmark compression al-
gorithms. The corpus contains a wide range of file types and sizes, as summarized in Table 1 [3].
Of particular interest in our evaluation is the influence of the configurable parameters that tune
the primitive block set size on the number of reactions, opportunities for coalescing redundant
reactions, density, and cost. We are also interested in comparing their benefits when applied to
compressed and uncompressed data files. When comparing number of reactions and effectiveness
of coalescing, we may ignore the specific chemistry and specific strand encodings, since they are
orthogonal concerns.

Through all of the following experiments, the strand size is held to a constant 4,096 bits of
information. We choose this strand size to have a wide range of tree heights for various overhang
set sizes. The 4,096 bit strands are then divided into k-bit chunks, mapped to primitive blocks, and
assembled according to the algorithm. Note, not all studied symbol set sizes and overhang set sizes
will result in a complete tree of degree |O| — 1. We have developed efficient solutions to deal with
incomplete trees and omit their discussion for space, and we point out that the solutions we used
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Table 1. Compressed and Decompressed File Sizes of the Silesia Corpus with Brief File Descriptions

Silesia Corpus Files

Filename Description Type Size Size Reactions Reactions
MB  MB (zpaq) (zpaq)

dickens  Collected works of English text 10 2.1 8.2-107  1.69-107
Charles Dickens

mozilla  Tarred executables of exe 51 12 412-10%  9.69-107
Mozilla 1.0

mr Medical magnetic picture 10 2.2 8.02-107 1.76 - 107
resonance image

nci chemical database database 34 1.3 2.7-10%  1.01-107
of structures

ooffice A dll from exe 6 1.8 4.95-107 1.42-107
Open Office.org 1.01

osdb OSDB MySQL database database 10 2.2 8.11-10" 1.77-107

reymont Polish pdf Polish text 6 0.96 5.33-10"  7.7-10°

samba Tarred source code src 21 3.1 1.74-10%  2.46 - 107
of Samba 2-2.3

sao The SAO star catalog  bin data 7 3.9 5.83-10" 3.14-107

webster 1913 Webster html 41 5.7 3.34-10%  4.56 - 107
Unabridged Dictionary

xml XML files html 5 0.33 4.3-107  2.63-10°

X-ray X-ray medical picture  picture 8 3.7 6.82-10" 2.95-107

do not affect the well-formed property of our reactions nor how redundant reactions are found
and coalesced.

We also evaluate the effectiveness of our redundancy optimizations. Since compression algo-
rithms will undoubtedly remove redundancy, decrease the size of the file, and ultimately decrease
the number of reactions that are needed, we are also interested in studying opportunities for re-
moving redundant reactions using our techniques both before and after applying compression to
the data. We choose a high-compression ratio algorithm for file archiving, zpaq [25], which has
higher compression ratios than typically available compression tools such as zip, bzip, 7zip [26].
Using zpagq, with its highest compression option (m5), we also compress each of the Silesia Cor-
pus files and study the optimization opportunities therein. We report the size after compression
in Table 1. Although redundancy can be looked for across files, we limit the scope of redundancy
to each individual file.

In Sections 5.5 and 5.6, we compare the cost and density of DINOS to state-of-the-art synthe-
sis and DNA assembly approaches. For those analyses, we select specific chemistries and strand
encodings. Tuning the chemistry and DNA sequences is critical in an actual storage system, but
we limit our discussion of these issues in the interest of space.

5.1 Impacts of Symbol Size and Number of Overhangs

The two parameters that drive the primitive block set size and the assembly algorithm are symbol
size (k) and overhang set size. First, we consider (1 bit, 3 overhangs). This configuration requires the
largest number of reactions, because it has the fewest symbols and the fewest parts are assembled
in each reaction. The last two columns of Table 1 report the total reactions needed to assemble
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Table 2. Geomean of Normalized Reaction Counts across All
Decompressed Files in the Silesia Corpus for Overhang Set Size (|0|)
and Symbol Length (k) Pairs

Geomean of Normalized Reactions - No Optimization

k (bits) |O| \

- 3 5 9 17 65

1 1 0.33 0.14 6.67-1072 1.59-1072
2 0.5 0.17 7.16-107% 3.35-107% 8.06-1073
3 0.33 0.11 4.81-1072 2.27-107% 5.62-1073
4 0.25 8.33-107% 3.59-107% 1.68-107% 4.15-107°
5 0.2 6.72-107% 2.91-107% 1.39-1072 3.42.1073
8 0.12 4.18-107% 1.78-1072 8.55-107% 2.2.1073

All values are normalized with respect to the number of reactions for the pairing of
1-bit code words and three overhangs.

each file under the case of (1 bit, 3 overhangs). The case of uncompressed and compressed files are
reported in columns 6 and 7, respectively. Note, no optimizations are included in these results. Since
this configuration requires the largest number of reactions, we normalize all other configurations
to it.

Table 2 shows the geometric mean of normalized reaction counts across all files with no op-
timizations applied, where all reaction counts for each (symbol size, overhang count) pairing are
normalized to that of (1 bit, 3 overhangs). This table shows that increasing both parameters has
a strong impact on the number of reactions. For example, increasing to (2,3) reduces the reaction
count to half, and (1,5) reduces the reaction count by a factor of approximately 3. However, as
symbol length and overhang count are increased, the effect diminishes, for example moving from
(1,5) to (1,9) results in only a 2.36x reduction. This suggests diminishing returns, where increasing
these parameters leads to less and less benefit and also that overhangs have a bigger impact than
scaling symbol length for the same factor increase.

Last, it should be noted that scaling k exponentially increases the primitive block size, ||,
while scaling |O] only linearly scales it. Hence, [T 3| = 6 while |Us 3| = 768. For a similar
improvement in reactions as (8,3) has over (1,3), we can select (1,9) where | U )| = 18, in other
words, 42X fewer primitive blocks.

5.2 Opportunities for Redundancy Elimination

Next, we evaluate the amount of redundancy that exists while assembling strands for a file. The
overhang counts are varied from 3-65, and the symbol size is kept constant at 1 bit. This ensures
that we study a wide range of data granularities and that will be important when understanding
the effects of optimizations. Note, hereinafter, we report relative values for the reaction counts
associated with each optimization. Using the last two columns of Table 1 and the data of Table 2,
raw reaction counts can be computed for each configuration. Though, for convenience, we also
include raw reactions for every configuration and benchmark in our supplementary document.
Figure 6(a) shows ideal’s reaction count normalized to no optimization and averaged using geo-
metric mean across the corpus. Recall that ideal ignores overhangs and assumes that as long as
the same sequence of symbols is produced that the reactions can be coalesced. The general trend
is that as the number of overhangs increases, the effectiveness of optimization decreases. This is
due to the increase in the granularity of information created at each layer of the tree that makes it
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Fig. 6. Normalized reactions for each file for both base-opt and ideal optimizations. No compression is applied
before constructing the assembly tree.

less likely to find redundant data. As expected, some files have more redundancy than others. For
example, with 3 overhangs, the number of reactions for nci can be reduced by 99% relative to no
optimization, and for 65 overhangs reactions can be reduced by 92.23%. This is in contrast to the
average reduction in reactions of 97.59% and 57.6% for 3 and 65 overhangs, respectively.

Now, we compare ideal with base-opt in Figures 6(b) and 6(c). Recall that base-opt requires that
the bookend overhangs of two reactions match in addition to their data sequences matching. Even
when we take into account the restriction of matching overhangs for redundant data, there is a fair
amount of redundancy available. On average, base-opt is able to reduce reactions by 97.23% and
28.83% for 3 and 65 overhangs, respectively. Although base-opt is effective at |O| = 65, the ideal
case can remove an additional 28.77% portion of no-opt’s reactions. Figure 6(c) provides a direct
comparison between the two optimizations by normalizing the reaction count of the ideal case
to that of base-opt. On average, the disparity between the two grows as the number of overhangs
increases. This is due to the increasing difficulty for base-opt to take advantage of redundancy due
to a greater chance of mismatched overhangs.

The added requirement of matching overhangs effectively creates more information states that
need to be assembled compared to that of ideal, and theoretically it can increase the number of
states by a factor that is at most |O|.
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Fig. 7. Comparison of reactions between base-opt and ideal optimizations when zpaq compression is applied
before constructing the assembly tree.

For example, when |O| = 17 for dickens, there are only 2,344 unique 16-bit information states
each repeated 2,174 times on average, while sao uses all 2'° unique 16-bit information states each
repeated only 55 times on average. When considering overhangs, both dickens and sao see similar
increases in unique states of 11.2x and 12.88x, respectively. However, since sao uses all 2'° states,
the overhangs inject more total states that must be synthesized than for dickens. This leads to a
larger relative reaction gap when comparing ideal and base-opt across these two benchmarks, e.g.,
ideal removes 71% and 6.45% of base-opt’s reactions for sao and dickens, respectively.

Figure 7(a) compares the number of reactions of ideal against the number of reactions for no
optimization when compressing files with zpaq. Since compression removes redundancy, the ideal
optimization is no longer able to find significant redundancy when |O| = 65, resulting in only 0.02%
reduction in reactions relative to no optimization on average. However, for smaller |O| that have
more layers with smaller data granularities, the relative reductions for the compressed files com-
pared to the de-compressed files are similar on average. For 2 and 17 overhangs, reductions for the
compressed files are still 93.27% and 87.46% as compared to 97.58% and 93.96% for de-compressed
files.

When comparing base-opt and ideal for compressed files, the largest discrepancy between op-
timizations occurs at 17 overhangs. On average, as shown in Figure 7(b), ideal can addition-
ally remove 78.7% of base-opt’s reactions for this |O|. This large difference can be explained by
studying the distributions of information states for the compressed files when |O| = 17. We found
that the compression algorithm expands the number of information states required for synthesiz-
ing a file and the variance of the frequencies for each information state is much smaller than that
of decompressed files. For example, the uncompressed dickens had 2,344 states at the first level of
the assembly tree when |O| = 17 with an average frequency for each information state of 2,174
with variance across the frequencies of 75 - 10°. With compression, it used all 2! possible states
with an average re-use count of 16 and a variance of 17. This explains the considerable gap when
compared to no compression. Also, since |O| = 17 leads to larger data granularities, thus more
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Table 3. Geomean of Normalized Reaction Counts for Both base-opt and ideal across All
Decompressed Files in the Silesia Corpus for |O| and (k) Pairs

Geomean of Normalized Reactions (Decompressed) -Ideal & Base-opt

r 0]
(bits) ideal | base-opt
- 3 5 9 17 65 3 5 9 17 65
1 1 0.49 0.37 0.17 0.28 1 0.53 0.41 0.22 0.41
2 1 0.51 0.29 0.24 0.23 1 0.54 0.32 0.37 0.24
3 1.37 0.66 0.42 0.43 0.19 1.37 0.68 0.56 0.55 0.18
4 1 0.49 0.33 0.32 0.14 1 0.53 0.41 0.39 0.13
5 1.19 0.61 0.45 0.37 0.12 1.25 0.67 0.55 0.39 0.11
8 1 0.51 0.37 0.25 7.66-1072 1 0.54 0.41 0.25 6.84-1072

All values are normalized with respect to the number of reactions for the pairing of 1-bit code words and
three overhangs for each optimization.

information states that get multiplied by a large multiplier, this leads to larger relative increases
in reactions as compared to smaller |O| during compression. This effect is similar to why dickens
behaved better previously with base-opt for decompressed data compared to sao.

Interestingly, when comparing the total number of reactions for base-opt both before and after
compression, there are overhang set size configurations that result in smaller reaction counts for
decompressed files. This tends to occur primarily for |O| = 17 and for decompressed files that tend
to have a small number of information states at this granularity, e.g., mr. We find in this case that
decompressed version of mr has 60% less reactions than its compressed counterpart, the largest of
any record studied in this work. This implies that the large scale of reaction coalescing afforded by
the low entropy of information states for certain files and granularities can be more effective for
reducing reactions rather than increasing the entropy and reducing the absolute amount of data
to be synthesized with decompression.

We also compared the number of reactions before and after optimization for two files filled with
random data. One with approximately as many bytes as the average file size before compression
(17 MB) and another smaller random file of size equal to the average file size of compressed data
(3 MB). We found that ideal optimization reduces the reactions by nearly the same amount com-
pared to compressed files with similar size. The reason reactions can be easily removed from ran-
dom data in some cases is because for small granularities (<16 bits), it is inevitable that they will
be repeated for the file sizes we study. This also indicates the compression used here is approx-
imate to random files in terms of entropy, which makes sense given the larger number of states
with lower variance mentioned before for dickens. The data for random files can be found in the
supplementary information.

5.3 Overhang Count, Symbol Size, and Redundancy Elimination

To understand how the entropy of the synthesized data may influence the choice of symbol size and
overhang count when considering total reactions, Table 3 was constructed by varying the symbol
size (in bits) and overhang count for both the ideal and base-opt case of removing redundancy.
The values represent the geometric mean across all decompressed files in the Silesia corpus of the
normalized reaction counts, where normalization is done with respect to the (1 bit, 3 overhangs)
case. In Section 5.1, we showed that when applying no redundancy optimization, that although
there are diminishing returns with larger overhang counts and symbol sizes, the total number of
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Fig. 8. Percent increase/decrease in reactions relative to base-opt when applying the NOP reaction padding
for both decompressed and compressed files.

reactions decreases monotonically. In contrast, Table 3 shows that when optimization is factored
in, the reaction count can actually increase when increasing both overhang count and symbol size.
For example, ideal experiences a 1.64X increase and base-opt sees a 1.86X increase in reactions
when going from (1 bit, 17 overhangs) to (1 bit, 65 overhangs). Both optimizations also see a 1.37X
increase in reactions when increasing symbol size from (1 bit, 3 overhangs) to (3 bit, 3 overhangs).
While increasing both parameters theoretically decreases tree size as shown in Section 5.1, the
tree constructed with larger symbol/overhang set sizes will have larger data granularities at the
same corresponding levels than that of smaller overhang/symbol sizes. If the smaller granularity
facilitates enough redundancy elimination, then the benefits of a larger number of symbols or
overhangs in terms of the number of reactions are lost due to a lack of redundancy. We find similar
patterns in compressed files, but the results are omitted to save space.

5.4 Alignment Optimization

Figure 8 shows the percent change in reactions relative to base-opt when applying the alignment
technique (Section 4.2) with the same parameters as Section 5.2. A negative percent change
indicates the additional percentage of reactions removed over base-opt (better), and percent
increases indicate that reactions are added (worse). These results show that adding padding
reactions can decrease the reaction count for both compressed and decompressed files. Overhang
set sizes of 3 and 5 are not present, since they are not large enough to satisfy the |O —1|/4 distance
stipulation.

On average for decompressed files, we were able to reduce reaction counts by 0.88%, 4.35%, and
15.48% relative to base-opt for 9, 17, and 65 overhangs, respectively. Large benefits were observed
for files where the addition of overhangs distributes the redundancy found by ideal over many
infrequently used information states in base-opt. For example, sao experiences the largest decrease
(28%) for 17 overhangs due to its larger information set that had less redundancy before alignment.
For decompressed files, when |O| = 65 every file except x-ray sees decreases in reactions, since
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redundancy is limited at this larger granularity in the ideal case, and distributing across many
overhangs leads to many opportunities that fit the requirements for padding.

As discussed in Section 5.2, zpaq tends to increase the information set size for granularities like
16 bits, with the redundancy for each state being similar. Small data redundancy results in many
unique states when considering overhangs, leading to many low-cost opportunities for padding.
This results in a 30% decrease on average for |O| = 17.

As mentioned in Section 4.2, there is indeed a tradeoff when improving data alignment to facili-
tate more sharing. In our implementation, we assume a system where both rotations of overhangs
in the tree are synthesized with NOP codewords. For the 1-bit symbol sizes studied here, this leads
to an approximate increase of 2X in the number of primitive blocks needed. A similar set size in-
crease would be to increase k from 1-bit to 2-bits. However, Table 3 shows us that increasing the
set size this way could in fact lead to more reactions for |O| = 17. The second tradeoff is in density,
and so we measure the number of codewords inserted per strand on average for each benchmark of
Figure 8(a) (decompressed data). The resulting geometric mean for the number of NOP codewords
added per strand across the benchmarks for the three overhang settings |O| = 9, 17, 65 is 2.00, 7.49,
40.74, respectively. Assuming NOP codewords are the same length as symbol codewords, this leads
to just a 0.9% additional codeword overhead at most considering the worst-case average of 40.74
codewords/strand and 1-bit symbols.

5.5 Cost Analysis

Our analysis up to this point is independent of the underlying chemical implementation of the
assembly process. To further motivate the benefits of DINOS, it is necessary to pick an imple-
mentation to understand the approach’s cost implications. For DINOS, there are two costs: costs
of chemistries to assemble strands and costs to acquire the primitive blocks. For the former, we
assume costs associated with a ligase enzyme that can be used to permanently connect together
primitive blocks that have a structure like those blocks in Figure 2, and for the latter, we assume
a column-based de novo synthesis approach. We compare this to using a array-based de novo syn-
thesis approach for a whole set of data. An overview of these synthesis approaches, and why we
choose these, can be found in Appendix Section A.3.1.

Figure 9(a) compares the cost of using DINOS to the cost of using de novo for the synthesis
of the entire dataset. Each curve shows a relative cost for a select primitive block composition.
Details about assumptions, the equations, and parameters used to generate these curves can be
found in the Appendix Section A.3.2. The purpose of this cost model is not to consider detailed
costs that would be incurred for developing a platform capable of large-scale data synthesis, but to
rather compare the raw material cost incurred for constructing the DNA strands themselves. To
be consistent with the evaluation analysis in the previous section, the strand length is assumed to
be 4,096 bits. We assume de novo synthesis scales at a fixed cost/base in spite of low yields at such
long lengths. Also note that we do not assume any cost reductions for coalescing reactions in this
analysis, which may substantially lower the cost of DINOS even more.

There are three main costs associated with the materials required to construct DNA strands that
encode information using assembly. One is that there is a cost associated with the procurement
of the primitive block set. In this analysis, we assume that de novo synthesis is used to synthesize
the single-stranded DNA needed to construct the single-double-single strand structure depicted in
Figure 2. Therefore two unique strands must be synthesized per primitive block. The second cost
of assembly is replenishing the primitive block set once all strands initially synthesized are used
during assembly. We assume primitive block usage is evenly distributed across the set. Last, the
third cost is that of materials such as enzymes and buffers that are needed to implement assembly.
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Fig. 9. (a) Cost to synthesize some amount of data using a code-word-based approach using ligation chem-
istry to implement assembly normalized to the cost of synthesizing the same amount of data using industry
cost rates for de novo chemistry approaches. (b) Estimated USD/bit for various primitive strand set sizes and
compositions. Each point represents the cost-per-bit for a unique number of symbols and overhangs, and
the x-axis indicates the configuration’s total primitive block size. As indicated in the legend, markers related
to k = 4 represent the costs of primitive block sets that have a constant symbol size of 4 bits with varying
overhang set sizes, likewise, |O| markers are the set costs with constant overhang set sizes.

It is assumed that such materials are dependent on both the height of the assembly tree, and the
number of DNA fragments that must be connected together in a single reaction.

When comparing these three costs against de novo synthesis for a volume of synthesized data,
we can see from Figure 9(a), for the entire range (10°B to 10!°B), that DINOS based on ligation
chemistry is at least five orders of magnitude less than de novo synthesis. For small dataset sizes, the
larger primitive block sets incur higher costs than that of smaller sets. This is because the dataset is
not large enough to leverage the larger set of primitive blocks. However, this relationship generally
inverts as the dataset increases. This is mainly due to reaction costs dominating the overall cost,
because we estimate that each code word pool can be utilized on the order of 10!? times (Appendix
A.3). This shows that it is cost-effective, from a consumable point of view, to decrease reactions by
utilizing larger primitive block sets.

Another important trend is that, as dataset sizes increase for each configuration, the cost sav-
ings of using assembly improve relative to de novo and then asymptotically approach a minimum
normalized cost. This trend occurs because at smaller dataset sizes, the cost of creating the initial
set of strands is large compared to the cost of reactions and the cost of refilling the initial set. As
the dataset becomes larger, this initial cost becomes negligible and the cost of assembly becomes
dependent on two terms that are both proportional to the dataset size, resulting in the ratio of
assembly costs to that of de novo costs to reach a constant value.

Our analysis concludes with a more detailed treatment of the choice of the composition of the
primitive strand set. As mentioned previously, as the dataset to be synthesized approaches very
large volumes, the larger primitive set typically results in lower costs. However, Figure 9(a) shows
a contradiction to this statement. This can be seen by comparing the costs between the configu-
rations (k = 1,|0| = 65), which has 130 primitive blocks, and (k = 4,|0| = 3), which has 48
blocks. Although the former has more than 2.7x more primitive blocks, at large dataset sizes it is
about a factor of 2 more expensive. The reason for this is that increasing overhangs mainly affects
cost by reducing the amount of materials by decreasing the height of the assembly tree. Since the
height of an assembly tree is rapidly reduced as overhang set size increases from the minimum
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of |O| = 3, cost savings also initially rapidly reduce. However, eventually increasing overhang set
size has small impacts on height, thus increasing primitive block set sizes with minimal benefits.
This indicates that choosing a configuration that minimizes cost for some desired primitive block
set size requires carefully balancing both the number of code words and overhangs.

To better illustrate the impact of set construction on cost, Figure 9(b) shows the cost per bit
against different primitive block set sizes for various combinations of code word and overhang
set sizes. When keeping the symbol size constant and increasing overhangs for the curve shown
by k = 3, we see that there are large cost decreases initially when increasing |O|. Eventually,
as the cost benefits are exhausted from increasing the overhang set size for this symbol size, a
curve corresponding to k = 4 appears directly beneath the curve of k = 3. This implies that
increasing overhangs to reduce cost for k = 3 is no longer the optimal decision for increasing the
primitive block set and thus the code word set should be expanded. However, eventually there
are also diminishing returns for increasing the symbol size, since the number of leaf reactions
are inversely related to the symbol size. This causes the curves to group closer in terms of cost,
requiring large increases in the primitive block set size to gain relatively small cost benefits. For
example, between 6 and 1,000 primitive blocks, costs can be decreased by a factor of 10.7. However,
from 1,000 to 10° primitive blocks, the cost is only reduced by a factor of 2.2. This implies that most
of the cost benefits can be realized with a relatively small number of primitive blocks.

5.6 Density Analysis

Since overhangs do not carry information in DINOS, they will negatively impact the density of
the storage system. Table 4 provides a comparison for different symbol sizes on the density of
DINOS compared to a standard short-strand that does not include overhangs. For our density
analysis, we assume strands that encode 4,096 bits where each symbol is encoded to DNA using
a base 3 representation[10, 27], 4 base overhangs [22, 30, 36, 37], and a total primer length of 40
bases [10, 27, 40]. For Short de novo synthesis, we keep the same encoding and primer overhead
and assume a maximum strand length of 200 bases [9], but there are no overhangs. Formulas for
calculating these densities are given in Section A.2. The table shows that for a binary code the
overhangs have a significant effect on density, however, the gap diminishes as the symbol size is
scaled up to a 26-bit code. The density of DINOS surpasses a short strand at 28 bits, since Short de
novo is ultimately limited in density by the large fraction of bases devoted to its primers. However,
if de novo synthesis progresses such that error rates are small in long strands, then the encoding
density will be largely determined by the conversion from binary symbols to DNA. This results in
Long de novo being more dense than assembly and is shown in the last row of Table 4. However,
achieving strand lengths past 200 bases is difficult. Even with current de novo efficiencies being
99.5%, the yield rate is approximately just 36% for 200 base strands [9]. So, while the overhang
sequences do add overhead, DINOS can have competitive density with de novo synthesis.

Now, we compare our assembly algorithms with existing techniques to better understand how
efficiently overhangs are used from both a storage density and an algorithmic time and space
complexity standpoint. We compare against Metclo and Short de novo oligo synthesis. We choose
Metclo’s assembly algorithm [22] as a comparison point, since they provide an algorithm that
will work for any |O|, and the overhang overhead inserted into strands is identical to many other
Golden Gate gene assembly methods such as Goldenbraid 2.0, Moclo, Loop Assembly, and so on
[6, 29, 36, 37, 43]. Metclo is able to assemble |O| — 1 oligos in each reaction, and hence achieves
identical time and space complexity to our work. However, it incurs more overhead from over-
hangs, requiring three overhangs between code words that are joined outside of leaf reactions. We
give an in-depth treatment of Metclo in Appendix A.1.1.
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Table 4. Raw Density Values in Bits/base for DINOS Compared to de novo and Metclo Assembly

Density (bits/base) Comparisons
Symbol Size (bits)

Synthesis Alg. 1 4 8 12 14 16 18 20 22 24 26 28
DINOS Density | 0.2 0.57 0.79 0.99 1.06 1.05 1.11 1.16 1.2 1.18 1.22 1.25
Short de novo 0.8 1.07 1.07 1.2 124 116 1.2 123 126 1.2 122 1.24
Metclo |O] =3 | 0.11 0.36 0.57 0.74 0.82 0.84 0.89 0.94 0.99 0.99 1.03 1.06
Metclo |O]| =5 | 0.14 0.44 0.66 0.85 0.92 0.93 0.99 1.04 1.08 1.08 1.11 1.15
Long de novo 1 1.33 133 15 156 145 1.5 154 157 1.5 153 1.56
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Fig. 10. Left: Curves that outline operating points in which assembly is as dense as de novo synthesis. Gray
line represents a lower bound, and each curve for each assembly type is an upper bound, both bounds inclu-
sive. Right: Percent increase in storage density when using our approach compared to Metclo for different |O|.

To compare density of our assembly method with Metclo, we calculate the minimum symbol
size so density is equivalent to the density of Short de novo synthesis. Using that same analysis, we
calculate the percent increase in storage density compared to Metclo that our work provides. We
do this by taking a strand designed for each system, counting the bases that contribute to overhead,
and then calculating the resulting density.

The left chart of Figure 10 solves for the upper bound of overhang length that still allows for
equivalent density to de novo synthesis for assembly approaches. A line is drawn at the 4 base
marker. Any symbol size and overhang length combinations that fall in between the lower bound
and the upper bound (inclusive) indicate that the assembly approach will have an equal or higher
storage density than de novo synthesis. We see that our approach intersects the lower bound at
27 bits compared to 31 bits for Metclo configured with |O| = 17. Note, our system results in
the same density regardless of the number of overhangs, but for Metclo, increasing overhang set
size reduces the number of boundaries in which there are three overhangs between code words
resulting in the upper bound curves shifting to the left. This implies that even if Metclo and our
approach had coinciding intersection points, Metclo would require a larger primitive block set,
making it less desirable.

The chart on the right of Figure 10 normalizes the storage density of our algorithm to Metclo.
Since symbol size and overhang set size decrease the number of times in which 3 overhangs are
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inserted between code words, the gap between the density of Metclo and our approach decreases
with larger numbers of symbols. At the point of the smallest primitive block set size we support
(1 bit, 3 overhangs), our approach provides 80% greater storage density. Closing the gap between
storage densities requires Metclo to grow their primitive block set. For example, if Metclo uses 17
overhangs and our approach uses 3, for 5.3X more strands ((17-1)/3), Metclo can reduce the gap to
10% at 25-bit symbols. Raw densities are also included for Metclo in Table 4 for |O| = 3,5 and a
subset of symbol sizes shown in Figure 10.

6 PRACTICAL CONSIDERATIONS AND FUTURE WORK

A demonstration of DINOS in a wet lab involves many practical considerations and is part of our
future work. An important consideration is choosing the DNA sequences for the overhangs and
codewords. For the case of overhangs, there has been an extensive analysis by Potapov et al. [30]
to profile all 256 pairs of 4 base pair overhangs to find high-fidelity overhang sets that minimize
unwanted bindings between different overhangs. They provide a set of 20 overhangs with high
fidelity that can cover all configurations we studied except for |O| = 65. Extending the set to
this larger size would require screening longer overhangs for high fidelity and choosing a set that
works well together.

The design of the codeword sequences is also important and can influence the fidelity of assem-
bly and successful decoding of data. Assuming that a single-double-single strand complex is to be
used as the primitive block, as shown in Figure 2, each side of the complex may be synthesized
individually. Then, using hybridization, the complex can be constructed. To achieve high-fidelity
primitive blocks, code words should be designed such that there are no secondary structures that
may disrupt the alignment of the two sides of the block. Furthermore, it may be advantageous if
codewords are also designed with high Hamming distances so synthesis errors can be tolerated
and for further limiting non-specific interactions [27, 40, 41]. Finally, the double-strand region
should have a high enough melting temperature to avoid dissociation at the temperatures needed
for ligation-reaction protocols [30].

In addition to designing sequences for codewords and overhangs, incomplete assemblies can
pose a problem during assembly reactions. Unreacted products with exposed overhangs can prop-
agate up the tree and assemble with other unreacted products to form undesired data strings. Sim-
ilar problems have been documented in a DNA implementation of a stack data structure, where in-
complete products of each stage interfered with products of a later stage [24]. Given that reactions
generally do not reach 100% completion, strategies for purifying products, improving the yield
rates, or even error correction approaches for dealing with incorrect products need further study.

7 RELATED WORK

The applications of DNA self-assembly and redundancy elimination in storage and computer
systems are both well studied. Like our work, DNA self-assembly works rely on a small set of
regular DNA structures, referred to as tiles, that generate larger structures. These tiles can be used
to generate grids with predictable patterns that act as scaffolds to implement highly conductive
nano-wires or to use as the groundwork for assembling arrays of nanoparticles [28, 38, 46]. Tiles
have also been shown to self-assemble 3-D structures rather than just 2-D grids [18].

The self assembly of DNA tiles has also been studied extensively as a means to achieve
universal computation [44]. Interest in DNA-tile computing has led to self-assembly imple-
mentations of binary counters and cellular automatons such as the XOR cellular automaton
implementation that builds DNA crystals that represent Sierpinski Triangles [8, 35]. Furthermore,
DNA-tile-computation is able to solve NP-complete problems, such as the Hamiltonian path
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problem, by verifying the result of many possible solutions in parallel with just a polynomial
number of unique tiles that represent paths in the graph [5, 44].

Eliminating redundancy is a common optimization in storage and computer systems. For stor-
ing information, deduplication that eliminates duplicates of large chunks of data within and across
files has been shown as an effective method to reduce the storage needed for backup and archival
storage systems [15, 45]. Compression techniques like dictionary based compression that maintain
the full integrity of the data, or lossy techniques like JPEG that eliminate low-importance informa-
tion, can also be used with deduplication or on their own to further reduce the amount of storage
needed [25, 42, 47].

In computing systems, removing redundancy typically means to avoid repeating instructions
when the results of those instructions are already available. This can be done at the compiler level
or by using hardware caches to save results of functions that are computed redundantly [13, 21, 33].
Most analogous to our approach is common sub-expression elimination, a technique employed by
compilers to remove redundant instructions [21]. Common sub-expression elimination identifies
two or more instructions with the same opcode and same operands and eliminates all but one, a
process that inspired how we consolidate redundant reactions. However, while the optimizations
are similar in principle, building strands of information from DNA blocks require new representa-
tions and optimizations. Existing compilers and tools were not sufficient for this purpose.

8 CONCLUSION

The DINOS framework is designed to facilitate the synthesis of data strands and makes it possible
to synthesize arbitrary strands of data from a small set of code words and a set of overhangs using
only |0 - 2F primitive blocks. The tunable nature of this system allows it to operate with as few
as six primitive blocks. Furthermore, our analysis suggests that a balance between the number
of overhangs and the number of input symbols must be taken into account to achieve the best
results for information density, the number of reactions, and the cost of the system. Furthermore,
the cyclic overhang assignment method is simple and versatile, making it easy to reason about
assembly. Configured with only six primitive blocks (e.g., a binary code with three overhangs),
DINOS makes it feasible and affordable to assemble a small library of strands manually.

DINOS also facilitates larger granularity redundancy elimination by leveraging analysis of the
assembly tree representation. A redundant reaction in the assembly tree may coalesce with any
other equivalent product both within and across strands. Using our approach, we were able to re-
duce reactions by an average of 91% and 41.2%, for decompressed and compressed files, respectively,
relative to no optimization. By applying an alignment technique to find even more redundancy, re-
actions can be reduced further to an average of 91.1% and 59% for decompressed and compressed
data, respectively. The benefits of these approaches are significant and surprising. Using these op-
timizations, we found that synthesizing the decompressed version of a file can reduce reactions by
60% compared to its compressed version.

We also compare DINOS to state-of-the-art synthesis and assembly approaches. We show that
it offers competitive information density over a range of primitive block designs. Using our cost
model, we demonstrate the potential to substantially lower synthesis costs compared to de novo
synthesis.

For future work, we plan to fully automate and tune DINOS for the assembly of large volumes
of data. In so doing, we will further tune the assembly process for data and optimize the chemistry
and DNA sequences that work well with the design. This will also serve to refine and inform our
comparison to de novo synthesis and other assembly processes. We hope DINOS encourages new
research for data-inspired synthesis and hope it encourages new approaches for analyzing and
exploiting the inherent redundancy in the data-strand assembly process.
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Fig. 11. Metclo hierarchical assembly. Three information fragments Fy, F1, F» assembled from a previous
step are freed from a backbone strand with the use of a Type IS restriction enzyme that has recognition
site Ry. The enzyme cuts outside of the site causing the release of each fragment with a pair of overhangs
oriented such that the three fragments can assemble in a ligation step. The resulting assembly is encased in
the appropriate destination vector such that the process can be repeated.

A APPENDIX
A.1  Metclo Analysis

A.1.1  Metclo Description. Figure 11 provides a small example of Metclo where |O| = 4, though
there will be no loss of generality. Assembly in Figure 11 starts with three information fragments
Fy, F;, F, that are assumed to be assembled in a previous step. The fragments are housed in a
backbone strand and are released through Type IIS restriction enzyme digestion that cuts outside
the restriction site Ry. The restriction site is oriented to ensure that overhangs are produced in
a manner that allows fragments to assemble in a subsequent assembly and ligation step. After
assembly, the final step is to choose a destination vector. There are three choices, since |O| = 4,
a start, middle, and end vector. These vectors determine the positioning of the new strand in the
next assembly reaction. After placing the result in a vector, the process can be repeated again until
the desired strand length is reached. When the overhang set is increased, the only change is that
the set of middle vectors will expand to accommodate the |O| — 3 possible middle positions in an
assembly. Note, since each assembly will have the same bookend overhangs, vectors are required
to ensure unique overhangs in subsequent reactions, leading to three overhangs between code
words that are joined together after the initial leaf reactions.

A.1.2  Metclo Primitive Strand Set Analysis. To give a full comparison with Metclo, and to view
their system from the perspective of information storage, we also analyze the primitive strand set
size, | Unterciol, for Metclo. Since Metclo wraps the start and end overhang each reaction, Metclo
does not need strands of the form 0jp|-; - ¢ - 09 V¢ € C, which we use to complete the cycle of
overhangs to avoid more than one overhang between code words. In other words, Metclo only
requires a version of each code word that corresponds to the start, middle, and end vectors. Since
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there are only |O| — 1 vectors, the size of Metclo’s primitive strand set becomes |Uyerero] = 25 -

(101 = 1).

A.2 Detailed Density Analysis
The number of bases inserted by overhangs for our system, B, can be calculated as:

Bo=Lo+[%2] L, (1)

where L, is the length of overhangs in bases, I, is the length in bits of a strand that can be
assembled by hierarchical assembly, and k is symbol size in bits. This expression counts the number
of overhang bases on the right of each code word plus the overhang bases on the left of the first
code word in the strand. For Metclo, an additional term is required to factor in the cases in which
there are three overhangs between code words. This will occur at every boundary between two
sub-assemblies of size k - (|O| — 1) bits, and the total overhang bases for Metclo, By arerclo can be
expressed as the following:

Iha Iha
B =Lo+[24] Lo+ (| ] - 1) -2+ Lo. 2
o,Metclo 0 k o k- (IOI — 1) o ( )
The first two terms calculate the need for at least one overhang in between codewords, and the third
term accounts for the two extra overhangs between code words that are not assembled in the leaves.
With the number of overhang bases inserted into the final strand known for both approaches, we
can now calculate the density (bits/base) of a hierarchical assembly system, Dj,. Generically, this

can be described with the following equation:

_ Iha

By + Ly + [Tha/K] - Tk/ohal '
where L, is the number of bases allocated in the strand for primers, oy is the raw encoding density
for the encoding process that converts payload information into bases for hierarchical assembly
synthesis, B, is the total number of overhand bases in a strand constructed with assembly, k is
the length in bits for a symbol. Finally, we calculate the density of a de novo synthesis system to
be able to calculate operating points in which assembly is equally dense. The density of de novo
synthesis, Dg,, can be calculated as:

®)

Dha

_ (Bdn - p) " Odn (4)
Ban '

where 0, is the raw encoding density for the process that converts payload information into bases
for de novo synthesis, and By, is the length (in bases) of a strand that can be grown by de novo
synthesis. With the densities of the two synthesis approaches known, we solve the inequality of
Equation (5) for L, for both our assembly system and Metclo. This provides an upper bound, as
shown in Figure 10, for overhang length that is allowable for the density of assembly synthesis to
be equivalent to de novo synthesis.

(Bdn - Lp) * Odn < Iha
Bin "~ Bo+Lp + [Ina/k] - Tk/0hal

Dan

©)

A.3 Cost Analysis

A.3.1 Principles of DNA Synthesis Costs. Here, we provide an overview of de novo and assembly
synthesis along with quantitative insight into why assembly can be a much cheaper synthesis
alternative for data. Figure 12 shows a comparative overview of standard de novo synthesis on
the left and the general idea of assembly on the right. De novo synthesis grows each strand that
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Fig. 12. Comparison of an assembly synthesis flow for constructing the encoding strands of a digital infor-
mation source against a synthesis flow that relies completely on large feature scale de novo synthesis. Both
systems use de novo synthesis, but in different ways. Large feature scale synthesis relies on decreasing syn-
thesis costs by sacrificing strand copy yield for the number of unique strands generated per synthesis run.
Assembly synthesis leverages the large copy scale afforded by low feature scale de novo synthesis to attain a
per-code-word instantiation cost that is several orders of magnitude smaller.
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encodes data one base at a time, and each unique encoding strand gets a specific location to grow
on a silicon synthesis platform. The main mechanism that has been used to scale down de novo
synthesis costs has been to scale the platform in which the oligos are built. For example, Twist
Bioscience utilizes a silicon substrate technology to allow for up to 700K unique oligos to be built
on a single chip with a cost of 4.4-107* USD/base [2]. This category of de novo synthesis is known as
array-based synthesis. Another well-known de novo synthesis method, termed as column synthesis,
focuses on higher-quality strands at a lower unique-strand scale [20]. Because column synthesis
generates unique strands on 96/384 well plates, the cost per unique base can be three orders of
magnitude higher than array-based synthesis at 0.29 USD/base [1].

On the right side of Figure 12, we have the general flow of an assembly-based synthesis process.
Here, a strand of data to be synthesized is broken down into five codeword regions, where four
are unique. We can now just synthesize this small set of codewords and assemble them using
ligation chemistries that use a ligase enzyme to fully connect the backbone of the overhang with
the backbone of the neighboring strand [22, 30, 37]. From this, we recognize that we really do
not need many unique features for such a small set of codewords. Furthermore, column-based
synthesis is in fact more cost-effective than array-based synthesis if many copies of a single feature
are desired. For example, array-based synthesis provides 10% copies, while column synthesis can
provide copy scales of 10'¢ at the same previously mentioned cost per base for both [1, 2]. This
leads to column-based synthesis being five orders of magnitude cheaper at some copy scale. Thus, if
column synthesis is paired with assembly-based synthesis to form longer strands with meaningful
amounts of data, data synthesis costs can potentially be improved greatly.

A.3.2  Calculating Costs. This section supplements the figures presented for cost analysis in
Section 5.5 with equations used to create those figures. We end this section with set of parameters
used to implement the figures from the equations. The cost of assembly synthesis, as mentioned
before, takes into account the cost of obtaining the primitive block set with de novo synthesis,
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maintenance of that set, and the materials expended on the reactions within the tree. These costs
are summarized by the following equation:

Tbits k k " Tbits
Cassem =|—|-C 22510 - | Cyn - Lo - . (6
bl h-um—ml e+ (@27 (0) (d (%+ )) k10l Nowes | ©

The first term in the equation represents the cost associated with reactions needed to assemble
strands, where Cpy is used to represent the cost of leaf reactions and as we will show later includes
the costs of intermediate nodes in the tree. The second term calculates the cost associated with
acquiring the first set of primitive blocks, along with the cost of replenishing that set as data is
synthesized. In this equation, Tp;;s is the total number of bits synthesized, @ is a multiplier used
to model the number of DNA strands needed per primitive block, C4, represents the per-base
cost associated with the de novo synthesis process used for instantiating the initial set of primitive
blocks, and N5 represents the number of times a primitive block can be reused after being
obtained from de novo synthesis. The cost of leaf reactions is modeled by using scaling factors
applied to a cost-per-overhang rate Ryr. The first scaling factor, |O| — 1, is used to model the
increase in materials needed to support more ligation in a single reaction. The second term is used
to model the increase in materials required to support deeper trees. The model assumes that each
reaction in a tree requires the same amount of ligation materials as a single leaf reaction. However,
we can work this cost into the cost of each leaf reaction by spreading out the cost of an internal
node amongst its children, and from there recursively until the leaf is reached. Thus, the additional
cost for an internal node will be split to a leaf reaction needed by some power of |O| -1, depending
on the internal node’s height. This is shown below in Equation (7).

h-1
Crr =Rrr - (|10] - 1)- (1+Zm) v

Iha
h= loglol_l (T)

With the cost of leaf reactions defined, Equation (6) is normalized by the simple factor Cg,, rife -
% to produce the curves of Figure 9(a). Cyp rile represents the cost per base of the de novo
synthesis process used to synthesize all strands for a file. To create the points in Figure 9(b) that
show the cost per bit for various primitive block set sizes, it is assumed that the amount of data
is asymptotically large, e.g., Tp;;s — o0. This allows the ceiling functions to be dropped, since
the cost impact of moving the divisions to the next greatest integers for large Tj;;s is negligible.
This allows Tp;;s to be factored out from both terms that represent reaction costs and primitive set
synthesis costs, leading to the remaining factor being the cost per bit plotted in Figure 9(b).

To generate Figures 9(a) and 9(b), we assume that the costs of the assembly approach are
purely the cost of the consumable materials, e.g., the cost of ligase enzyme used to implement the
connection of primitive blocks and the oligos ordered to fill the primitive block set. So, we do not
consider the costs of personnel or liquid handling platforms that would be needed to physically
implement the algorithm at a sufficient throughput. As our cost comparison reference that repre-
sents the cost of de novo synthesis for an entire file’s strands, we choose Twist Bioscience’s prices,
since their synthesis process is tailored towards optimizing the cost per base for each unique or-
dered base [2]. To take into account economy of scale, we assume Twist Bioscience’s lowest cost
per base of 4.4 - 107* USD/base when ordering 250 base pair strands on the largest plate of 696,000
unique oligos at a price of 76,560 USD. Although using this cost is a consumer-facing value that
hides the actual costs of the raw consumables, since a company must factor in profit, personnel,
and so on, the values we use to calculate the cost of assembly are also consumer-facing, providing
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a fair comparison. Comparing costs of synthesis is done in a similar manner for other emerging
synthesis techniques for DNA data storage as described by Reference [7].

For de novo synthesis, costs attributed to building the primitive block set for assembly are chosen
with scale of synthesis yield being a priority. Thus, we choose Eurofins custom oligos, which can be
ordered at a rate of 0.29 USD per ordered base pair at a synthesis yield of 50 nmol, which, through
our experience, yields approximately 25 nmol of strands for strand lengths of 17 base pairs, which
is similar to all strand lengths considered in Figures 9(a) and 9(b) [1]. Such a yield at this cost per
base pair corresponds to a scale adjusted base pair cost of 0.0116 (USD/bp)/nmol, which is much
more favorable for assembly synthesis than Twist Bioscience’s process, which only guarantees 0.2
fmol yield corresponding to 2200 (USD/bp)/nmol [2].

For other consumables outside of oligos, we assume that the only remaining chemical costs are
that for the DNA ligase enzyme, as this is the dominant cost factor of creating the mixture that
facilitates overhang ligation. For this cost, we assume New England BioLabs’ T4 DNA ligase [4].
The cost of this ligase is used to calculate the cost per leaf reaction per overhang Ry g. To do this, we
calculate a cost per unit of T4 DNA ligase, e.g., 260/10° USD/unit. A unit is defined as the amount
required to ligate 50% of 0.12 yM of 5" DNA termini in a reaction volume of 20 yl over 30 minutes
at 16°C [4]. A termini can be defined as a physical overhang in the reaction that must be ligated.
Using this information, we can calculate the fraction of a unit required for a single termini in the
reaction with the following calculation:

unit 1
= =6.92-107 1. (8)

termini .12 . 10-629les 5 50 . 106 Liters x 6.022 - 1023 2TAnES

Next, we need to know the number of overhangs that will be present in any given reaction. We
assume that we need 10* copies of each primitive block in a leaf reaction. Thus, if the reactions were
100% efficient and converted each codeword copy into a complete strand, then there would be 10*
copies per strand. Although, realistically, these reactions will not be 100% efficient, the number of
copies required downstream in the storage system is several orders of magnitude smaller. As shown
by Chen et al., as few as 10 copies per oligo can be accessed with typical random access methods
such as polymerase chain reaction (PCR) [12]. Thus, our assumption holds as reasonable if
a given reaction tree can be built with at least 10/10* = 0.1% efficiency. With 10* copies per
codeword, the number of total overhangs to be ligated will be (|O|—1)-10%. Thus, we can calculate
the amount of unit needed for each reaction per logical overhang as:

unit unit 4 termini

——— =6.92-107"
logical overhang termini logical overhang

=6.92-107". 9)

Finally, the cost per logical overhang in the leaf reaction (Rrg) can be calculated as
unit 260 USD 1 USD
=1.79-10

Rig =6.92-107° X — _—.
LR logical overhang ~ 10° unit logical overhang

(10)

As for the remaining parameters, L, was chosen to be 4 bases, as this is a typical overhang
length for Golden Gate assembly [30], a base-3 encoding was assumed as in Section 5.6, which
translates to a density of 1.33 bits per base, @ was set to 2 because each primitive block needs 2
individual strands to be created from the initial de novo synthesis to construct blocks similar to
those in Figure 2, and last, Ny 5.5 can be easily calculated from the 25 nmol synthesis yield and the
number of code-word copies used each reaction to get Nyses = 1.5 - 102,

A.4  Proof of Unique Tree Rotations

As pointed out in Section 4.2, if there are only two unique rotations through the overhang set O,
then only 2|O| NOP strands are required to represent the result of any NOP tree root. The following
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corollary proves this and provides the exact overhang rotations that exist at each level of the tree,
allowing for NOP strands to be fully specified.

CoOROLLARY A.1. Given the |O| — 1 degree assembly tree constructed using a cyclic assignment of
overhangs to generate the primitive blocks as described by Theorem 3.3, the generators for each level
of the assembly tree generate exactly two unique permutations of the cyclic group Zo). Furthermore,
let | be a given level of the tree counting from the leaves starting at 0, the permutation generated
by even [ is described by the sequence a, = n V¥ n € [0,|O| — 1] and for odd | is described by
ap, =|0|-nVnel0,|0| -1]. a, is the nth generated value of Z,0).

Proor. First, consider the first two layers of the tree. Using a stride of 1 at the primitive block
level (I = 0), we can see trivially that Z|g| is generated in the order a, = nV n € [0,|0]| - 1].
For | = 1, the generating stride is |O| — 1, and thus the nth generated value of the group can be
expressed by n- (JO] — 1) (mod |O]), where n is in the range [0, |O| — 1]. We can write n - (|0 — 1)
as |O] - (n—1) + (|O| — n), wherein we can apply Euclid’s Division Lemma to see that (|O| — n) =
|O] - (n—1) +(|O| — n) (mod |0|). Thus, for [ = 1, a, = |O| — n.

These two sequences for [ = 0 and [ = 1 are clearly different. Thus, we must show that these
are the only two unique sequences for all [ > 1. For odd [ > 1, the stride becomes an [-degree
polynomial of the form (|O| = 1)! = ;|O|" + a;_1|O|'" ... + 1|O| — 1. We can write this as o;|O|" +
o101+ (1-1)|0] +]0| =1 = |0| - P(|O]) + 0| — 1, where P(|O]) is a polynomial of |O| with
degree [ — 1. By multiplying by n and rewriting like before for [ = 1, we get n - |O| - P(|0]) + |O] -
(n=1)+|0|-n=10|-(nP(|0|) + n—1) +|0| — n = |O| — n (mod |O|), which shows that for all
odd [ the sequence of overhangs is that of [ = 1.

The same approach is taken for even | > 1, resulting in a;|O|" + ;_1|0|""1... = 1|O| + 1. Notice
the sign of the last term is now positive. Multiplying by n and simplifying to separate the portion
that is a multiple of |O|, we get n - |O| - P(|O|) + n = n (mod |O|). Thus, showing that for all even
[ the sequence of integers is the same of [ = 0, and furthermore shows there are only two unique
sequences of overhang rotations. O
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