

1 Y. Lou, Y. Yang, Y. Ye, W. Zuo, J. Wang 2021. "The Effect of Building Retrofit Measures
2 on CO₂ Emissions Reduction – A Case Study with U.S. Medium Office Buildings." *Energy and*
3 *Buildings*, 253, pp. 111514. <https://doi.org/10.1016/j.enbuild.2021.111514>

4

5 The effect of building retrofit measures on CO₂ emissions reduction – A case study 6 with U.S. medium office buildings

7 Yingli Lou^a, Yizhi Yang^a, Yunyang Ye^b, Wangda Zuo^{a,c,*}, Jing Wang^a

8 ^a Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder,
9 Boulder, CO 80309, U.S.A.

10 ^b Pacific Northwest National Laboratory, Richland, WA 99354, U.S.A.

11 ^c National Renewable Energy Laboratory, Golden, CO 80401, U.S.A

12 * Corresponding author. Email address: Wangda.Zuo@colorado.edu (Wangda Zuo)

13 **Abstract**

14 Building retrofits have great potential to reduce CO₂ emissions since buildings are responsible for 36%
15 of emissions in the United States. Several existing studies have examined the effect of building retrofit
16 measures on CO₂ emission reduction. However, these studies oversimplified emission factors of electricity
17 by adopting constant annual emission factors. This study uses hourly emission factors of electricity to
18 analyze the effect of building retrofit measures on emission reduction using U.S. medium office buildings
19 as an example. We analyzed the CO₂ emission reduction effects of eight building retrofit measures that
20 related to envelope and mechanical systems in five locations: Tampa, San Diego, Denver, Great Falls, and
21 International Falls. The main findings are: (1) estimating CO₂ emission reduction with constant emission
22 factors overestimates the emission reduction for most measures in San Diego, while it underestimates the
23 emission reduction for most measures in Denver and International Falls; (2) The same retrofit measure may
24 have different effects on CO₂ emission reduction depending on the climate. For instance, *improving lighting*
25 *efficiency* and *improving equipment efficiency* have less impact in emission reduction in cold climates than
26 hot climates; and (3) The most energy efficient measure may not be the most efficient emission measure.
27 For example, in Great Falls, the most energy efficient measure is *improving equipment efficiency*, but the
28 most efficient emission measure is *improving heating efficiency*.

29 **Keywords:** CO₂ emissions, Building, Retrofit, Building energy model, Simulation

30 **1. Introduction**

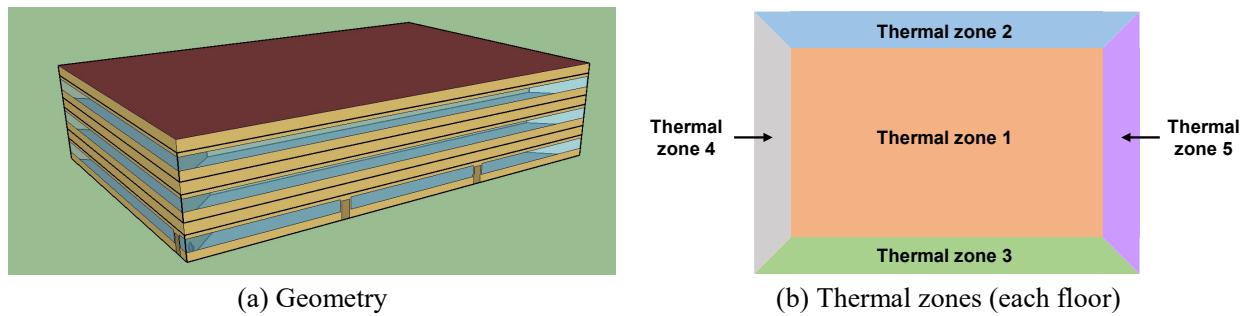
31 The United States (U.S.) is the second-largest contributor to CO₂ emissions [1] and reducing emissions
32 in the U.S. is necessary to mitigate the risk of catastrophic climate change. Intergovernmental Panel on
33 Climate Change (IPCC) declared that the CO₂ emissions humans spew into the atmosphere leads to climate

34 change. By the end of the 21st century, the current CO₂ emissions will cause global warming to around 1.5–
35 2 °C if we do not drastically limit CO₂ emissions by mid-century and beyond [2]. Global warming is
36 associated with many physical and biological damages, such as receding glaciers, bleached corals,
37 acidifying oceans, killer heat waves, and hurricanes [3][4][5]. The U.S. outlined a pathway to reduce CO₂
38 emissions by 50% below 2005 levels by 2030 [6], and 80% below 2005 levels by 2050 [7].

39 Buildings are critical for emission reduction because the U.S. buildings sector accounted for 36% of
40 energy-related CO₂ emissions [8]. At present, there are plenty of buildings have poor energy performance
41 and lead to a bulk of CO₂ emissions [9][10]. Most of these buildings will still be in function until 2025 or
42 even 2050 [11]. Retrofitting existing buildings is crucial for emission reduction in the U.S. Langevin et al.
43 [12] found that the combination of aggressive efficiency measures, electrification, and high renewable
44 energy penetration can reduce CO₂ emissions in the U.S. building sector by 72%–78% relative to 2005
45 levels.

46 Several existing studies have examined the CO₂ emission reduction effect of building retrofit measures.
47 In the case study conducted by Tettey et al. [13], CO₂ emission reduction is about 6–8% when the building
48 insulation material is changed from rock wool to cellulose fiber. Murray et al. [14] treated CO₂ emission
49 factors of electricity as an uncertainty variable and investigated the optimal set of building measures to
50 minimize emissions for the Swiss building stock. An average CO₂ emission factor of electricity in Spain
51 was adopted by Garriga et al. [15] to study the optimal carbon-neutral retrofit of residential communities
52 in Barcelona, Spain. Huang et al. analyzed the CO₂ emission payback periods of external overhang shading
53 in a university campus in Hong Kong [16]. An average emission factor of electricity in recent years in Hong
54 Kong was adopted in this research. An average emission factor of electricity in the last five years in Finland
55 was used by Niemelä et al. [17] to determine the cost-optimal renovation from the CO₂ emission reduction
56 potential perspectives. Life-cycle CO₂ emission reduction of retrofit measures in new commercial buildings
57 was studied by Kneifel and a state-level annual emission factor of electricity was adopted in this study [18].

58 However, the CO₂ emission factor of electricity is oversimplified in existing studies and a constant
59 factor throughout the whole year is adopted. In fact, the emission factors can potentially change every day,
60 even every hour, especially in areas with a high renewable energy penetration [19][20][21]. For example,
61 if solar power generation is prevalent in one area, CO₂ emission factors of electricity will be low during the
62 daytime and high at nighttime. If a region has extensive hydropower generation, emission factors of
63 electricity will be lower during the rainy season than the dry season. As a result, using a constant average
64 emission factor may underestimate or overestimate the emission reduction of some building retrofit
65 measures.


66 The above literature review shows that there is a lack of study on the emission reduction of building
67 retrofit measures with dynamically changing electricity emission factors. Existing research adopted a
68 constant emission factor, while electricity emission factors are dynamically changing. The impact of
69 electricity emission factors on building emissions is significant since electricity is the major energy source
70 of buildings. Therefore, it is crucial to investigate the emission reduction difference between using
71 dynamically changing emission factors and a constant factor.

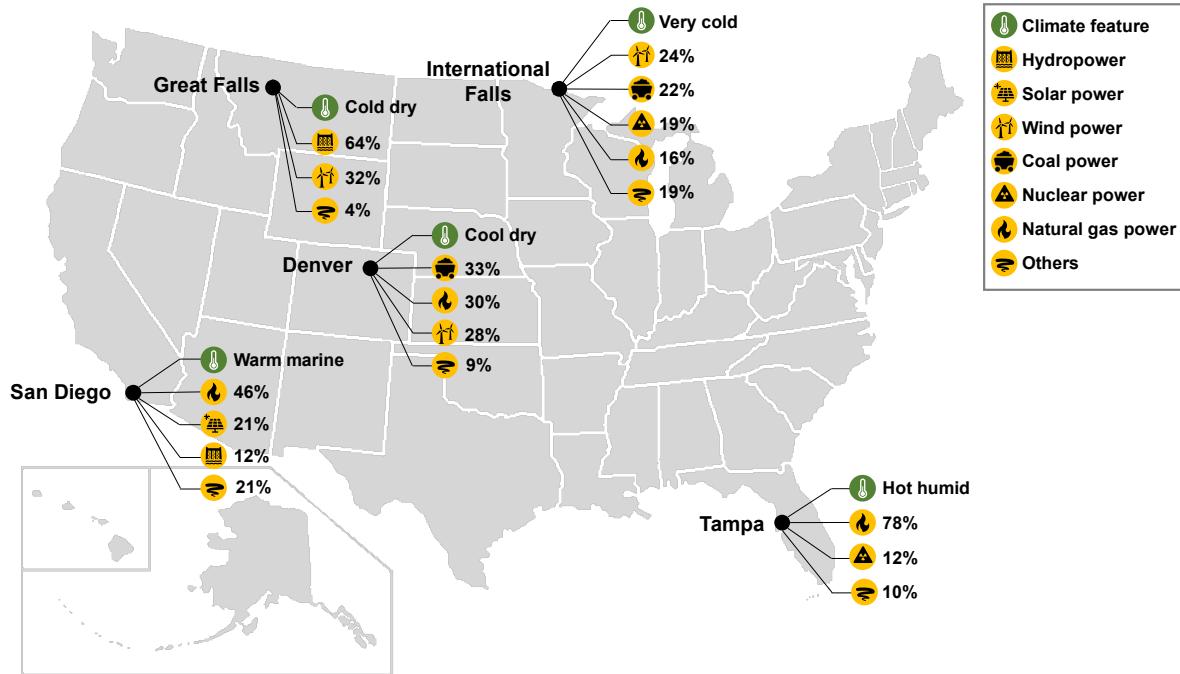
72 In this study, hourly CO₂ emission factors of electricity are adopted to analyze the effect of building
73 retrofit measures on emission reduction. U.S. medium office buildings are used as an example in this study.

74 This paper is organized as follows: Section 2 introduces the design of the case study including location
 75 selection, building retrofit measures selection, and the method to estimate the emission reduction effect of
 76 individual measures. Section 3 presents the hourly CO₂ emission reduction by applying individual measures
 77 using one location as an example. And the annual CO₂ emission reduction effect of individual measures in
 78 all locations is analyzed in Section 3. Section 4 discusses the impact of climates on emission reduction
 79 effect, the difference between energy efficient measures and emission efficient measures, and the difference
 80 between using the hourly CO₂ emission factors of electricity and the annual factor. Finally, interesting
 81 findings are concluded in Section 5.

82 2. Study Design

83 This section first introduces studied locations and building retrofit measures. Then, we introduce the
 84 method to estimate the CO₂ emission reduction effect of individual measures. To support commercial and
 85 residential building energy codes and standards, the U.S. Department of Energy (DOE) has been dedicating
 86 to the development of prototype building models. The prototype models include 16 commercial building
 87 types in 19 climate locations (16 in the U.S. and 3 international locations) for different editions of ASHRAE
 88 Standard 90.1 and IECC. Those models are widely used to investigate energy saving
 89 [22][23][24][25][26][27], power consumption [28][29], and emission reduction [18]. And the results based
 90 on these models are also accepted by the community. Therefore, this study adopted DOE Commercial
 91 Prototype Building Models for medium office buildings [30] to estimate CO₂ emissions. Fig. 1 shows the
 92 geometry and thermal zones of the model, which has a rectangular shape with three stories. Each story
 93 contains five thermal zones. Table 1 summarizes the key model parameters.

95 Fig. 1. building model Geometry and thermal zones of the prototype medium office building model


96 Table 1. Key parameters of the prototype medium office building model

Parameter Name	Value
Total floor area	4982 m ² (49.91 m × 33.27 m × 3)
Aspect ratio	1.5
Number of floors	3
Window-to-wall ratio	33%
Floor-to-floor height	3.96 m
Envelope type	Exterior walls: steel-frame walls Roof: insulation above deck
HVAC system type	Heating: gas furnace inside the packaged air conditioning unit

Parameter Name	Value
	Cooling: packaged air conditioning unit Terminal Units: VAV terminal box with damper and electric reheating coil
Service water heating type	Storage tank using natural gas as fuel

97 2.1. *Location selection*

98 The selected locations should cover different climates and compositions of electricity generation. Using
99 this principle, five locations are selected: (1) Tampa, Florida; (2) San Diego, California; (3) Denver,
100 Colorado; (4) Great Falls, Montana; and (5) International Falls, Minnesota. As shown in Fig. 2, they
101 represent five different climates (from hot humid to very cold). Their compositions of electricity generation
102 vary from fossil fuel dominated (e.g., Tampa) to renewable energy dominated (e.g., Great Falls). The
103 consumption of fossil fuel, like coal and natural gas, produces direct CO₂ emissions, while the consumption
104 of renewable energy, like hydropower, solar power, wind power, and nuclear, doesn't produce direct
105 emissions.

Note: Climate features are obtained from [30]; compositions of electricity generation are obtained from [31].

107 Fig. 2. Locations selection for the case study

108 2.2. *Building retrofit measure selection*

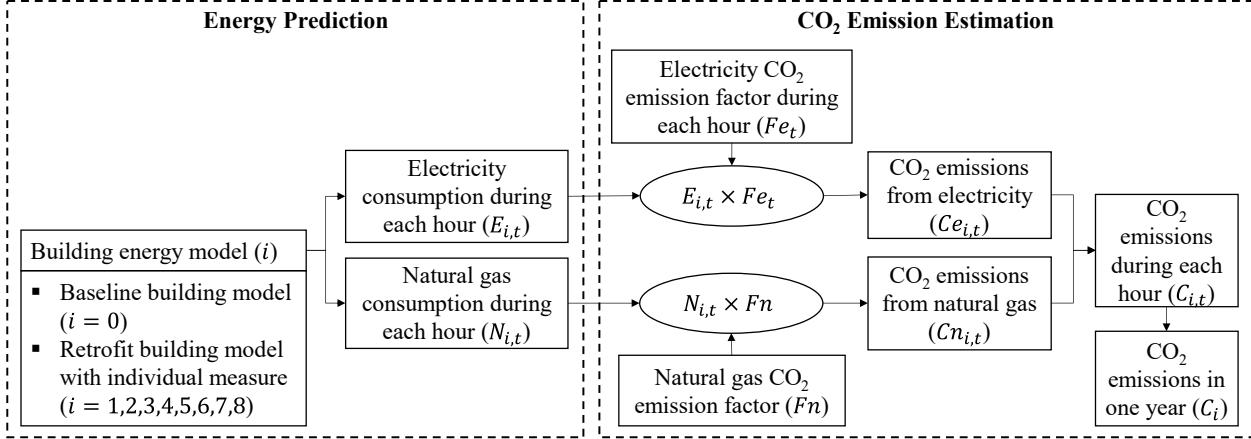
109 This subsection introduces building retrofit measures that are examined in this study. Existing research
110 has provided a rich set of building retrofit measures for U.S. commercial buildings [32][33][27][34][35][36].
111 Based on our previous research [23][22], eight building retrofit measures for U.S. medium office buildings
112 are included in this study, as shown in Table 2. Based on literatures [22], these eight building retrofit
113 measures potentially have significant impacts on the CO₂ emissions for medium office buildings across

114 different climate feature locations. The abbreviation for each measure will be used in the rest of this paper.
 115 The values of model inputs will be introduced in Section 2.3.

116 Table 2. Building retrofit measures examined in the case study

No.	Building Retrofit Measure	Abbreviation	Model Input
1	Add wall insulation	WALL	Wall insulation R-value
2	Add roof insulation	ROOF	Roof insulation R-value
3	Replace windows	WINDOW	Window U-factor, Window SHGC
4	Replace interior lights with higher efficiency lights	LIGHT	Lighting power density
5	Replace office equipment with higher efficiency equipment	EQUIP	Plug load density
6	Replace cooling coil with higher efficiency coil	COOLING	Nominal coefficient of performance (COP)
7	Replace heating burner with higher efficiency burner	HEATING	Burner efficiency
8	Replace service hot water system with higher-efficiency system	SWH	Heater thermal efficiency

117 *2.3 CO₂ emission reduction*


118 The CO₂ emission reduction effect of the individual measure (R_i) can be obtained using the following
 119 formula:

$$R_i = \frac{C_0 - C_i}{C_0} \times 100\%, \quad i = 1, 2, 3, 4, 5, 6, 7, 8, \quad (1)$$

120 where, C_0 is CO₂ emissions of baseline building model; and C_i is CO₂ emissions of retrofit building
 121 model by applying the retrofit measure i . The C_0 and C_i can be obtained using the following formula,
 122 which is also illustrated in Fig. 3.

$$C_i = \sum_{t=1}^n C_{i,t} = \sum_{t=1}^n (Ce_{i,t} + Cn_{i,t}) = \sum_{t=1}^n (E_{i,t} \times Fe_t + N_{i,t} \times Fn), \quad (2)$$

123 where, $C_{i,t}$ is CO₂ emissions at time t for the building with retrofit measure i . For the baseline building,
 124 $i = 0$. The n is the total number of hours in a year, which is 8784 in this study. The $Ce_{i,t}$ is CO₂ emissions
 125 from electricity at time t for the building with retrofit measure i . The $Cn_{i,t}$ is CO₂ emissions from natural
 126 gas at time t for the building with retrofit measure i . The $E_{i,t}$ is electricity consumption at time t for the
 127 building with retrofit measure i . The Fe_t is electricity CO₂ emission factor at time t . $N_{i,t}$ is natural gas
 128 consumption at time t for the building with retrofit measure i . Fn is natural gas emission factor, which is a
 129 constant value.

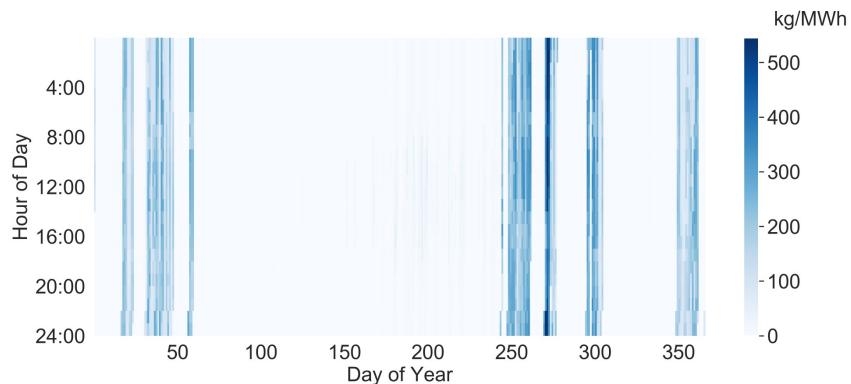
131

Fig. 3. Workflow to estimate the CO₂ emissions of a building

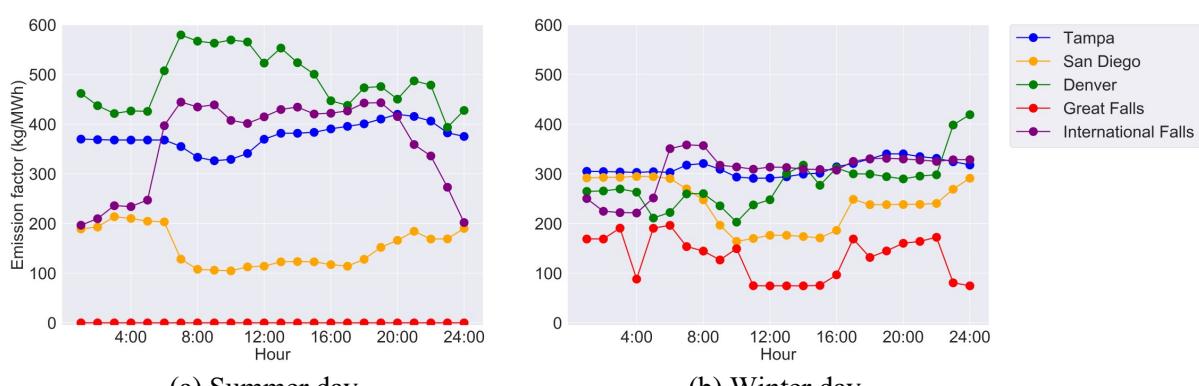
132 The model input values of baseline models are based on ASHRAE Standard 90.1-2007 [37]. The model
 133 input values of retrofit models are based on the Advanced Energy Design Guide 50% Energy Savings [38].
 134 Table 3 shows the model input values of baseline models and retrofit models, which result in 45 models (5
 135 locations × (1 baseline model + 8 retrofit models)). The objective of this study is to investigate the emission
 136 reduction effect due to building retrofit measures on different locations. Therefore, the embodied emissions
 137 of building retrofit measures are not involved in this study.

138

Table 3. Model input values of baseline models and retrofit models


Model Input	Unit	Tampa		San Diego		Denver		Great Falls		International Falls	
		Base ¹	Retr ²	Base ¹	Retr ²						
Wall insulation R-value	m ² -K/W	1.04	2.75	1.71	2.75	2.37	4.19	2.37	4.76	2.37	4.76
Roof insulation R-value	m ² -K/W	3.47	4.52	3.47	4.52	3.47	5.50	3.47	5.50	3.47	6.29
Window U-factor	W/m ² -K	4.09	2.56	3.52	2.33	2.73	1.99	2.73	1.99	2.38	1.87
Window SHGC	-	0.25	0.25	0.25	0.25	0.4	0.26	0.4	0.35	0.45	0.40
Lighting power density	W/m ²	10.76	8.07	10.76	8.07	10.76	8.07	10.76	8.07	10.76	8.07
Plug load density	W/m ²	8.07	5.92	8.07	5.92	8.07	5.92	8.07	5.92	8.07	5.92
Nominal COP	-	3.23	3.37	3.23	3.37	3.23	3.37	3.23	3.37	3.23	3.37
Burner efficiency	-	0.80	0.90	0.80	0.90	0.80	0.90	0.80	0.90	0.80	0.90
Heater thermal efficiency	-	0.81	0.90	0.81	0.90	0.81	0.90	0.81	0.90	0.81	0.90

139 ¹Base: Baseline model (Source: ASHRAE Standard 90.1-2007 [37])140 ²Retr: Retrofit model (Source: AEDG 50% Energy Savings [38])141 *2.3.1. Energy prediction*


142 As shown in Fig. 3, this study predicts energy consumption for (1) baseline building models and (2)
 143 retrofit building models by adopting individual measures. In this study, the baseline models are the DOE
 144 Commercial Prototype Building Models for medium office buildings [30], which were introduced in the
 145 beginning of Section 2. Retrofit models are the updated baseline models by adopting the individual
 146 measures listed in Table 2. The model input values of individual measures are listed in Table 3. Two types
 147 of data are extracted after model simulation: (1) hourly electricity consumption ($E_{i,t}$) and (2) hourly natural
 148 gas consumption ($N_{i,t}$).

149 2.3.2. *CO₂ emission estimation*

150 Using the electricity and gas consumption data obtained in the subsection 2.3.1, this subsection
 151 introduces the method to estimate CO₂ emissions of baseline models and retrofit models. As shown in Fig.
 152 3, CO₂ emissions from electricity are calculated by multiplying hourly electricity consumption with hourly
 153 emission factors of electricity, and CO₂ emissions from natural gas are calculated by multiplying hourly
 154 natural gas consumption with one natural gas emission factor. Hourly CO₂ emission factors of electricity
 155 are obtained from the National Renewable Energy Laboratory (NREL) website [31]. The emission factor
 156 in each hour is the average values of emission factors during that hour. For example, Fig. 4 shows the hourly
 157 emission factors of electricity in Great Falls. The horizontal axis in Fig. 4 represents each day of the year.
 158 Vertical axis represents each hour of the day. The shade of the color represents the magnitude of the value
 159 in a specific hour on one day. Fig. 5 shows hourly emission factors of electricity on two typical days
 160 (summer day: 2020-06-19 and winter day 2020-12-21) for the five studied locations. Hourly emission
 161 factors of electricity in Great Falls during the summer are almost always zero because there is abundant
 162 hydropower during that time. The natural gas emission factor is a fixed value in the whole year for five
 163 studied locations, which is 180 kg/MWh [39].

165 Fig. 4. Hourly CO₂ emission factors of electricity in Great Falls
 166

168 (a) Summer day

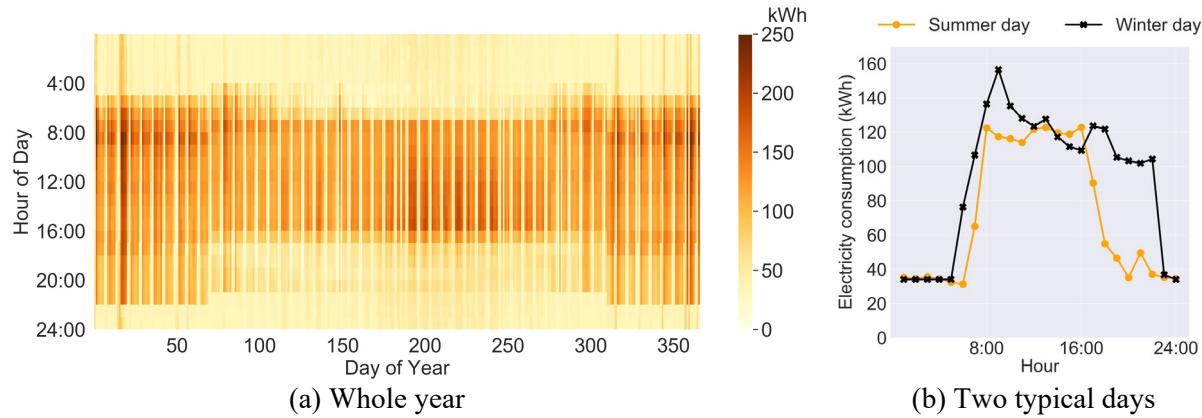
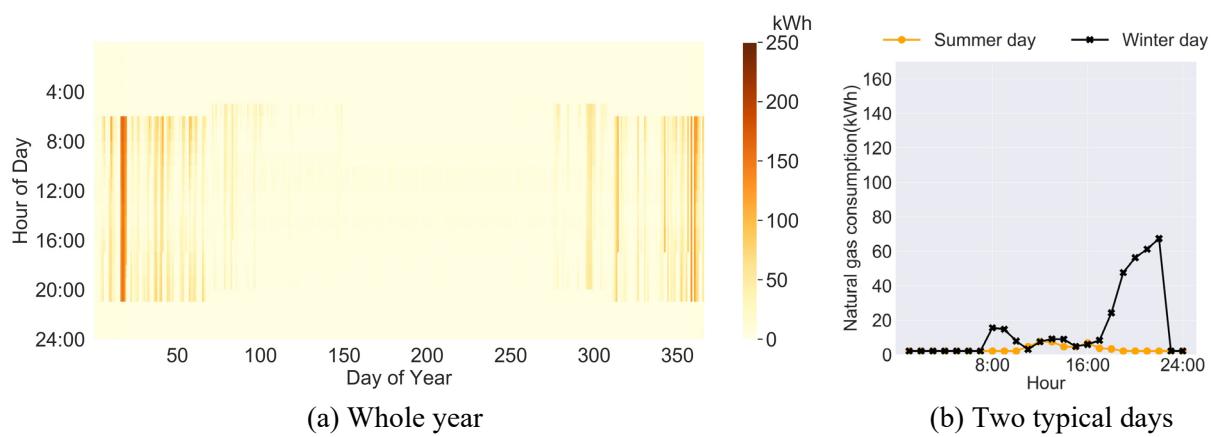

169 (b) Winter day

Fig. 5. Hourly CO₂ emission factors of electricity on two typical days


170 **3. Results**

171 *3.1. Energy prediction*

172 This subsection shows the prediction results of hourly electricity and natural gas consumption in 2020
 173 for the baseline models and retrofit models. We use the baseline model in Great Falls as an example to
 174 illustrate the hourly electricity and natural gas consumption, as shown in Fig. 6 and Fig. 7. To make the two
 175 types of energy consumption comparable, the unit of natural gas consumption is converted from MJ to kWh.
 176 Fig. 6 (a) and Fig. 7 (a) shows that the electricity consumption is much higher than the natural gas
 177 consumption in Great Falls. Electricity consumption is relatively even throughout the year, while natural
 178 gas consumption primarily concentrates in winter. Fig. 6 (a) and Fig. 7 (a) also shows that there is a periodic
 179 change in the electricity and natural gas consumption: electricity and natural gas consumption is intensive
 180 during the workday, while they are almost zero over the weekend. Fig. 6 (b) and Fig. 7 (b) shows that
 181 electricity consumption is concentrated from 7:00 to 22:00 in winter and 8:00 to 16:00 in summer; natural
 182 gas consumption is concentrated from 8:00 to 22:00 in winter and almost no consumption in summer.

184
 185 Fig. 6. Hourly electricity consumption of the baseline model in Great Falls

187
 188 Fig. 7. Hourly natural gas consumption of the baseline model in Great Falls

189 *3.2. CO₂ emission estimation*

190 Based on the hourly electricity and natural gas consumption predicted in subsection 3.1, hourly CO₂
 191 emissions of baseline models and retrofit models in five locations can be obtained using equation (2). Here

192 we use Great Falls as an example to discuss the relationship between energy consumptions and CO₂
 193 emissions. The hourly CO₂ emissions of the baseline model in Great Falls is shown in Fig. 8. There are
 194 some interesting findings in two different time scales for Great Falls.

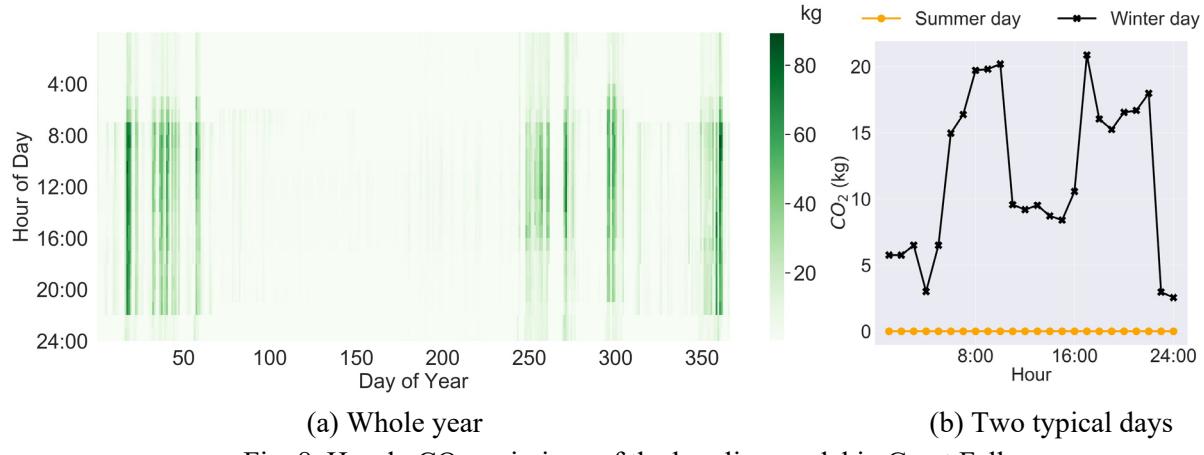
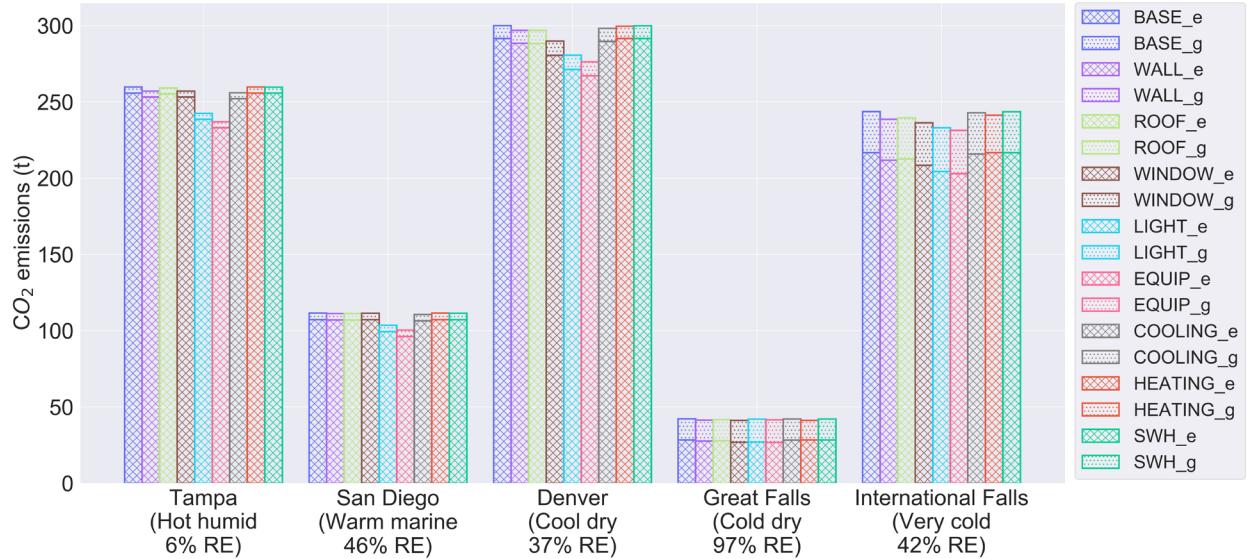



Fig. 8. Hourly CO₂ emissions of the baseline model in Great Falls

198 For a period of one year, the change of CO₂ emissions is not consistent with the energy consumption.
 199 The emissions in Great Falls mainly occur on some days during winter while almost always zero during
 200 summer. On the contrary, Fig. 6 (a) shows that electricity consumption is intensive during the whole year
 201 in Great Falls. This inconsistency is due to time-variant emission factors: hourly CO₂ emission factors of
 202 electricity in Great Falls are almost always zero during summer and high in winter, as shown in Fig. 4. As
 203 a result, the emissions from electricity consumption in summer are almost always zero despite the amount
 204 of electricity consumption. Emissions from natural gas are also almost always zero during summer due to
 205 low natural gas consumption as shown in Fig. 7. Therefore, total CO₂ emissions in Great Falls during
 206 summer are almost always zero.

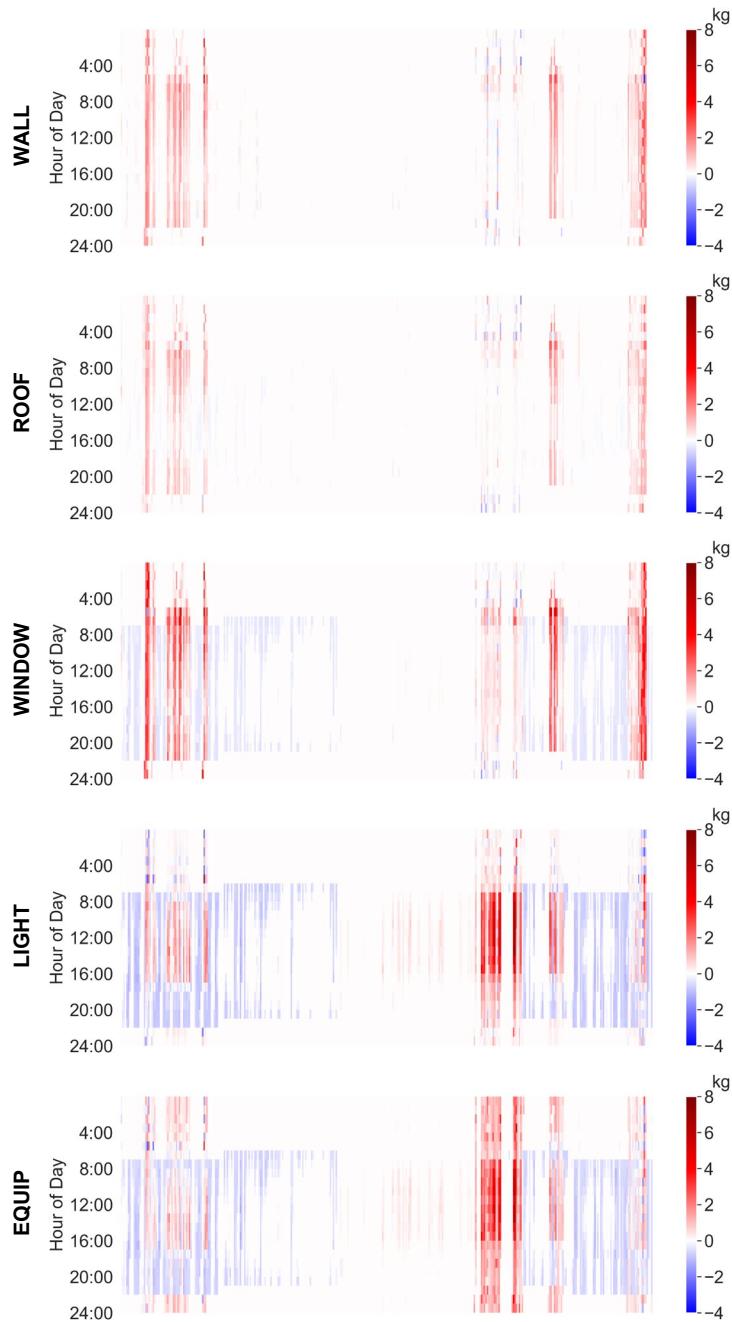
207 For a period of one whole day in winter, the variation of CO₂ emissions (Fig. 8) is consistent with
 208 energy consumption (Fig. 6 and Fig. 7): emissions from the building mainly happen during the daytime, as
 209 shown in Fig. 8, and energy consumption from the building also mainly happens during the daytime, as
 210 shown in Fig. 6 and Fig. 7. This is because hourly emission factors of electricity in Great Falls on one whole
 211 day are relative constant (Fig. 4) and the natural gas emission factor is a constant value. It is worth noting
 212 this phenomenon may not occur for other locations, such as San Diego, where electricity is largely provided
 213 by solar.

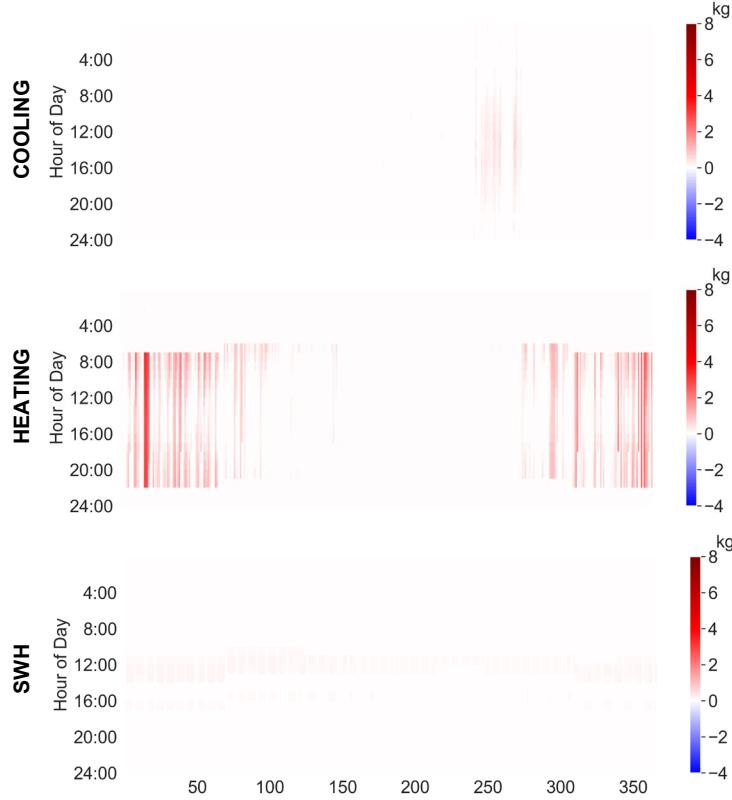
214 Fig. 9 shows the annual CO₂ emissions of baseline building models and retrofit building models in five
 215 studied locations. “MEASURE_e” represents emissions from electricity and “MEASURE_g” represents
 216 emissions from natural gas. There are some interesting findings among different locations.

Note: Renewable energy (RE) penetration is obtained from [31].

Fig. 9. Annual CO₂ emissions of baseline models and retrofit models

First, the CO₂ emissions in San Diego and Great Falls are much lower than the other three locations. This is because San Diego and Great Falls have high renewable energy penetration, which is 46% and 97% respectively.

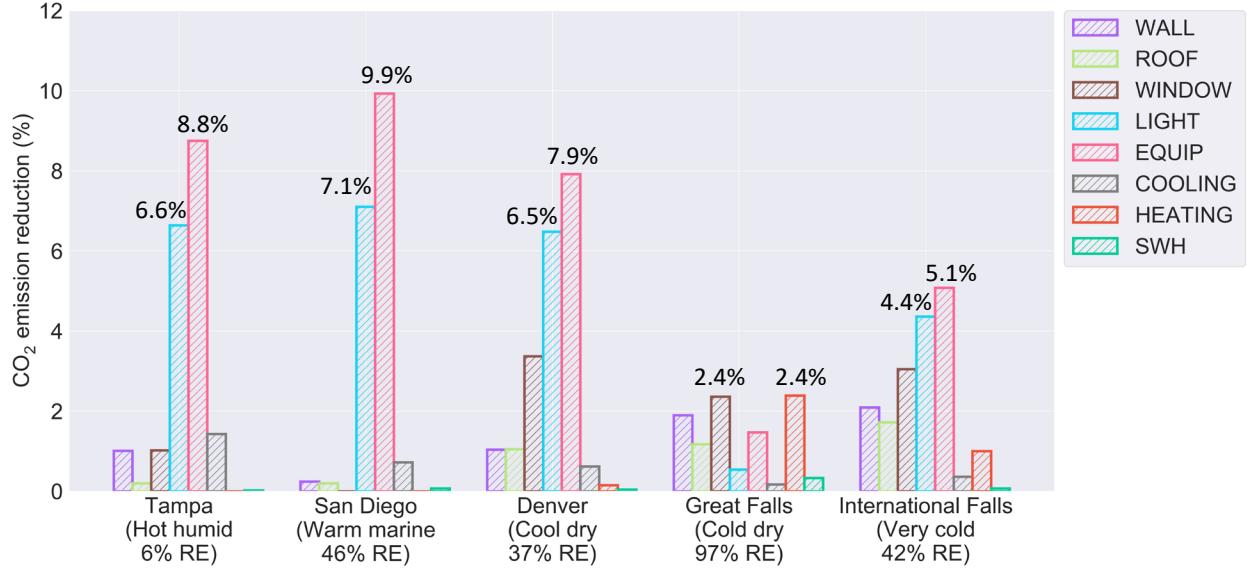

Moreover, International Falls has the largest CO₂ emissions from natural gas, followed by Great Falls, Denver, San Diego, and Tampa. CO₂ emissions from natural gas increase as the climate gets colder since natural gas is used for heating. When the climate gets colder, heating loads increase accordingly [40][41]. So, natural gas consumption for heating increases when the climate gets colder, which leads to the increase of CO₂ emissions.


The CO₂ emissions from natural gas only account for a small part of total emissions in Tampa, San Diego, Denver, and International Falls, but they account for more than 30% of total emissions in Great Falls, as shown in Fig. 9. One of the reasons is that natural gas consumption in Great Falls is large due to the cold climate feature mentioned above. Another reason is that hourly emission factors of electricity in Great Falls are very low due to the high penetration of hydropower and wind power.

3.3. *CO₂ emission reduction*

CO₂ emission reduction by applying individual measures can be obtained by subtracting emissions of the retrofit building from emissions of the baseline building. For example, CO₂ emission reductions by applying individual measures in Great Falls are shown in Fig. 10. Red means this measure reduces emissions, while blue indicates the increase of emissions. Fig. 10 shows that: (1) building retrofit measures in Great Falls reduce CO₂ emissions in winter due to the high emission factors of electricity; (2) HEATING reduces CO₂ emissions more significantly than the other seven measures since natural gas is used for heating; (3) COOLING hardly reduces CO₂ emissions since emission factors of electricity in summer are almost zero when cooling is needed; (4) SWH also has little impact on CO₂ emissions because only a little amount of energy is used for service water heating; (5) by improving the efficiency, LIGHT and EQUIP reduce

242 electricity consumption and related internal heat gain. This can reduce the cooling load in the cooling season
 243 but increase the heating load in the heating season. As a result, they reduce CO₂ emissions in the spring and
 244 fall when cooling is still needed and electricity comes from fossil fuel, and they increase CO₂ emissions
 245 when natural gas is used for heating; and (6) by reducing the solar heat gain and increasing insulation,
 246 WINDOW reduces the cooling load but increases the heating load. Therefore, it reduces CO₂ emissions in
 247 the spring and fall, and increases CO₂ emissions when heating is needed.



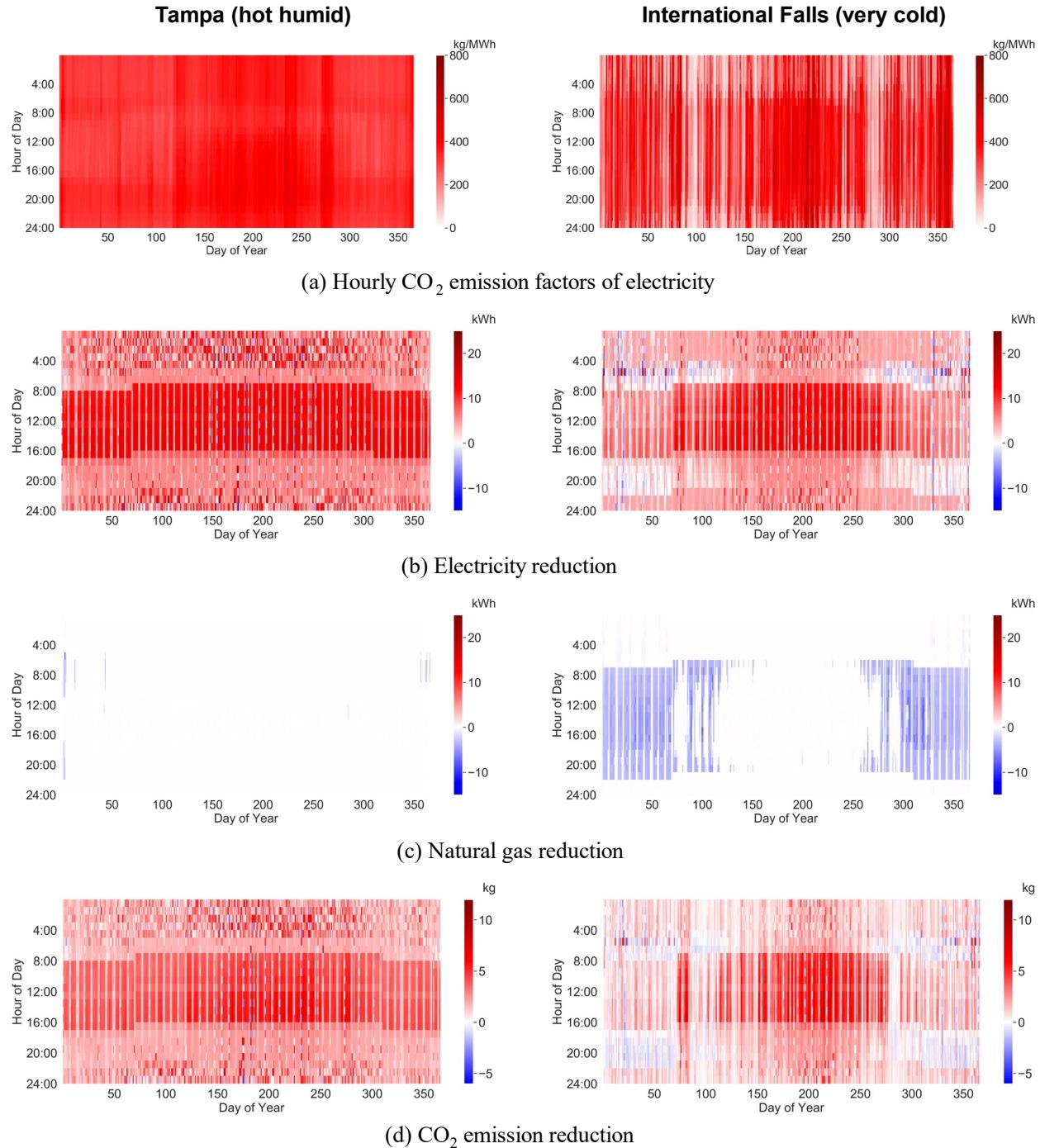
248 Fig. 10. CO₂ emission reduction by applying individual measures in Great Falls

249 The relative reduction of each measure is calculated using the CO₂ emission reduction effect (R_i)
 250 defined in equation (1). The results are shown in Fig. 11. The difference of R_i is small in cold locations
 251 (within 2.4% for Great Falls and within 5.1% for International Falls). The difference of R_i is relatively large
 252 in the other three locations (from 7.9% in Denver to 9.9% in San Diego) since EQUIP and LIGHT have
 253 significant impacts on R_i . The reason for this phenomenon is explained in Section 4. The EQUIP and
 254 LIGHT are the top two emission efficient measures in four locations except Great Falls where the top two
 255 are HEATING and WINDOWS.

256

Note: Renewable energy (RE) penetration is obtained from [31].

258

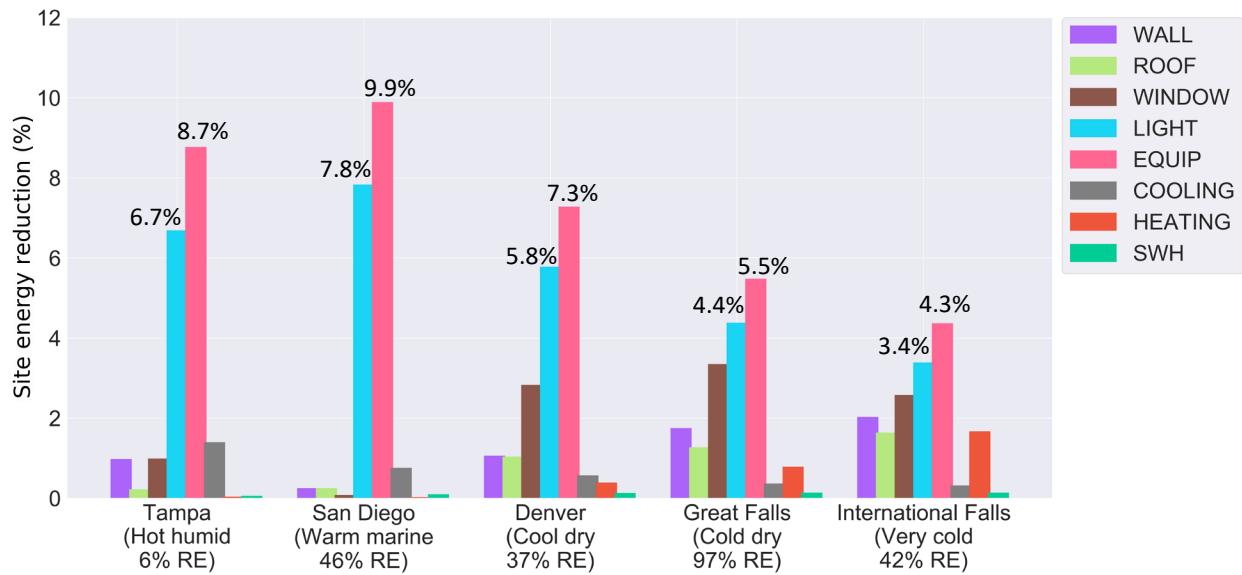

Fig. 11. CO₂ emission reduction effect (R_i) by applying individual measures

259 **4. Discussion**

260 *4.1. Impact of climates on CO₂ emission reduction*

261 In cold climates, improving lighting efficiency and improving equipment efficiency are less effective
 262 in emission reduction than hot climates. Fig. 11 shows that the CO₂ emission reduction effects of LIGHT
 263 and EQUIP in International Falls (cold climate) are 4.4% and 5.1% respectively, while they are 6.6% and
 264 8.8% respectively in Tampa (hot climate).

265 Using EQUIP as an example, Fig. 12. shows the hourly CO₂ emission factors of electricity, the
 266 reduction of electricity consumption, the reduction of natural gas consumption, and the reduction of CO₂
 267 emissions in Tampa and International Falls. Both locations have similar emission factors in electricity
 268 generation (Fig. 12 a). However, the reduction of electricity consumption by applying EQUIP is more
 269 effective in hot climates, such as Tampa (Fig. 12 b), since it also reduces the cooling load due to the reduced
 270 internal heat gain from the equipment. For cold climates, like International Falls, additional heating will be
 271 needed when internal heat gain resulted from equipment is reduced. This also leads to an increase of gas
 272 consumption in the cold climate location, as shown in Fig. 12 (c). As a combined effect, Fig. 12 (d) shows
 273 larger emission reduction resulted by improving efficiency of equipment in Tampa than International Falls.


275 Fig. 12. Energy and CO₂ emission reduction by applying EQUIP in hot and cold locations

276 *4.2. Measures to reduce energy and emissions*

277 Due to the variability of CO₂ emission factors, the most energy efficient measure is not necessarily the
 278 most efficient emission measure. For instance, the most energy efficient measure in Great Falls is EQUIP
 279 (Fig. 13) while the most efficient emission measure is HEATING (Fig. 11). Improving equipment efficiency
 280 reduces electricity consumption and related internal heat gain. This can reduce cooling loads but increase

heating loads. Therefore, improving equipment efficiency in Great Falls mainly reduces electricity consumption in summer. However, this large energy reduction does not lead to corresponding emission reduction because electricity in Great Falls in summer mainly comes from hydropower with zero emissions. On the contrary, natural gas is used for heating in Great Falls, improving heating efficiency can directly reduce emissions so that it becomes the most efficient emission measure.

A different example is San Diego, whose most efficient emission measure is the same as the most energy efficient measure: EQUIP, as shown in Fig. 11 and Fig. 13. There are two reasons. First, San Diego has little heating needs. Therefore, the emission reduction effect of HEATING is minimal. Second, only 46% of electricity comes from renewable energy. As a comparison, Great Falls gets 97% of its electricity from renewable energy. Thus, reducing electricity consumption by adopting efficient equipment can still lead to a good amount of emission reduction in San Diego.

Note: Renewable energy (RE) penetration is obtained from [31].

Fig. 13. Site energy reduction by applying individual measures

If a location doesn't have high renewable energy penetration of electricity generation, it is suggested to select energy efficient measures for emission reduction because emission efficient measures are same as energy efficient measures. For example, improving the efficiency of electric equipment and lighting are suggested retrofit measures. If a location has high renewable energy penetration of electricity generation, it is suggested to select retrofit measures that can reduce fossil fuel consumption for emission reduction. For example, improving heating efficiency is a suggested retrofit measure for buildings that natural gas is used for heating.

4.3. Impact of using hourly CO₂ emission factor

By comparing the CO₂ emission reduction difference between using our method and the existing method (adopting constant annual factor on the current year grid emissions), we find that estimating CO₂ emission reduction with the constant annual emission factor will overestimate or underestimate the

305 reduction. Fig. 14 shows the estimation bias on emission reductions using the constant emission factor by
 306 comparing with the one using hourly factors.

Note: Renewable energy (RE) penetration is obtained from [31].

308 Fig. 14. Estimation bias on CO₂ emission reduction using the annual emission factor

309 To quantitatively compare the difference of emission reduction by using hourly emission factors and
 310 constant emission factor, Table 4 shows the CO₂ emission reduction by using these two methods and their
 311 difference. Fig. 14 and Table 4 shows that using the constant emission factor tends to overestimate the
 312 emission reduction in San Diego (up to 1550 kg), underestimate in Denver (up to 692 kg) and International
 313 Falls (up to 1165 kg), both over- or underestimating in Tampa and Great Falls. The largest difference occurs
 314 in San Diego and the smallest difference in Tampa.

315 Table 4. CO₂ emission reduction by using hourly emission factors and a constant emission factor

Location	Retrofit Measures	Emission Reduction using Hourly Emission Factors (kg)	Emission Reduction using A Constant Emission Factor (kg)	Emission Reduction Difference (kg)
Tampa	WALL	2618	2490	-128
	ROOF	525	495	-30
	WINDOW	2647	2521	-126
	LIGHT	17252	17404	152
	EQUIP	22739	22853	114
	COOLING	3717	3591	-126
	HEATING	8	8	0
	SWH	48	48	0
San Diego	WALL	265	271	6
	ROOF	219	262	43
	WINDOW	0	-57	-57
	LIGHT	7919	9469	1550

Location	Retrofit Measures	Emission Reduction using Hourly Emission Factors (kg)	Emission Reduction using A Constant Emission Factor (kg)	Emission Reduction Difference (kg)
Denver	EQUIP	11066	11965	899
	COOLING	802	890	88
	HEATING	1	2	1
	SWH	82	82	0
Great Falls	WALL	3110	3107	-3
	ROOF	3136	3105	-31
	WINDOW	10126	9918	-208
	LIGHT	19457	18765	-692
	EQUIP	23753	23161	-592
	COOLING	1851	1667	-184
	HEATING	438	438	0
	SWH	123	123	0
International Falls	WALL	801	539	-262
	ROOF	493	343	-150
	WINDOW	998	523	-475
	LIGHT	228	292	64
	EQUIP	622	772	150
	COOLING	72	97	25
	HEATING	1010	1010	0
	SWH	141	141	0

316

317 As shown in Fig. 2, San Diego has plenty of solar power during the daytime, thus, hourly CO₂ emission
 318 factors during daytime are lower than both the hourly emission factors during nighttime and the annual
 319 factor (Fig. 5). This will lead to an overestimated emission for energy used in the daytime if the annual
 320 factor is adopted. As a result, it will also overestimate the emission reduction for the proposed energy
 321 efficiency measures since they mainly reduce energy consumption in the daytime.

322 On the contrary, hourly emission factors in Denver and International Falls during daytime are higher
 323 than both the hourly emission factors at nighttime and the annual factors (Fig. 5). Since electricity
 324 consumption mainly occurs during the day, applying annual emission factors to the reduced electricity
 325 consumption will underestimate the CO₂ emission reduction.

326 As shown in Fig. 2, Tampa's electricity source is dominated by natural gas (78%) and nuclear (12%),
327 which leads to relative constant hourly emission factors (Fig. 5). Thus, using hourly or annual emission
328 factors only results in a relatively small difference in the predicted emission reduction.

329 Although estimating CO₂ emission reduction with the constant annual emission factor can produce
330 biases, it takes less time for data collection and processing. The existing method (adopting annual factor)
331 is still applicable for locations where fossil fuel is dominated because using constant annual emission factor
332 in these locations only produce minor biases. However, our proposed method (adopting hourly factors) is
333 suggested for locations where renewable energy is dominated because using constant annual emission factor
334 in these locations leads to large biases.

335 5. Conclusion

336 This study analyzed the CO₂ emission reduction of building retrofit measures that related to envelope
337 and mechanical systems in five locations: Tampa, San Diego, Denver, Great Falls, and International Falls.
338 Instead of using the constant annual CO₂ emission factor of electricity, this study adopted hourly emission
339 factors. We found that using the constant emission factor cause estimation bias: it overestimates the
340 emission reduction for most measures in San Diego, while it underestimates the reduction for most
341 measures in Denver and International Falls. Another finding is that the same retrofit measure may have
342 different CO₂ emission reduction depending on the climates: improving lighting and equipment efficiency
343 has less impact on CO₂ emission reduction in cold climates than hot climates. Furthermore, the most energy
344 efficient measure is not necessarily the most efficient emission measure: in Great Falls, the most energy
345 efficient measure is improving equipment efficiency, but the most efficient emission measure is improving
346 heating efficiency. Those finding are applicable only for medium office that natural gas is used for heating
347 and electricity is used for cooling.

348 The innovation and contribution of this study mainly lie in the following two aspects. Firstly, it reveals
349 that hourly emission factors should be adopted in CO₂ emission reduction analysis for locations where
350 renewable energy is dominated. Secondly, the method of estimating CO₂ emission reduction of building
351 retrofit measures proposed in Section 2.3 can be applied to other building retrofit cases. Using this workflow,
352 future studies can estimate their CO₂ emission reductions by providing electricity emission factors together
353 with their estimated building energy consumptions and retrofit measures.

354 This study analyzes the CO₂ emission reduction effect of building retrofit measures based on one-year
355 simulation data. However, the composition of electricity generation may change over time, and CO₂
356 emission factors will change accordingly. Thus, if a building retrofit measure reduces electricity
357 consumption, emission reduction resulting from it may change over time. With the increased penetration
358 of renewable energy in electricity generation, the annual reduction of emissions due to the building retrofits
359 will likely decrease. Since the effects of building retrofit measures will last for a few decades, it would be
360 interesting to study the CO₂ emission reduction effect of building retrofit measures over a longer time frame.

361 **Acknowledgement**

362 This research was supported by the National Science Foundation under Award No. CBET-2110171.

363 **Reference**

364 [1] The World Bank, CO2 emissions, (2020).
365 [https://data.worldbank.org/indicator/EN.ATM.CO2E.KT?most_recent_value_desc=true&view=ch](https://data.worldbank.org/indicator/EN.ATM.CO2E.KT?most_recent_value_desc=true&view=chart)
366 art.

367 [2] R.K. Pachauri, M.R. Allen, V.R. Barros, J. Broome, W. Cramer, R. Christ, J.A. Church, L. Clarke, Q. Dahe, P. Dasgupta, Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change, Ipcc, 2014.

370 [3] R.A. Kerr, Global warming is changing the world, *Science* (80-). 316 (2007) 188–190.

371 [4] K. Emanuel, Global warming effects on US hurricane damage, *Weather. Clim. Soc.* 3 (2011) 261–268.

373 [5] K. Trenberth, Uncertainty in hurricanes and global warming, *Science* (80-). 308 (2005) 1753–1754.

374 [6] White House Briefing Room, Fact sheet: President Biden sets 2030 greenhouse gas pollution reduction target aimed at creating good-paying union jobs and securing US leadership on clean energy technologies. White house fact Sheet, 2021. <https://www.whitehouse.gov/briefing-room/statements-releases/2021/04/22/fact-sheet-president-biden-sets-2030-greenhouse-gas-pollution-reduction-target-aimed-at-creating-good-paying-union-jobs-and-securing-u-s-leadership-on-clean-energy-technologies/>.

380 [7] The White House, United States mid-century strategy for deep decarbonization, 2016. https://unfccc.int/files/focus/long-term_strategies/application/pdf/mid_century_strategy_report-final_red.pdf.

383 [8] U.S. Energy Information Administration, Annual Energy Outlook 2018, 2019. <https://www.eia.gov/outlooks/archive/aoe18/>.

385 [9] K.G. Wakili, B. Binder, M. Zimmermann, C. Tanner, Efficiency verification of a combination of high performance and conventional insulation layers in retrofitting a 130-year old building, *Energy Build.* 82 (2014) 237–242.

388 [10] C. Santos, T.M. Ferreira, R. Vicente, J.A.R.M. da Silva, Building typologies identification to support risk mitigation at the urban scale—Case study of the old city centre of Seixal, Portugal, *J. Cult. Herit.* 14 (2013) 449–463.

391 [11] D. Ürge-Vorsatz, L.D. Danny Harvey, S. Mirasgedis, M.D. Levine, Mitigating CO2 emissions from energy use in the world's buildings, *Build. Res. Inf.* 35 (2007) 379–398.

393 [12] J. Langevin, C.B. Harris, J.L. Reyna, Assessing the potential to reduce US building CO2 emissions 80% by 2050, *Joule.* 3 (2019) 2403–2424.

395 [13] U.Y.A. Tettey, A. Dodoo, L. Gustavsson, Effects of different insulation materials on primary energy and CO2 emission of a multi-storey residential building, *Energy Build.* 82 (2014) 369–377.

397 [14] P. Murray, J. Marquant, M. Niffeler, G. Mavromatidis, K. Orehounig, Optimal transformation strategies for buildings, neighbourhoods and districts to reach CO2 emission reduction targets,

399 Energy Build. 207 (2020) 109569.

400 [15] S.M. Garriga, M. Dabbagh, M. Krarti, Optimal carbon-neutral retrofit of residential communities in
401 Barcelona, Spain, Energy Build. 208 (2020) 109651.

402 [16] Y. Huang, J. Niu, T. Chung, Energy and carbon emission payback analysis for energy-efficient
403 retrofitting in buildings—Overhang shading option, Energy Build. 44 (2012) 94–103.

404 [17] T. Niemelä, R. Kosonen, J. Jokisalo, Energy performance and environmental impact analysis of
405 cost-optimal renovation solutions of large panel apartment buildings in Finland, Sustain. Cities Soc.
406 32 (2017) 9–30.

407 [18] J. Kneifel, Life-cycle carbon and cost analysis of energy efficiency measures in new commercial
408 buildings, Energy Build. 42 (2010) 333–340.

409 [19] C. Gordon, A. Fung, Hourly emission factors from the electricity generation sector—a tool for
410 analyzing the impact of renewable technologies in Ontario, Trans. Can. Soc. Mech. Eng. 33 (2009)
411 105–118.

412 [20] L. Ji, S. Liang, S. Qu, Y. Zhang, M. Xu, X. Jia, Y. Jia, D. Niu, J. Yuan, Y. Hou, Greenhouse gas
413 emission factors of purchased electricity from interconnected grids, Appl. Energy. 184 (2016) 751–
414 758.

415 [21] S.W.D. Turner, M. Hejazi, S.H. Kim, L. Clarke, J. Edmonds, Climate impacts on hydropower and
416 consequences for global electricity supply investment needs, Energy. 141 (2017) 2081–2090.

417 [22] Y. Ye, K. Hinkelmann, Y. Lou, W. Zuo, G. Wang, J. Zhang, Evaluating the Energy Impact Potential
418 of Energy Efficiency Measures for Retrofit Applications: A Case Study with US Medium Office
419 Buildings, in: Build. Simul., Tsinghua University Press, 2021: pp. 1–17.

420 [23] Y. Ye, Y. Lou, W. Zuo, E. Franconi, G. Wang, How do electricity pricing programs impact the
421 selection of energy efficiency measures?—A case study with US Medium office buildings, Energy
422 Build. 224 (2020) 110267.

423 [24] B.A. Thornton, M.I. Rosenberg, E.E. Richman, W. Wang, Y. Xie, J. Zhang, H. Cho, V. V Mendon,
424 R.A. Athalye, B. Liu, Achieving the 30% goal: Energy and cost savings analysis of ASHRAE
425 Standard 90.1-2010, Pacific Northwest National Lab.(PNNL), Richland, WA (United States), 2011.

426 [25] Z. Pang, Y. Chen, J. Zhang, Z. O'Neill, H. Cheng, B. Dong, Nationwide HVAC energy-saving
427 potential quantification for office buildings with occupant-centric controls in various climates, Appl.
428 Energy. 279 (2020) 115727.

429 [26] T.E. Jiru, Combining HVAC energy conservation measures to achieve energy savings over standard
430 requirements, Energy Build. 73 (2014) 171–175.

431 [27] N. Wang, S. Goel, A. Makhmalbaf, N. Long, Development of building energy asset rating using
432 stock modelling in the USA, J. Build. Perform. Simul. 11 (2018) 4–18.

433 [28] S. Huang, Y. Ye, D. Wu, W. Zuo, An assessment of power flexibility from commercial building
434 cooling systems in the United States, Energy. 221 (2021) 119571.

435 [29] J. Zhao, B. Lasternas, K.P. Lam, R. Yun, V. Loftness, Occupant behavior and schedule modeling
436 for building energy simulation through office appliance power consumption data mining, Energy
437 Build. 82 (2014) 341–355.

438 [30] Commercial Prototype Building Models, United States Dep. Energy. (2021).
439 https://www.energycodes.gov/development/commercial/prototype_models.

440 [31] Modeled data for a suite of forward-looking scenarios of the U.S. electricity sector, Natl. Renew.
441 Energy Lab. (2021). <https://cambium.nrel.gov/?project=579698fe-5a38-4d7c-8611-d0c5969b2e54>.

442 [32] B. Jason Glazer PE, Development of maximum technically achievable energy targets for
443 commercial buildings, *ASHRAE Trans.* 123 (2017) 32.

444 [33] B. Griffith, N. Long, P. Torcellini, R. Judkoff, D. Crawley, J. Ryan, Assessment of the technical
445 potential for achieving net zero-energy buildings in the commercial sector, National Renewable
446 Energy Lab.(NREL), Golden, CO (United States), 2007.

447 [34] H.M. Cho, S. Yang, S. Wi, S.J. Chang, S. Kim, Hygrothermal and energy retrofit planning of
448 masonry façade historic building used as museum and office: A cultural properties case study,
449 *Energy*. 201 (2020) 117607.

450 [35] M. Rabani, H.B. Madessa, O. Mohseni, N. Nord, Minimizing delivered energy and life cycle cost
451 using Graphical script: An office building retrofitting case, *Appl. Energy*. 268 (2020) 114929.

452 [36] B. Moreno Santamaria, F. del Ama Gonzalo, D. Pinette, R.-A. Gonzalez-Lezcano, B. Lauret
453 Aguirregabiria, J.A. Hernandez Ramos, Application and validation of a dynamic energy simulation
454 tool: A case study with water flow glazing envelope, *Energies*. 13 (2020) 3203.

455 [37] ASHRAE, Standard 90.1-2007, Energy Standard for Buildings except Low Rise Residential
456 Buildings, 2007.

457 [38] Advanced Energy Design Guide for Small to Medium Office Buildings: Achieving 50% Energy
458 Savings Towards a Net Zero Energy Building, Am. Soc. Heating, Refrig. Air-Conditioning Eng.
459 (2014). <https://www.ashrae.org/technical-resources/aedgs/50-percent-aedg-free-download>.

460 [39] Carbon Dioxide Emissions Coefficients, United States Energy Inf. Adm. (2016).
461 https://www.eia.gov/environment/emissions/co2_vol_mass.php.

462 [40] K.K.W. Wan, D.H.W. Li, D. Liu, J.C. Lam, Future trends of building heating and cooling loads and
463 energy consumption in different climates, *Build. Environ.* 46 (2011) 223–234.

464 [41] D.H.W. Li, L. Yang, J.C. Lam, Impact of climate change on energy use in the built environment in
465 different climate zones—a review, *Energy*. 42 (2012) 103–112.

466