
Abstract

In the United States, buildings account for 35% of total energy-related carbon dioxide emissions, making them important contribu-
tors to decarbonization. Carbon intensities in the power grid are time-varying and can fluctuate significantly within hours, so shift-
ing building loads in response to the carbon intensities can reduce a building’s operational carbon emissions. This paper presents
a rule-based carbon responsive control framework that controls the setpoints of thermostatically controlled loads responding to the
grid’s carbon emission signals in real time. Based on this framework, four controllers are proposed with different combinations of
carbon accounting methods and control rules. To evaluate their performance, we performed simulation studies using models of a
27-home, all-electric, net zero energy residential community located in Basalt, Colorado, United States. The carbon intensity data
of four future years from the Cambium data set are adopted to account for the evolving resource mix in the power grid. Various
performance metrics, including energy consumption, carbon emission, energy cost, and thermal discomfort, were used to evaluate
the performance of the controllers. Sensitivity analysis was also conducted to determine how the control thresholds and intervals
affect the controllers’ performance. Simulation results indicate that the carbon responsive controllers can reduce the homes’ annual
carbon emissions by 6.0% to 20.5%. However, the energy consumption increased by 0.9% to 6.7%, except in one scenario where it
decreased by 2.2%. Compared to the baseline, the change in energy cost was between -2.9% and 3.4%, and thermal discomfort was
also maintained within an acceptable range. The little impact on energy cost and thermal discomfort indicates there are no potential
roadblocks for customer acceptance when rolling out the controllers in utility programs.
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1. Introduction

Buildings account for 35% of carbon dioxide (CO2) emis-
sions in the United States, which makes buildings important
contributors to decarbonization [1]. With the Biden admin-
istration’s aggressive goal to reduce 50%–52% of greenhouse
gas pollution by 2030 [2], a joint effort between the build-
ings and the electricity sector is emerging to tackle this chal-
lenge. Further, the U.S. Department of Energy has developed a
roadmap with recommendations for how Grid-interactive Effi-
cient Buildings (GEBs) can provide a clean and flexible energy
resource [3]. On one side, the power generation is adopting
more renewable energy, which is cleaner than traditional coal
and natural gas fired plants. On the other side, buildings can
reduce their carbon emissions through using less energy (e.g.,
adoption of energy efficiency measures) or using cleaner energy
(e.g., load shifting to cleaner hours).

Building decarbonization can be achieved during various
phases of the building life cycle, including design, retrofit, and
operation. The design phase often incorporates carbon analy-
sis into early design building energy models [4], and some of
the studies focus on embodied carbon emission reduction [5].
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For the retrofit phase, several studies have been reported to op-
timally adopt energy efficiency measures, building system elec-
trification, and high renewable penetration in existing commu-
nities for the purpose of enhancing energy performance while
attaining carbon neutrality [6, 7, 8, 9, 10].

The above two phases are generally static and concern the
long-term carbon emission performance of the buildings. Dur-
ing the building operation phase, carbon responsive build-
ing control is more flexible and its deployment requires less
capital investment. Adopting carbon emission reductions as
one of the objectives or control inputs in optimization-based
building control has received increased attention in the last
decade [11, 12, 13, 14, 15]. Jin et al. [16] proposed a user-
centric home energy management system that is based on a
multi-objective model predictive control (MPC) framework.
Carbon emission reduction serves as one of the objectives along
with the minimization of energy cost, thermal discomfort, and
user inconvenience. Leerbeck et al. [17] developed an opti-
mal heat pump controller for building space heating. Using
weather and CO2 emission forecasts as inputs to an MPC, ap-
proximately 16% of CO2 emissions were saved compared to
typical thermostatic control.

Despite the rapid development of optimization-based control
methods, rule-based control is still the dominant control method
in building automation systems due to ease of implementa-
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tion. For example, Clauß [18] investigated predictive rule-
based control for reducing the annual CO2 equivalent green-
house gas emissions (CO2eq.) for a Norwegian single-family de-
tached house. The controlled object was the building heat pump
system. Historical weather and CO2eq. emission data from 2015
were used for simulations. The results showed that the carbon
responsive control cannot reduce the yearly CO2eq. emission
due to the limited daily fluctuations in the average CO2eq. in-
tensity of the Norwegian electricity generation mix.

Carbon accounting methods play an important role in carbon
responsive building control. Although electricity net-metering
has been broadly taken into account in utility bill calculations,
carbon accounting methods have seldom been discussed in the
literature. The emissions reduction effect of clean electricity
backfeeding to the grid has generally been neglected in the de-
sign and evaluation of carbon responsive controllers. Addition-
ally, historical CO2 emission data are typically adopted in exist-
ing studies [18]. With the increasing penetration of renewable
energy in the power grid, it is worth exploring evolving emis-
sion forecasts and their impact on control strategies. The table
below compares this study with existing relevant carbon emis-
sion driven control studies.

Table 1: Comparison of existing carbon emission driven control studies.

Ref. Predictive control CO2 forecast Carbon net-metering

[11] 7 7 7

[12, 16, 18] 3 7 7

[13, 14, 15, 17] 3 3 7

This paper 3 3 3

In this paper, we propose a rule-based carbon responsive con-
trol framework to reduce the carbon emissions of residential
buildings. Real-time carbon emission data are utilized to inform
the setpoint control of thermostatically controlled loads such
as heating, ventilation, and air-conditioning (HVAC) systems
and water heating (WH) systems. More specifically, the impact
of carbon accounting methods such as carbon net-metering is
studied through the design of various control algorithms. Both
momentary and predictive rule-based controllers are evaluated
to study the value of prediction in real-time carbon responsive
control. In the case study, models for an all-electric residen-
tial community of 27 homes located in Basalt, Colorado, are
adopted for control implementation and evaluation. Addition-
ally, the evolving resource mix in the power grid is considered
in the simulation scenarios. The major contributions of this pa-
per include:

• Development of a carbon emission responsive control
framework for decarbonizing residential buildings;

• Demonstration of the control framework in a simulated all-
electric residential community in a cold climate;

• Evaluation of the impact of carbon accounting methods
and control rules on emission, energy, cost, and discom-
fort;

• Forecasting of the community’s future carbon emissions
with the evolving resource mix in the power grid.

The remainder of this paper is organized as follows: Sec-
tion 2 presents the research methodology of the proposed rule-
based carbon responsive control framework. The co-simulation
platform is also described in that section. Section 3 describes
the community energy model and the simulation inputs for the
case study. Section 4 discusses the simulation results with var-
ious metrics such as energy, carbon, cost, and discomfort along
with a sensitivity analysis. Section 5 concludes the work and
recommends future topics for further study.

2. Methodology

2.1. Overview of the research methodology

Rule-based carbon emission responsive control, by defini-
tion, is to make control decisions in response to real-time car-
bon emission signals following certain predetermined rules.
The control objective is to reduce the carbon emission induced
by the power usage of the controlled objects, which are thermo-
statically controlled loads in this work. The thermostat setpoint
is controlled to increase or decrease the load depending on the
carbon intensities, predetermined rules, and operation modes.

During the design of the carbon responsive control rule, a
fundamental step is to determine how the setpoints change with
the emission signal. A common method is to divide the car-
bon emission data range into several regions, where each region
correlates with one setpoint [18]. Evolved from this logic, the
ultimate rule form is to establish a function (most likely linear)
that maps emissions to a set of setpoints. In this paper, we adopt
a three-region design of the control rule, which means divid-
ing the carbon emission data range into three regions with two
thresholds. Between the lower threshold (LT) and the higher
threshold (HT) is the default zone where the default setpoints
Tset,de f ault (Table 2) will be implemented. Below the LT will
be the clean zone and the Tset,clean will be implemented, and
vice versa. We designed the Tset,clean and Tset,unclean to be 0.8◦C
(1.5◦F) around Tset,de f ault for space heating and cooling, and
8.3◦C (15◦F) for the water heater. Here we note that the default
setpoints should be dependent on the region and user prefer-
ences.

Table 2: Control setpoints for heating, cooling, and water heating.

Controlled object Tset,de f ault (◦C) Tset,clean (◦C) Tset,unclean (◦C)

Space heating 21.1 21.9 20.3

Space cooling 23.9 23.1 24.7

Water heater 51.7 60.0 43.4

2.1.1. Carbon accounting methods
Unlike energy net-metering, which has been extensively

studied in building-to-grid related control studies, the inclusion
of carbon net-metering is relatively rare. To address this re-
search gap, we consider different controller design with and
without carbon net-metering to investigate its impact on the
control performance.

For electricity prosumers who both consume and produce
electricity, carbon net-metering means metering the net carbon
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Figure 1: Flow chart of momentary control with carbon net-metering.
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Figure 2: Flow chart of momentary control without carbon net-metering.

emission caused by their electricity consumption and produc-
tion [19]. In other words, exporting electricity back to the grid
will offset carbon emissions from their total emissions. On
the contrary, when carbon net-metering is not included, it is
more advantageous to use the locally generated electricity from
photovoltaic (PV) systems instead of exporting due to the lack
of emission benefits. For controllers considering carbon net-
metering, it makes no difference whether to use the clean PV
energy locally or to export it to the grid. Both options would
bring in the same amount of carbon emission reduction.

2.1.2. Control rules
According to the information used for making control de-

cisions, rule-based control can be categorized into momen-
tary and predictive control. The momentary rule-based con-
trol adopts the current value of the boundary condition (e.g.,
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Figure 3: Flow chart of predictive control with carbon net-metering.
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Figure 4: Flow chart of predictive control without carbon net-metering.

carbon emission signal) and decides the setpoints for the cur-
rent control interval [20]. Nevertheless, the predictive rule-
based control makes decisions based on both current and fu-
ture predictions of the boundary condition [18]. Compared to
optimization-based controllers such as MPC, predictive rule-
based control is simpler but still effective. It is therefore a
promising alternative to MPC given that the rules are well de-
signed [21].

In this work, we propose both momentary and predictive
carbon responsive controllers. For the predictive controller,
the carbon emission information of one future timestep is
adopted to facilitate the determination of setpoints for the cur-
rent timestep. The detailed control algorithms of the four pro-
posed controllers are discussed in the following subsection.

2.2. Implementation of control algorithms
Figures 1–4 present the flow charts of the four proposed car-

bon responsive controllers. Here, the LT and HT are predeter-
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mined thresholds that are held constant throughout the whole
simulation period. In the momentary controller with carbon
net-metering (Figure 1), the current carbon emission value COt

2
is compared with the LT and HT sequentially to determine
which range it belongs to. If COt

2 is below the LT, the current
timestep will be categorized as clean and the setpoints Tset,clean

in Table 2 will thus be implemented. As a result, the loads Pt
hvac

and Pt
wh will be increased and vice versa. If COt

2 is between the
LT and HT, the default setpoints Tset,de f ault will be implemented,
which is the same as the baseline setpoints.

The momentary controller without net-metering (Figure 2) is
developed based on the one with net-metering with one more
step to increase the PV self-consumption rate. Prior to com-
paring COt

2 with the thresholds, the current house net load Pt
net

is first evaluated. If it is negative, which means the house has
surplus PV generation, the setpoints Tset,clean will be adopted to
increase the loads Pt

hvac and Pt
wh. In this way, the clean energy

can be consumed locally instead of being exported to the grid
without any carbon offsetting benefit.

The predictive controllers (Figures 3 and 4) with and without
carbon net-metering are similar to the corresponding momen-
tary controllers in the initial steps. However, the predictive con-
trollers utilize the emission data from the next timestep to fur-
ther facilitate the control decisions. Essentially, when the emis-
sion level of the current timestep falls into the default range,
the carbon emission of the next timestep COt+1

2 is then com-
pared with the LT and HT. If the next timestep is categorized
as clean, the loads for the current timestep will be decreased to
save for later, and vice versa. This algorithm enables more fre-
quent setpoint adjustments and therefore leads to more shifting
of loads to cleaner hours.

2.3. Co-simulation platform

A co-simulation platform is used for testing and validating
the performance of the proposed control algorithms. The co-
simulation platform is built on hierarchical engine for large-
scale co-simulation (HELICS) tool [22]. Key capabilities such
as high scalability, cross-platform operability, and modularity
make HELICS suitable for developing co-simulation platforms.
The co-simulation platform manages the data communication
between different components of the closed-loop co-simulation.
It is scalable and creates multiple agents depending on the num-
ber of houses in the simulated community.

Figure 5 depicts the components of the co-simulation plat-
form and the data exchange flow between different components.
Two types of agents are developed in this platform: (1) a build-
ing energy simulator (i.e., house agent) and (2) a carbon re-
sponsive controller agent. At the beginning of the simulation,
an agent for the building simulation and an agent for the con-
troller are instantiated simultaneously for each house.

Inside each house agent, we used the Operational,
Controllable, High-resolution Residential Energy (OCHRE)
model [23] for modeling the buildings in this study. OCHRE
is capable of implementing the control signals for HVAC, WH,
PV, and battery, and it is designed to be easily integrated into
the co-simulation platform. More details about the community
modeling are discussed in Section 3.

The data exchange between the house agent and the con-
troller agent happens in the following order. At the beginning
of timestep t, OCHRE computes the net house load (Pt

net), and
the house agent sends Pt

net to the controller. At the same time,
the controller agent receives the Pt

net together with the current
carbon emission data from the Cambium database [24]. For
predictive controllers, the future carbon emission data are also
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received for computing the control actions with the assumption
of perfect forecasts. The controller then computes the control
setpoints based on the predetermined rules and sends it back to
the house agent. After receiving the control action for each de-
vice from the controller agent, OCHRE implements the control
action and proceeds to the next timestep t + 1.

3. Case study settings

3.1. Overview of the community

The Basalt Vista community, located in Basalt, Colorado, is
modeled for the case study. This community is intended to pro-
vide affordable housing to schoolteachers in town while also be-
ing highly efficient all-electric homes with enough PV to make
the community approximately net zero, as well as batteries for
load shifting and resilience. Located at an elevation of 2,015
meters, it is in climate zone 7B, which is very cold and dry [25].
The community consists of 12 multifamily buildings, either du-
plexes or triplexes, with a total 27 homes. The homes consist
of 2-, 3-, and 4-bedroom units, ranging from 107 to 156 square
meters [26].

The HVAC systems of all the units are minisplit heat pump
(MSHP) systems. The domestic hot water systems use heat
pump water heaters (HPWH). Each unit is installed with
rooftop PV systems, except for three units that do not have
enough roof space for PV panels. The PV system sizes range
from 7.6 to 11.85 kW. Among all the households, six homes are
assumed to own electric vehicles and are equipped with Level
1 or Level 2 chargers. Four homes are equipped with home
battery systems with capacities of 12 kWh.

3.2. Community modeling

The community is modeled in OCHRE [23], a control-
oriented residential building modeling tool. Each building type
(i.e., 2-, 3-, and 4-bedroom) share the same model formation
with variant configuration parameters. The building envelope
and the controllable loads (i.e., MSHP and HPWH) are de-
scribed in this section. Models of PV, batteries, electric ve-
hicles, and other electric loads can be found in reference [23].

The resistance-capacitance (RC) model is adopted for mod-
eling the building envelope. R represents the thermal resistance
between thermal masses, which involves both conduction and
convection effects. C represents the thermal mass of different
building components such as the air inside a room, exterior and
interior walls, furniture, etc. The equation of a node i in the RC
network is:

Ci
dT t

i

dt
=

M∑
j=1

T t
j − T t

i

Ri j
+ Ht

i , (1)

where Ci is the thermal mass of the node i, T t
i is the temperature

of node i, T t
j is the temperature of node j adjacent to node i, Ri j

is the thermal resistance between nodes i and j, Ht
i is the sensi-

ble heat injected to node i, and M is the total number of nodes
in a house. For each house, approximately 13 Rs and 4 Cs were
used to simulate the thermal dynamics. The detailed structure
of the RC network model can be found in reference [23].

The MSHP in this work has a variable frequency drive that
can modulate to maintain the setpoint of the conditioned space.
A local proportional integral derivative controller adjusts the
variable frequency drive’s speed ratio according to the mea-
sured room temperature and the setpoint. For this community,
the MSHPs are sized to be larger than might typically be sized
according to standard sizing guidance such as the ACCA Man-
ual J [27]. This is to ensure that the heat pump can fully meet
the load even during the coldest hours of the year. With the
oversized heat pumps, backup heaters are not installed, which
makes these homes more energy efficient at the expense of a
higher capital cost.

Further, each home has a highly efficient HPWH with backup
electric resistance element installed. The heat pump itself is
able to heat the tank more efficiently by removing heat from the
ambient air and adding it to the tank. In contrast, the backup
electric element is less efficient, but can heat the tank more
quickly. When there is a demand for water heating, the heat
pump turns on first. If there is a sufficiently large draw of hot
water that the heat pump is unable to keep up, the backup elec-
tric element will then turn on. This will partially recover the
tank temperature before switching back to the heat pump mode
to maintain a high level of energy efficiency. The exact con-
trol sequence was derived from the detailed laboratory testing
of this HPWH unit in response to different typical residential
hot water draw profiles [28].

3.3. Inputs
The carbon emission data in this work are adopted from

the Cambium data set [24]. Based on modeled futures of the
U.S. electricity sector, Cambium assembles structured data sets
of energy-related metrics (e.g., carbon emissions) to facilitate
long-term decision-making. Specifically, the hourly short-run
marginal carbon emission data from the Standard Scenarios
2020 Mid-case were adopted in the control development of
this work. Though Cambium provides various scenario set-
tings such as high vs. low renewable energy cost, we note
that the simulated data are based on certain assumptions about
the future projected U.S. electric sector. These assumptions are
subject to many uncertainties, such as climate change and pol-
icy impacts, which could affect the results and analysis of this
work.

Figure 6 visualizes the emissions data for the four selected
simulation years from Cambium. We selected these four years
because only even years are available in Cambium and we
needed to avoid leap years as they are not yet supported in
OCHRE. From the figure, we notice that as time goes by, more
hours with zero or low carbon emissions emerge. This aligns
with the increasing adoption rate of renewable energy and de-
carbonization measures of the electric sector. Regardless, we
still observe some hours of high emission rate in year 2046,
which represent the operation of coal-fired power plants. Be-
cause the emission data for the four years are different, we con-
ducted a sensitivity analysis to determine the control thresholds
(Section 4.2). As a result, we adopted the absolute values of the
30% and 70% of the emission range in 2022 as the LT and HT
for all scenarios.
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Figure 6: Emission data comparison across simulated years.

Similarly, the same weather data were used across all four
simulation years to eliminate the impact of weather on build-
ing loads so that the results can be directly compared. Ac-
tual Meteorological Year (AMY) data of year 2012 for Pitkin
County, Colorado, where the community is located, was used
to be consistent with the Cambium weather data file. Here we
note that forecasting future weather is an active research topic
and is beyond the scope of this work. The occupancy, lighting,
and appliance usage schedules for each house were generated
from ResStockTM [29]. The time-of-use rate for the local elec-
tric utility Holy Cross Energy [30] was used for the energy cost
calculation, where the on-peak (4–9 PM) price is $0.24/kWh
and the off-peak (rest of the hours) price is $0.06/kWh.

3.4. Scenarios and evaluation metrics

Based on the case study settings proposed above, we de-
signed five simulation scenarios to evaluate the controller per-
formances. As seen in Table 3, the baseline scenario involves no
carbon responsive building controller. The remaining four sce-
narios each adopts one carbon responsive controller proposed
in Section 2, namely momentary or predictive rule-based con-
troller with or without carbon net-metering. Annual energy
simulations of the four selected years (2022, 2030, 2038, and
2046) were run with the default setpoints listed in Table 2.
The house models were run with a timestep of 1 minute, and
the control setpoints were updated with a 15-minute interval to
avoid excessive cycling of the appliances.

To account for different carbon accounting methods, two
ways to calculate the annual carbon emission are adopted. The
first method is carbon net-metered, where the power exported
to the grid can offset the total carbon emission. The second
method does not take account of the exported power back to the

Table 3: Description of simulation scenarios in the case study.

Scenario Carbon accounting method Rule type Year

Baseline N/A N/A 2022–2046

MO-0 Non-net-metering
Momentary 2022–2046

MO-1 Net-metering

PR-0 Non-net-metering
Predictive 2022–2046

PR-1 Net-metering

grid. The equations for the two methods are as follows:

Enet =

N∑
t=1

etPt
net ∆t, (2)

Enon−net =

N∑
t=1

etPt
net ∆t, ∀ Pt

net > 0, (3)

where Enet and Enon−net are the annual emission with and with-
out carbon net-metering. t is the timestep, and N is the total
number of timesteps in a year. et represents the real-time car-
bon emissions of the grid power. Pt

net is the net load of the house
(i.e., total load subtracted by PV and battery power). ∆t is the
interval length of each timestep.

Thermal discomfort is quantified by the discomfort degree
hours for the HVAC system. For HVAC heating scenarios,
when the room temperature is below the heating setpoint, it is
considered an uncomfortable time period, and vice versa. The
switching between heating and cooling is dependent on the out-
door temperature. Note that in this paper we consider a set-
point not met as uncomfortable as the actual room temperature
deviates from the predetermined setpoint. We did not adopt
the ASHRAE recommended comfort range (i.e., 20–28◦C) [31]
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Figure 7: Community average annual energy consumption of controlled loads for different controllers across simulated years.

because it is relatively wide compared to our setpoints, which
leads to almost the same level of discomfort in all scenarios. A
list of the discomfort values according to the ASHRAE Stan-
dard is provided in Table A.2 in the appendix. The discomfort
degree hours in this work can be defined by the following equa-
tion:

Uhvac =

N∑
t=1

|T t
indoor − T t

set |∆t,

∀ T t
indoor < T t

set (heating) and T t
indoor > T t

set (cooling),

(4)

where Tindoor and Tset are the actual indoor temperature and set-
point, and ∆t is the simulation interval of the house model (i.e.,
1 minute).

The thermal discomfort for WH is only considered for the
shower in this work [32]. It is measured by the unmet thermal
energy for any shower draws below 43.3◦C (110◦F), which is
calculated by:

Uwh =

N∑
t=1

mt
water cp |T t

water − 43.3|∆t,

∀ T t
water < 43.3,

(5)

where mt
water represents the hot water mass flow rate and T t

water
is the hot water temperature.

4. Results and discussions

4.1. Results

This subsection presents the annual simulation results with
four performance metrics: energy consumption, carbon emis-
sion, energy cost, and thermal discomfort. Through the com-
parison of the four proposed controllers, we discuss the impact
of carbon net-metering, as well as the effect of prediction in
rule-based control. Additionally, we also investigate the evolu-
tion of results over the years.

4.1.1. Energy consumption
Figure 7 visualizes the community average annual energy

consumption of the controlled loads (HVAC and WH) for dif-
ferent controllers. Compared to the baseline, the annual space

Table 4: Community average annual energy consumption per household for dif-
ferent controllers across simulated years (percentage values are changes relative
to the corresponding baseline).

Year Baseline (kWh/yr) MO-0 MO-1 PR-0 PR-1

2022 4,124 3.8% 1.3% 1.1% -2.2%

2030 4,120 6.6% 3.7% 4.5% 0.9%

2038 4,108 6.7% 4.2% 4.7% 1.6%

2046 4,103 5.8% 3.7% 4.2% 1.6%

heating energy consumption slightly decreases while both the
space cooling and water heating energy increases. The diver-
gent heating and cooling energy changes can be attributed to
the higher emission levels in the heating season than those in
the cooling season (see Figure 6), which leads to lower heating
energy consumption. In general, carbon responsive building
control increases the total household annual energy consump-
tion.

Table 4 lists the community average annual energy per house-
hold. In the table, the baseline energy consumption is shown
in absolute values, whereas the other scenarios are in relative
changes compared to the baseline. From the table, the aver-
age annual energy increase for the studied community is within
6.7%. For controllers accounting for carbon net-metering, the
energy increase is about 2.5% to 3.0% lower compared to
scenarios without carbon net-metering. This indicates the in-
centivizing impact of adopting carbon net-metering, as it en-
courages the exporting of power back to the grid. For con-
trollers without carbon net-metering, the energy usage is in-
creased when PV generation is excessive to increase the self-
consumption rate, which has led to a higher annual energy con-
sumption.

Another observation from Table 4 is that all predictive con-
trollers perform better than the momentary controllers in terms
of energy consumption. This is because the predictive con-
trollers adjust the setpoints based on both current and future
emission values. When the current carbon emission falls in the
default zone but the future emission falls in the clean zone, it
will reduce the current power, and vice versa. Because there are
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Figure 8: Histogram of carbon emission data for the simulated years.

more time instances classified as clean than carbon-intensive
over the whole year (as shown in Figure 8), the predictive con-
trollers therefore reduce energy consumption more often than
increase it and save more energy compared to the momentary
controllers.

4.1.2. Carbon emissions
Figure 9 illustrates the community average annual carbon

emission of the controlled loads (HVAC and WH). From the
figure, it can be seen that in all scenarios, the emissions caused
by space heating are reduced through the carbon responsive
control. In some scenarios, the emissions produced by cooling
and water heating increased due to the corresponding energy
increase. This is attributed to the fact that when there are con-
secutive clean hours, the controllers might pre-cool or pre-heat
the space/water tank more than necessary, which leads to an in-
crease of the total operational emissions. Overall, the annual
household carbon emissions decreased compared to the base-
line.

Table 5 lists the community average emission per household
for different scenarios. In order to eliminate the impact of
different carbon accounting methods and focus on the perfor-
mance variance of the controllers, the carbon emission values
listed in Table 5 are all net-metered (Equation 2). The emissions
results calculated without carbon net-metering are presented in
Table A.1 of the Appendix.

Based on Table 5, we can see that the controllers that con-
sider carbon net-metering perform better than those that did not.
This can be attributed to the logic of the controllers, where the
non-net-metered controller increases the loads to do more pre-
cooling/pre-heating when the house net-load is negative. This
has led to a rise in energy as discussed in former sections, which
hinders them from decreasing more carbon emissions.

Similar to the annual energy performance, the emission per-
formance of the predictive controllers is better than the mo-
mentary ones. The reason is that predictive controllers make
decisions informed by the emissions at the next timestep. This

Table 5: Community average annual carbon emission per household for dif-
ferent controllers across simulated years (net-metered; percentage values are
changes relative to the corresponding baseline).

Year Baseline (kg/yr) MO-0 MO-1 PR-0 PR-1

2022 3,854 -6.0% -11.0% -6.8% -12.1%

2030 2,158 -6.3% -18.7% -7.8% -20.5%

2038 2,650 -6.5% -15.2% -7.7% -16.5%

2046 3,453 -6.3% -11.6% -7.1% -12.6%

enables a better shifting effect of loads to cleaner time peri-
ods than the momentary controllers. Cumulatively over a year,
more emission is thus reduced by predictive controllers.

Overall, 6% to 20.5% annual carbon emissions reduction is
seen by the proposed rule-based controllers compared to the
baseline. In terms of the yearly change of emissions, it is inter-
esting that year 2046 is not the one with the lowest emissions.
According to Figure 8, though year 2046 has the most hours of
zero emission, depending on the power profile of the houses, the
zero emission hours might not align with the high-load hours.
Figure 10 plots the heat map of a typical house’s net load in
year 2046. We see that the high-load hours are mostly in winter
and during the nighttime, which align with the carbon-intensive
hours in Figure 6. Therefore, it is safe to infer that the more the
high-load hours align with the low-carbon hours, the lower the
annual emissions will be.

4.1.3. Energy cost
Figure 11 plots the community average annual energy on-

and off-peak costs of the controlled loads in 2022. Similar plots
for the other simulation years can be found in Appendix A.
From Figure 11, we can see that the on-peak energy costs all
decreased and the off-peak costs all increased compared to the
baseline. Figure 12 plots the house net load in response to the
real-time emission signal on a sample winter day of a sample
house. The figure shows that when the carbon emission of the
on-peak hours exceeds the higher threshold at around 6 PM, the
house net load drops below the baseline as all controllers lower
the heating and WH setpoints to reduce the loads. However, a
certain level of the rebound effect is seen later, where the con-
trollers consume slightly more energy than the baseline due to
the lower setpoints earlier. Overall, during the on-peak hours,
more energy is saved due to the high emissions level. Over the
whole year of simulation time, the on-peak hours are relatively
more carbon-intensive and off-peak hours cleaner, which has
led to the reduction of on-peak cost and increase of off-peak
cost in Figure 11.

Table 6 summarizes the community average annual energy
cost per household for each simulation year. Based on the ta-
ble, all controllers that do not consider carbon net-metering per-
form better in terms of total cost. This can be attributed to the
fact that controllers without net-metering tend to use more en-
ergy around noon (e.g., 11 AM to 3 PM in Figure 12) when the
house net load is negative. Because of the rebound effect, they
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Figure 9: Community average annual carbon emission of controlled loads for different controllers across simulated years.
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Figure 10: Annual house net load heat map (year 2046, house b5).
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Figure 11: Community average annual energy on- and off-peak costs of con-
trolled loads for different controllers in 2022.

will consume less energy later when PV generation decreases
and the net load is positive. This enables shifting the load from
on-peak hours to off-peak hours, which leads to more energy
cost savings by the non-net-metered controllers. Additionally,
all predictive controllers have more cost savings than the mo-
mentary ones. The reason is similar to the energy savings dis-
cussion in Section 4.1.1.

Generally, we see an annual energy cost change of -4.1% to
3.4% on top of the baseline. In terms of the yearly trend of
cost savings, we notice that the cleaner the year, the less cost
reduction potential. Here, clean means more hours of carbon
emission under the lower threshold in Figure 8. More specif-
ically, years 2030 and 2038 have more hours under the lower
threshold, and the energy cost increased in all scenarios except
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Figure 12: House net load in response to the emission signal (winter 2022,
house b5).

Table 6: Community average annual energy cost per household for different
controllers across simulated years (percentage values are changes relative to
the corresponding baseline).

Year Baseline ($/yr) MO-0 MO-1 PR-0 PR-1

2022 718 -2.7% -1.1% -4.1% -2.9%

2030 719 1.3% 3.4% 0.1% 1.7%

2038 717 0.5% 2.9% -0.6% 1.3%

2046 715 -1.0% 1.2% -1.8% 0.0%

one.

4.1.4. Thermal discomfort
Table 7 lists the heating, cooling, and water heating dis-

comfort values for all scenarios across the simulation years.
From the table, we see that carbon responsive control brings
in a higher level of discomfort in space heating and cooling
compared to the baseline, where constant setpoints were imple-
mented annually. However, the hot water discomfort has been
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Table 7: Community average heating, cooling, and water heating discomfort metric values for each simulation scenario.

Year
Heating (◦C-hrs/yr) Cooling (◦C-hrs/yr) Hot water (kWh/yr)

Baseline MO-0 MO-1 PR-0 PR-1 Baseline MO-0 MO-1 PR-0 PR-1 Baseline MO-0 MO-1 PR-0 PR-1

2022 8 24 27 30 33 0 2.2 4.1 1.9 3.4 1.3 0.15 0.23 0.19 0.25

2030 8 34 40 31 36 0 1.0 4.4 1.0 3.5 1.3 0.26 0.40 0.26 0.37

2038 8 69 79 64 73 0 1.7 7.5 1.5 6.0 1.3 0.37 0.57 0.39 0.58

2046 8 55 66 51 59 0 2.8 6.8 2.4 5.6 1.3 0.37 0.64 0.31 0.56

slightly improved, which is validated through a higher annual
average hot water temperature. Generally, the annual discom-
fort levels in all the carbon responsive scenarios are maintained
within an acceptable range.

When carbon net-metering is considered in the control, the
discomfort level increases compared to scenarios without net-
metering. This is because when power exporting does not
bring emission benefits, the controller tries to increase the self-
consumption rate of the surplus PV generation by consuming
more energy. This has led to a relatively higher indoor temper-
ature in the heating season and a relatively lower temperature
in the cooling season, which means a more comfortable indoor
environment for the occupants.

Comparing scenarios with and without predictive control, we
notice that predictive control can lead to either an increase or
decrease of the discomfort level. There is no direct correlation
between the two. Though predictive controllers look ahead for
one timestep, the decision to increase or decrease the setpoints
is dependent on the emission level at the next timestep, which
is rather stochastic in the time frame of one year of simulation
time.

4.2. Sensitivity analysis

Control thresholds. The choice of the lower and upper
thresholds in rule-based control is essential. To investigate how
the thresholds affect the control performance, we conducted a
sensitivity analysis. The original lower and upper thresholds
were adjusted based on the simulation scenario MO-1 2022. A
list of the control performance metrics can be found in Table 8.
The percentages (e.g., 10&90) here represent the LT and HT,
which are based on the emission data range of 2022. The same
absolute values of the LT and HT were used across different
years.

From the table, carbon emissions decrease while the control
threshold range gets narrower. Specifically, the emission drops
drastically from thresholds 20&80 to 30&70 because the lat-
ter is more sensitive to emission changes, which leads to more
frequent carbon responsive setpoint adjustments.

The relationship between energy consumption and the
thresholds is less explicit. Given the same emission signal in-
put, the closer the thresholds, the more hours that fall out of the
default zone. Hence, the energy consumption variation depends
on the distribution of the emission data. For instance, when
the thresholds change from 20&80 to 30&70, more hours are

Table 8: Comparison of average performance metric values per household with
various control thresholds.

Lower & upper threshold percentages

10&90 20&80 30&70 40&60

Emission (kg/yr) 3,852 3,819 3,429 3,088

Energy (kWh/yr) 4,123 4,106 4,177 4,046

Total energy cost ($/yr) 718 715 711 706

On-peak cost ($/yr) 627 625 613 617

Off-peak cost ($/yr) 91 90 97 88

Discomfort

Heating (◦C-hrs/yr) 8 11 27 238

Cooling (◦C-hrs/yr) 0 0.1 4 21

Hot water (kWh/yr) 1.3 1.2 0.2 0.9

becoming clean compared to hours that are becoming carbon-
intensive. This leads to more energy consumed over the whole
year.

The annual energy cost sinks with the narrowing threshold
range, making the 40&60 thresholds the most cost-effective
range. However, the zone thermal discomfort level also reaches
the highest in the 40&60 range. This is because the frequent
thermostat changes cause the room temperature to swing so that
it is more likely to fall outside the comfort zone. The hot water
temperature depends not only on the setpoint but also the water
draw profile. There is therefore no explicit correlation between
the hot water discomfort level and the thresholds.

To summarize, the 30&70 lower and upper control thresh-
olds chosen in this work best balance the benefits of emissions
reduction and energy cost, as well as thermal comfort for the
homeowners.

Control interval. The impact of control interval is studied
through varied intervals based on scenario MO-1 2022. From
Table 9, we observe that the performance of the 15-minute
and 30-minute control intervals is very similar to each other.
The 15-minute interval performs better at energy and comfort,
whereas the 30-minute is better at emissions and cost. When
the interval becomes larger than 30 minutes (e.g., 60 minutes
and 120 minutes), then the larger the interval, the worse the
control performance. This is probably because in these cases,
the controller changes the setpoints too infrequently, which hin-
ders the benefits of carbon responsive control. Considering the
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Table 9: Comparison of average performance metric values per household with
various control intervals.

Control interval (minute)

15 30 60 120

Emission (kg/yr) 3,429 3,387 3,480 3,740

Energy (kWh/yr) 4,177 4,184 4,240 4,329

Total energy cost ($/yr) 711 710 714 724

On-peak cost ($/yr) 613 612 613 619

Off-peak cost ($/yr) 97 98 101 105

Discomfort

Heating (◦C-hrs/yr) 27 31 38 49

Cooling (◦C-hrs/yr) 4 5 6 12

Hot water (kWh/yr) 0.2 0.2 0.2 0.3

balance between control performance and the building thermal
dynamics, we chose the control interval to be 15 minutes.

5. Conclusion

In this paper, we propose a carbon emission responsive con-
trol framework for thermostatically controlled loads. Within
this framework, the four various controllers adjust thermostat
setpoints according to projected carbon emission signals. The
impact of carbon net-metering in both momentary and predic-
tive rule-based controllers is investigated through the controller
design and a case study. Sensitivity analysis is conducted to
evaluate the role of control thresholds and control interval in
the controller design.

Based on the simulation results, the average annual house-
hold carbon emissions are decreased by 6.0% to 20.5% com-
pared to the baseline. The average annual energy consumption
is increased by less than 6.7% due to more clean hours over
the year. The annual energy cost change lies between -4.1%
and 3.4% on top of the baseline. All on-peak energy costs de-
creased while all off-peak costs increased, indicating that the
carbon intensities during on-peak hours are higher than those
during off-peak hours. Generally, the annual discomfort levels
in all the carbon responsive scenarios are maintained within an
acceptable range.

Evaluating the impact of carbon net-metering, we found that
controllers with carbon net-metering show 2.5% to 3.0% less
energy consumption and 5% to 12.7% less emission than con-
trollers without carbon net-metering. This indicates the incen-
tivizing impact of adopting carbon net-metering, as it encour-
ages the exporting of power back to the grid. For controllers
without carbon net-metering, higher annual energy consump-
tion and carbon emissions result from attempting to increase
the PV self-consumption rate. However, all controllers that do
not consider carbon net-metering perform better in terms of the
total cost. Due to the rebound effect, they tend to be shifting
loads from on-peak hours to off-peak hours, causing the total

cost to sink. Further, because more energy is consumed, non-
net-metering controllers tend to create a more comfortable in-
door environment for the occupants.

All predictive controllers perform better than the momentary
controllers in terms of energy consumption, carbon emission,
and energy cost. This is attributed to the enhanced load shifting
effect by the predictive controller design. Also, this finding ver-
ifies the claim in reference [21] that predictive rule-based con-
trollers are promising alternatives to optimization-based con-
trollers because they are simpler and still effective.

We notice in some scenarios the emissions produced by space
cooling and water heating are higher compared to the base-
line due to the increased energy consumption from load shift-
ing. This indicates rule-based control solely informed by car-
bon emission signals may end up with higher emissions, which
could be overcome by using optimization-based control meth-
ods such as MPC.

Future work includes:

• Investigating better designs of the control rules to achieve
synergetic emission, energy, and cost reductions.

• Incorporating other types of controllable loads such as
schedulable loads into the carbon emission responsive
control framework.

• Comparing the performance of the developed rule-based
control to optimization-based control.
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Appendix A.

Table A.1: Community average annual carbon emission per household for dif-
ferent controllers across simulated years (non-net-metered; percentage values
are changes relative to the corresponding baseline).

Year Baseline (kg/yr) MO-0 MO-1 PR-0 PR-1

2022 8,318 -5.1% -4.0% -5.4% -4.4%

2030 7,201 -4.6% -3.4% -4.9% -3.8%

2038 7,476 -5.0% -3.6% -5.3% -4.0%

2046 7,793 -5.4% -4.0% -5.8% -4.3%
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Figure A.1: Community average annual energy on- and off-peak costs of con-
trolled loads for different controllers in 2030.
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Figure A.2: Community average annual energy on- and off-peak costs of con-
trolled loads for different controllers in 2038.
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