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ABSTRACT Chemical exchange line broadening is an important phenomenon
in nuclear magnetic resonance (NMR) spectroscopy, in which a nuclear spin
experiences more than one magnetic environment as a result of chemical or
conformational changes of a molecule. The dynamic process of chemical exchange
strongly affects the sensitivity and resolution of NMR experiments and increasingly
provides a powerful probe of the interconversion between chemical and
conformational states of proteins, nucleic acids, and other biologic macromolecules.
A simple and often used theoretic description of chemical exchange in NMR
spectroscopy is based on an idealized 2-state jump model (the random phase or
telegraph signal). However, chemical exchange can also be represented as a barrier
crossing event that can be modeled by using chemical reaction rate theory. The
timescale of crossing is determined by the barrier height, the temperature, and the
dissipation modeled as collisional or frictional damping. This tutorial explores the
connection between the NMR theory of chemical exchange line broadening and
strong collision models for chemical kinetics in statistical mechanics. Theoretic
modeling and numeric simulation are used to map the rate of barrier crossing
dynamics of a particle on a potential energy surface to the chemical exchange
relaxation rate constant. By developing explicit models for the exchange dynamics,
the tutorial aims to elucidate the underlying dynamical processes that give rise to
the rich phenomenology of chemical exchange observed in NMR spectroscopy.
Software for generating and analyzing the numeric simulations is provided in the
form of Python and Fortran source codes.

KEY WORDS barrier crossing dynamics; chemical kinetics; reaction rate theory;
spin relaxation; strong collision model; computational modeling; fundamental
concepts and techniques; tutorial

I. INTRODUCTION

Chemical exchange in nuclear magnetic resonance (NMR) spectros-
copy describes the behavior of nuclear spins subject to stochastic
fluctuations in the magnetic environments arising from transitions
between in molecular chemical or conformational states. Chemical
exchange provides insight into essential biomolecular dynamics
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associated with critical events, such as protein
and nucleic acid folding, ligand binding,
allostery, and catalytic turnover (1-3). Develop-
ments in theoretic and experimental under-
standing of chemical exchange phenomena
aids in the characterization of these biologic
events by providing insight into the conforma-
tional dynamics of the underlying processes.

Various theoretic models have been devel-
oped to interpret chemical exchange (2). In
each case, some underlying dynamical model is
adopted that leads to time-dependent changes
in the resonance frequency of the affected
nuclear spin. The most popular models assume
that dynamics consist of instantaneous jumps
between 2 or more discrete states (4-6),
although Schurr et al. considered a model with
continuous Gaussian fluctuations in resonance
frequency (7). Although the frequency associ-
ated with each state is unchanged by jumps,
the time series is interrupted, leading to a
decorrelation in time. This type of discontinu-
ous jump model, sometimes referred to as a
random phase model or telegraph signal,
captures long timescale decorrelation but fails
to account for shorter timescale dynamical
fluctuations that may involve state-to-state
transitions.

Chemical exchange leads to changes in
resonance frequencies and relaxation rate
constants of affected nuclear spins and hence
to NMR resonance line shapes. In the simple 2-
state telegraph model, a single nuclear spin
exchanges between states with different reso-
nance frequencies w; and w,, with Aw = w, —
@, according to the kinetic scheme:

ki
A1;\A2

k_4
in which ke, = ki + k_; is the sum of the forward
and reverse kinetic rate constants and the
equilibrium populations of the 2 states are p; =
k,1/kex and p> = k1/kex1 and p1 + p> = 1.
Stochastic changes in resonance frequencies,
arising from transitions between the 2 states,
lead to dephasing of components of the spin
magnetization perpendicular to the static
magnetic field. This results in shifts in reso-
nance frequencies and additional contributions

to transverse relaxation (with rate constant R, =
1/T,). The NMR spectrum resulting from the
chemical exchange process can be calculated
from the Bloch-McConnell equations (1). lllus-
trative spectra for p; = 0.8, p, = 0.2, and Aw =
1,000 s~ ! for different values of k., are shown in
Figure 1.

In the absence of chemical exchange, individ-
ual resonance lines are observed at the frequen-
cies w, and w,, with integrated intensities
proportional to p; and p, (not shown). When
chemical exchange is slow on the NMR chemical
shift timescale, koy < Aw, resolved resonance
lines are still observed. However, the linewidths
are increased because the transitions between
states increase transverse relaxation rate con-
stants. If the site populations are unequal with
p1 > pa, then k_; > k;, and the resonance line
for the minor population is preferentially broad-
ened. In intermediate exchange or coalescence,
kex = Aw, and a single very broad and shifted
resonance line results, in many cases broadened
to be unobservable in practice. In fast exchange,
kex > Awm, and a single resonance line is
observed at the population-averaged resonance
frequency with a linewidth that becomes smaller
as ko, becomes even larger. The reduction in
linewidth, or transverse relaxation rate constant,
as keyx increases in the fast exchange limit is
called motional narrowing (vide infra). As
illustrated by this simple example, the dramatic
effects of the chemical kinetic process on the
NMR line shapes, or equivalently resonance
frequencies and transverse relaxation rate con-
stants, is the basis for investigating chemical or
conformational kinetic processes in biologic
macromolecules.

As an intrinsic physical phenomenon, chem-
ical exchange as evidenced in NMR spectros-
copy must comply with physical kinetic
theories of chemical reactions. To broaden the
interdisciplinary understanding of chemical
exchange, the present tutorial reviews statisti-
cal mechanical theories of chemical kinetics
relevant to the modeling and interpretation of
the phenomenon of chemical exchange in NMR
spectroscopy. By mapping the chemical ex-
change phenomenon onto the dynamics of a
particle moving stochastically in a classical
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Fig 1. NMR spectra for 2-site chemical exchange. Parameters were p;
=08, p,=02, w;=—-200 s, w,=800s",and Aw=10005s ",
yielding the average resonance frequency p,w; + p,m, =0 for
convenience. The values of k., are 250 s~' (dash—dotted line), 1,000
s~ (dashed line), 2,500 s~ (solid line), and 4,000 s~' (dotted line),
corresponding to slow, intermediate, fast, and very fast exchange on
the chemical shift timescale, respectively. The inset shows a vertical
expansion of the region from 250 to 1,000 s™'. The transverse
relaxation rate constants obtained for the major peak in each
spectrum by fitting a Lorentzian line shape function over the region
—500 to 300 s~ were 497, 113.8, 61.6, and 39.5 s, respectively.
Spectra were calculated from the Bloch—-McConnell equations (1).

biphasic potential (8, 9), reaction rate theory
and models of barrier crossing dynamics can be
used to explore the microscopic exchange
dynamics and interpret chemical exchange in
terms of the underlying chemical dynamics.

In this tutorial, we use state-of-the-art theories
for chemical dynamics to generalize jumplike
models of chemical exchange to barrier crossing
dynamics of a particle along a reaction coordi-
nate. We demonstrate that the introduction of a
continuously varying coordinate variable, as
opposed to a set of discrete states, can capture
not only the long time decorrelation associated
with barrier crossing but also the shorter
timescale transient dynamics, associated with
fluctuations within potential energy wells. Sto-
chastic evolution is described by the strong
collision model. This model assumes that the
state of the system is randomized upon each
collision, in accord with the equilibrium distri-
bution. Collisions occurs at a rate =, leading to
an exponential distribution of collision times,
and the average change in energy due to a
collision is large compared with kg7. The
resulting detailed models are shown to be
consistent with the predictions of standard

Dynamical models of chemical exchange

discrete state jump models, while adding a
higher degree of realism in the underlying
dynamics. This tutorial serves to elucidate the
underlying phenomenon of exchange by reduc-
ing the complexity of detailed computational
simulations of proteins and other macromole-
cules to the essential dynamics that dictate the
rate of chemical exchange (10, 11).

The tutorial is organized as follows. Theoretic
models of chemical exchange are developed by
proposing a mapping between changes in
coordinates and changes in resonance frequen-
cies. The resulting time-dependent frequencies
are used to evaluate time correlation functions
associated with NMR observables. The predic-
tions of the theoretic expressions are compared
with the results of numeric simulations for the
dynamics of a continuously varying coordinate
in a biphasic double-well potential. The dy-
namics are explored for a variety of parame-
terizations of the potential wells and as a
function of the rate of collisions. In an
extension of these results for chemical ex-
change, the models are used to simulate Carr-
Purcell-Meiboom-Gill (CPMG) relaxation dis-
persion decay (2, 10). Finally, suggestions are
made for generalizations of this work to more
detailed models of chemical dynamics.

Il. THEORY

We consider, as a minimal model of chemical
exchange dynamics, a single nuclear spin
whose state is defined by a coordinate variable
q(t) that depends on time. Changes in the
variable g(t) capture changes in the environ-
ment of the nucleus, reflecting changes in the
chemical or conformational state of the system.
The associated resonance frequency of the
nucleus, (t), is a function of the state of the
system so that w(t) = wlq(t)]. Without loss of
generality, the NMR radio frequency carrier can
be assumed to be on resonance with the
ensemble average of <w(t)> so that <w(t)> =
0 by construction. As a model of the exchange
dynamics, we adopt a standard model of
chemical reaction dynamics, involving transi-
tions between 2 mechanically stable states in a
double-well (biphasic) potential. In terms of this
simple model, the dynamics of the resonance

Daffern et al. The Biophysicist 2022; 3(1). DOI: 10.35459/tbp.2021.000201

220z Ainr g0 uo Jasn Aysianun uoisog Aq ypd'L0Z000 1 Z0Z dal BSYSE 0L/881ZB6Z/L0Z000° LZ0Z dal/6SYSE 0 L/IopAPd-apleAsiasAydoig-auywoo ssaidus|e  ue|puawyi.djy woly papeoumoq



Dynamical models of chemical exchange

frequency of the nuclear spin w[q(t)] involves
fluctuations within and between 2 basins. The
rate of transition between states is a function of
barrier height, temperature, and dissipation.

In the simplest case, g(t) is a 2-state telegraph
signal taking on values 0 and 1 so that g(t) =1 if
the spin is in state 1 with resonance frequency
w; and qg(t) =0, if the spin is in the state 2 with
resonance frequency w,. Thus, the instanta-
neous resonance frequency is expressed as w(t)
=q(t)w, + (1 — g(t))w,. This is the 2-state jump
model commonly encountered in the theory of
NMR spectroscopy and illustrated in Figure 1
(1). In the 2-state jump model, every collision is
a strong collision in which the system loses
memory of its prior state. The effect of
transitions between g(t) = 1 and qg(t) = 0O,
representing frequency jumps between w; and
w,, can be determined by a variety of
mathematical approaches (1, 2, 5). In the
following, we adopt an alternative approach
commonly used in reaction rate theory in which
q(t) is a continuous rather than discrete
variable. This allows exploration of a wider
variety of models and enables a more detailed
analysis of the underlying system dynamics.

A. Strong collision dynamics in the
discrete state jump model

As an introduction to the approach used in
the tutorial, a connection is established be-
tween strong collision models for chemical
dynamics and transverse spin relaxation arising
from chemical exchange. The complex-valued
time-domain NMR signal (omitting a number of
constants of proportionality) for a single
stochastic realization of the 2-state jump
process (also called the telegraph process) is
given by (5, 12)

s =expd i [ at)on + (1 - q))nlde

0
t

= exp —iAw/ [q(t') — pp]dt’
~ q(t) exp{ 2ot}
+[1 —q(t)] exp{ip1Awt}

(M)

in which s*(t) = s,(t) + isy(t) and s,(t) and s,(t) are
the quadrature components of the signal. The
second equality is obtained by noting that p; =
<q(t)> is the equilibrium population of the state
1 and recalling that Ao = w, — @7 and <w(t)> =
P11+ pow,=0. The third equality is obtained in
the absence of state changes so that g(t) is either
0 or 1 for a given member of the ensemble. The
observable NMR signal is the average over the
ensemble of realizations of the stochastic process
and is denoted <s">(t). The ensemble average of
the third equality reduces to <s™>(t) = p,ex-
plicwqt) + poexplim,t), as expected in the absence
of state changes. The usual theoretic analysis of
spin relaxation in NMR spectroscopy would
proceed essentially by calculation of the ensem-
ble average of the second line of Eq. 1 to obtain
the ensemble average NMR signal, including
exchange-broadening effects (vide infra) (1).
Instead, herein, the autocorrelation function of
the NMR signal is calculated as

C(r) = (s"(O)s (t+1))

/ SO (t+0)de (2)

—| =

= lim
T—o0

in which the second equality assumes the system
dynamics are stationary and ergodic. The auto-
correlation function of the NMR signal in the
absence of state changes is given by

C(’E) = <(q(t)efipzAwt + [1 _ q(t)]eimAwt)
8 (q(t 4 7)ePholth)

+ [1 - Q(t + T)]e—ip1Aw(t+r)>>
_ p1eipzAwr + pze—ip1Awr (3)

in which the third equality of Eq. 1 has been
substituted into Eq. 3. The final result in Eq. 3
is obtained by noting that q(t)2 =q(t) and that
in the absence of state changes, q(t) = q(t+).
The Laplace transform of the resulting auto-
correlation function is

[e]

- P P2
Cs)= | C Stdt =
(s) / (r)e dr s — iprAw - s+ ip1Aw

(4)

0
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To proceed, g(t) is assumed to be time
dependent because strong collisions cause
state-to-state transitions. A theorem from statis-
tical mechanics states that the Laplace transform
of the autocorrelation function of a dynamical
system in the presence of strong collisions C(s) is
a function of the autocorrelation function in the
absence of collisions C(s) (8, 9):

~ C(s+ o)
=T 2

in which « is the collision rate. Substituting Eq. 4
into Eq. 5 gives

= s+ a—iAwAp
Cls) = s2 4+ {a — iAwAp}s + pr1paAw? (6)

in which Ap = p, — p;. Eq. 6 is the Laplace
transform of the 2-state jump process in the
strong collision model. The inverse Laplace
transform of Eq. 6 yields the corresponding
autocorrelation function in the time domain:

6(‘5) — e—(oc—iAwAp)r/Z

{cosh G Vo2 — Aw? — 2iocAa)Ap)

o — iIAwAp
Vo2 — Aw? — 2iaAwAp

X sinh G Vo2 — Aw? — 2iocAa)Ap> }

(7)
This equation is exact but is also complicated.
Fortunately, useful limiting results can be
obtained as described in the following.

When transitions between states are suffi-
ciently fast, the transverse relaxation rate
constant is given by the decay of the autocor-
relation function at long times (after any initial
transients have decayed to zero) (4, 6). This
corresponds to the limit s — 0 in the Laplace
domain. The usefulness of the analysis in the
Laplace domain is that the long time behavior
is inferred from the small s limit, allowing
relatively simple approximations to be applied.

To begin, Eg. 6 can be expressed as

~ 1 1
C(s) = (8)

o p1P2Aw? - s+ D(s
s+ st+a—iAwAp + ( )

_|_

Dynamical models of chemical exchange
D(s) can be expanded in a Taylor series as

_ _pip2Ac? p1p2Aw?

= «—iAwAp " (u— iAwAp)’

9)

Keeping only the first 2 terms of the series, Eq.
8 becomes

1

C(s) =
(5) s(1 — —Pp2lAw? p1p2Aw?
(a—iAwAp)? a—IAwAp
—1
(1 _ pip2A? 2)
—TAwA
— (OC - P)_1 (10)

s+ (1— p1p2Aw? p1p2Aw?
(a—1AmwAp)? a—TAwAp

This equation is isomorphic to a result derived
from the Bloch-McConnell equations by Aber-
gel and Palmer (Eq. 23 in (13)). The second
equality of Eq. 10 is the Laplace transform of C(r)
— Ae'? expl(iQs — R.)7] in which

-1
a—| 1- p1p2Aw?
(o — iAwAp)®
-1
6 —Arg| 1- p1p2Aw?
(o — iAwAp)®
-1
o —1ml 1- p1p2Aw? p1p2Aw?
N (2 —iAwAp)? ) o —iAwAp
-1
R. —Rel 1-— p1p2Aw? p1p2Aw?
* (o0 — iAcoAp)2 o — iAwAp
(12)

a and ¢ are the amplitude and phase of the
long time component of the autocorrelation
function, Q. is the resonance frequency, and
R.c is the transverse relaxation rate constant in
the 2-state strong collision model. Following
the procedure of Abergel and Palmer yields an
explicit form for Ry. (Eq. 31 in (13)):

Rsc = p1p2Aa)2a
o? + Aw?
(02 4+ Aw?)? — p1py (502 4+ Aw?)Aw?
(13)

(a related expression for Q. is given by Eq. 32
n (13) but not needed in this tutorial).
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If collisions are in the fast limit on the NMR
chemical shift timescale, « >> Aw, then the
bracketed term in Eq. 13 approaches o2 and

Rsc :p1pZAa)2/OC (14)

Eg. 14 also can be obtained in straightfor-
ward fashion by retaining only the first term in
the series in Eq. 9 and assuming o« >> Aw.
These results demonstrate that the autocorre-
lation function of the NMR signal in the fast
limit strong collision 2-state telegraph model is
a single exponential decay with rate constant
Rs.. For comparison, either the random phase
model or Bloch-Wangsness-Redfield (BWR) the-
ory applied to the ensemble average of the
second line of Eq. 1 give the fast limit
expression for Rgwr as the integral of the
autocorrelation function for the resonance
frequency fluctuations C(r) = <ow(t) dw(t+
7)> (1, 5), in which do(t) = o(t) — <w(t)> is
the instantaneous resonance frequency fluctu-
ation. For the 2-state telegraph process, C(7) =
p1p2Aw?exp(—keyt), in which do(t) = —Awg(t) —
p;] and C(0) = (5w*(t)) = p1p,Aw?, yielding:

[ee)

Rowr — / (Seo(t)d0o(t + 1))t = prprAcs? ke
0
(15)

Egs. 14 and 15 identify the collision rate o as
being equal to the exchange rate k. This casts
the strong collision relaxation rate constant in
the familiar form used in NMR spectroscopy. In
statistical mechanics, a strong collision imparts
variation in particle energy in the order of kgT.
In contrast, in NMR spectroscopy, only collisions
that lead to changes in resonance frequency
contribute to relaxation properties of the
affected nuclear spin. That is, only the fraction
of “collisions” that lead to transitions between
states with different resonance frequencies are
meaningful for spin relaxation. For the 2-state
telegraph model, ko, is the only nonzero
eigenvalue of the kinetic transition matrix and
consequently the only rate constant appearing
in Eq. 15, and by extension, Egs. 13 and 14. Eqs.
14 and 15 also provide an important identity
between the (slow) long time decay of the NMR

signal and the autocorrelation function of the
(fast) resonance frequency fluctuations in the
fast (or BWR) limit.

Figure 2 compares the results for the strong
collision autocorrelation function calculated
from Eq. 7 and the single exponential approx-
imations with rate constants given by Eqgs. 13
and 14. When o« < Aw, the imaginary
component of the exact autocorrelation func-
tion is large and the fast limit (or BWR)
approximation of Eg. 14 is not accurate (Fig
2a,b). As o increases so that « > Aw, the
imaginary component of the autocorrelation
function decreases in magnitude and the fast
limit approximation becomes increasingly
accurate (Fig 2¢,d). When o > 4Aw, the exact
autocorrelation function becomes nearly real,
and the fast limit approximation is nearly exact
(Fig 2d). The extended formula for Rs. in Eq. 13
is accurate for intermediate (Fig 2b) and slow
exchange for times 7 longer than approxi-
mately (4-5)/a, after the initial fast decay of
the autocorrelation function (Fig 2a), as well as
fast exchange (Fig 2c¢,d). For the given
illustrative parameters, Eq. 13 underestimates
the relaxation rate constant obtained from line
shape fitting by a maximum of 7.5% for
intermediate exchange and becomes highly
accurate in the fast exchange regime (see Figs
1 and 2 captions). The remainder of the
tutorial focuses for simplicity on the fast limit
regime for simplicity, but as indicated by Eq.
13 and the results in Figure 2, the approaches
developed are more generally applicable
outside this limit.

Additional details regarding the Laplace
transform approach used to determine theo-
retic expressions for NMR spin relaxation rate
constants are provided elsewhere (4-6, 13). A
similar strong collision model has been applied
to model the free induction decay, correspond-
ing to <s">(t), in NMR spectroscopy by Gold-
man and Goldman et al. (12, 14).

B. Strong collision dynamics in the
continuous reaction coordinate
model

In the 2-state jump model discussed previ-
ously, the states of the system are discrete, and
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Fig 2. Comparison of exact autocorrelation functions for the strong collision model and single exponential approximations. Parameters were
p1=08, p;=0.2, and Aw = 1,000 s~ and o varied between (a) 250 s, (b) 1,000 s, (c) 2,500 s, and (d) 4,000 s~ (identical to Fig 1).
Plots show the magnitudes of the real (solid, black lines) and imaginary (dotted, black lines) components of the exact complex
autocorrelation function calculated from Eq. 7; the fast limit single exponential approximation of Eq. 14 (dashed, reddish—purple lines); and
the single exponential approximation of Eq. 13 with amplitude A, given by Eq. 12 (dash—dot—dotted, orange lines). The relaxation rate
constants calculated from Eq. 13 are 46.2, 105.3, 61.2, and 39.4 for Fig. 2a—d, respectively, and are 7.0%, 7.5%, 0.6%, and 0.1%, smaller
than the values obtained from fitting the corresponding NMR spectra (Fig 1).

the coordinate variable q(t) is restricted to in which Q is the energy barrier height between
values of 0 and 1. This is essentially a square- wells, Vg is the difference in energy between
well model, in which each well is associated the well A and B minima, ga and gg are the
with a unique resonance frequency and the positions of the well minima, m is the particle
transit time across tlhe barlrier betwreen wellls lis mass, and o, is the barrier transition frequency
short compared with reslldgnce times within (note that the frequency parameters here are
znimﬁilllsc-iyrﬁamnijczrisgsezlIcstglrfti:sjgislpg:iti:)l: constants and are distinct from time-depen-

dent NMR resonance frequency w(t)). These

al variable g(t) moving in a double-well .
(biphasic A-B) potential. The continuous de- parameters are specified to set the shape of the
potential, and the definitions

pendence of the variable g(t) provides a more
realistic model for classical reaction dynamics. a = 2Q/(ma?qa)
We use the double-well potential function (8) !

Imoi(q + qa) qg<-a b =2(Q — Vg)/(mwigs)
17)
V(g) = Q — ime?q? —a=q<b (
Vs + lmi%(qL a)’ q>b wa = 11/a/(qa — )
2 p—

(16) wg = w11/b/(qs — b)
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ensure that V(gq) and dV(q)/dg are continuous.
The potential can be recast in dimensionless
variables:

A

%d)i(@ + QA)Z qg<-a
V(g) = Q-1¢? —a<g<b
Ve +103(G—as)° g>b

(18)
in which energy variables Vg = Vg/(kgT) and Q
= Q/(kgT) are in units of kgT, length variables
are redefined as X = [mw?/(kgT)]""*x for x = {q,
da, gs, a, b}, and frequency variables are
redefined as @, = w,/w; for y = {1, A, BL
Dimensionless time variables are defined as ¢
= wnt, and the dimensionless collision rate is d
= o/w, (vide infra). For convenience, the
circumflex will be omitted in the following
discussion, but all variables should be regard-
ed as dimensionless, unless otherwise noted.
Examples of the potential are shown in Figure
3. In the following, populations of sites 1 and
2 were obtained by integrating the canonical
ensemble probability, assuming g < 0 corre-
sponds to site 1 and g > 0 corresponds to
site 2.

lll. METHODS

The stepwise procedure followed in model-
ing strong collision dynamics is provided
alongside the algorithm used to conduct the
simulations. The mapping of the simple dy-
namical model to actual physical systems is
discussed, including the particular example of
protein folding. The use of the dynamical
model to describe signal decay in a CPMG
experiment is discussed.

A. Simulations for strong collisions

The previous theoretic discussion suggests a
simple strategy for simulating chemical ex-
change dynamics by using the biphasic poten-
tial model:

(@) Generate a simulation of g(t) = q(t,) = g(nAt)
= g, for a particle in the biphasic potential
in the absence of collisions by solving
Newton equations of motion for a series

of time steps n = {0,..., Nmax — 1} with
duration At. In the present work, the
velocity Verlet algorithm was used for
propagating g(t) and the velocity v(t).

(b) Add strong collisions that occur in time
with an exponential probability distribu-
tion. Each collision randomly reassigns the
particle velocity from a Gaussian distribu-
tion centered at zero with variance <v*> =
ksT/m (= 1 in dimensionless units).

(c) Map from g(t) to wlg(t)] = w(t).

(d) Calculate the autocorrelation function of
ow(t), given by <dw(t)ow(t+r)>.

(e) Calculate the autocorrelation function for
s™(t) by using Eq. 2 and the definition:

n
s7(t) =s"(nAt) =exp =+ iAtZ a)k)

k=0

(f) Calculate the ensemble average NMR signal
<s">(t) by averaging s'(t) over multiple
independent trajectories, g(t).

The finite difference equations of motion for
the coordinate variable g(t) and the velocity v(t)
are defined by the velocity Verlet algorithm (in
dimensionless units):

F(t

q(t + At) = q(t) + v(t)At + ¥At2

F(t+ At) + F(t)
2

in which the dimensionless instantaneous
acceleration of a particle at a particular position
g is given by

(19)
At

v(t+ At) = v(t) +

dv(q)
F(q) = ——
(q) dq
—wi(q — qa) g<-—a
= q —asqg<b (20)
—wi(q—qs) g>b

Python code illustrating the simulation algo-
rithm is shown in Box 1. Autocorrelation
functions can be calculated by approximations
of the integral in Eq. 2 through a summation
(substituting dw(t) for s*(t) as needed) or more
efficiently by Fourier transformation.
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w(q)

Fig 3. Biphasic potential calculated from Egs. 17 and 18. Parameters
(solid) are Q=17, V=2, and mp = wg = 0.5 yield gy =837, gg =
7.07, a=1.67, and b=1.41. Parameters (dashed) Q=7, Vg =2, wp
=0.5, and wgz =0.25 yield g, =837, g =13.04,a=1.67, and b=
0.77. Chemical shift profile m(g) for the random-coil model adapted
to (dashed) asymmetric potential (dotted). The Boltzmann-weighted
average <w/(q)> = 0 for g > 0. All parameters are dimensionless,
as described in the text.

B. Mapping generalized
coordinates to resonance
frequencies

The mapping of the coordinate variable q(t)
to the resonance frequency w(t) was performed
in 2 ways. In the first approach, a resonance
frequency of 1 was assigned, if ¢ < 0, and a
resonance frequency of 0 was assigned, if g > 0.
The values of the resonance frequencies were
then shifted and scaled so that <w(t)> =0 and
<w(t)*>"? 1. =0.1 in which . is the long time
decay time for the autocorrelation function of
q(t). The latter constraint ensures that the NMR
fast exchange limit is reached. This mapping
reduces the simulated model to the 2-state
telegraph jump process analyzed theoretically,
as mentioned previously.

In the second approach, the chemical shifts
were modeled initially by using w(q) = —erf(qg —
go) in which erf is the error function. The value
of qo is chosen so that w(g) = 1 for g < 0 and
w(q) varies between +1 and —1, with <w(q)> =
0 for g > 0, as illustrated in Figure 3. This
function was then shifted and scaled so that
<w(t)> =0 and <w(t)>>"? 1. =0.1, as for the
first approach. This second approach is a simple
model of a major state 1 with a fixed resonance
frequency (such as would occur in a folded
state of a protein) and a minor state 2 in which

Dynamical models of chemical exchange

local conformational fluctuations drive con-
comitant time-dependent variations in reso-
nance frequencies. This mapping will be called
the random-coil model in the following.

To illustrate the previous models, the 13Cq
spin has a secondary chemical shift, Ao, of 2 to
4 ppm in the a-helical conformation of a
protein. The secondary shift is defined as the
measured chemical shift minus the chemical
shift expected for an unstructured (random-
coil) peptide. Thus, the telegraph model assigns
a single frequency equal to Ad in the folded
state and a single frequency equal to 0 in the
unfolded state. The random-coil model also
assigns a single frequency equal to Ao in the
folded state. However, the unfolded state is
described by a fluctuating distribution of
frequencies from —Ao to +Ad, with an average
of 0, representing in a simple manner the
averaging of chemical shifts over the distribu-
tions of conformations sampled by a disor-
dered peptide.

C. CPMG relaxation dispersion

CPMG and R,, relaxation dispersion experi-
ments have developed as powerful approaches
for investigation of microsecond to millisecond
timescale dynamic processes in proteins and
other macromolecules (2). In the CPMG exper-
iment, relaxation is measured during a train of
spin-echo sequences: (1, — 180° - tcp)n, in
which 180° is a radiofrequency refocusing
pulse, 7 is the spin—-echo delay time, the total
relaxation delay period is T=2nt, and n is the
number of spin-echo units applied. In the ideal
case, each 180° pulse merely acts to invert the
sign of the evolution frequencies. As such, in
the previous protocols, the effect of a CPMG
pulse train is modeled by multiplying w(t) by a
square wave varying between +1 and —1, with
50% duty cycle and period 4z, prior to further
analysis of w(t). The autocorrelation function of
sT(0) is calculated as described previously, or an
ensemble average <s'>(t) is estimated by
averaging multiple stochastic trajectories to
mimic the signal decay in an actual CPMG
experiment.

The variation in the observed relaxation rate
as a function of the pulse delay 7 is called a
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Box 1. Algorithm for strong collisions

FO = FQ{(qon: VB, qAr qB)

dt = value # time step

alpha = value # collision rate

cut = np.exp(-alpha*dt) # test statistic for collisions
nsteps = value # number of simulation steps

g = numpy.zeros (nsteps) # position trajectory

v = numpy.zeros (nsteps) # velocity trajectory

sigv = 1 # standard deviation of velocity
gl0] = -gA # initial position

v[0] = numpy.random.normal (0,sigv,1) # initial wvelocity

# subroutine to calculate acceleration

for i in range(l,nsteps): # main loop
gli] = g[i-1] + v[i-1]*dt + FO*dt**2/2 # update position
F1 = Fg(gqli],Q,VB,gA,gB) # update acceleration
v[i] = v[i-1] + (F1+F0)*dt/2 # update velocity
FO = F1 # current acceleration
if (numpy.random.random(l) > cut): # test for collision
v[i] = numpy.random.normal (0,sigv,1l) # randomize velocity

CPMG relaxation dispersion curve. In the fast
exchange limit, analysis of the relaxation
dispersion curve for a 2-state model yields

T T

Repma(Tep) = P1P2AM Tex [1 - ﬁtanh(ﬂ)]

(21)
in which the exchange time 1., = 1/kq,. More
complex expressions for Repma(tcp), valid for all
chemical exchange timescales, have been
reported and widely used in the analysis of
experimental data (2).

IV. RESULTS

Strong collision simulations were performed
by using in-house Python version 3.6 (Python
Software Foundation, Beaverton, OR) or GNU
Fortran version 5.2.0 (Free Software Founda-
tion, Inc., Boston, MA) programs; equivalent
results were obtained with either programming
language (but the Fortran routine is much
faster). Numeric and graphic analyses of simu-
lation trajectories were performed by using in-
house Python 3.6 programs. The Python and
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Fig 4. Simulation for the strong collision dynamics of the coordinate g(t) in a biphasic double-well potential with Q= 7, Vz= 2, and equal
well frequencies wa = wg = 0.5. (solid trace in Fig 2). The simulation used a time step of 0.01 and consisted of 2** steps with a collision rate
of o = 2.5; g(f) was stored every 2" steps. (a) q(t) at every 1,000 stored sample point during the simulation. (b) Autocorrelation function
(C(z) of g(t) (black) fit with a monoexponential (reddish—purple, dashed line) and biexponential decay function (blue, dotted line); 10
replicate simulations were averaged to produce the final autocorrelation function. The inset shows the fast initial decay of the
autocorrelation function, which is well described by the biexponential fit. The fitted parameters are amplitudes a; = 3.9 and a, = 25.2 and
decay times 7, =9.4 and 7, = 5,110, respectively. All parameters are dimensionless as described in the text. The simulated dynamics in the

potential are shown in Supplemental Movie S1.

Fortran programs used in this tutorial are
provided in the Supplemental Material.

A. Strong collision dynamics in the
biphasic potential

Initial simulations were performed by using
parameters Q = 7, Vg =2, and wa = wg = 0.5
(solid curve in Fig 3). The site populations are p,
= 0.88 and p, = 0.12. Simulations were
performed by using values of collision rate «,
ranging between 10~ and 10%. Dynamics were
underdamped for o < 0.3 and overdamped
otherwise. The simulated time series for the
coordinate variable g(t) and the autocorrelation
function of q(t) for the simulation with o= 2.5
are shown in Figure 4.

In contrast to the 2-state telegraph model,
the coordinate varies continuously over a range
of g. The particle is found to spend the majority
of the time in the left well, which has
coordinate ¢ < 0 and has lower potential
energy, making occasional transitions to the
right well, which has coordinate g > 0. Thus,
the particle has longer residence times in the
left well when compared with the right well.
The autocorrelation function is biexponential,
with a short time constant, T, = 9.4, arising from

fluctuations within the potential energy wells
and a longer time constant, 7, = 5,110, arising
from transitions between wells.

The simulation strategy was validated by
comparing the rate constants obtained from
the long time decay of the autocorrelation
function to rate constants for passage over the
barrier obtained from simulations of the
reactive flux (15) and from theoretic estimates
of the transition rate (16). In these approaches,
k = kkyst, in which k is the sum of the forward
and backward barrier crossing rate constants,
kst is transition state theory estimate of the
rate constant, and k is the transmission
coefficient. For compactness, the theoretic
calculations are outlined in the appendix.

For the parameters given in Figure 4, kyst =
6.09 x 107* and k = 0.33; the transition rate is
lower than that predicted by transition state
theory due to slow spatial diffusion (SD) over
the barrier. The resulting time constant T = 1/k
= 4,980 agrees well with the fitted long time
decay of the autocorrelation function, 1, =
5,110. Figure 5 shows a more extensive
comparison between the transmission coeffi-
cients obtained from theoretic estimates of the
rate constant, the reactive flux method, and the
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Fig 5. Barrier crossing transmission coefficients for the strong
collision model. The simulations and calculations used Q=7, Vg =2,
wa = wg = 0.5. Simulated transmission coefficients (solid circles)
are obtained as k = 1/(tkys7) in which 7. is the long time decay
constant of the simulated autocorrelation function. Simulated
transmission coefficients (open circles) are obtained from the
reactive flux method (15). The solid curve shows the theoretic result
and dashed lines show the limiting kg, and xgp transmission
coefficients for the strong collision model, as described in the
appendix.

long time decay of the simulated autocorrela-
tion function.

The variation in the transmission coefficient
displays the classic Kramers turnover. At low
collision frequencies, the exchange rate increas-
es in proportion to the collision frequency,
while at high collision frequencies, the ex-
change rate decreases in proportion to the
reciprocal of the collision frequency. At inter-
mediate collision frequencies, the rate is a
maximum, and the transition state theory
provides a reasonable estimate of the exchange
rate. Segments of the simulations for the strong
collision model with « = 0.04 and 2.5 are
animated in Supplemental Movies S1 and S2.
These parameters correspond to the energy
dissipation (ED) and SD limits of the Kramers
reaction rate theory discussed in the Appendix.

B. Comparison of continuous and
discrete state frequency mappings

The telegraph signal (t) resulting from the
mapping of the coordinate variable g(t) to the
frequency is shown in Figure 6a; the autocor-
relation function is shown in Figure 6b. The
telegraph signal only captures transitions be-
tween potential wells, and consequently, the

autocorrelation function is monoexponential.
The long time constant from the autocorrela-
tion function of g(t) and from the telegraph
signal, . = 5,110, agree well, as expected. The
spin relaxation rate constant is obtained, using
Eg. 15, as the integral of the autocorrelation
function; from the monoexponential fitting
parameters, Rgwr = <dw(t)*>1. = 1.96 x 10°°,
The real part of the complex NMR signal is
shown in Figure 6¢; the corresponding auto-
correlation function is shown in Figure 6d. The
relaxation rate constant obtained as the recip-
rocal of the decay time constant of the
autocorrelation function is R, = 1.90 x 107°,
in good agreement with Rgwr. The agreement
between these 2 results is consistent with the
theoretic results previously mentioned. Empir-
ically, the simulated autocorrelation function of
the frequency fluctuations converges more
rapidly than the simulated ensemble average
NMR signal, as evident in the residual noise in
Figure 6d. Thus, obtaining the relaxation rate
constant from the autocorrelation function of
the frequency fluctuations is more efficient in
practice if the stochastic process is in the fast
(BWR) limit.

A similar analysis was performed by using the
random-coil model (vide supra). The results are
shown in Figure 7. The function w(t), obtained
from q(t), is shown in Figure 7a; the autocor-
relation function is shown in Figure 7b. The
autocorrelation function is biexponential, re-
flecting the fact that the model includes both
fast fluctuations within potential wells and
slower transitions between wells. The spin
relaxation rate constant is obtained, using Eq.
15, as the integral of the autocorrelation
function; for a biexponential autocorrelation
function, Rgwgr = a;71 + a373, in which a; and t;
are the amplitude and time constant for the ith
exponential term. From the biexponential
fitting parameters, Rgywr = 1.10 X 10°% the
reduced relaxation rate constant, compared
with the telegraph model, reflects the effect of
the short time constant from the fast fluctua-
tions with the potential well. The real part of
the complex NMR signal is shown in Figure 7¢;
the corresponding autocorrelation function is
shown in Figure 7d. The relaxation rate
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Fig 6. The 2-state telegraph model for dynamics in the biphasic potential with equal well frequencies. (a) Sample of w(f) at times during
the simulation with parameters chosen so <§w(t}2>”2 =196 X 10™°. (b) Autocorrelation of e(f) (black) fit with a monoexponential
function (reddish—purple, dashed line) with amplitude <Sw(t)’>=13.83% 10" and decay time 7. =5110; <§w(t}2>mrc: 0.1 and an
estimated value of Rgyg = <dw(f)*>1. = 1.96 X 10°°. The inset shows only a monoexponential decay. (c) Sample of Re[s*(f)] at times
during the simulation, (d) Real part of the autocorrelation of s™(f) (black) fit with a monoexponential function (reddish—purple, dashed line)
with initial amplitude fixed at 1.0 and decay time constant of 5.27 X 10°, yielding R, = 1.90 X 10° in good agreement with Rgyg. All

parameters are dimensionless, as described in the text.

constant obtained as the reciprocal of the
decay time constant of the autocorrelation
function is R,c= 1.04 x 107°, in good agreement
with Rgwgr. Note that the autocorrelation of the
NMR signal in Figure 7d is monoexponential,
even when the autocorrelation function of w(t)
in Figure 7b is biexponential in the fast
exchange limit, as described previously and
illustrated in Figure 2.

A second simulation was performed for the
parameters given in Figure 3 for the dashed
curve: Q=7,Vg=2, wp=0.5, wg=0.25,and o =
2.5, giving ktst =341 x 107 and k = 0.33; the
resulting long time constant t = 1/k = 8,890.
Similar plots as for the previously mentioned
model for the case of equal well frequencies are
shown in Figures 8-10. The site populations are

now p; = 0.79 and p, = 0.21. The long time
decay constant of the autocorrelation function
for g(t), shown in Figure 8, is now 7, = 10,440, in
agreement with the theoretic result. Similar
levels of agreement are found between R, and
Rewr for telegraph (Fig 9) and random-coil
models (Fig 10) for the resonance frequencies.
Notably, the autocorrelation function for the
frequency fluctuations w(t) in the random-coil
model (Fig 10b) is distinctly biexponential,
reflecting the effects of chemical shift averag-
ing in the broader potential well for state 2.
Again, the autocorrelation of the NMR signal in
Figure 10d is monoexponential, even when the
autocorrelation function of w(t) is biexponential
in the fast exchange limit.
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Fig 7. The 2-state random-coil model for the biphasic potential with equal well frequencies. (a) Sample of e(f) at times during the

172 _

simulation with parameters chosen, so <o(t?>"*=1.96 X 10~°. (b) Autocorrelation of w(t) (black) fit with monoexponential (reddish—

purple, dashed line) and biexponential (blue, dotted line) functions. The inset shows the fast initial decay of the autocomrelation function,
which is well described by the biexponential fit. The fitted parameters are amplitudes a, = 1.67 X 10'° and a, =2.15 X 107" and decay
times 7, =8.5 and 7, =5,110; <5w(t}2>mr2 =0.1 and an estimated value of Rgyg = 1.10 X107, (c) Sample of Re[s™(#)] times during the
simulation. (d) Real part of the autocorrelation of s*(f) (black) fit with a monoexponential (reddish—purple, dashed line) function with initial
amplitude fixed at 1.0 and decay time constant of 9.60 X 10°, yielding R, = 1.04 X 10~° in good agreement with Rgyg. All parameters are

dimensionless, as described in the text.

In simulations of both model potentials using
the random-coil model for w(t), the effect of
averaging the chemical shift within the right-
most well (with higher minimum potential
energy and consequently reduced population
compared with the leftmost well) reduces the
transverse relaxation rate constant by approx-
imately a factor of 2. The result that fast
timescale fluctuations of the resonance fre-
qguencies within the second well reduce, rather
than increase, the transverse relaxation rate
constant is a characteristic feature of the fast
exchange regime in NMR spectroscopy. As the
rates of frequency fluctuations become much
larger than the range of frequencies sampled,
the NMR transverse relaxation rate constant

approaches 0, a process called motional nar-
rowing (1).

C. CPMG relaxation dispersion for
strong collision dynamics

CPMG relaxation dispersion was estimated
by using the 2-state telegraph mapping of
resonance frequencies applied to simulations
by using the strong collision model in the
asymmetric biphasic double-well potential (the
dashed line in Fig 3) and 7., = 1.05 x 10% and
2.62 x 10>. The ensemble signal <s*(t)> and
the autocorrelation function of s™(t) are shown
in Figure 11. The results show the effect of the
CPMG pulse train as 1, is reduced. In the
absence of the CPMG pulse train, the decay rate
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Fig 8. Strong collision model simulation of g(t) for the biphasic potential with unequal well frequencies. Parameters were Q=7, Vg =2, wy
=0.5, and wg = 0.25 (dashed trace in Fig 2). The simulation used a time step of 0.01 and consisted of 2>* steps with a collision rate of =
2.5; q(t) was stored every 2'% steps. (a) The g(t) at every 1,000 stored sample point during the simulation. (b) Autocorrelation function of q(t)
(black) fit with a monoexponential (reddish—purple, dashed line) and biexponential (blue, dotted line) decay function; 10 replicate
simulations were averaged to produce the final autocorrelation function. The inset shows the fast initial decay of the autocorrelation
function, which is well described by the biexponential fit. The fitted parameters are amplitudes a; = 6.0 and a, =77.1, and decay times 1,
=30.7 and 7, = 10,440. All parameters are dimensionless, as described in the text. The simulated dynamics in the potential are shown in

Supplemental Movie S2.

is ~9 x 1077 and drops to ~2 x 107 for Tep =
1.05 x 10* and to ~2 x 1072 for Tep=2.62 X 103,

An important aspect of CPMG experiments is
illustrated by comparing relaxation dispersion
curves acquired for the 2-state telegraph and
random-coil mapping of resonance frequencies
applied to simulations by using the strong
collision model in the asymmetric biphasic
double-well potential. The relaxation rate con-
stants determined, as in Figure 11, are shown in
Figure 12 for 7., values ranging from 327 to
4.19 x 10 The simulated data were fit by using
Eq. 21, with an added constant offset. As can be
seen in the inset to Figure 12, the offset is zero
for the data using the 2-state model and
positive for the random-coil model. The aver-
aging of resonance frequencies in the well with
q(t) > 0 gives rise to an initial fast decay of the
autocorrelation function shown in Figure 10b,
with a time constant of 32. This dynamic
process is faster than the fastest pulsing used
in the CPMG simulations (t,, = 327), and
consequently, the dephasing caused by this
process cannot be refocused by the 180° pulses
in the CPMG train. Instead, the plateau value
represents the relaxation rate constant from
dynamic processes faster than pulsing. Win-
dowless CPMG and R;, experiments overcome

this limitation and allow faster dynamic pro-
cesses to be characterized (17-19).

V. DISCUSSION

Chemical exchange has emerged as one of
the most powerful phenomena in NMR spec-
troscopy for investigating the conformational
dynamics and chemical kinetics of biologic
macromolecules (2). The present tutorial is
intended to introduce chemical exchange
dynamics and illustrate the connections be-
tween theoretic approaches conventionally
used in NMR spectroscopy to model chemical
exchange and chemical reaction rate theory in
statistical mechanics.

A. Strong collision models for
chemical exchange

A theoretic expression for the NMR signal
was derived within the strong collision model
and shown to be similar to expressions derived
from conventional NMR approaches for chem-
ical exchange (e.g., BWR theory or the random
phase model). Numeric simulations of the
dynamics were performed for a particle moving
stochastically on a classical one-dimensional
biphasic double-well potential by using the
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Fig 9. The 2-state telegraph model for the biphasic potential with unequal well frequencies. (a) Sample of w(f) at times during the
simulation with parameters chosen, so <§w(t}2>”2 =9.60 X 10°%. (b) Autocorrelation of e(f) (black) fit with a monoexponential function
(reddish—purple, dashed line), with amplitude <dw(t)*> =917 X 10" and decay time 7. = 10,440; <§w(t}2>wrc: 0.1 and an
estimated value of Rgwg = <dw(t)*>1, = 9.58 X 10~". The inset shows only the monoexponential decay. (c) Sample of Re[s*(f)] at times
during the simulation, (d) Real part of the autocorrelation of s*(f) (black) fit with a monoexponential (reddish—purple, dashed line) function
with initial amplitude fixed at 1.0 and decay time constant of 1.13 X 10°, yielding R, = 8.83 X 10~ in good agreement with Rgyg. All

parameters are dimensionless, as described in the text.

strong collision model. Simulations of dynamics
of simple models provide ready access to the
kinetic rate constants on the chemical ex-
change timescale (microsecond to millisecond),
while capturing essential features of more
complex molecular dynamics (e.g., macromole-
cules). Excellent agreement was obtained
between the simulated rate constants for
barrier crossing and the calculated rate con-
stants on the basis of the formal statistical
mechanical theory of kinetic processes.

The theoretic derivation of the NMR spin
relaxation rate constant for chemical exchange
is commonly obtained by using discrete state
jump models for the underlying chemical
dynamics. Such approaches conform well to
the theoretic strong collision model, remem-

bering that collisions have a somewhat differ-
ent meaning in the 2 approaches. However, as
is well known in statistical mechanics, a range
of kinetic rate constants frequently can be
obtained from simulations in either the strong
collision model or the frictional “weak-colli-
sion” (Langevin) model, with the appropriate
choice of parameters. In the weak-collision
Langevin model, collisions are effectively con-
tinuous, each resulting in a change in the
energy that is small compared with kgT. Similar
results to those presented for the strong
collision model have been obtained by using
Langevin dynamics (data not shown) (20, 21).

The simulations of a continuous variable
model of dynamics in a biphasic double-well
potential were mapped onto jump models for
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Fig 10. The 2-state random-coil model for the biphasic potential with unequal well frequencies. (a) Sample of w(f) at times during the
simulation with parameters chosen, so <(t?>"?=9.60 X 10°°. (b) Autocorrelation of w(t) (black) fit with monoexponential (reddish—
purple, dashed line) and biexponential (blue, dotted line) functions. The inset shows the fast initial decay of the autocorrelation function,
which is well described by the biexponential fit. The fitted parameters are amplitudes a, =4.52 X 10" and a, = 4.49 X 10" and decay
times 7, =32.0 and 7, = 10,420; <5w(t}2>mr2 =0.1 and an estimated value of Rgyg = 4.69 X 107", (c) Sample of Re[s"(f)] at times
during the simulation, (d) Real part of the autocorrelation of s¥(f) (black) fit with a monoexponential (reddish—purple, dashed line) function
with initial amplitude fixed at 1.0 and decay time constant of 2.47 X 10°, yielding R, = 4.05 X 10~ in good agreement with Rgyg. All

parameters are dimensionless, as described in the text.

chemical exchange by defining discrete states
for ranges of the position of the particle (for
example, setting state 1 for ¢ < 0 and state 2
for g > 0). The associated simulations were
found to agree with theoretic results and can
be used to explore the behavior of more
complex models of chemical exchange, allow-
ing for asymmetry between potential energy
wells, as well as more complex mapping
between the position of the particle and the
NMR resonance frequency of a nuclear spin.
These features mimic commonly occurring
situations in which one “state” of a protein or
other macromolecule is highly ordered, with
limited stochastic variation in resonance fre-

qguencies, and the other state is highly disor-
dered, with large stochastic variation in
resonance frequencies.

The results of the theoretic derivations and
numeric simulations have been presented in
dimensionless units and can be rescaled to
natural units, as desired by the choice of w, and
dimensional analysis. For example, the dimen-
sionless value of the NMR relaxation rate
constant R, = 1.96 x 107° is obtained from
the telegraph signal model for the strong
collision model with equal potential well
frequencies (Fig 6). A choice of w; = 1.0 x 107
s~ then gives R = 19.6 s . The simulation
used <dw(t)*>"?1. = <dw(t)*>"?/ko, = 0.1, so
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Re[s*(1)]

6
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Fig 11. CPMG relaxation dispersion for the strong collision model, the biphasic potential with unequal well frequencies, and the telegraph
signal mapping of resonance frequencies. Parameters were Q =7, Vg =2, s =0.5, and wg = 0.25 (dashed trace in Fig 3). The simulations
used a time step of 0.01, and a collision rate of & =2.5; g(f) was stored every 2" steps. Values of 7o, were 1.05 X 10* and 262 X 10°. (a)
Values of s*(f) for 640 trajectories of length 22° steps were averaged to obtain < s™(f) >. (b) Autocorrelation functions of s () were
calculated, as in Figure 8, for 20 individual trajectories of 2** steps and averaged. In each figure, black lines are simulated results. Fits with
single exponential functions are shown for absence of CPMG block (blue, dotted line), CPMG block with 7o, = 1.05 X 10* (green, dash—
dotted line), and CPMG block with 7., = 2.62 X 10° (reddish—purple, dashed line). The decay time constants in the absence of an applied
CPMG pulse train agree well between the NMR signal and its autocorrelation function. The decay rates in the absence of the CPMG sequence
are (a) 9.49 X 10~ and (b) 9.16 X 107 (in good agreement with the results shown in Fig 8), the decay rates are (a) 2.07 X 10~ and (b)
229 X 1077 for 7o, = 1.05 X 10", and the decay rates are (a) 1.97 X 10~° and (b) 2.26 X 10° for 7¢, = 2.62 X 10°.

from Eq. 14, and recalling p, = 0.88 and p, =
0.12 for the given potential, k., = 1960 s~ and
Aw = 603 s~'. These are values in the range
typical of conformational changes in biologic
macromolecules detected in actual NMR exper-
iments (2).

The numeric simulations in the biphasic
potential were performed for the most part
by using parameters consistent with fast limit
or BWR timescale chemical exchange for
. : . : simplicity in comparing results to Eqgs. 14 and
0 0.2 0.4 0.6 0.8 1.0 15. Extensive use was made of the autocorre-

1000/7,, lation functions of the resonance frequency
fluctuations or of the NMR resonance frequency
to obtain estimates of the transverse relaxation

Fig 12. (CPMG relaxation dispersion for 2-state (filled circles, solid
line) and random-coil models (open circles, dashed line). Relaxation

rate constants shown as circles were obtained as described in Figure
11. Simulated points were fit with Eq. 21 augmented by a constant
offset parameter. Optimized values of 7., = 10,330 and 10,200 for
the telegraph and random-coil models, respectively, in agreement
with the results shown in Figures 9 and 10. The optimized offset
was 0 for the telegraph model and 1.36 X 10~° for the random-coil
model. The limiting relaxation rate constant for the random-coil
model agrees well with the value of 1.44 X 10~ obtained as the
product of the amplitude and decay time for the fast component of
the autocorrelation function shown in Figure 10b, confirming that
the apparent plateau represents the contribution from dynamics
processes faster than the CPMG pulsing rates. Data have been
normalized by the relaxation rate constant in the absence of
pulsing, Rgwg, for display.

rate constant. As shown by Eq. 13 and results in
Figure 2, the long time decay constant of the
autocorrelation function is a good estimate of
the relaxation rate constant outside of the fast
limit. The actual range of application of Eq. 13
and related expressions for R;, and CPMG
relaxation dispersion have been discussed
elsewhere (2, 4, 5, 13). The simulations can be
performed for stochastic processes on any
timescale, and outside of the range of applica-
tion of the autocorrelation function approach,
the ensemble average free induction decay can
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be modeled by summation of multiple inde-
pendent simulations, in a similar fashion to the
simulations represented in Figure 12a.

B. Further consideration of CMPG
relaxation dispersion

The CPMG experiment is one of the most
common and effective techniques used to
assess exchange on the microsecond to milli-
second timescale. The 180° pulses in the CPMG
sequence have the effect of reversing the sense
of precession of transverse magnetization and
thus can be represented by inversion of the
sign of the precession frequencies. In the
present work, the effect of the CPMG pulse
train was simulated by multiplying the NMR
signal by a square wave function sq[nt/(27.p)]
with period 41, and varying between +1 and
—1. As described in Figures 11 and 12, the
simulated relaxation dispersion data provides
an excellent fit to Eq. 21. As an alternative
approach, Xue et al. have shown that the
effective relaxation rate constant in a CPMG
experiment can be obtained directly from the
autocorrelation function of the frequency
fluctuations, in a generalization of Eq. 15, also
by multiplying by a square wave:

Repma (Tep)

[e¢)

_ / (Soo(t)sq[mt/ (21cp)] 0 (t + 7)
sq[n(t + 1)/ (21p)])dt

= / (dw(t)ow(t + 1))
<$q[nt/(21cp)]sq [n(t + T)/(2rcp)} >d’E

= / (do(t)dw(t + 1))trilnt/(21ep)]de

(22)

in which tri(x) is a triangle wave function that
consists of linear segments connecting the
extrema of the cosine function (10). The
second equality of Eqg. 22 is obtained because

Dynamical models of chemical exchange

the fluctuations Jw(t) are uncorrelated with
the time of applications of the 180° pulses, and
the third line is obtained because the auto-
correlation of the square wave function is the
triangle wave function. Integration of the last
line of Eq. 22 for (dw(t)dw(t + 1)) = p1p2Aw?
e~ /% yields Eq. 21. The integration can be
performed by expanding tri(x) in a Fourier
cosine series, integrating each term in the
Fourier series and summing the resulting
series (22).

C. Generalization to dynamics in
multiphasic many-well potentials

The 2-state kinetic model explored in this
work exhibits the principal features of chemical
exchange but also represents one of the most
common scenarios encountered in experimen-
tal NMR spectroscopy. However, the simulation
protocols developed as described previously
for a 2-well biphasic potential are extendable to
more complex kinetic schemes. As one exam-
ple, a linear 3-site potential function (C-A-B)
can be designed in a similar fashion as for the
biphasic potential, as follows

Ve +3mawj(q — gs)* g>b
Qns — M3 (q—qas)’ b>g>a
V(q) = ITMwag? a>q>-—c

Qac —imwi(q + CIAc)2 —c>q>—d

Ve +%mw%(q+qc)2 g<—d

\

(23)

which includes parameters describing the 2
energy barrier heights (Qac, Qag), the energy
difference between the main state and the 2
minor states (Vg, V), the positions of the minor
state minima (gg, gc), the locations of the
barriers (gag, gac), barrier transition frequencies
(w4), the well frequencies (wa, wg, @¢), and the
mass (m). Eq. 23 is formulated with the position
of the well A at g = 0. This potential also
assumes for simplicity that the barrier frequen-
cies are identical; the potential could be
generalized to distinct barrier frequencies. The

Daffern et al. The Biophysicist 2022; 3(1). DOI: 10.35459/tbp.2021.000201

220z AInf 80 uo Jsasn Aysieaun uojsog Aq ypd 1020001202 da) 65SE 01/8812862/102000° L 202 day/6SHSe 01/10p/Apd-aniesioisAydoig-ayy/woo ssaidusi|e uelpuaw//:djy woly papeojumoq



Dynamical models of chemical exchange

potential function is made continuous by the
following definitions:

a = (mwiqag — 2Qas)/(Mwiqas)

b= {2(Qas — V&) — M®?as(qas — ds) }/
(M3 (qs — qas)

¢ = (mwigsc — 2Qac)/ (Mwiqac)

d = {2(Qac — V) — mwiqac(qac — dc)}/
(mw}(gc — qac)

Wp = W14/ (CIAB - 0)/0

wg = ©1/(qas — b)/(b — gs)

wc = w1/ (gac — d)/(d — qc)

(24)

Additionally, the A-C barrier location (gac) is
constrained and is calculated by using the
following equation:

aac = qas\/ Qac/Qns (25)

Manipulation of the independent variables
allows for the simulation of symmetric or
asymmetric models with identical or distinct
well frequencies. Strong collision dynamic
simulations can then be performed similarly
as for the biphasic potential model described.
Theoretic results for N-site (N > 2) chemical
exchange always can be computed numerically
from the Bloch-McConnell equations, although
approximate analytical solutions also are avail-
able for comparison with simulations (2). Efforts
to parameterize Markov state models from
molecular dynamics simulations, together with
calculations of NMR chemical shifts from
molecular structures, extend beyond the ideal-
ized 2- and 3-state models, given by Egs. 16
and 23 (10, 11).

D. Other possible mappings of
coordinates to resonance
frequencies

The models presented previously can be
modified or generalized by using other map-
pings between the particle position g(t) and the
spin resonance frequencies. A common justifi-
cation for the application of the 2-site model in
NMR spectroscopy relies on the assumption of

rapid exchange between subsets of states. For
example, if states 1 to M are in mutual fast
exchange, and sites M + 1 to N are in mutual
fast exchange, then the N-state system reduces
to an effective 2-state system, with averaged
site properties for the 2 sets of states. As noted
by Trott and Palmer (23), convergence to this
simplified 2-state result depends on all param-
eters of the spin system in a complex fashion.
The random-coil model used herein tacitly
assumed barrierless averaging of shifts to a
mean of zero in the g > 0 state. Simulations in
the 3-state potential, described previously,
would allow for exploration of the convergence
to a 2-state system by averaging of the states A
and C, as the AC barrier is reduced relative to
the AB barrier.

VI. CONCLUSION

The theoretic analysis and simulations
presented previously are intended to illustrate
the connection between the NMR phenome-
na of chemical exchange line broadening and
nuclear spin relaxation and statistical mechan-
ical chemical reaction rate theories of barrier
crossing dynamics. In this work, we have
attempted to show the value of the natural
connections between the 2. The numeric
simulations provide insights into how chang-
es in NMR observables reflect the nature of
the underlying state-to-state dynamics. This
approach can be generalized to reflect
specific features of the many and varied
forms of biomolecular dynamics (11). Al-
though most simulations were performed in
the fast limit on the chemical shift timescale,
the simulation methods themselves and the
theoretic results derived have wider applica-
tion; in particular, the theoretic results are
generally accurate if the site populations are
highly skewed (4, 13).

The numeric simulations using the strong
collision model enabled comparison of results
for the discrete state jump model (the
telegraph model discussed previously) com-
monly used to analyze NMR chemical ex-
change measurements and a model in which
resonance frequencies vary within a potential
energy well (the random-coil model discussed
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previously). The results, for example, compar-
ing Figures 6 and 7 or Figures 9 and 10, show
that chemical shift averaging within potential
wells contributes to motional narrowing of
resonance linewidths, compared with an
assumed 2-state discrete jump. Thus, reso-
nance linewidths or transverse relaxation rate
constants are not interpretable in a simple
manner because all NMR and kinetic parame-
ters contribute to the observable quantity. In
contrast, the CPMG relaxation dispersion
curves shown in Figure 12 display nearly ideal
discrete 2-state behavior even for the random-
coil model. In many experimental situations,
the fast-pulsing plateau value of Repma(tcp) is
an adjustable parameter, and the offset for the
random-coil model in Figure 12 would not be
identified. Thus, the present results provide
support for the use of discrete state models for
analysis of relaxation dispersion measure-
ments. However, chemical exchange processes
faster than the maximum pulsing rate in CPMG
experiments can be detected as anomalously
large plateau values for Rcpmg(tcp) OF by Ry,
relaxation dispersion experiments. Such pro-
cesses typically are attributed to presence of
additional discrete chemical or conformational
states. The present work raises the possibility
that such effects could arise from conforma-
tional fluctuations within a potential energy
basin.

Supplemental Material

Jupyter Notebook (Python 3.6) and Fortran
77 software used for strong collision simula-
tions are available at: https://doi.org/10.35459/
tbp.2021.000201.s1. Supplemental Movies 1
and 2 are available at: https://doi.org/10.
35459/tbp.2021.000201.s2 and https://doi.org/
10.35459/tbp.2021.000201.s3, respectively.
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APPENDIX. CALCULATION OF
REACTION RATE CONSTANTS FOR THE
BIPHASIC POTENTIAL WITH STRONG
COLLISION DYNAMICS

Extensive literature explores statistical mechanical theories
for the absolute rate of barrier crossing (24). Transition state
theory provides an upper bound for the rate of an activated
barrier crossing. For a bistable potential with harmonic wells
separated by a dimensionless barrier of height Q >> 1, the
sum of the forward and reverse barrier crossing rate constants
can be approximated as

kTST = ‘;—:e’o + %ei(oivB) (A1)

This estimate of the rate constant assumes (a) an equilibrium
population of states and (b) that an activated state will undergo
a transition and be deactivated without recrossing of the
barrier. The transition state theory rate constant is determined
entirely by equilibrium properties of the system and has no
dependence on collision rate, friction, or any aspect of system
dynamics.

Transition state theory can be corrected by accounting for
the role of barrier recrossing in reducing the rate constant
below kTST

k = KkTST (AZ)

in which k is the sum of the forward and reverse reaction rate
constants and k < 1 is the transmission coefficient. As was first
recognized by Kramers (25), over a wide range of collision rate
or friction, the transmission coefficient shows a turnover
between the energy diffusion regime (of low collision rate or
low friction), where barrier recrossings occur due to inertial
effects and slow ED, and the SD regime (of high collision rate or
high friction), where barrier recrossings occur due to slow SD
over the barrier (26).

For the strong collision model, a transmission coefficient x
valid for all collision rate regimes has been derived by
Berezhkovskii et al. (16)

k= K|Kh (A3)

in which x; and «x;, are the transmission coefficients in the low
to intermediate and intermediate to high collision rate regimes,
respectively. In the low to intermediate collision rate regime,
the transmission coefficient is given by

0

K|:/(1

0

_ e*aTA(S)) (1 _ e*ZTB(S))
1 — e—(Tale)+Ts(e))

ede (A4)

In the absence of collisions, the time period Tx(e) for a particle
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located initially at g = 0 with kinetic energy ¢ and velocity < 0
to return to g =0 with kinetic energy ¢ and velocity > 0 and the
time period Tg(e) for a particle located initially at g = 0 with
kinetic energy ¢ and velocity > 0 to return to g =0 with kinetic
energy ¢ and velocity < 0 are given by

TA (E) =

r d:
2 / S
Vet Q—V(q)
Grmin (&) (AS)
Grmax ()
dq

e+Q— Vg —V(q)

TB (6) 2

o

in which gmin(e) and gmax(e) are the classical turning points in
the potential. Each of these integrals leads to a similar
functional form

2n 1 _
Tx(e) = o {1 - tan ! \/U)Z(w)z( +eUx(1+ w)z()}

1 o Uxod
+2cosh (e(1+w)2()+1> (A6)
in which X ={A, B} and Ux={Q, Q — Vg}. The energy diffusion
regime is reached as o — 0. For well frequencies similar to the
barrier frequency, i.e., 0.25 < wy < 1.5, 1= kgp = 210/ (0w + Wg).
In the intermediate to high collision rate regime, the
transmission coefficient is given by

©

Kh :/e’ztanh(z/oc)dz (A7)

0

As o — o, the SD regime is reached, and ky = ksp = 1/2 (in
dimensionless units).
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