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I. I N T R O D U C TI O N
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associated with critical events, such as protein
and nucleic acid folding, ligand binding,
allostery, and catalytic turnover (1–3). Develop-
ments in theoretic and experimental under-
standing of chemical exchange phenomena
aids in the characterization of these biologic
events by providing insight into the conforma-
tional dynamics of the underlying processes.

Various theoretic models have been devel-
oped to interpret chemical exchange (2). In
each case, some underlying dynamical model is
adopted that leads to time-dependent changes
in the resonance frequency of the affected
nuclear spin. The most popular models assume
that dynamics consist of instantaneous jumps
between 2 or more discrete states (4–6),
although Schurr et al. considered a model with
continuous Gaussian fluctuations in resonance
frequency (7). Although the frequency associ-
ated with each state is unchanged by jumps,
the time series is interrupted, leading to a
decorrelation in time. This type of discontinu-
ous jump model, sometimes referred to as a
random phase model or telegraph signal,
captures long timescale decorrelation but fails
to account for shorter timescale dynamical
fluctuations that may involve state-to-state
transitions.

Chemical exchange leads to changes in
resonance frequencies and relaxation rate
constants of affected nuclear spins and hence
to NMR resonance line shapes. In the simple 2-
state telegraph model, a single nuclear spin
exchanges between states with different reso-
nance frequencies x1 and x2, with Dx ¼ x2 �
x1, according to the kinetic scheme:

A1Ð
k1

k�1

A2

in which kex¼ k1þ k�1 is the sum of the forward
and reverse kinetic rate constants and the
equilibrium populations of the 2 states are p1¼
k�1/kex and p2 ¼ k1/kex, and p1 þ p2 ¼ 1.
Stochastic changes in resonance frequencies,
arising from transitions between the 2 states,
lead to dephasing of components of the spin
magnetization perpendicular to the static
magnetic field. This results in shifts in reso-
nance frequencies and additional contributions

to transverse relaxation (with rate constant R2¼
1/T2). The NMR spectrum resulting from the
chemical exchange process can be calculated
from the Bloch–McConnell equations (1). Illus-
trative spectra for p1 ¼ 0.8, p2 ¼ 0.2, and Dx ¼
1,000 s�1 for different values of kex are shown in
Figure 1.

In the absence of chemical exchange, individ-
ual resonance lines are observed at the frequen-
cies x1 and x2, with integrated intensities
proportional to p1 and p2 (not shown). When
chemical exchange is slow on the NMR chemical
shift timescale, kex , Dx, resolved resonance
lines are still observed. However, the linewidths
are increased because the transitions between
states increase transverse relaxation rate con-
stants. If the site populations are unequal with
p1 . p2, then k�1 . k1, and the resonance line
for the minor population is preferentially broad-
ened. In intermediate exchange or coalescence,
kex ’ Dx, and a single very broad and shifted
resonance line results, in many cases broadened
to be unobservable in practice. In fast exchange,
kex . Dx, and a single resonance line is
observed at the population-averaged resonance
frequency with a linewidth that becomes smaller
as kex becomes even larger. The reduction in
linewidth, or transverse relaxation rate constant,
as kex increases in the fast exchange limit is
called motional narrowing (vide infra). As
illustrated by this simple example, the dramatic
effects of the chemical kinetic process on the
NMR line shapes, or equivalently resonance
frequencies and transverse relaxation rate con-
stants, is the basis for investigating chemical or
conformational kinetic processes in biologic
macromolecules.

As an intrinsic physical phenomenon, chem-
ical exchange as evidenced in NMR spectros-
copy must comply with physical kinetic
theories of chemical reactions. To broaden the
interdisciplinary understanding of chemical
exchange, the present tutorial reviews statisti-
cal mechanical theories of chemical kinetics
relevant to the modeling and interpretation of
the phenomenon of chemical exchange in NMR
spectroscopy. By mapping the chemical ex-
change phenomenon onto the dynamics of a
particle moving stochastically in a classical

Dynamical models of chemical exchange
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bi p h a si c p ot e nti al ( 8, 9), r e a cti o n r at e t h e or y
a n d  m o d el s of b arri er cr o s si n g d y n a mi c s c a n b e
u s e d t o e x pl or e t h e  mi cr o s c o pi c e x c h a n g e
d y n a mi c s a n d i nt er pr et c h e mi c al e x c h a n g e i n
t er m s of t h e u n d erl yi n g c h e mi c al d y n a mi c s.

I n t his t ut ori al,  w e us e st at e- of-t h e- art t h e ori es
f or c h e mi c al d y n a mi c s t o g e n er ali z e j u m pli k e
m o d els of c h e mi c al e x c h a n g e t o b arri er cr o ssi n g
d y n a mi cs of a p arti cl e al o n g a r e a cti o n c o or di-
n at e.  W e d e m o n str at e t h at t h e i ntr o d u cti o n of a
c o nti n u o usl y v ar yi n g c o or di n at e v ari a bl e, a s
o p p os e d t o a s et of dis cr et e st at e s, c a n c a pt ur e
n ot o nl y t h e l o n g ti m e d e c orr el ati o n ass o ci at e d
wit h b arri er cr o s si n g b ut al s o t h e s h ort er
ti m e s c al e tr a nsi e nt d y n a mi cs, as s o ci at e d  wit h
fl u ct u ati o ns  wit hi n p ot e nti al e n er g y  w ells. St o-
c h asti c e v ol uti o n is d es cri b e d b y t h e str o n g
c olli si o n  m o d el. T his  m o d el as s u m e s t h at t h e
st at e of t h e s yst e m i s r a n d o mi z e d u p o n e a c h
c olli si o n, i n a c c or d  wit h t h e e q uili bri u m distri-
b uti o n. C olli si o ns o c c urs at a r at e a , l e a di n g t o
a n e x p o n e nti al distri b uti o n of c ollisi o n ti m es,
a n d t h e a v er a g e c h a n g e i n e n er g y d u e t o a
c olli si o n i s l ar g e c o m p ar e d  wit h k B T . T h e
r es ulti n g d et ail e d  m o d el s ar e s h o w n t o b e
c o nsi st e nt  wit h t h e pr e di cti o n s of st a n d ar d

dis cr et e st at e j u m p  m o d els,  w hil e a d di n g a
hi g h er d e gr e e of r e alis m i n t h e u n d erl yi n g
d y n a mi c s. T hi s t ut ori al s er v es t o el u ci d at e t h e
u n d erl yi n g p h e n o m e n o n of e x c h a n g e b y r e d u c-
i n g t h e c o m pl e xit y of d et ail e d c o m p ut ati o n al
si m ul ati o n s of pr ot ei ns a n d ot h er  m a cr o m ol e-
c ul es t o t h e ess e nti al d y n a mi cs t h at di ct at e t h e
r at e of c h e mi c al e x c h a n g e ( 1 0, 1 1).

T h e t ut ori al i s or g a ni z e d a s f oll o w s. T h e or eti c
m o d el s of c h e mi c al e x c h a n g e ar e d e v el o p e d b y
pr o p o si n g a  m a p pi n g b et w e e n c h a n g e s i n
c o or di n at e s a n d c h a n g e s i n r e s o n a n c e fr e q u e n-
ci e s. T h e r e s ulti n g ti m e- d e p e n d e nt fr e q u e n ci e s
ar e u s e d t o e v al u at e ti m e c orr el ati o n f u n cti o n s
a s s o ci at e d  wit h  N M R o b s er v a bl e s. T h e pr e di c-
ti o n s of t h e t h e or eti c e x pr e s si o n s ar e c o m p ar e d
wit h t h e r e s ult s of n u m eri c si m ul ati o n s f or t h e
d y n a mi c s of a c o nti n u o u sl y v ar yi n g c o or di n at e
i n a bi p h a si c d o u bl e- w ell p ot e nti al. T h e d y-
n a mi c s ar e e x pl or e d f or a v ari et y of p ar a m e-
t eri z ati o n s of t h e p ot e nti al  w ell s a n d a s a
f u n cti o n  of t h e r at e  of c olli si o n s. I n a n
e xt e n si o n of t h e s e r e s ult s f or c h e mi c al e x-
c h a n g e, t h e  m o d el s ar e u s e d t o si m ul at e C arr –
P ur c ell – M ei b o o m – Gill ( C P M G) r el a x ati o n di s-
p er si o n d e c a y ( 2, 1 0). Fi n all y, s u g g e sti o n s ar e
m a d e f or g e n er ali z ati o n s of t hi s  w or k t o  m or e
d et ail e d  m o d el s of c h e mi c al d y n a mi c s.

II. T H E O R Y
W e c o n si d er, a s a  mi ni m al  m o d el of c h e mi c al

e x c h a n g e d y n a mi c s, a si n gl e n u cl e ar s pi n
w h o s e st at e i s d efi n e d b y a c o or di n at e v ari a bl e
q (t) t h at d e p e n d s o n ti m e. C h a n g e s i n t h e
v ari a bl e q (t) c a pt ur e c h a n g e s i n t h e e n vir o n-
m e nt of t h e n u cl e u s, r efl e cti n g c h a n g e s i n t h e
c h e mi c al or c o nf or m ati o n al st at e of t h e s y st e m.
T h e a s s o ci at e d r e s o n a n c e fr e q u e n c y of t h e
n u cl e u s, x (t), i s a f u n cti o n of t h e st at e of t h e
s y st e m s o t h at x (t) ¼ x [q (t)].  Wit h o ut l o s s of
g e n er alit y, t h e  N M R r a di o fr e q u e n c y c arri er c a n
b e a s s u m e d t o b e o n r e s o n a n c e  wit h t h e
e n s e m bl e a v er a g e of , x (t). s o t h at , x (t). ¼
0 b y c o n str u cti o n.  A s a  m o d el of t h e e x c h a n g e
d y n a mi c s,  w e a d o pt a st a n d ar d  m o d el of
c h e mi c al r e a cti o n d y n a mi c s, i n v ol vi n g tr a n si-
ti o n s b et w e e n 2  m e c h a ni c all y st a bl e st at e s i n a
d o u bl e- w ell ( bi p h a si c) p ot e nti al. I n t er m s of t hi s
si m pl e  m o d el, t h e d y n a mi c s of t h e r e s o n a n c e

Fi g 1 . N M R s pectr a f or 2-sit e c h e mic al exc h a n ge. P ar a m et ers  w er e p 1

¼ 0. 8, p 2 ¼ 0. 2, x 1 ¼ 2 0 0 s 1 , x 2 ¼ 8 0 0 s 1, a n d D x ¼ 1, 0 0 0 s 1 ,
yiel di n g t he a ver a g e r es o n a nce fre q u e ncy p 1x 1 þ p 2x 2 ¼ 0 f or
c o n ve ni e nc e. T he v al u es of kex ar e 2 5 0 s 1 ( das h – d ott e d li n e), 1, 0 0 0
s 1 ( das h e d li n e), 2, 5 0 0 s 1 (s oli d li n e), a n d 4, 0 0 0 s 1 ( d ott e d li n e),
c orres p o n di n g t o sl o w, i nt er me di at e, f ast, a n d v ery f ast exc ha n g e o n
t he c he mical s hift ti m esc ale, r es pectiv ely. T he i ns et s h o ws a v ertical
ex p a nsi o n of t he r e gi o n fr o m 2 5 0 t o 1, 0 0 0 s 1 . T he tra ns vers e
r el ax ati o n r at e c o nst a nts o bt ai ne d f or t he  m aj or p eak i n e ac h
s pectr u m by fitti n g a L or e ntzi a n li n e s ha p e f u ncti o n o ver t he r e gi o n
5 0 0 t o 3 0 0 s 1 w er e 4 9. 7, 1 1 3. 8, 6 1. 6, a n d 3 9. 5 s 1 , r es pecti vely.

S pectra  w er e c alc ul at e d fr o m t he Bl oc h – Mc C o n nell e q u ati o ns ( 1).

D y n a mi c al  m o d el s of c h e mi c al e x c h a n g e
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frequency of the nuclear spin x[q(t)] involves
fluctuations within and between 2 basins. The
rate of transition between states is a function of
barrier height, temperature, and dissipation.

In the simplest case, q(t) is a 2-state telegraph
signal taking on values 0 and 1 so that q(t)¼1 if
the spin is in state 1 with resonance frequency
x1 and q(t)¼ 0, if the spin is in the state 2 with
resonance frequency x2. Thus, the instanta-
neous resonance frequency is expressed as x(t)
¼ q(t)x1 þ (1� q(t))x2. This is the 2-state jump
model commonly encountered in the theory of
NMR spectroscopy and illustrated in Figure 1
(1). In the 2-state jump model, every collision is
a strong collision in which the system loses
memory of its prior state. The effect of
transitions between q(t) ¼ 1 and q(t) ¼ 0,
representing frequency jumps between x1 and
x2, can be determined by a variety of
mathematical approaches (1, 2, 5). In the
following, we adopt an alternative approach
commonly used in reaction rate theory in which
q(t) is a continuous rather than discrete
variable. This allows exploration of a wider
variety of models and enables a more detailed
analysis of the underlying system dynamics.

A. Strong collision dynamics in the
discrete state jump model

As an introduction to the approach used in
the tutorial, a connection is established be-
tween strong collision models for chemical
dynamics and transverse spin relaxation arising
from chemical exchange. The complex-valued
time-domain NMR signal (omitting a number of
constants of proportionality) for a single
stochastic realization of the 2-state jump
process (also called the telegraph process) is
given by (5, 12)

sþðtÞ ¼ exp i

Z t

0

qðt0Þx1 þ ð1� qðt0ÞÞx2½ �dt0
8<
:

9=
;

¼ exp �iDx
Z t

0

qðt0Þ � p1½ �dt0
8<
:

9=
;

¼ qðtÞ exp �ip2Dxtf g
þ 1� qðtÞ½ � exp ip1Dxtf g

ð1Þ

in which s±(t)¼ sx(t) ± isy(t) and sx(t) and sy(t) are
the quadrature components of the signal. The
second equality is obtained by noting that p1¼
,q(t). is the equilibrium population of the state
1 and recalling that Dx¼x2�x1 and,x(t).¼
p1x1þp2x2¼0. The third equality is obtained in
the absence of state changes so that q(t) is either
0 or 1 for a given member of the ensemble. The
observable NMR signal is the average over the
ensemble of realizations of the stochastic process
and is denoted,sþ.(t). The ensemble averageof
the third equality reduces to ,sþ.(t) ¼ p1ex-
p(ix1t)þp2exp(ix2t), as expected in the absence
of state changes. The usual theoretic analysis of
spin relaxation in NMR spectroscopy would
proceed essentially by calculation of the ensem-
ble average of the second line of Eq. 1 to obtain
the ensemble average NMR signal, including
exchange-broadening effects (vide infra) (1).
Instead, herein, the autocorrelation function of
the NMR signal is calculated as

CðsÞ ¼ sþðtÞs�ðt þ sÞh i

¼ lim
T!‘

1

T

ZT
0

sþðtÞs�ðt þ sÞdt ð2Þ

in which the second equality assumes the system
dynamics are stationary and ergodic. The auto-
correlation function of the NMR signal in the
absence of state changes is given by

CðsÞ ¼
D

qðtÞe�ip2Dxt þ ½1� qðtÞ�eip1Dxt
� �
� qðt þ sÞeip2DxðtþsÞ
�

þ ½1� qðt þ sÞ�e�ip1DxðtþsÞ
�E

¼ p1e
ip2Dxs þ p2e

�ip1Dxs ð3Þ
in which the third equality of Eq. 1 has been
substituted into Eq. 3. The final result in Eq. 3
is obtained by noting that q(t)2¼ q(t) and that
in the absence of state changes, q(t) ¼ q(tþs).
The Laplace transform of the resulting auto-
correlation function is

CðsÞ ¼
Z‘
0

CðsÞe�ssds ¼ p1
s� ip2Dx

þ p2
sþ ip1Dx

ð4Þ
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To proceed, q(t) is assumed to be time
dependent because strong collisions cause
state-to-state transitions. A theorem from statis-
tical mechanics states that the Laplace transform
of the autocorrelation function of a dynamical
system in the presence of strong collisions C̃(s) is
a function of the autocorrelation function in the
absence of collisions C(s) (8, 9):

~CðsÞ ¼ Cðsþ aÞ
1� aCðsþ aÞ ð5Þ

in which a is the collision rate. Substituting Eq. 4
into Eq. 5 gives

~CðsÞ ¼ sþ a� iDxDp
s2 þ a� iDxDpf gsþ p1p2Dx2

ð6Þ

in which Dp ¼ p2 � p1. Eq. 6 is the Laplace
transform of the 2-state jump process in the
strong collision model. The inverse Laplace
transform of Eq. 6 yields the corresponding
autocorrelation function in the time domain:

~CðsÞ ¼ e�ða�iDxDpÞs=2�
cosh

s
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � Dx2 � 2iaDxDp

p� �

þ a� iDxDpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � Dx2 � 2iaDxDp

p
� sinh

s
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � Dx2 � 2iaDxDp

p� ��
ð7Þ

This equation is exact but is also complicated.
Fortunately, useful limiting results can be
obtained as described in the following.

When transitions between states are suffi-
ciently fast, the transverse relaxation rate
constant is given by the decay of the autocor-
relation function at long times (after any initial
transients have decayed to zero) (4, 6). This
corresponds to the limit s � 0 in the Laplace
domain. The usefulness of the analysis in the
Laplace domain is that the long time behavior
is inferred from the small s limit, allowing
relatively simple approximations to be applied.

To begin, Eq. 6 can be expressed as

~CðsÞ ¼ 1

sþ p1p2Dx2

sþa�iDxDp

¼ 1

sþ DðsÞ ð8Þ

D(s) can be expanded in a Taylor series as

DðsÞ’ p1p2Dx2

a� iDxDp
� s

p1p2Dx2

a� iDxDpð Þ2
þ . . . ð9Þ

Keeping only the first 2 terms of the series, Eq.
8 becomes

~CðsÞ ¼ 1

s 1� p1p2Dx2

a�iDxDpð Þ2
� �

þ p1p2Dx2

a�iDxDp

¼
1� p1p2Dx2

a�1DxDpð Þ2
� ��1

sþ 1� p1p2Dx2

a�1DxDpð Þ2
� ��1

p1p2Dx2

a�1DxDp

ð10Þ

This equation is isomorphic to a result derived
from the Bloch–McConnell equations by Aber-
gel and Palmer (Eq. 23 in (13)). The second
equality of Eq. 10 is the Laplace transform of C̃(s)
¼ Aei/ exp[(iXsc � Rsc)s] in which

a ¼ 1� p1p2Dx2

a� iDxDpð Þ2

 !�1					
					

/ ¼ Arg 1� p1p2Dx2

a� iDxDpð Þ2

 !�1" #

Xsc ¼ Im 1� p1p2Dx2

a� iDxDpð Þ2

 !�1
p1p2Dx2

a� iDxDp

" #

Rsc ¼ Re 1� p1p2Dx2

a� iDxDpð Þ2

 !�1
p1p2Dx2

a� iDxDp

" #

ð12Þ
a and / are the amplitude and phase of the

long time component of the autocorrelation
function, Xsc is the resonance frequency, and
Rsc is the transverse relaxation rate constant in
the 2-state strong collision model. Following
the procedure of Abergel and Palmer yields an
explicit form for Rsc (Eq. 31 in (13)):

Rsc ¼ p1p2Dx
2a

� a2 þ Dx2

a2 þ Dx2ð Þ2 � p1p2 5a2 þ Dx2ð ÞDx2

" #

ð13Þ
(a related expression for Xsc is given by Eq. 32
in (13) but not needed in this tutorial).
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If collisions are in the fast limit on the NMR
chemical shift timescale, a .. Dx, then the
bracketed term in Eq. 13 approaches a�2 and

Rsc ¼ p1p2Dx
2=a ð14Þ

Eq. 14 also can be obtained in straightfor-
ward fashion by retaining only the first term in
the series in Eq. 9 and assuming a .. Dx.
These results demonstrate that the autocorre-
lation function of the NMR signal in the fast
limit strong collision 2-state telegraph model is
a single exponential decay with rate constant
Rsc. For comparison, either the random phase
model or Bloch-Wangsness-Redfield (BWR) the-
ory applied to the ensemble average of the
second line of Eq. 1 give the fast limit
expression for RBWR as the integral of the
autocorrelation function for the resonance
frequency fluctuations C(s) ¼ ,dx(t) dx(tþ
s). (1, 5), in which dx(t) ¼ x(t) � ,x(t). is
the instantaneous resonance frequency fluctu-
ation. For the 2-state telegraph process, C(s) ¼
p1p2Dx

2exp(�kexs), in which dx(t)¼�Dx[q(t)�
p1] and C(0) ¼ hdx2(t)i ¼ p1p2Dx

2, yielding:

RBWR ¼
Z‘
0

dxðtÞdxðt þ sÞh ids ¼ p1p2Dx
2=kex

ð15Þ
Eqs. 14 and 15 identify the collision rate a as

being equal to the exchange rate kex. This casts
the strong collision relaxation rate constant in
the familiar form used in NMR spectroscopy. In
statistical mechanics, a strong collision imparts
variation in particle energy in the order of kBT.
In contrast, in NMR spectroscopy, only collisions
that lead to changes in resonance frequency
contribute to relaxation properties of the
affected nuclear spin. That is, only the fraction
of ‘‘collisions’’ that lead to transitions between
states with different resonance frequencies are
meaningful for spin relaxation. For the 2-state
telegraph model, kex is the only nonzero
eigenvalue of the kinetic transition matrix and
consequently the only rate constant appearing
in Eq. 15, and by extension, Eqs. 13 and 14. Eqs.
14 and 15 also provide an important identity
between the (slow) long time decay of the NMR

signal and the autocorrelation function of the
(fast) resonance frequency fluctuations in the
fast (or BWR) limit.

Figure 2 compares the results for the strong
collision autocorrelation function calculated
from Eq. 7 and the single exponential approx-
imations with rate constants given by Eqs. 13
and 14. When a , Dx, the imaginary
component of the exact autocorrelation func-
tion is large and the fast limit (or BWR)
approximation of Eq. 14 is not accurate (Fig
2a,b). As a increases so that a . Dx, the
imaginary component of the autocorrelation
function decreases in magnitude and the fast
limit approximation becomes increasingly
accurate (Fig 2c,d). When a . 4Dx, the exact
autocorrelation function becomes nearly real,
and the fast limit approximation is nearly exact
(Fig 2d). The extended formula for Rsc in Eq. 13
is accurate for intermediate (Fig 2b) and slow
exchange for times s longer than approxi-
mately (4–5)/a, after the initial fast decay of
the autocorrelation function (Fig 2a), as well as
fast exchange (Fig 2c,d). For the given
illustrative parameters, Eq. 13 underestimates
the relaxation rate constant obtained from line
shape fitting by a maximum of 7.5% for
intermediate exchange and becomes highly
accurate in the fast exchange regime (see Figs
1 and 2 captions). The remainder of the
tutorial focuses for simplicity on the fast limit
regime for simplicity, but as indicated by Eq.
13 and the results in Figure 2, the approaches
developed are more generally applicable
outside this limit.

Additional details regarding the Laplace
transform approach used to determine theo-
retic expressions for NMR spin relaxation rate
constants are provided elsewhere (4–6, 13). A
similar strong collision model has been applied
to model the free induction decay, correspond-
ing to ,sþ.(t), in NMR spectroscopy by Gold-
man and Goldman et al. (12, 14).

B. Strong collision dynamics in the
continuous reaction coordinate
model

In the 2-state jump model discussed previ-
ously, the states of the system are discrete, and
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t h e c o or di n at e v ari a bl e q (t) i s r e stri ct e d t o
v al u e s of 0 a n d 1. T hi s i s e s s e nti all y a s q u ar e-
w ell  m o d el, i n  w hi c h e a c h  w ell i s a s s o ci at e d
wit h a u ni q u e r e s o n a n c e fr e q u e n c y a n d t h e
tr a n sit ti m e a cr o s s t h e b arri er b et w e e n  w ell s i s
s h ort c o m p ar e d  wit h r e si d e n c e ti m e s  wit hi n
t h e  w ell s.  A  m or e r e ali sti c  m o d el of t h e
c h e mi c al d y n a mi c s u s e s a c o nti n u o u s p o siti o n-
al v ari a bl e q (t)  m o vi n g i n a  d o u bl e- w ell
( bi p h a si c  A – B) p ot e nti al. T h e c o nti n u o u s d e-
p e n d e n c e of t h e v ari a bl e q (t) pr o vi d e s a  m or e
r e ali sti c  m o d el f or cl a s si c al r e a cti o n d y n a mi c s.
W e u s e t h e d o u bl e- w ell p ot e nti al f u n cti o n ( 8)

V ðq Þ ¼

1
2 m x 2

A ð q þ q A Þ 2 q , a
Q 1

2 m x 2
1 q

2 a < q , b

V B þ 1
2 m x 2

B ðq q B Þ
2 q b

8
<

:

9
=

;

ð1 6 Þ

i n  w hi c h Q i s t h e e n er g y b arri er h ei g ht b et w e e n
w ell s, V B i s t h e diff er e n c e i n e n er g y b et w e e n
t h e  w ell  A a n d B  mi ni m a, q A a n d q B ar e t h e
p o siti o n s of t h e  w ell  mi ni m a, m i s t h e p arti cl e
m a s s, a n d x 1 i s t h e b arri er tr a n siti o n fr e q u e n c y
( n ot e t h at t h e fr e q u e n c y p ar a m et er s h er e ar e
c o n st a nt s a n d ar e di sti n ct fr o m ti m e- d e p e n-
d e nt  N M R r e s o n a n c e fr e q u e n c y x (t)). T h e s e
p ar a m et er s ar e s p e cifi e d t o s et t h e s h a p e of t h e
p ot e nti al, a n d t h e d efi niti o n s

a ¼ 2 Q = ðm x 2
1 q A Þ

b ¼ 2 ðQ V B Þ= ðm x 2
1 q B Þ

x A ¼ x 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a = ðq A a Þ

p

x B ¼ x 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b = ðq B b Þ

p

ð1 7 Þ

Fi g 2 . C o m p aris o n of ex act a ut oc orr el ati o n f u ncti o ns f or t h e str o n g c ollisi o n  m o d el a n d si n gl e ex p o n e nti al a p pr oxi m ati o ns. P ar a m et ers  w er e
p 1 ¼ 0. 8, p 2 ¼ 0. 2, a n d D x ¼ 1, 0 0 0 s 1 , a n d a v ari e d b et w e e n ( a) 2 5 0 s 1 , ( b) 1, 0 0 0 s 1 , (c) 2, 5 0 0 s 1 , a n d ( d) 4, 0 0 0 s 1 (i d e ntic al t o Fi g 1).
Pl ots s h o w t h e  m a g nit u d es of t h e r e al (s oli d, bl ac k li n es) a n d i m a gi n ary ( d ott e d, bl ac k li n es) c o m p o n e nts of t h e ex act c o m pl ex
a ut oc orr el ati o n f u ncti o n c alc ul at e d fr o m E q. 7; t h e f ast li mit si n gl e ex p o n e nti al a p pr o xi m ati o n of E q. 1 4 ( d as h e d, r e d dis h – p ur pl e li n es); a n d
t h e si n gl e ex p o n e nti al a p pr o xi m ati o n of E q. 1 3  wit h a m plit u d e A , gi v e n by E q. 1 2 ( d as h – d ot – d ott e d, or a n g e li n es). T h e r el ax ati o n r at e
c o nst a nts c alc ul at e d fr o m E q. 1 3 ar e 4 6. 2, 1 0 5. 3, 6 1. 2, a n d 3 9. 4 f or Fi g. 2 a – d, r es p ecti v ely, a n d ar e 7. 0 %, 7. 5 %, 0. 6 %, a n d 0. 1 %, s m all er
t h a n t h e v al u es o bt ai n e d fr o m fitti n g t h e c orr es p o n di n g N M R s p ectr a ( Fi g 1).

D y n a mi c al  m o d el s of c h e mi c al e x c h a n g e

D aff er n et al . T h e Bi o p h y si ci st 2 0 2 2; 3( 1). D OI: 1 0. 3 5 4 5 9/t b p. 2 0 2 1. 0 0 0 2 0 1 7
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ensure that V(q) and dV(q)/dq are continuous.
The potential can be recast in dimensionless
variables:

V̂ðq̂Þ ¼

1
2 x̂

2
Aðq̂þ q̂AÞ2 q̂,�â

Q̂� 1
2 q̂

2 �â< q̂, b̂

V̂B þ 1
2 x̂

2
Bðq̂� q̂BÞ2 q̂ � b̂

8>>><
>>>:

9>>>=
>>>;
ð18Þ

in which energy variables V̂B ¼ VB/(kBT) and Q̂
¼ Q/(kBT) are in units of kBT, length variables
are redefined as x̂ ¼ [mx2

1/(kBT)]
1/2x for x ¼ {q,

qA, qB, a, b}, and frequency variables are
redefined as x̂c ¼ xc/x1 for c ¼ {1, A, B}.
Dimensionless time variables are defined as t̂
¼x1t, and the dimensionless collision rate is â
¼ a/x1 (vide infra). For convenience, the
circumflex will be omitted in the following
discussion, but all variables should be regard-
ed as dimensionless, unless otherwise noted.
Examples of the potential are shown in Figure
3. In the following, populations of sites 1 and
2 were obtained by integrating the canonical
ensemble probability, assuming q , 0 corre-
sponds to site 1 and q . 0 corresponds to
site 2.

III. METHODS
The stepwise procedure followed in model-

ing strong collision dynamics is provided
alongside the algorithm used to conduct the
simulations. The mapping of the simple dy-
namical model to actual physical systems is
discussed, including the particular example of
protein folding. The use of the dynamical
model to describe signal decay in a CPMG
experiment is discussed.

A. Simulations for strong collisions
The previous theoretic discussion suggests a

simple strategy for simulating chemical ex-
change dynamics by using the biphasic poten-
tial model:

(a) Generate a simulation of q(t)¼q(tn)¼q(nDt)
¼ qn for a particle in the biphasic potential
in the absence of collisions by solving
Newton equations of motion for a series

of time steps n ¼ {0,. . ., nmax � 1} with
duration Dt. In the present work, the
velocity Verlet algorithm was used for
propagating q(t) and the velocity v(t).

(b) Add strong collisions that occur in time
with an exponential probability distribu-
tion. Each collision randomly reassigns the
particle velocity from a Gaussian distribu-
tion centered at zero with variance ,v2.¼
kBT/m (¼ 1 in dimensionless units).

(c) Map from q(t) to x[q(t)] ¼ x(t).
(d) Calculate the autocorrelation function of

dx(t), given by ,dx(t)dx(tþs)..
(e) Calculate the autocorrelation function for

s±(t) by using Eq. 2 and the definition:

s6ðtÞ ¼ s6ðnDtÞ ¼ exp 6 iDt
Xn
k¼0

xk

 !

(f ) Calculate the ensemble average NMR signal
,sþ.(t) by averaging sþ(t) over multiple
independent trajectories, q(t).

The finite difference equations of motion for
the coordinate variable q(t) and the velocity v(t)
are defined by the velocity Verlet algorithm (in
dimensionless units):

qðt þ DtÞ ¼ qðtÞ þ vðtÞDt þ FðtÞ
2

Dt2

vðt þ DtÞ ¼ vðtÞ þ Fðt þ DtÞ þ FðtÞ
2

Dt

ð19Þ

in which the dimensionless instantaneous
acceleration of a particle at a particular position
q is given by

FðqÞ ¼ � dVðqÞ
dq

¼
�x2

A q� qAð Þ q,�a
q �a< q, b

�x2
B q� qBð Þ q � b

8<
:

9=
; ð20Þ

Python code illustrating the simulation algo-
rithm is shown in Box 1. Autocorrelation
functions can be calculated by approximations
of the integral in Eq. 2 through a summation
(substituting dx(t) for sþ(t) as needed) or more
efficiently by Fourier transformation.
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B.  M a p pi n g g e n er ali z e d
c o or di n at e s t o r e s o n a n c e
fr e q u e n ci e s

T h e  m a p pi n g of t h e c o or di n at e v ari a bl e q (t)
t o t h e r e s o n a n c e fr e q u e n c y x (t)  w a s p erf or m e d
i n 2  w a y s. I n t h e fir st a p pr o a c h, a r e s o n a n c e
fr e q u e n c y of 1  w a s a s si g n e d, if q , 0, a n d a
r e s o n a n c e fr e q u e n c y of 0  w a s a s si g n e d, if q 0.
T h e v al u e s of t h e r e s o n a n c e fr e q u e n ci e s  w er e
t h e n s hift e d a n d s c al e d s o t h at , x (t). ¼ 0 a n d
, x (t)2 . 1/ 2 s c ¼ 0. 1 i n  w hi c h s c i s t h e l o n g ti m e
d e c a y ti m e f or t h e a ut o c orr el ati o n f u n cti o n of
q (t). T h e l att er c o n str ai nt e n s ur e s t h at t h e  N M R
f a st e x c h a n g e li mit i s r e a c h e d. T hi s  m a p pi n g
r e d u c e s t h e si m ul at e d  m o d el t o t h e 2- st at e
t el e gr a p h j u m p pr o c e s s a n al y z e d t h e or eti c all y,
a s  m e nti o n e d pr e vi o u sl y.

I n t h e s e c o n d a p pr o a c h, t h e c h e mi c al s hift s
w er e  m o d el e d i niti all y b y u si n g x (q ) ¼ erf( q
q 0 ) i n  w hi c h erf i s t h e err or f u n cti o n. T h e v al u e
of q 0 i s c h o s e n s o t h at x (q ) ’ 1 f or q , 0 a n d
x (q ) v ari e s b et w e e n þ 1 a n d 1,  wit h , x (q ). ’
0 f or q 0, a s ill u str at e d i n Fi g ur e 3. T hi s
f u n cti o n  w a s t h e n s hift e d a n d s c al e d s o t h at
, x (t). ¼ 0 a n d , x (t)2 . 1/ 2 s c ¼ 0. 1, a s f or t h e
fir st a p pr o a c h. T hi s s e c o n d a p pr o a c h i s a si m pl e
m o d el of a  m aj or st at e 1  wit h a fi x e d r e s o n a n c e
fr e q u e n c y ( s u c h a s  w o ul d o c c ur i n a f ol d e d
st at e of a pr ot ei n) a n d a  mi n or st at e 2 i n  w hi c h

l o c al c o nf or m ati o n al fl u ct u ati o n s dri v e c o n-
c o mit a nt ti m e- d e p e n d e nt v ari ati o n s i n r e s o-
n a n c e fr e q u e n ci e s. T hi s  m a p pi n g  will b e c all e d
t h e r a n d o m- c oil  m o d el i n t h e f oll o wi n g.

T o ill u str at e t h e pr e vi o u s  m o d el s, t h e 1 3 C a
s pi n h a s a s e c o n d ar y c h e mi c al s hift, D d , of 2 t o
4 p p m i n t h e a - h eli c al c o nf or m ati o n of a
pr ot ei n. T h e s e c o n d ar y s hift i s d efi n e d a s t h e
m e a s ur e d c h e mi c al s hift  mi n u s t h e c h e mi c al
s hift e x p e ct e d f or a n u n str u ct ur e d (r a n d o m-
c oil) p e pti d e. T h u s, t h e t el e gr a p h  m o d el a s si g n s
a si n gl e fr e q u e n c y e q u al t o D d i n t h e f ol d e d
st at e a n d a si n gl e fr e q u e n c y e q u al t o 0 i n t h e
u nf ol d e d st at e. T h e r a n d o m- c oil  m o d el al s o
a s si g n s a si n gl e fr e q u e n c y e q u al t o D d i n t h e
f ol d e d st at e.  H o w e v er, t h e u nf ol d e d st at e i s
d e s cri b e d  b y a fl u ct u ati n g di stri b uti o n of
fr e q u e n ci e s fr o m D d t o þ D d ,  wit h a n a v er a g e
of 0, r e pr e s e nti n g i n a si m pl e  m a n n er t h e
a v er a gi n g of c h e mi c al s hift s o v er t h e di stri b u-
ti o n s of c o nf or m ati o n s s a m pl e d b y a di s or-
d er e d p e pti d e.

C.  C P M G r el a x ati o n  di s p er si o n
C P M G a n d R 1 q r el a x ati o n di s p er si o n e x p eri-

m e nt s h a v e d e v el o p e d a s p o w erf ul a p pr o a c h e s
f or i n v e sti g ati o n of  mi cr o s e c o n d t o  milli s e c o n d
ti m e s c al e d y n a mi c pr o c e s s e s i n pr ot ei n s a n d
ot h er  m a cr o m ol e c ul e s ( 2). I n t h e C P M G e x p er-
i m e nt, r el a x ati o n i s  m e a s ur e d d uri n g a tr ai n of
s pi n – e c h o s e q u e n c e s: ( s c p 1 8 0 8 – s c p )n , i n
w hi c h 1 8 0 8 i s a r a di ofr e q u e n c y r ef o c u si n g
p ul s e, s c p i s t h e s pi n – e c h o d el a y ti m e, t h e t ot al
r el a x ati o n d el a y p eri o d i s T ¼ 2 n s c p , a n d n i s t h e
n u m b er of s pi n – e c h o u nit s a p pli e d. I n t h e i d e al
c a s e, e a c h 1 8 0 8 p ul s e  m er el y a ct s t o i n v ert t h e
si g n of t h e e v ol uti o n fr e q u e n ci e s.  A s s u c h, i n
t h e pr e vi o u s pr ot o c ol s, t h e eff e ct of a C P M G
p ul s e tr ai n i s  m o d el e d b y  m ulti pl yi n g x (t) b y a
s q u ar e  w a v e v ar yi n g b et w e e n þ 1 a n d 1,  wit h
5 0 % d ut y c y cl e a n d p eri o d 4 s c p , pri or t o f urt h er
a n al y si s of x (t). T h e a ut o c orr el ati o n f u n cti o n of
sþ (t) i s c al c ul at e d a s d e s cri b e d pr e vi o u sl y, or a n
e n s e m bl e a v er a g e , sþ . (t) i s e sti m at e d b y
a v er a gi n g  m ulti pl e st o c h a sti c tr aj e ct ori e s t o
mi mi c t h e si g n al d e c a y i n a n a ct u al C P M G
e x p eri m e nt.

T h e v ari ati o n i n t h e o b s er v e d r el a x ati o n r at e
a s a f u n cti o n of t h e p ul s e d el a y s c p i s c all e d a

Fi g 3 . Bi p h asic p ot e nti al c alc ul at e d fr o m E qs. 1 7 a n d 1 8. P ar a m et ers
(s oli d) ar e Q ¼ 7, V B ¼ 2, a n d x A ¼ x B ¼ 0. 5 yi el d q A ¼ 8. 3 7, q B ¼
7. 0 7, a ¼ 1. 6 7, a n d b ¼ 1. 4 1. P ar a m et ers ( d as h e d) Q ¼ 7, V B ¼ 2, x A

¼ 0. 5, a n d x B ¼ 0. 2 5 yi el d q A ¼ 8. 3 7, q B ¼ 1 3. 0 4, a ¼ 1. 6 7, a n d b ¼
0. 7 7. C h e mic al s hift pr ofil e x (q ) f or t h e r a n d o m-c oil  m o d el a d a pt e d
t o ( d as h e d) asy m m etric p ot e nti al ( d ott e d). T h e B oltz m a n n- w ei g ht e d
a v er a g e , x (q ). ¼ 0 f or q . 0. All p ar a m et ers ar e di m e nsi o nl ess,
as d escri b e d i n t h e t ext.

D y n a mi c al  m o d el s of c h e mi c al e x c h a n g e

D aff er n et al . T h e Bi o p h y si ci st 2 0 2 2; 3( 1). D OI: 1 0. 3 5 4 5 9/t b p. 2 0 2 1. 0 0 0 2 0 1 9
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C P M G r el a x ati o n di s p er si o n c ur v e. I n t h e f a st
e x c h a n g e li mit, a n al y si s of t h e r el a x ati o n
di s p er si o n c ur v e f or a 2- st at e  m o d el yi el d s

R C P M G ð s c p Þ ¼ p 1 p 2 D x 2 s e x 1
s e x

s c p
t a n h

s c p

s e x

ð 2 1 Þ

i n  w hi c h t h e e x c h a n g e ti m e s e x ¼ 1/ k e x .  M or e
c o m pl e x e x pr e s si o n s f or R C P M G (s c p ), v ali d f or all
c h e mi c al e x c h a n g e ti m e s c al e s, h a v e  b e e n
r e p ort e d a n d  wi d el y u s e d i n t h e a n al y si s of
e x p eri m e nt al d at a ( 2).

I V.  R E S U L T S
Str o n g c olli si o n si m ul ati o n s  w er e p erf or m e d

b y u si n g i n- h o u s e P yt h o n v er si o n 3. 6 ( P yt h o n
S oft w ar e F o u n d ati o n, B e a v ert o n,  O R) or  G N U
F ortr a n v er si o n 5. 2. 0 ( Fr e e S oft w ar e F o u n d a-
ti o n, I n c., B o st o n,  M A) pr o gr a m s; e q ui v al e nt
r e s ult s  w er e o bt ai n e d  wit h eit h er pr o gr a m mi n g
l a n g u a g e ( b ut t h e F ortr a n r o uti n e i s  m u c h
f a st er).  N u m eri c a n d gr a p hi c a n al y s e s of si m u-
l ati o n tr aj e ct ori e s  w er e p erf or m e d b y u si n g i n-
h o u s e P yt h o n 3. 6 pr o gr a m s. T h e P yt h o n a n d

B o x 1. Al g orit h m f or str o n g c ollisi o ns

D y n a mi c al  m o d el s of c h e mi c al e x c h a n g e

D aff er n et al . T h e Bi o p h y si cist 2 0 2 2; 3( 1). D OI: 1 0. 3 5 4 5 9/t b p. 2 0 2 1. 0 0 0 2 0 1 1 0
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F ortr a n pr o gr a m s u s e d i n t hi s t ut ori al ar e
pr o vi d e d i n t h e S u p pl e m e nt al  M at eri al.

A. Str o n g c olli si o n  d y n a mi c s i n t h e
bi p h a si c  p ot e nti al

I niti al si m ul ati o n s  w er e p erf or m e d b y u si n g
p ar a m et er s Q ¼ 7, V B ¼ 2, a n d x A ¼ x B ¼ 0. 5
( s oli d c ur v e i n Fi g 3). T h e sit e p o p ul ati o n s ar e p 1

¼ 0. 8 8 a n d p 2 ¼ 0. 1 2. Si m ul ati o n s  w er e
p erf or m e d b y u si n g v al u e s of c olli si o n r at e a ,
r a n gi n g b et w e e n 1 0 3 a n d 1 0 2 .  D y n a mi c s  w er e
u n d er d a m p e d f or a , 0. 3 a n d o v er d a m p e d
ot h er wi s e. T h e si m ul at e d ti m e s eri e s f or t h e
c o or di n at e v ari a bl e q (t) a n d t h e a ut o c orr el ati o n
f u n cti o n of q (t) f or t h e si m ul ati o n  wit h a ¼ 2. 5
ar e s h o w n i n Fi g ur e 4.

I n c o ntr a st t o t h e 2- st at e t el e gr a p h  m o d el,
t h e c o or di n at e v ari e s c o nti n u o u sl y o v er a r a n g e
of q . T h e p arti cl e i s f o u n d t o s p e n d t h e  m aj orit y
of t h e ti m e i n t h e l eft  w ell,  w hi c h  h a s
c o or di n at e q , 0 a n d h a s l o w er p ot e nti al
e n er g y,  m a ki n g o c c a si o n al tr a n siti o n s t o t h e
ri g ht  w ell,  w hi c h h a s c o or di n at e q . 0. T h u s,
t h e p arti cl e h a s l o n g er r e si d e n c e ti m e s i n t h e
l eft  w ell  w h e n c o m p ar e d  wit h t h e ri g ht  w ell.
T h e a ut o c orr el ati o n f u n cti o n i s bi e x p o n e nti al,
wit h a s h ort ti m e c o n st a nt, s 1 ¼ 9. 4, ari si n g fr o m

fl u ct u ati o n s  wit hi n t h e p ot e nti al e n er g y  w ell s
a n d a l o n g er ti m e c o n st a nt, s 2 ¼ 5, 1 1 0, ari si n g
fr o m tr a n siti o n s b et w e e n  w ell s.

T h e si m ul ati o n str at e g y  w a s v ali d at e d b y
c o m p ari n g t h e r at e c o n st a nt s o bt ai n e d fr o m
t h e l o n g ti m e d e c a y of t h e a ut o c orr el ati o n
f u n cti o n t o r at e c o n st a nt s f or p a s s a g e o v er t h e
b arri er o bt ai n e d fr o m si m ul ati o n s of t h e
r e a cti v e fl u x ( 1 5) a n d fr o m t h e or eti c e sti m at e s
of t h e tr a n siti o n r at e ( 1 6). I n t h e s e a p pr o a c h e s,
k ¼ j k T S T , i n  w hi c h k i s t h e s u m of t h e f or w ar d
a n d b a c k w ar d b arri er cr o s si n g r at e c o n st a nt s,
k T S T i s tr a n siti o n st at e t h e or y e sti m at e of t h e
r at e c o n st a nt, a n d j i s t h e tr a n s mi s si o n
c o effi ci e nt. F or c o m p a ct n e s s, t h e t h e or eti c
c al c ul ati o n s ar e o utli n e d i n t h e a p p e n di x.

F or t h e p ar a m et er s gi v e n i n Fi g ur e 4, k T S T ¼
6. 0 9 1 0 4 a n d j ¼ 0. 3 3; t h e tr a n siti o n r at e i s
l o w er t h a n t h at pr e di ct e d b y tr a n siti o n st at e
t h e or y d u e t o sl o w s p ati al diff u si o n ( S D) o v er
t h e b arri er. T h e r e s ulti n g ti m e c o n st a nt s ¼ 1/ k
¼ 4, 9 8 0 a gr e e s  w ell  wit h t h e fitt e d l o n g ti m e
d e c a y of t h e a ut o c orr el ati o n f u n cti o n, s 2 ¼
5, 1 1 0. Fi g ur e 5 s h o w s a  m or e e xt e n si v e
c o m p ari s o n b et w e e n t h e tr a n s mi s si o n c o effi-
ci e nt s o bt ai n e d fr o m t h e or eti c e sti m at e s of t h e
r at e c o n st a nt, t h e r e a cti v e fl u x  m et h o d, a n d t h e

Fi g 4 . Si m ul ati o n f or t h e str o n g c ollisi o n dy n a mics of t h e c o or di n at e q (t) i n a bi p h asic d o u bl e- w ell p ot e nti al  wit h Q ¼ 7, V B ¼ 2, a n d e q u al
w ell fr e q u e nci es x A ¼ x B ¼ 0. 5. (s oli d tr ac e i n Fi g 2). T h e si m ul ati o n us e d a ti m e st e p of 0. 0 1 a n d c o nsist e d of 2 3 4 st e ps  wit h a c ollisi o n r at e
of a ¼ 2. 5; q (t)  w as st or e d e v ery 21 0 st e ps. ( a) q (t) at e v ery 1, 0 0 0 st or e d s a m pl e p oi nt d uri n g t h e si m ul ati o n. ( b) A ut oc orr el ati o n f u ncti o n
C (s ) of q (t) ( bl ac k) fit  wit h a  m o n o ex p o n e nti al (r e d dis h – p ur pl e, d as h e d li n e) a n d bi ex p o n e nti al d ec ay f u ncti o n ( bl u e, d ott e d li n e); 1 0
r e plic at e si m ul ati o ns  w er e a v er a g e d t o pr o d uc e t h e fi n al a ut oc orr el ati o n f u ncti o n. T h e i ns et s h o ws t h e f ast i niti al d ec ay of t h e
a ut oc orr el ati o n f u ncti o n,  w hic h is  w ell d escri b e d by t h e bi ex p o n e nti al fit. T h e fitt e d p ar a m et ers ar e a m plit u d es a 1 ¼ 3. 9 a n d a 2 ¼ 2 5. 2 a n d
d ec ay ti m es s 1 ¼ 9. 4 a n d s 2 ¼ 5, 1 1 0, r es p ecti v ely. All p ar a m et ers ar e di m e nsi o nl ess as d escri b e d i n t h e t ext. T h e si m ul at e d dy n a mics i n t h e
p ot e nti al ar e s h o w n i n S u p pl e m e nt al  M o vi e S 1.

D y n a mi c al  m o d el s of c h e mi c al e x c h a n g e

D aff er n et al . T h e Bi o p h y si ci st 2 0 2 2; 3( 1). D OI: 1 0. 3 5 4 5 9/t b p. 2 0 2 1. 0 0 0 2 0 1 1 1
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l o n g ti m e d e c a y of t h e si m ul at e d a ut o c orr el a-
ti o n f u n cti o n.

T h e v ari ati o n i n t h e tr a n s mi s si o n c o effi ci e nt
di s pl a y s t h e cl a s si c Kr a m er s t ur n o v er.  At l o w
c olli si o n fr e q u e n ci e s, t h e e x c h a n g e r at e i n cr e a s-
e s i n pr o p orti o n t o t h e c olli si o n fr e q u e n c y,
w hil e at hi g h c olli si o n fr e q u e n ci e s, t h e e x-
c h a n g e r at e d e cr e a s e s i n pr o p orti o n t o t h e
r e ci pr o c al of t h e c olli si o n fr e q u e n c y.  At i nt er-
m e di at e c olli si o n fr e q u e n ci e s, t h e r at e i s a
m a xi m u m, a n d t h e tr a n siti o n st at e t h e or y
pr o vi d e s a r e a s o n a bl e e sti m at e of t h e e x c h a n g e
r at e. S e g m e nt s of t h e si m ul ati o n s f or t h e str o n g
c olli si o n  m o d el  wit h a ¼ 0. 0 4 a n d 2. 5 ar e
a ni m at e d i n S u p pl e m e nt al  M o vi e s S 1 a n d S 2.
T h e s e p ar a m et er s c orr e s p o n d t o t h e e n er g y
di s si p ati o n ( E D) a n d S D li mit s of t h e Kr a m er s
r e a cti o n r at e t h e or y di s c u s s e d i n t h e  A p p e n di x.

B.  C o m p ari s o n of c o nti n u o u s a n d
di s cr et e st at e fr e q u e n c y  m a p pi n g s

T h e t el e gr a p h si g n al x (t) r e s ulti n g fr o m t h e
m a p pi n g of t h e c o or di n at e v ari a bl e q (t) t o t h e
fr e q u e n c y i s s h o w n i n Fi g ur e 6 a; t h e a ut o c or-
r el ati o n f u n cti o n i s s h o w n i n Fi g ur e 6 b. T h e
t el e gr a p h si g n al o nl y c a pt ur e s tr a n siti o n s b e-
t w e e n p ot e nti al  w ell s, a n d c o n s e q u e ntl y, t h e

a ut o c orr el ati o n f u n cti o n i s  m o n o e x p o n e nti al.
T h e l o n g ti m e c o n st a nt fr o m t h e a ut o c orr el a-
ti o n f u n cti o n of q (t) a n d fr o m t h e t el e gr a p h
si g n al, s c ¼ 5, 1 1 0, a gr e e  w ell, a s e x p e ct e d. T h e
s pi n r el a x ati o n r at e c o n st a nt i s o bt ai n e d, u si n g
E q. 1 5, a s t h e i nt e gr al of t h e a ut o c orr el ati o n
f u n cti o n; fr o m t h e  m o n o e x p o n e nti al fitti n g
p ar a m et er s, R B W R ¼ , d x (t)2 . s c ¼ 1. 9 6 1 0 6 .
T h e r e al p art of t h e c o m pl e x  N M R si g n al i s
s h o w n i n Fi g ur e 6 c; t h e c orr e s p o n di n g a ut o-
c orr el ati o n f u n cti o n i s s h o w n i n Fi g ur e 6 d. T h e
r el a x ati o n r at e c o n st a nt o bt ai n e d a s t h e r e ci p-
r o c al of t h e  d e c a y ti m e c o n st a nt of t h e
a ut o c orr el ati o n f u n cti o n i s R s c ¼ 1. 9 0 1 0 6 ,
i n g o o d a gr e e m e nt  wit h R B W R . T h e a gr e e m e nt
b et w e e n t h e s e 2 r e s ult s i s c o n si st e nt  wit h t h e
t h e or eti c r e s ult s pr e vi o u sl y  m e nti o n e d. E m pir-
i c all y, t h e si m ul at e d a ut o c orr el ati o n f u n cti o n of
t h e fr e q u e n c y fl u ct u ati o n s c o n v er g e s  m or e
r a pi dl y t h a n t h e si m ul at e d e n s e m bl e a v er a g e
N M R si g n al, a s e vi d e nt i n t h e r e si d u al n oi s e i n
Fi g ur e 6 d. T h u s, o bt ai ni n g t h e r el a x ati o n r at e
c o n st a nt fr o m t h e a ut o c orr el ati o n f u n cti o n of
t h e fr e q u e n c y fl u ct u ati o n s i s  m or e effi ci e nt i n
pr a cti c e if t h e st o c h a sti c pr o c e s s i s i n t h e f a st
( B W R) li mit.

A si mil ar a n al y si s  w a s p erf or m e d b y u si n g t h e
r a n d o m- c oil  m o d el ( vi d e s u pr a). T h e r e s ult s ar e
s h o w n i n Fi g ur e 7. T h e f u n cti o n x (t), o bt ai n e d
fr o m q (t), i s s h o w n i n Fi g ur e 7 a; t h e a ut o c or-
r el ati o n f u n cti o n i s s h o w n i n Fi g ur e 7 b. T h e
a ut o c orr el ati o n f u n cti o n i s bi e x p o n e nti al, r e-
fl e cti n g t h e f a ct t h at t h e  m o d el i n cl u d e s b ot h
f a st fl u ct u ati o n s  wit hi n p ot e nti al  w ell s a n d
sl o w er tr a n siti o n s b et w e e n  w ell s. T h e s pi n
r el a x ati o n r at e c o n st a nt i s o bt ai n e d, u si n g E q.
1 5, a s t h e i nt e gr al of t h e a ut o c orr el ati o n
f u n cti o n; f or a bi e x p o n e nti al a ut o c orr el ati o n
f u n cti o n, R B W R ¼ a 1 s 1 þ a 2 s 2 , i n  w hi c h a i a n d s i

ar e t h e a m plit u d e a n d ti m e c o n st a nt f or t h e it h
e x p o n e nti al t er m. Fr o m t h e  bi e x p o n e nti al
fitti n g p ar a m et er s, R B W R ¼ 1. 1 0 1 0 6 ; t h e
r e d u c e d r el a x ati o n r at e c o n st a nt, c o m p ar e d
wit h t h e t el e gr a p h  m o d el, r efl e ct s t h e eff e ct of
t h e s h ort ti m e c o n st a nt fr o m t h e f a st fl u ct u a-
ti o n s  wit h t h e p ot e nti al  w ell. T h e r e al p art of
t h e c o m pl e x  N M R si g n al i s s h o w n i n Fi g ur e 7 c;
t h e c orr e s p o n di n g a ut o c orr el ati o n f u n cti o n i s
s h o w n i n Fi g ur e 7 d. T h e r el a x ati o n r at e

Fi g 5 . B arri er cr ossi n g tr a ns missi o n c o effici e nts f or t h e str o n g
c ollisi o n  m o d el. T h e si m ul ati o ns a n d c alc ul ati o ns us e d Q ¼ 7, V B ¼ 2,
x A ¼ x B ¼ 0. 5. Si m ul at e d tr a ns missi o n c o effici e nts (s oli d circl es)
ar e o bt ai n e d as j ¼ 1/( s ckT S T ) i n  w hic h s c is t h e l o n g ti m e d ec ay
c o nst a nt of t h e si m ul at e d a ut oc orr el ati o n f u ncti o n. Si m ul at e d
tr a ns missi o n c o effici e nts ( o p e n circl es) ar e o bt ai n e d fr o m t h e
r e acti v e fl ux  m et h o d ( 1 5). T h e s oli d c ur v e s h o ws t h e t h e or etic r es ult
a n d d as h e d li n es s h o w t h e li miti n g j E D a n d j S D tr a ns missi o n
c o effici e nts f or t h e str o n g c ollisi o n  m o d el, as d escri b e d i n t h e
a p p e n dix.

D y n a mi c al  m o d el s of c h e mi c al e x c h a n g e

D aff er n et al . T h e Bi o p h y si cist 2 0 2 2; 3( 1). D OI: 1 0. 3 5 4 5 9/t b p. 2 0 2 1. 0 0 0 2 0 1 1 2
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c o n st a nt o bt ai n e d a s t h e r e ci pr o c al of t h e
d e c a y ti m e c o n st a nt of t h e a ut o c orr el ati o n
f u n cti o n i s R s c ¼ 1. 0 4 1 0 6 , i n g o o d a gr e e m e nt
wit h R B W R .  N ot e t h at t h e a ut o c orr el ati o n of t h e
N M R si g n al i n Fi g ur e 7 d i s  m o n o e x p o n e nti al,
e v e n  w h e n t h e a ut o c orr el ati o n f u n cti o n of x (t)
i n Fi g ur e 7 b i s  bi e x p o n e nti al i n t h e f a st
e x c h a n g e li mit, a s d e s cri b e d pr e vi o u sl y a n d
ill u str at e d i n Fi g ur e 2.

A s e c o n d si m ul ati o n  w a s p erf or m e d f or t h e
p ar a m et er s gi v e n i n Fi g ur e 3 f or t h e d a s h e d
c ur v e: Q ¼ 7, V B ¼ 2, x A ¼ 0. 5, x B ¼ 0. 2 5, a n d a ¼
2. 5, gi vi n g k T S T ¼ 3. 4 1 1 0 4 a n d j ¼ 0. 3 3; t h e
r e s ulti n g l o n g ti m e c o n st a nt s ¼ 1/ k ¼ 8, 8 9 0.
Si mil ar pl ot s a s f or t h e pr e vi o u sl y  m e nti o n e d
m o d el f or t h e c a s e of e q u al  w ell fr e q u e n ci e s ar e
s h o w n i n Fi g ur e s 8 – 1 0. T h e sit e p o p ul ati o n s ar e

n o w p 1 ¼ 0. 7 9 a n d p 2 ¼ 0. 2 1. T h e l o n g ti m e

d e c a y c o n st a nt of t h e a ut o c orr el ati o n f u n cti o n

f or q (t), s h o w n i n Fi g ur e 8, i s n o w s 2 ¼ 1 0, 4 4 0, i n

a gr e e m e nt  wit h t h e t h e or eti c r e s ult. Si mil ar

l e v el s of a gr e e m e nt ar e f o u n d b et w e e n R s c a n d

R B W R f or t el e gr a p h ( Fi g 9) a n d r a n d o m- c oil

m o d el s ( Fi g 1 0) f or t h e r e s o n a n c e fr e q u e n ci e s.

N ot a bl y, t h e a ut o c orr el ati o n f u n cti o n f or t h e

fr e q u e n c y fl u ct u ati o n s x (t) i n t h e r a n d o m- c oil

m o d el ( Fi g 1 0 b) i s di sti n ctl y bi e x p o n e nti al,

r efl e cti n g t h e eff e ct s of c h e mi c al s hift a v er a g-

i n g i n t h e br o a d er p ot e nti al  w ell f or st at e 2.

A g ai n, t h e a ut o c orr el ati o n of t h e  N M R si g n al i n

Fi g ur e 1 0 d i s  m o n o e x p o n e nti al, e v e n  w h e n t h e

a ut o c orr el ati o n f u n cti o n of x (t) i s bi e x p o n e nti al

i n t h e f a st e x c h a n g e li mit.

Fi g 6 . T h e 2-st at e t el e gr a p h  m o d el f or dy n a mics i n t h e bi p h asic p ot e nti al  wit h e q u al  w ell fr e q u e nci es. ( a) S a m pl e of x (t) at ti m es d uri n g
t h e si m ul ati o n  wit h p ar a m et ers c h os e n s o , d x (t)2 . 1/ 2 ¼ 1. 9 6 3 1 0 5 . ( b) A ut oc orr el ati o n of x (t) ( bl ac k) fit  wit h a  m o n o e x p o n e nti al
f u ncti o n (r e d dis h – p ur pl e, d as h e d li n e)  wit h a m plit u d e , d x (t)2 . ¼ 3. 8 3 3 1 0 1 0 a n d d ec ay ti m e s c ¼ 5 1 1 0; , d x (t)2 . 1/ 2 s c ¼ 0. 1 a n d a n
esti m at e d v al u e of R B W R ¼ , d x (t)2 . s c ¼ 1. 9 6 3 1 0 6 . T h e i ns et s h o ws o nly a  m o n o e x p o n e nti al d ec ay. (c) S a m pl e of R e[sþ (t)] at ti m es
d uri n g t h e si m ul ati o n. ( d) R e al p art of t h e a ut oc orr el ati o n of s þ (t) ( bl ac k) fit  wit h a  m o n o ex p o n e nti al f u ncti o n (r e d dis h – p ur pl e, d as h e d li n e)
wit h i niti al a m plit u d e fix e d at 1. 0 a n d d ec ay ti m e c o nst a nt of 5. 2 7 3 1 0 5 , yi el di n g R sc ¼ 1. 9 0 3 1 0 6 i n g o o d a gr e e m e nt  wit h R B W R . All
p ar a m et ers ar e di m e nsi o nl ess, as d escri b e d i n t h e t ext.

D y n a mi c al  m o d el s of c h e mi c al e x c h a n g e

D aff er n et al . T h e Bi o p h y si ci st 2 0 2 2; 3( 1). D OI: 1 0. 3 5 4 5 9/t b p. 2 0 2 1. 0 0 0 2 0 1 1 3
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I n si m ul ati o n s of b ot h  m o d el p ot e nti al s u si n g
t h e r a n d o m- c oil  m o d el f or x (t), t h e eff e ct of
a v er a gi n g t h e c h e mi c al s hift  wit hi n t h e ri g ht-
m o st  w ell ( wit h hi g h er  mi ni m u m p ot e nti al
e n er g y a n d c o n s e q u e ntl y r e d u c e d p o p ul ati o n
c o m p ar e d  wit h t h e l eft m o st  w ell) r e d u c e s t h e
tr a n s v er s e r el a x ati o n r at e c o n st a nt b y a p pr o x-
i m at el y a f a ct or of 2. T h e r e s ult t h at f a st
ti m e s c al e fl u ct u ati o n s of t h e r e s o n a n c e fr e-
q u e n ci e s  wit hi n t h e s e c o n d  w ell r e d u c e, r at h er
t h a n i n cr e a s e, t h e tr a n s v er s e r el a x ati o n r at e
c o n st a nt i s a c h ar a ct eri sti c f e at ur e of t h e f a st
e x c h a n g e r e gi m e i n  N M R s p e ctr o s c o p y.  A s t h e
r at e s of fr e q u e n c y fl u ct u ati o n s b e c o m e  m u c h
l ar g er t h a n t h e r a n g e of fr e q u e n ci e s s a m pl e d,
t h e  N M R tr a n s v er s e r el a x ati o n r at e c o n st a nt

a p pr o a c h e s 0, a pr o c e s s c all e d  m oti o n al n ar-
r o wi n g ( 1).

C.  C P M G r el a x ati o n  di s p er si o n f or
str o n g c olli si o n  d y n a mi c s

C P M G r el a x ati o n di s p er si o n  w a s e sti m at e d
b y u si n g t h e 2- st at e t el e gr a p h  m a p pi n g of
r e s o n a n c e fr e q u e n ci e s a p pli e d t o si m ul ati o n s
b y u si n g t h e str o n g c olli si o n  m o d el i n t h e
a s y m m etri c bi p h a si c d o u bl e- w ell p ot e nti al (t h e
d a s h e d li n e i n Fi g 3) a n d s c p ¼ 1. 0 5 1 0 4 a n d
2. 6 2 1 0 3 . T h e e n s e m bl e si g n al , sþ (t). a n d
t h e a ut o c orr el ati o n f u n cti o n of sþ (t) ar e s h o w n
i n Fi g ur e 1 1. T h e r e s ult s s h o w t h e eff e ct of t h e
C P M G p ul s e tr ai n a s s c p i s r e d u c e d. I n t h e
a b s e n c e of t h e C P M G p ul s e tr ai n, t h e d e c a y r at e

Fi g 7 . T h e 2-st at e r a n d o m-c oil  m o d el f or t h e bi p h asic p ot e nti al  wit h e q u al  w ell fr e q u e nci es. ( a) S a m pl e of x (t) at ti m es d uri n g t h e
si m ul ati o n  wit h p ar a m et ers c h os e n, s o , x (t)2 . 1/ 2 ¼ 1. 9 6 3 1 0 5 . ( b) A ut oc orr el ati o n of x (t) ( bl ac k) fit  wit h  m o n o e x p o n e nti al (r e d dis h –
p ur pl e, d as h e d li n e) a n d bi ex p o n e nti al ( bl u e, d ott e d li n e) f u ncti o ns. T h e i ns et s h o ws t h e f ast i niti al d ec ay of t h e a ut oc orr el ati o n f u ncti o n,
w hic h is  w ell d escri b e d by t h e bi ex p o n e nti al fit. T h e fitt e d p ar a m et ers ar e a m plit u d es a 1 ¼ 1. 6 7 3 1 0 1 0 a n d a 2 ¼ 2. 1 5 3 1 0 1 0 a n d d ec ay
ti m es s 1 ¼ 8. 5 a n d s 2 ¼ 5, 1 1 0; , d x (t)2 . 1/ 2 s 2 ¼ 0. 1 a n d a n esti m at e d v al u e of R B W R ¼ 1. 1 0 3 1 0 6 . (c) S a m pl e of R e[sþ (t)] ti m es d uri n g t h e
si m ul ati o n. ( d) R e al p art of t h e a ut oc orr el ati o n of sþ (t) ( bl ac k) fit  wit h a  m o n o ex p o n e nti al (r e d dis h – p ur pl e, d as h e d li n e) f u ncti o n  wit h i niti al
a m plit u d e fix e d at 1. 0 a n d d ec ay ti m e c o nst a nt of 9. 6 0 3 1 0 5 , yi el di n g R sc ¼ 1. 0 4 3 1 0 6 i n g o o d a gr e e m e nt  wit h R B W R . All p ar a m et ers ar e
di m e nsi o nl ess, as d escri b e d i n t h e t ext.

D y n a mi c al  m o d el s of c h e mi c al e x c h a n g e

D aff er n et al . T h e Bi o p h y si cist 2 0 2 2; 3( 1). D OI: 1 0. 3 5 4 5 9/t b p. 2 0 2 1. 0 0 0 2 0 1 1 4
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i s ~ 9 1 0 7 a n d dr o p s t o ~ 2 1 0 7 f or s c p ¼
1. 0 5 1 0 4 a n d t o ~ 2 1 0 8 f or s c p ¼ 2. 6 2 1 0 3 .

A n i m p ort a nt a s p e ct of C P M G e x p eri m e nt s i s
ill u str at e d b y c o m p ari n g r el a x ati o n di s p er si o n
c ur v e s a c q uir e d f or t h e 2- st at e t el e gr a p h a n d
r a n d o m- c oil  m a p pi n g of r e s o n a n c e fr e q u e n ci e s
a p pli e d t o si m ul ati o n s b y u si n g t h e str o n g
c olli si o n  m o d el i n t h e a s y m m etri c bi p h a si c
d o u bl e- w ell p ot e nti al. T h e r el a x ati o n r at e c o n-
st a nt s d et er mi n e d, a s i n Fi g ur e 1 1, ar e s h o w n i n
Fi g ur e 1 2 f or s c p v al u e s r a n gi n g fr o m 3 2 7 t o
4. 1 9 1 0 4 . T h e si m ul at e d d at a  w er e fit b y u si n g
E q. 2 1,  wit h a n a d d e d c o n st a nt off s et.  A s c a n b e
s e e n i n t h e i n s et t o Fi g ur e 1 2, t h e off s et i s z er o
f or t h e d at a u si n g t h e 2- st at e  m o d el a n d
p o siti v e f or t h e r a n d o m- c oil  m o d el. T h e a v er-
a gi n g of r e s o n a n c e fr e q u e n ci e s i n t h e  w ell  wit h
q (t) . 0 gi v e s ri s e t o a n i niti al f a st d e c a y of t h e
a ut o c orr el ati o n f u n cti o n s h o w n i n Fi g ur e 1 0 b,
wit h a ti m e c o n st a nt of 3 2. T hi s d y n a mi c
pr o c e s s i s f a st er t h a n t h e f a st e st p ul si n g u s e d
i n t h e C P M G si m ul ati o n s (s c p ¼ 3 2 7), a n d
c o n s e q u e ntl y, t h e d e p h a si n g c a u s e d b y t hi s
pr o c e s s c a n n ot b e r ef o c u s e d b y t h e 1 8 0 8 p ul s e s
i n t h e C P M G tr ai n. I n st e a d, t h e pl at e a u v al u e
r e pr e s e nt s t h e r el a x ati o n r at e c o n st a nt fr o m
d y n a mi c pr o c e s s e s f a st er t h a n p ul si n g.  Wi n-
d o wl e s s C P M G a n d R 1 q e x p eri m e nt s o v er c o m e

t hi s li mit ati o n a n d all o w f a st er d y n a mi c pr o-
c e s s e s t o b e c h ar a ct eri z e d ( 1 7 – 1 9).

V.  DI S C U S SI O N
C h e mi c al e x c h a n g e h a s e m er g e d a s o n e of

t h e  m o st p o w erf ul p h e n o m e n a i n  N M R s p e c-
tr o s c o p y f or i n v e sti g ati n g t h e c o nf or m ati o n al
d y n a mi c s a n d c h e mi c al ki n eti c s of bi ol o gi c
m a cr o m ol e c ul e s ( 2). T h e pr e s e nt t ut ori al i s
i nt e n d e d t o i ntr o d u c e c h e mi c al e x c h a n g e
d y n a mi c s a n d ill u str at e t h e c o n n e cti o n s b e-
t w e e n t h e or eti c a p pr o a c h e s c o n v e nti o n all y
u s e d i n  N M R s p e ctr o s c o p y t o  m o d el c h e mi c al
e x c h a n g e a n d c h e mi c al r e a cti o n r at e t h e or y i n
st ati sti c al  m e c h a ni c s.

A. Str o n g c olli si o n  m o d el s f or
c h e mi c al e x c h a n g e

A t h e or eti c e x pr e s si o n f or t h e  N M R si g n al
w a s d eri v e d  wit hi n t h e str o n g c olli si o n  m o d el
a n d s h o w n t o b e si mil ar t o e x pr e s si o n s d eri v e d
fr o m c o n v e nti o n al  N M R a p pr o a c h e s f or c h e m-
i c al e x c h a n g e ( e. g., B W R t h e or y or t h e r a n d o m
p h a s e  m o d el).  N u m eri c si m ul ati o n s of t h e
d y n a mi c s  w er e p erf or m e d f or a p arti cl e  m o vi n g
st o c h a sti c all y o n a cl a s si c al o n e- di m e n si o n al
bi p h a si c d o u bl e- w ell p ot e nti al b y u si n g t h e

Fi g 8 . Str o n g c ollisi o n  m o d el si m ul ati o n of q (t) f or t h e bi p h asic p ot e nti al  wit h u n e q u al  w ell fr e q u e nci es. P ar a m et ers  w er e Q ¼ 7, V B ¼ 2, x A

¼ 0. 5, a n d x B ¼ 0. 2 5 ( d as h e d tr ac e i n Fi g 2). T h e si m ul ati o n us e d a ti m e st e p of 0. 0 1 a n d c o nsist e d of 2 3 4 st e ps  wit h a c ollisi o n r at e of a ¼
2. 5; q (t)  w as st or e d e v ery 21 0 st e ps. ( a) T h e q (t) at e v ery 1, 0 0 0 st or e d s a m pl e p oi nt d uri n g t h e si m ul ati o n. ( b) A ut oc orr el ati o n f u ncti o n of q (t)
( bl ac k) fit  wit h a  m o n o e x p o n e nti al (r e d dis h – p ur pl e, d as h e d li n e) a n d bi ex p o n e nti al ( bl u e, d ott e d li n e) d ec ay f u ncti o n; 1 0 r e plic at e
si m ul ati o ns  w er e a v er a g e d t o pr o d uc e t h e fi n al a ut oc orr el ati o n f u ncti o n. T h e i ns et s h o ws t h e f ast i niti al d ec ay of t h e a ut oc orr el ati o n
f u ncti o n,  w hic h is  w ell d escri b e d by t h e bi ex p o n e nti al fit. T h e fitt e d p ar a m et ers ar e a m plit u d es a 1 ¼ 6. 0 a n d a 2 ¼ 7 7. 1, a n d d ec ay ti m es s 1

¼ 3 0. 7 a n d s 2 ¼ 1 0, 4 4 0. All p ar a m et ers ar e di m e nsi o nl ess, as d escri b e d i n t h e t ext. T h e si m ul at e d dy n a mics i n t h e p ot e nti al ar e s h o w n i n
S u p pl e m e nt al  M o vi e S 2.

D y n a mi c al  m o d el s of c h e mi c al e x c h a n g e

D aff er n et al . T h e Bi o p h y si ci st 2 0 2 2; 3( 1). D OI: 1 0. 3 5 4 5 9/t b p. 2 0 2 1. 0 0 0 2 0 1 1 5
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str o n g c olli si o n  m o d el. Si m ul ati o n s of d y n a mi c s
of si m pl e  m o d el s pr o vi d e r e a d y a c c e s s t o t h e
ki n eti c r at e c o n st a nt s o n t h e c h e mi c al e x-
c h a n g e ti m e s c al e ( mi cr o s e c o n d t o  milli s e c o n d),
w hil e c a pt uri n g e s s e nti al f e at ur e s of  m or e
c o m pl e x  m ol e c ul ar d y n a mi c s ( e. g.,  m a cr o m ol e-
c ul e s). E x c ell e nt a gr e e m e nt  w a s o bt ai n e d
b et w e e n t h e si m ul at e d r at e c o n st a nt s f or
b arri er cr o s si n g a n d t h e c al c ul at e d r at e c o n-
st a nt s o n t h e b a si s of t h e f or m al st ati sti c al
m e c h a ni c al t h e or y of ki n eti c pr o c e s s e s.

T h e t h e or eti c d eri v ati o n of t h e  N M R s pi n
r el a x ati o n r at e c o n st a nt f or c h e mi c al e x c h a n g e
i s c o m m o nl y o bt ai n e d b y u si n g di s cr et e st at e
j u m p  m o d el s f or t h e u n d erl yi n g c h e mi c al
d y n a mi c s. S u c h a p pr o a c h e s c o nf or m  w ell t o
t h e t h e or eti c str o n g c olli si o n  m o d el, r e m e m-

b eri n g t h at c olli si o n s h a v e a s o m e w h at diff er-
e nt  m e a ni n g i n t h e 2 a p pr o a c h e s.  H o w e v er, a s
i s  w ell k n o w n i n st ati sti c al  m e c h a ni c s, a r a n g e
of ki n eti c r at e c o n st a nt s fr e q u e ntl y c a n b e
o bt ai n e d fr o m si m ul ati o n s i n eit h er t h e str o n g
c olli si o n  m o d el or t h e fri cti o n al ‘‘w e a k- c olli-
si o n ’’ ( L a n g e vi n)  m o d el,  wit h t h e a p pr o pri at e
c h oi c e of p ar a m et er s. I n t h e  w e a k- c olli si o n
L a n g e vi n  m o d el, c olli si o n s ar e eff e cti v el y c o n-
ti n u o u s, e a c h r e s ulti n g i n a c h a n g e i n t h e
e n er g y t h at i s s m all c o m p ar e d  wit h k B T . Si mil ar
r e s ult s t o t h o s e  pr e s e nt e d f or t h e str o n g
c olli si o n  m o d el h a v e b e e n o bt ai n e d b y u si n g
L a n g e vi n d y n a mi c s ( d at a n ot s h o w n) ( 2 0, 2 1).

T h e si m ul ati o n s of a c o nti n u o u s v ari a bl e
m o d el of d y n a mi c s i n a bi p h a si c d o u bl e- w ell
p ot e nti al  w er e  m a p p e d o nt o j u m p  m o d el s f or

Fi g 9 . T h e 2-st at e t el e gr a p h  m o d el f or t h e bi p h asic p ot e nti al  wit h u n e q u al  w ell fr e q u e nci es. ( a) S a m pl e of x (t) at ti m es d uri n g t h e
si m ul ati o n  wit h p ar a m et ers c h os e n, s o , d x (t)2 . 1/ 2 ¼ 9. 6 0 3 1 0 6 . ( b) A ut oc orr el ati o n of x (t) ( bl ac k) fit  wit h a  m o n o ex p o n e nti al f u ncti o n
(r e d dis h – p ur pl e, d as h e d li n e),  wit h a m plit u d e , d x (t)2 . ¼ 9. 1 7 3 1 0 1 1 a n d d ec ay ti m e s c ¼ 1 0, 4 4 0; , d x (t)2 . 1/ 2 s c ¼ 0. 1 a n d a n
esti m at e d v al u e of R B W R ¼ , d x (t)2 . s c ¼ 9. 5 8 3 1 0 7 . T h e i ns et s h o ws o nly t h e  m o n o ex p o n e nti al d ec ay. (c) S a m pl e of R e[sþ (t)] at ti m es
d uri n g t h e si m ul ati o n. ( d) R e al p art of t h e a ut oc orr el ati o n of s þ (t) ( bl ac k) fit  wit h a  m o n o ex p o n e nti al (r e d dis h – p ur pl e, d as h e d li n e) f u ncti o n
wit h i niti al a m plit u d e fix e d at 1. 0 a n d d ec ay ti m e c o nst a nt of 1. 1 3 3 1 0 6 , yi el di n g R sc ¼ 8. 8 3 3 1 0 7 i n g o o d a gr e e m e nt  wit h R B W R . All
p ar a m et ers ar e di m e nsi o nl ess, as d escri b e d i n t h e t ext.

D y n a mi c al  m o d el s of c h e mi c al e x c h a n g e

D aff er n et al . T h e Bi o p h y si cist 2 0 2 2; 3( 1). D OI: 1 0. 3 5 4 5 9/t b p. 2 0 2 1. 0 0 0 2 0 1 1 6

D
o

w
nl

o
a
d
e
d fr

o
m 

htt
p://

m
eri

di
a
n.

all
e
n
pr

ess.c
o

m/t
h
e-

bi
o
p
hysicist/

articl
e-

p
df/

d
oi/

1
0.

3
5
4
5
9/t

b
p.

2
0
2
1.

0
0
0
2
0
1/

2
9
8
2
1
8
8/

1
0.

3
5
4
5
9
_t

b
p.

2
0
2
1.

0
0
0
2
0
1.

p
df 

by 
B
ost

o
n 

U
niv

ersity 
us

er 
o
n 

0
8 J

uly 
2
0
2
2



c h e mi c al e x c h a n g e b y d efi ni n g di s cr et e st at e s
f or r a n g e s of t h e p o siti o n of t h e p arti cl e (f or
e x a m pl e, s etti n g st at e 1 f or q , 0 a n d st at e 2
f or q . 0). T h e a s s o ci at e d si m ul ati o n s  w er e
f o u n d t o a gr e e  wit h t h e or eti c r e s ult s a n d c a n
b e u s e d t o e x pl or e t h e b e h a vi or of  m or e
c o m pl e x  m o d el s of c h e mi c al e x c h a n g e, all o w-
i n g f or a s y m m etr y b et w e e n p ot e nti al e n er g y
w ell s, a s  w ell a s  m or e c o m pl e x  m a p pi n g
b et w e e n t h e p o siti o n of t h e p arti cl e a n d t h e
N M R r e s o n a n c e fr e q u e n c y of a n u cl e ar s pi n.
T h e s e f e at ur e s  mi mi c c o m m o nl y o c c urri n g
sit u ati o n s i n  w hi c h o n e ‘‘st at e ’’ of a pr ot ei n or
ot h er  m a cr o m ol e c ul e i s hi g hl y or d er e d,  wit h
li mit e d st o c h a sti c v ari ati o n i n r e s o n a n c e fr e-

q u e n ci e s, a n d t h e ot h er st at e i s hi g hl y di s or-
d er e d,  wit h l ar g e st o c h a sti c v ari ati o n i n
r e s o n a n c e fr e q u e n ci e s.

T h e r e s ult s of t h e t h e or eti c d eri v ati o n s a n d
n u m eri c si m ul ati o n s h a v e b e e n pr e s e nt e d i n
di m e n si o nl e s s u nit s a n d c a n b e r e s c al e d t o
n at ur al u nit s, a s d e sir e d b y t h e c h oi c e of x 1 a n d
di m e n si o n al a n al y si s. F or e x a m pl e, t h e di m e n-
si o nl e s s v al u e of t h e  N M R r el a x ati o n r at e
c o n st a nt R s c ¼ 1. 9 6 1 0 6 i s o bt ai n e d fr o m
t h e t el e gr a p h si g n al  m o d el f or t h e str o n g
c olli si o n  m o d el  wit h e q u al  p ot e nti al  w ell
fr e q u e n ci e s ( Fi g 6).  A c h oi c e of x 1 ¼ 1. 0 1 0 7

s 1 t h e n gi v e s R s c ¼ 1 9. 6 s 1 . T h e si m ul ati o n
u s e d , d x (t)2 . 1/ 2 s c ¼ , d x (t)2 . 1/ 2 /k e x ¼ 0. 1, s o

Fi g 1 0 . T h e 2-st at e r a n d o m-c oil  m o d el f or t h e bi p h asic p ot e nti al  wit h u n e q u al  w ell fr e q u e nci es. ( a) S a m pl e of x (t) at ti m es d uri n g t h e
si m ul ati o n  wit h p ar a m et ers c h os e n, s o , x (t)2 . 1/ 2 ¼ 9. 6 0 3 1 0 6 . ( b) A ut oc orr el ati o n of x (t) ( bl ac k) fit  wit h  m o n o ex p o n e nti al (r e d dis h –
p ur pl e, d as h e d li n e) a n d bi e x p o n e nti al ( bl u e, d ott e d li n e) f u ncti o ns. T h e i ns et s h o ws t h e f ast i niti al d ec ay of t h e a ut oc orr el ati o n f u ncti o n,
w hic h is  w ell d escri b e d by t h e bi ex p o n e nti al fit. T h e fitt e d p ar a m et ers ar e a m plit u d es a 1 ¼ 4. 5 2 3 1 0 1 1 a n d a 2 ¼ 4. 4 9 3 1 0 1 1 a n d d ec ay
ti m es s 1 ¼ 3 2. 0 a n d s 2 ¼ 1 0, 4 2 0; , d x (t)2 . 1/ 2 s 2 ¼ 0. 1 a n d a n esti m at e d v al u e of R B W R ¼ 4. 6 9 3 1 0 7 . (c) S a m pl e of R e[sþ (t)] at ti m es
d uri n g t h e si m ul ati o n. ( d) R e al p art of t h e a ut oc orr el ati o n of s þ (t) ( bl ac k) fit  wit h a  m o n o ex p o n e nti al (r e d dis h – p ur pl e, d as h e d li n e) f u ncti o n
wit h i niti al a m plit u d e fix e d at 1. 0 a n d d ec ay ti m e c o nst a nt of 2. 4 7 3 1 0 6 , yi el di n g R sc ¼ 4. 0 5 3 1 0 7 i n g o o d a gr e e m e nt  wit h R B W R . All
p ar a m et ers ar e di m e nsi o nl ess, as d escri b e d i n t h e t ext.
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D aff er n et al . T h e Bi o p h y si ci st 2 0 2 2; 3( 1). D OI: 1 0. 3 5 4 5 9/t b p. 2 0 2 1. 0 0 0 2 0 1 1 7
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fr o m E q. 1 4, a n d r e c alli n g p 1 ¼ 0. 8 8 a n d p 2 ¼
0. 1 2 f or t h e gi v e n p ot e nti al, k e x ¼ 1 9 6 0 s 1 a n d
D x ¼ 6 0 3 s 1 . T h e s e ar e v al u e s i n t h e r a n g e
t y pi c al of c o nf or m ati o n al c h a n g e s i n bi ol o gi c
m a cr o m ol e c ul e s d et e ct e d i n a ct u al  N M R e x p er-
i m e nt s ( 2).

T h e n u m eri c si m ul ati o n s i n t h e bi p h a si c
p ot e nti al  w er e p erf or m e d f or t h e  m o st p art
b y u si n g p ar a m et er s c o n si st e nt  wit h f a st li mit
or B W R ti m e s c al e c h e mi c al e x c h a n g e f or
si m pli cit y i n c o m p ari n g r e s ult s t o E q s. 1 4 a n d
1 5. E xt e n si v e u s e  w a s  m a d e of t h e a ut o c orr e-
l ati o n f u n cti o n s of t h e r e s o n a n c e fr e q u e n c y
fl u ct u ati o n s or of t h e  N M R r e s o n a n c e fr e q u e n c y
t o o bt ai n e sti m at e s of t h e tr a n s v er s e r el a x ati o n
r at e c o n st a nt.  A s s h o w n b y E q. 1 3 a n d r e s ult s i n
Fi g ur e 2, t h e l o n g ti m e d e c a y c o n st a nt of t h e
a ut o c orr el ati o n f u n cti o n i s a g o o d e sti m at e of
t h e r el a x ati o n r at e c o n st a nt o ut si d e of t h e f a st
li mit. T h e a ct u al r a n g e of a p pli c ati o n of E q. 1 3
a n d r el at e d e x pr e s si o n s f or R 1 q a n d  C P M G
r el a x ati o n di s p er si o n h a v e  b e e n di s c u s s e d
el s e w h er e ( 2, 4, 5, 1 3). T h e si m ul ati o n s c a n b e
p erf or m e d f or st o c h a sti c pr o c e s s e s o n a n y
ti m e s c al e, a n d o ut si d e of t h e r a n g e of a p pli c a-
ti o n of t h e a ut o c orr el ati o n f u n cti o n a p pr o a c h,
t h e e n s e m bl e a v er a g e fr e e i n d u cti o n d e c a y c a n

Fi g 1 1 . C P M G r el ax ati o n dis p ersi o n f or t h e str o n g c ollisi o n  m o d el, t h e bi p h asic p ot e nti al  wit h u n e q u al  w ell fr e q u e nci es, a n d t h e t el e gr a p h
si g n al  m a p pi n g of r es o n a nc e fr e q u e nci es. P ar a m et ers  w er e Q ¼ 7, V B ¼ 2, x A ¼ 0. 5, a n d x B ¼ 0. 2 5 ( d as h e d tr ac e i n Fi g 3). T h e si m ul ati o ns
us e d a ti m e st e p of 0. 0 1, a n d a c ollisi o n r at e of a ¼ 2. 5; q (t)  w as st or e d e v ery 21 0 st e ps. V al u es of s c p w er e 1. 0 5 3 1 0 4 a n d 2. 6 2 3 1 0 3 . ( a)
V al u es of sþ (t) f or 6 4 0 tr aj ect ori es of l e n gt h 22 9 st e ps  w er e a v er a g e d t o o bt ai n , sþ (t) . . ( b) A ut oc orr el ati o n f u ncti o ns of sþ (t)  w er e
c alc ul at e d, as i n Fi g ur e 8, f or 2 0 i n di vi d u al tr aj ect ori es of 2 3 4 st e ps a n d a v er a g e d. I n e ac h fi g ur e, bl ac k li n es ar e si m ul at e d r es ults. Fits  wit h
si n gl e ex p o n e nti al f u ncti o ns ar e s h o w n f or a bs e nc e of C P M G bl oc k ( bl u e, d ott e d li n e), C P M G bl oc k  wit h s c p ¼ 1. 0 5 3 1 0 4 ( gr e e n, d as h –
d ott e d li n e), a n d C P M G bl oc k  wit h s c p ¼ 2. 6 2 3 1 0 3 (r e d dis h – p ur pl e, d as h e d li n e). T h e d ec ay ti m e c o nst a nts i n t h e a bs e nc e of a n a p pli e d
C P M G p uls e tr ai n a gr e e  w ell b et w e e n t h e N M R si g n al a n d its a ut oc orr el ati o n f u ncti o n. T h e d ec ay r at es i n t h e a bs e nc e of t h e C P M G s e q u e nc e
ar e ( a) 9. 4 9 3 1 0 7 a n d ( b) 9. 1 6 3 1 0 7 (i n g o o d a gr e e m e nt  wit h t h e r es ults s h o w n i n Fi g 8), t h e d ec ay r at es ar e ( a) 2. 0 7 3 1 0 7 a n d ( b)
2. 2 9 3 1 0 7 f or s c p ¼ 1. 0 5 3 1 0 4 , a n d t h e d ec ay r at es ar e ( a) 1. 9 7 3 1 0 8 a n d ( b) 2. 2 6 3 1 0 8 f or s c p ¼ 2. 6 2 3 1 0 3 .

Fi g 1 2 . C P M G r el ax ati o n dis p ersi o n f or 2-st at e (fill e d circl es, s oli d
li n e) a n d r a n d o m-c oil  m o d els ( o p e n circl es, d as h e d li n e). R el ax ati o n
r at e c o nst a nts s h o w n as circl es  w er e o bt ai n e d as d escri b e d i n Fi g ur e
1 1. Si m ul at e d p oi nts  w er e fit  wit h E q. 2 1 a u g m e nt e d by a c o nst a nt
offs et p ar a m et er. O pti miz e d v al u es of s ex ¼ 1 0, 3 3 0 a n d 1 0, 2 0 0 f or
t h e t el e gr a p h a n d r a n d o m-c oil  m o d els, r es p ecti v ely, i n a gr e e m e nt
wit h t h e r es ults s h o w n i n Fi g ur es 9 a n d 1 0. T h e o pti miz e d offs et
w as 0 f or t h e t el e gr a p h  m o d el a n d 1. 3 6 3 1 0 9 f or t h e r a n d o m-c oil
m o d el. T h e li miti n g r el ax ati o n r at e c o nst a nt f or t h e r a n d o m-c oil
m o d el a gr e es  w ell  wit h t h e v al u e of 1. 4 4 3 1 0 9 o bt ai n e d as t h e
pr o d uct of t h e a m plit u d e a n d d ec ay ti m e f or t h e f ast c o m p o n e nt of
t h e a ut oc orr el ati o n f u ncti o n s h o w n i n Fi g ur e 1 0 b, c o nfir mi n g t h at
t h e a p p ar e nt pl at e a u r e pr es e nts t h e c o ntri b uti o n fr o m dy n a mics
pr oc ess es f ast er t h a n t h e C P M G p ulsi n g r at es. D at a h a v e b e e n
n or m aliz e d by t h e r el ax ati o n r at e c o nst a nt i n t h e a bs e nc e of
p ulsi n g, R B W R , f or dis pl a y.

D y n a mi c al  m o d el s of c h e mi c al e x c h a n g e

D aff er n et al . T h e Bi o p h y si cist 2 0 2 2; 3( 1). D OI: 1 0. 3 5 4 5 9/t b p. 2 0 2 1. 0 0 0 2 0 1 1 8
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be modeled by summation of multiple inde-
pendent simulations, in a similar fashion to the
simulations represented in Figure 12a.

B. Further consideration of CMPG
relaxation dispersion

The CPMG experiment is one of the most
common and effective techniques used to
assess exchange on the microsecond to milli-
second timescale. The 1808 pulses in the CPMG
sequence have the effect of reversing the sense
of precession of transverse magnetization and
thus can be represented by inversion of the
sign of the precession frequencies. In the
present work, the effect of the CPMG pulse
train was simulated by multiplying the NMR
signal by a square wave function sq[pt/(2scp)]
with period 4scp and varying between þ1 and
�1. As described in Figures 11 and 12, the
simulated relaxation dispersion data provides
an excellent fit to Eq. 21. As an alternative
approach, Xue et al. have shown that the
effective relaxation rate constant in a CPMG
experiment can be obtained directly from the
autocorrelation function of the frequency
fluctuations, in a generalization of Eq. 15, also
by multiplying by a square wave:

RCPMGðscpÞ

¼
Z‘
0

dxðtÞsq½pt=ð2scpÞ�dxðt þ sÞ
�
sq½pðt þ sÞ=ð2scpÞ�ids

¼
Z‘
0

dxðtÞdxðt þ sÞh i

sq½pt=ð2scpÞ�sq pðt þ sÞ=ð2scpÞ
� �� �

ds

¼
Z‘
0

dxðtÞdxðt þ sÞh itri½ps=ð2scpÞ�ds

ð22Þ
in which tri(x) is a triangle wave function that
consists of linear segments connecting the
extrema of the cosine function (10). The
second equality of Eq. 22 is obtained because

the fluctuations dx(t) are uncorrelated with
the time of applications of the 1808 pulses, and
the third line is obtained because the auto-
correlation of the square wave function is the
triangle wave function. Integration of the last
line of Eq. 22 for dxðtÞdxðt þ sÞh i ¼ p1p2Dx2

e�s=sex yields Eq. 21. The integration can be
performed by expanding tri(x) in a Fourier
cosine series, integrating each term in the
Fourier series and summing the resulting
series (22).

C. Generalization to dynamics in
multiphasic many-well potentials
The 2-state kinetic model explored in this

work exhibits the principal features of chemical
exchange but also represents one of the most
common scenarios encountered in experimen-
tal NMR spectroscopy. However, the simulation
protocols developed as described previously
for a 2-well biphasic potential are extendable to
more complex kinetic schemes. As one exam-
ple, a linear 3-site potential function (C–A–B)
can be designed in a similar fashion as for the
biphasic potential, as follows

VðqÞ ¼

VB þ 1
2mx2

Bðq� qBÞ2 q. b

QAB � 1
2mx2

1ðq� qABÞ2 b � q. a

1
2mx2

Aq
2 a � q.�c

QAC � 1
2mx2

1ðqþ qACÞ2 �c � q.�d

VC þ 1
2mx2

Cðqþ qCÞ2 q<�d

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð23Þ

which includes parameters describing the 2
energy barrier heights (QAC, QAB), the energy
difference between the main state and the 2
minor states (VB, VC), the positions of the minor
state minima (qB, qC), the locations of the
barriers (qAB, qAC), barrier transition frequencies
(x1), the well frequencies (xA, xB, xC), and the
mass (m). Eq. 23 is formulated with the position
of the well A at q ¼ 0. This potential also
assumes for simplicity that the barrier frequen-
cies are identical; the potential could be
generalized to distinct barrier frequencies. The
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potential function is made continuous by the
following definitions:

a ¼ ðmx2
1q

2
AB � 2QABÞ=ðmx2

1qABÞ
b ¼ 2ðQAB � VBÞ �mx2

1qABðqAB � qBÞ
� �

=

ðmx2
1ðqB � qABÞ

c ¼ ðmx2
1q

2
AC � 2QACÞ=ðmx2

1qACÞ
d ¼ 2ðQAC � VCÞ �mx2

1qACðqAC � qCÞ
� �

=

ðmx2
1ðqC � qACÞ

xA ¼ x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqAB � aÞ=a

p
xB ¼ x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqAB � bÞ=ðb� qBÞ

p
xC ¼ x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqAC � dÞ=ðd � qCÞ

p
ð24Þ

Additionally, the A–C barrier location (qAC) is
constrained and is calculated by using the
following equation:

qAC ¼ qAB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QAC=QAB

p
ð25Þ

Manipulation of the independent variables
allows for the simulation of symmetric or
asymmetric models with identical or distinct
well frequencies. Strong collision dynamic
simulations can then be performed similarly
as for the biphasic potential model described.
Theoretic results for N-site (N > 2) chemical
exchange always can be computed numerically
from the Bloch–McConnell equations, although
approximate analytical solutions also are avail-
able for comparison with simulations (2). Efforts
to parameterize Markov state models from
molecular dynamics simulations, together with
calculations of NMR chemical shifts from
molecular structures, extend beyond the ideal-
ized 2- and 3-state models, given by Eqs. 16
and 23 (10, 11).

D. Other possible mappings of
coordinates to resonance
frequencies

The models presented previously can be
modified or generalized by using other map-
pings between the particle position q(t) and the
spin resonance frequencies. A common justifi-
cation for the application of the 2-site model in
NMR spectroscopy relies on the assumption of

rapid exchange between subsets of states. For
example, if states 1 to M are in mutual fast
exchange, and sites M þ 1 to N are in mutual
fast exchange, then the N-state system reduces
to an effective 2-state system, with averaged
site properties for the 2 sets of states. As noted
by Trott and Palmer (23), convergence to this
simplified 2-state result depends on all param-
eters of the spin system in a complex fashion.
The random-coil model used herein tacitly
assumed barrierless averaging of shifts to a
mean of zero in the q . 0 state. Simulations in
the 3-state potential, described previously,
would allow for exploration of the convergence
to a 2-state system by averaging of the states A
and C, as the AC barrier is reduced relative to
the AB barrier.

VI. CONCLUSION
The theoretic analysis and simulations

presented previously are intended to illustrate
the connection between the NMR phenome-
na of chemical exchange line broadening and
nuclear spin relaxation and statistical mechan-
ical chemical reaction rate theories of barrier
crossing dynamics. In this work, we have
attempted to show the value of the natural
connections between the 2. The numeric
simulations provide insights into how chang-
es in NMR observables reflect the nature of
the underlying state-to-state dynamics. This
approach can be generalized to reflect
specific features of the many and varied
forms of biomolecular dynamics (11). Al-
though most simulations were performed in
the fast limit on the chemical shift timescale,
the simulation methods themselves and the
theoretic results derived have wider applica-
tion; in particular, the theoretic results are
generally accurate if the site populations are
highly skewed (4, 13).

The numeric simulations using the strong
collision model enabled comparison of results
for the discrete state jump model (the
telegraph model discussed previously) com-
monly used to analyze NMR chemical ex-
change measurements and a model in which
resonance frequencies vary within a potential
energy well (the random-coil model discussed
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previously). The results, for example, compar-
ing Figures 6 and 7 or Figures 9 and 10, show
that chemical shift averaging within potential
wells contributes to motional narrowing of
resonance linewidths, compared with an
assumed 2-state discrete jump. Thus, reso-
nance linewidths or transverse relaxation rate
constants are not interpretable in a simple
manner because all NMR and kinetic parame-
ters contribute to the observable quantity. In
contrast, the CPMG relaxation dispersion
curves shown in Figure 12 display nearly ideal
discrete 2-state behavior even for the random-
coil model. In many experimental situations,
the fast-pulsing plateau value of RCPMG(scp) is
an adjustable parameter, and the offset for the
random-coil model in Figure 12 would not be
identified. Thus, the present results provide
support for the use of discrete state models for
analysis of relaxation dispersion measure-
ments. However, chemical exchange processes
faster than the maximum pulsing rate in CPMG
experiments can be detected as anomalously
large plateau values for RCPMG(scp) or by R1q
relaxation dispersion experiments. Such pro-
cesses typically are attributed to presence of
additional discrete chemical or conformational
states. The present work raises the possibility
that such effects could arise from conforma-
tional fluctuations within a potential energy
basin.

Supplemental Material
Jupyter Notebook (Python 3.6) and Fortran

77 software used for strong collision simula-
tions are available at: https://doi.org/10.35459/
tbp.2021.000201.s1. Supplemental Movies 1
and 2 are available at: https://doi.org/10.
35459/tbp.2021.000201.s2 and https://doi.org/
10.35459/tbp.2021.000201.s3, respectively.
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APPENDIX. CALCULATION OF
REACTION RATE CONSTANTS FOR THE
BIPHASIC POTENTIAL WITH STRONG
COLLISION DYNAMICS

Extensive literature explores statistical mechanical theories
for the absolute rate of barrier crossing (24). Transition state
theory provides an upper bound for the rate of an activated
barrier crossing. For a bistable potential with harmonic wells
separated by a dimensionless barrier of height Q .. 1, the
sum of the forward and reverse barrier crossing rate constants
can be approximated as

kTST ¼ xA

2pe
�Q þ xB

2pe
�ðQ�VBÞ ðA1Þ

This estimate of the rate constant assumes (a) an equilibrium
population of states and (b) that an activated state will undergo
a transition and be deactivated without recrossing of the
barrier. The transition state theory rate constant is determined
entirely by equilibrium properties of the system and has no
dependence on collision rate, friction, or any aspect of system
dynamics.

Transition state theory can be corrected by accounting for
the role of barrier recrossing in reducing the rate constant
below kTST

k ¼ jkTST ðA2Þ

in which k is the sum of the forward and reverse reaction rate
constants and j � 1 is the transmission coefficient. As was first
recognized by Kramers (25), over a wide range of collision rate
or friction, the transmission coefficient shows a turnover
between the energy diffusion regime (of low collision rate or
low friction), where barrier recrossings occur due to inertial
effects and slow ED, and the SD regime (of high collision rate or
high friction), where barrier recrossings occur due to slow SD
over the barrier (26).

For the strong collision model, a transmission coefficient j
valid for all collision rate regimes has been derived by
Berezhkovskii et al. (16)

k ¼ jljh ðA3Þ

in which jl and jh are the transmission coefficients in the low
to intermediate and intermediate to high collision rate regimes,
respectively. In the low to intermediate collision rate regime,
the transmission coefficient is given by

jl ¼
Z‘
0

1� e�aTAðeÞ
� �

1� e�aTBðeÞ
� �

1� e�aðTAðeÞþTBðeÞÞ
e�ede ðA4Þ

In the absence of collisions, the time period TA(e) for a particle
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located initially at q¼ 0 with kinetic energy e and velocity , 0
to return to q¼0 with kinetic energy e and velocity. 0 and the
time period TB(e) for a particle located initially at q ¼ 0 with
kinetic energy e and velocity . 0 to return to q¼ 0 with kinetic
energy e and velocity , 0 are given by

TAðeÞ ¼ 2

Z0

qminðeÞ

dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eþ Q� VðqÞ

p

TBðeÞ ¼ 2

ZqmaxðeÞ

0

dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eþ Q� VB � VðqÞ

p
ðA5Þ

in which qmin(e) and qmax(e) are the classical turning points in
the potential. Each of these integrals leads to a similar
functional form

TXðeÞ ¼
2p
xX

1� 1

p
tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2
Xx

2
X þ eUXð1þ x2

XÞ
q� �

þ 1

2
cosh�1 UXx2

X

eð1þ x2
XÞ

þ 1


 �
ðA6Þ

in which X ¼ {A, B} and UX ¼ {Q, Q � VB}. The energy diffusion
regime is reached as a � 0. For well frequencies similar to the
barrier frequency, i.e., 0.25 � xX � 1.5, jl¼jED¼2pa/(xAþxB).
In the intermediate to high collision rate regime, the
transmission coefficient is given by

jh ¼
Z‘
0

e�z tanh z=að Þdz ðA7Þ

As a � ‘, the SD regime is reached, and jh ¼ jSD ¼ 1/a (in
dimensionless units).
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