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Plaque progression prediction is of fundamental significance to cardiovascular research and disease diagnosis,
prevention, and treatment. Magnetic resonance image (MRI) data of carotid atherosclerotic plaques were ac-
quired from 20 patients with consent obtained. 3D thin-layer models were constructed to calculate plaque stress
and strain. Data for tenmorphological and biomechanical risk factors were extracted for analysis. Wall thickness
increase (WTI), plaque burden increase (PBI) and plaque area increase (PAI) were chosen as three measures for
plaque progression. Generalized linearmixedmodels (GLMM)with 5-fold cross-validation strategywere used to
calculate prediction accuracy and identify optimal predictor. The optimal predictor for PBI was the combination
of lumen area (LA), plaque area (PA), lipid percent (LP), wall thickness (WT), maximum plaque wall stress
(MPWS) andmaximumplaquewall strain (MPWSn)with prediction accuracy=1.4146 (area under the receiver
operating characteristic curve (AUC) value is 0.7158), while PA, plaque burden (PB),WT, LP, minimum cap thick-
ness, MPWS andMPWSnwas the best forWTI (accuracy= 1.3140, AUC= 0.6552), and a combination of PA, PB,
WT, MPWS, MPWSn and average plaque wall strain (APWSn) was the best for PAI with prediction accuracy =
1.3025 (AUC = 0.6657). The combinational predictors improved prediction accuracy by 9.95%, 4.01% and
1.96% over the best single predictors for PAI, PBI andWTI (AUC values improved by 9.78%, 9.45%, and 2.14%), re-
spectively. This suggests that combining both morphological and biomechanical risk factors could lead to better
patient screening strategies.
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1. Introduction

Cardiovascular diseases are the major cause of unnatural death in
theworld [1].Mostmajor cardiovascular clinical events such asheart at-
tack and stroke are linked closely to atherosclerotic vulnerable plaque
progression and rupture [2]. Clinical guidelines recommend carotid
endarterectomy (CEA) for patients with 60–99% diameter asymptom-
atic carotid stenosis (ACS) with low perioperative risk [3–5]. However,
the average annual risk of any territory stroke in these asymptomatic
patients is ≤1.6% [6–9]. Up to 98% of all CEA and carotid artery stenting
procedures in asymptomatic patients in the United States (US) may be
unnecessary, generating needless healthcare costs of $2 billion annually
[7,10]. On the other hand, in a survey of 2226 symptomatic subjects, 61%
of the subjects had carotid artery stenosis b50% [11]. It is necessary that
methods to predict plaque progression and rupture are developed so
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that appropriate treatmentmethods could be applied in time to prevent
actual drastic clinical events from happening.

The progression and rupture of atherosclerotic plaques involve com-
plex processes including biology, biochemistry, biomechanics and pa-
thology, etc. [12–16]. Some research teams have made great effort to
explore possible indicators to predict the plaque development with
in vivo images. Stone GW et al. showed that nonculprit lesions associ-
ated with recurrent events were more likely than those not associated
with recurrent events to be characterized by a plaque burden of 70%
or greater, or a minimal luminal area of 4.0 mm2 or less, or to be classi-
fied on the basis of radiofrequency intravascular ultrasonography as
thin-cap fibroatheromas [17]. Based on in vivo magnetic resonance im-
aging (MRI) data, Cai et al. introduced a human carotid plaques classifi-
cation system [18]. Image-based computational plaque models were
introduced and used by several groups to investigate associations be-
tween biomechanical risk factors and plaque development behaviors
[19–26] and to assess clinical significance [27–30]. It was reported
that plaque wall stress (PWS) was associated to plaque progression
[14,19,31,32]. Direct associations between flow shear stress and ad-
vanced carotid plaqueswere found [33]. Some groups combined biome-
chanical and morphological risk factors to assess plaque vulnerability
for carotid and coronary arteries [28,34–38].

We hypothesized that combining morphological and biome-
chanical factors would lead to better prediction results of plaque
progression. In this paper, MRI data of carotid atherosclerotic
plaques were acquired from 20 patients with consent obtained
and 3D thin-layer models were constructed to obtain 10 morpho-
logical and mechanical risk factor values for analysis. The 10 fac-
tors included wall thickness (WT), lipid percent (LP), minimum
cap thickness (MinCT), plaque area (PA), plaque burden (PB),
lumen area (LA), maximum plaque wall stress (MPWS), maximum
plaque wall strain (MPWSn), average plaque wall stress (APWS),
and average plaque wall strain (APWSn). Wall thickness increase
(WTI), plaque burden increase (PBI) and plaque area increase
(PAI) were chosen as three measures for plaque progression. Gen-
eralized linear mixed models (GLMM) with 5-fold cross-validation
strategy were used to calculate prediction accuracy for each pre-
dictor and identify the optimal predictor. Details are given below.

2. Methods

2.1. MR images acquisition and data processing

MRI sequence data of carotid plaques from 20 patients (all male; age: 58–84, mean=
72.8) were acquired with consent obtained at the University ofWashington (UW), Seattle
by the Vascular Imaging Laboratory (VIL) using protocols approved by the UW Institu-
tional Review Board. For each patient, carotid bifurcation position and plaque characteris-
tics (lipid core, calcifications, etc.) were used to match the MRI slices at baseline time and
follow-up time (marked as T1 and T2, scan time intervals: 18 months). Slice distance was
kept the same at both scans. The axial distance between the non-bifurcation slice position
and the bifurcation position slice was used tomatch theMRI slices from baseline time and
follow-up time. For each slice, the geometries (mainly the centroid of their lumen) of ex-
ternal carotid artery (ECA) and internal carotid artery (ICA) were used to match ICA slices
circumferentially at baseline and follow-up. Patient-specific cuff systolic and diastolic arm
pressures were collected and used for plaque mechanical model. The procedures of data
acquisition and image segmentation are detailed in our previous published articles and
are omitted here [39]. Fig. 1 gave one example ofmatchedMR images and the correspond-
ing image segmentation contour plots at baseline and follow-up.

2.2. Computational models and solution methods

A 3D thin-layer modeling approachwas used to obtain plaque stress and strain condi-
tions. For every slice, 3D thin-layer model wasmade by adding a slice thickness of 0.5 mm
[38]. The pre-shrink-stretch process was used on the construction of 3D thin-layer model
and the component-fittingmesh generation techniquewere used the same as it was done
in regular 3D full vessel models [33]. The hyperelastic, homogeneous, incompressible, iso-
tropic vascular hypothesis was adopted for carotid artery [38]. The nonlinear modified
Mooney-Rivlin (M-R) model was selected as the material model for carotid vessel and
plaque components [40]. The strain energy function ofmodifiedM-Rmodelwas given by:

W ¼ c1 I1−3ð Þ þ c2 I2−3ð Þ þ D1 exp D2 I1−3ð Þð Þ−1½ & ð1Þ

I1 ¼
X

Cii; I2 ¼ 0:5 I21−Ci jCij

! "
; i; j ¼ 1; 2;3 ð2Þ

where C = [Cij] = XTX is the right Cauchy-Green deformation tensor. I1, is the first strain
invariant and I2 is the second strain invariants of C, X = [Xij] = [∂xi/∂aj], where aj is the
original location and xi is the current location. The values of c1, c2, D1, and D2 constitute
the material parameter set. M-R model was chosen because it could be consistent with
the carotid vesselmaterial propertiesmeasured by uniaxial and biaxial mechanical testing
data [41]. The following material parameters were used in our models on the current lit-
erature and our own previous publications [39,41]: vessel and fibrous cap: c1 =
36.8 kPa, D1 = 14.4 kPa, D2 = 2; lipid core/hemorrhage: c1 = 2 kPa, D1 = 2 kPa, D2 =
1.5; loose matrix: c1 = 18.4 kPa, D1 = 7.2 kPa; D2 = 1.5; calcification: c1 = 368 kPa, D1

= 144 kPa, D2 = 2.0. c2 = 0 for all materials. The patient-specific 3D thin-layer models
were solved by ADINA (Adina R &D, Watertown, MA) following procedures in [40].

2.3. Morphological and biomechanical risk factors

Two hundred and one (201) matched slices from 20 patients were usable for
our study. For each matched slice, 100 evenly-spaced points from the lumen
were selected and values of the 10 morphological and biomechanical risk factors
were obtained for statistical analysis. Each slice was divided into 4 quarters with
each quarter containing 25 evenly-spaced nodal points on the lumen, each lumen
nodal point was connected to a corresponding point on vessel outer-boundary
using a Piecewise Equal-Step method to deal with irregular non-circular plaque
morphologies (see Fig. 2) [26]. The wall thickness (WT) was defined as the dis-
tance between each nodal point on the lumen and corresponding point on the
out-boundary. Cap thickness was defined as the length of the line connecting the
lipid point and lumen point (use wall thickness if there is no lipid core in the
slice). The minimum cap thickness (MinCT) is the minimum value of cap thickness
of a slice. Fig. 2 shows the definitions of these morphological features. Lumen area
(LA) is the area inside the lumen contour. Plaque area (PA) is the area bounded by
the lumen contour and out-boundary. The area of a lipid core was defined as lipid
area. Plaque burden (PB) and lipid percent (LP) was defined by:

PB ¼ PA∕ PAþ LAð Þ ð3Þ

LP ¼ Lipid Area∕PA ð4Þ

The maximum principal stress and strain were defined as plaque wall stress
(PWS) and strain (PWSn) at 100 nodal points on the lumen. Maximum plaque
wall stress (MPWS) was the maximum value of PWS among 100 nodal points on
the lumen. Average plaque wall stress (APWS) was the mean value of PWS at
100 nodal points on the lumen. Maximum plaque wall strain (MPWSn) and aver-
age plaque wall strain (APWSn) have similar definitions to MPWS and APWS of
each slice.

2.4. Measurement of plaque progression

Vessel plaque burden increase (PBI), plaque area increase (PAI) and wall thickness in-
crease (WTI) from baseline to follow-up were three commonly used measures and defined
by:

WTI ¼ WTfollow−up−WTbaseline ð5Þ

PBI ¼ PBfollow−up−PBbaseline ð6Þ

PAI ¼ PAfollow−up−PAbaseline ð7Þ

2.5. Prediction model and strategy

Generalized linear mixed models (GLMM) were used as the prediction model.
The binary responses for the measures of plaque progression (PBI, PAI, or WTI)
were adopted to find the best predictor(s) [37]. PBI was taken as an example to il-
lustrate the training and testing process of our GLMM model. The same process
was also applied to WTI and PAI. For a selected slice, we set PBI = 1 if PBI N 0
or PBI = 0 if PBI ≤ 0. The GLMM model is defined as [37,42]:

yij ¼ E yij jbj

! "
þ εij ð8Þ

logit E yij jbj

! "! "
¼ β0 þ β1x1ij þ β2x2ij þ…þ b j ð9Þ

where yij is the binary response of PBI and E(yij|bj) = P(yij = 1|bj) is the probabil-
ity on the ith slice of the jth patient. logit(x) = log (x/(1 − x)) is the binomial link
function. x1ij, x2ij, etc. are the risk factors, which were used to predict plaque pro-
gression. β0, β1, etc. are the fixed-effect coefficients, bj and εij are the random effect
terms and the random error terms of GLMM. R function glmmPQL was used to es-
timate the term values by fitting GLMM [43].

A 5-fold cross-validation strategy was adopted to calculate prediction accuracy
for each single predictor and identify the optimal predictor [37]. All 201 MRI slices
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were randomly divided into 4 training subgroups and 1 verification subgroup. The
training subgroups were used for model fitting, and the verification subgroup was
used to estimate the model. Sensitivity is the probability of detecting a PBI = 1

slice in the PBI = 1 class of validation subgroup. Specificity is the probability of de-
tecting a PBI = 0 slice in the PBI = 0 class of validation subgroup. All combinations
of 10 risk factors were feed to GLMM and the prediction accuracy of each predictor

Fig. 1.Matched MR images and segmented contour plots of sliced from baseline scan and follow-up scan. (a) 8 in vivoMR images from baseline; (b) segmented contours for 8 MRI slices
from baseline; (c) matched 8 in vivo MR images from follow-up; (d) segmented contours for 8 MRI slices from baseline; (e) 3D plaque geometry from baseline (Yellow: lipid; blue:
calcification; light blue: outer wall; red: lumen.); (f) 3D plaque geometry from follow-up (Yellow: lipid; blue: calcification; light blue: outer wall; red: lumen).

(b) Piecewise Equal-Step Method (c) Shortest Distance Method (a) Sketch of the Quarter-Dividing Method. 

Wall thickness
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Fig. 2. Schematic drawing demonstrating the Piecewise Equal-Step method for vessel wall thickness and the quarter-dividing method. (a) Sketch of the quarter-dividing method. A line
connecting the centroids of ICA and ECA lumen areawas determined first. ThenQ1was determined so that the intersection of the lumen and the centerlinewas chosen as a data point and
Q1 contains 12 data points on each side of the center line; (b) Piecewise equal-step method; (c) Shortest distance method: for every selected data point on lumen, a point on the out-
boundary with the shortest distance was chosen as the matching point. This method leads to un-even representation of the out-boundary. Colour used: magenta: lipid; blue: outer
wall and lumen; red: wall thickness; black: Min cap thickness.
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was selected from the point on the ROC (receiver operating characteristic) curve
with the highest sum of specificity and sensitivity. The area under the ROC curve
(AUC) was used to assess the predictive power of each predictor.

3. Results

3.1. Combination of predictors for PBI improved AUC value by 9.45% over
best single predictor

A total of 1023 (2^10–1) combinations of 10 risk factors at baseline
were selected to determine the optimal predictor with the highest pre-
diction accuracy. Table 1 shows the results for PBI prediction using 10
single predictors and the optimal predictor. LA was the best single pre-
dictor for PBI with the highest prediction accuracy (1.3601), and the
AUC is 0.6540, followed by APWSn (1.3363) with AUC = 0.6342. The
combination of LA, PA, LP, WT, MPWS, and MPWSn (marked as LA
+ PA + LP + WT + MPWS+ MPWSn) gave the best prediction accu-
racy (1.4146), with AUC = 0.7158. The combinational predictor im-
proves the AUC by 9.45%, and 4.01% in prediction accuracy compared
to those given by LA, the best single predictor. The ROC curve of optimal
predictor LA+PA+LP+WT+MPWS+MPWSn are given in Supple-
ment Fig. 3.

3.2. The optimal combination of predictors for PAI prediction

Similar to the prediction process of PBI, Table 1 also summarizes the
prediction results for PAI using single predictors and the optimal predic-
tor at baseline. LA was once again the best single predictor for PAI with
the highest prediction accuracy (1.1846) with AUC = 0.6064, followed
by MPWSn (1.1832) with AUC = 0.6084. The combination of PA, PB,
WT, MPWS, MPWSn and APWSn (marked as PA + PB + WT
+ MPWS + MPWSn + APWSn) gave the best prediction accuracy
(1.3025), and the AUC value is 0.6657. The prediction accuracy values
and AUC values for PAI were lower than those for PBI. The combina-
tional predictor improves the AUC by 9.78%, and 9.95% in prediction ac-
curacy compared to those given by LA, the best single predictor. The
ROC curve of the optimal predictor PA + PB + WT + MPWS
+ MPWSn + APWSn are given in Supplement Fig. 4.

3.3. The optimal combination of predictors for WTI prediction

Table 1 shows that PA was the best single predictor for WTI with
highest prediction accuracy (1.2887) with AUC = 0.6415, followed by
WT (1.2540), with AUC = 0.6097. The combination of PA, PB, WT, LP,
MinCT, MPWS and MPWS (marked as PA + PB + WT + LP + MinCT
+ MPWS + MPWS) was the best predictor with prediction accuracy
as 1.3140, with AUC= 0.6552. The combination predictor still had bet-
ter prediction accuracy and AUC value over those given by best single
predictor. Supplement Fig. 5 shows the ROC curve using the optimal
predictor PA+ PB+WT+ LP+MinCT+MPWS+MPWS at baseline
for predicting WTI.

4. Discussion

4.1. Combining morphological and biomechanical risk factors for carotid
plaque progression prediction

In the prediction of plaque progression, the combinational predic-
tors improved prediction accuracy by 9.95%, 4.01% and 1.96% over the
best single predictors for PAI, PBI and WTI, respectively. When using

Table 1
Prediction sensitivity and specificity, AUC value of PBI, PAI and WTI using one single risk
factor and optimal predictor among all combinations.

Predictor ProbCutoffs Sensitivity Specificity Sensi
+
Speci

AUC

Prediction results for PBI
LA + PA + LP + WT +
MPWS + MPWSn

0.6347 0.6984 0.7162 1.4146 0.7158

LA 0.6297 0.7183 0.6419 1.3601 0.6540
APWSn 0.6243 0.6944 0.6419 1.3363 0.6342
MPWS 0.6355 0.6905 0.6419 1.3324 0.6576
PB 0.5921 0.7222 0.5685 1.2907 0.6362
LP 0.6547 0.6000 0.5850 1.1850 0.5867
MinCT 0.6987 0.502 0.6419 1.1439 0.5724
MPWSn 0.6102 0.6255 0.5170 1.1425 0.5568
WT 0.4873 0.7952 0.2500 1.0452 0.4763
APWS 0.7219 0.3400 0.6875 1.0275 0.4936
PA 0.7287 0.3855 0.6370 1.0225 0.4736

Prediction results for PAI
PA + PB + WT + MPWS
+ MPWSn + APWSn

0.4570 0.7917 0.5109 1.3025 0.6657

LA 0.5811 0.4907 0.6940 1.1846 0.6064
MPWSn 0.3907 0.8920 0.2912 1.1832 0.6084
PA 0.6608 0.2710 0.8611 1.1321 0.5813
APWS 0.4730 0.7383 0.3859 1.1242 0.5628
MinCT 0.3721 0.9202 0.2099 1.1301 0.5546
MPWS 0.6505 0.3081 0.8011 1.1092 0.5420
APWSn 0.5789 0.4512 0.6538 1.1050 0.5246
WT 0.6558 0.2817 0.7845 1.0662 0.5019
PB 0.7252 0.1596 0.9000 1.0596 0.5007
LP 0.4741 0.6916 0.3497 1.0413 0.4960

Prediction results for WTI
PA + PB + WT + LP +
MinCT + MPWS +
MPWS

0.6481 0.6025 0.7115 1.3140 0.6552

PA 0.5479 0.7951 0.4936 1.2887 0.6415
WT 0.5691 0.7314 0.5226 1.2540 0.6097
APWSn 0.5721 0.7107 0.5226 1.2333 0.6362
MPWS 0.6367 0.5643 0.6581 1.2224 0.6163
LA 0.6462 0.5226 0.6883 1.2109 0.6176
LP 0.4679 0.7963 0.4076 1.2039 0.6275
MinCT 0.5696 0.7190 0.4737 1.1927 0.5828
PB 0.6047 0.6132 0.5613 1.1745 0.5896
MPWS 0.6374 0.6175 0.5524 1.1700 0.5654
APWS 0.6387 0.5169 0.5197 1.0367 0.4978

Table 2
Correlation results between plaque progression (WTI) and the risk factors (PWS, PWSn, &
WT) using 3D full vessel model and 3D thin-layer model at baseline (T1) and follow up
(T2). (‘+’ means the correlation is consistent, ‘−’ means the correlation is inconsistent).

Slices Nodes 3D full vessel 3D thin-layer Agreement

r p r p

WTI vs WT
1 100 −0.5286 0.0000 −0.5424 0.0000 +
2 100 −0.7280 0.0000 −0.7152 0.0000 +
3 100 −0.7942 0.0000 −0.7946 0.0000 +
4 100 −0.2285 0.0215 −0.2221 0.0256 +
5 100 −0.5171 0.0000 −0.6203 0.0000 +
9 100 −0.1936 0.0524 −0.1755 0.0792 +
10 100 0.6105 0.0000 0.6792 0.0000 +

WTI vs PWS
1 100 0.8018 0.0000 0.8114 0.0000 +
2 100 0.9112 0.0000 0.8578 0.0000 +
3 100 0.4548 0.0000 0.6300 0.0000 +
4 100 −0.1664 0.0962 −0.1090 0.2777 +
5 100 0.0512 0.6113 0.2127 0.0327 +
9 100 0.3242 0.0009 −0.0871 0.3862 −
10 100 0.2895 0.0033 0.0965 0.3372 +

WTI vs PWSn
1 100 0.7676 0.0000 0.7890 0.0000 +
2 100 0.9514 0.0000 0.8802 0.0000 +
3 100 0.3323 0.0007 0.6208 0.0000 +
4 100 −0.2303 0.0205 −0.1763 0.0779 +
5 100 0.1280 0.2020 0.2160 0.0300 +
9 100 0.4063 0.0000 −0.1779 0.0750 −
10 100 0.0807 0.4222 0.0026 0.9792 +
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the single morphological or biomechanical risk factor as the predictor,
PA was the best single predictor for WTI, LA was the best single predic-
tor for PBI and PAI. The single risk factor prediction AUC values were
around 50%–60% and had little clinical significance which is consistent
with the current literature [11]. Combinational predictors improved
prediction AUC values to near 70% (71.58%, 66.57% and 65.52% for PBI,
PAI and WTI, respectively). Those represented 9.45%, 9.78%, and 2.14%
improvements in AUC values over those given by the best single
predictors.

4.2. PBI is more predictable measure for carotid plaque progression than
WTI and PAI

PB, PA andWT are three commonly used indicators, which are often
used to measure atherosclerotic plaque in human carotid and coronary
artery. WTI, PBI and PAI were used to evaluate plaque progression and
compare their differences. Our results show that PBI was a more pre-
dictable measure for carotid plaque progression than WTI and PAI
with 10 risk factors as predictive indicators. And the combinations of
LA, PA, LP, WT, MPWS and MPWSn was the best predictor with predic-
tion accuracy 1.4146 andAUCvalue 0.7158. The values of sensitivity and
specificity were 0.6984 and 0.7162, indicating that the predictor can
better predict PB changes. No matter how the plaque size changed, at
least 71% of the slices could get the correct consistency between the pre-
diction of the plaque size change and the actual plaque size change. For
the other two plaque progression measurements, the optimal predic-
tion accuracy of WTI and PAI can only reach 1.314 and 1.3025.This sug-
gest that we may want to use PBI to measure plaque progression in
future studies.

4.3. 3D thin-layer model are consistent with the 3D full vessel model corre-
lation results

3D full vessel computational models are certainly desirable for
plaque stress and strain calculations. However, 3D full vessel model
construction is time consuming. 3D thin-layer modeling method was
used in this paper as an approximation to full 3D models since the
thin-layer model requires much less computational cost and human
labor than 3D full vessel models. 3D axial stretch was still included in
3D thin-layermodels, which is similar to the procedures of 3D full vessel
model. That made 3D thin-layer model much better approximation to
3D full vessel model than the simple 2D models. Correlation results
given in Table 2 show that results from 3D thin-layer models were con-
sistent with those from 3D full vessel models. The agreement rate was
as high as 90.48% (19 from 21, detailed in Table 2). Therefore, consider-
ing the modeling time (1 or 2 weeks) cost of 3D full vessel model, 3D
thin-layer models may be used to replace 3D full vessel models to per-
form mechanical analysis for possible clinical implementation.

4.4. Limitations

MR has a limited imaging resolution, and the thin plaque cap
cannot be detected. In this study, patient-specific vessel and
plaque component material properties data were lacking and un-
available. The parameter values in the material models were se-
lected from our previous literature [24]. Acquisition of
intravascular pressure data with a noninvasive manner is still a
challenge. Furthermore, larger patient size studies are necessary
to further improve and validate our results. Lastly, due to potential
collinearity among the predictors, generalizing the prediction ac-
curacies to a broader population requires the assumption that the
collinearity patterns remain unchanged. This assumption is to be
further studied upon more data are available.

5. Conclusion

In this study, 10 morphological and biomechanical risk factors at
baselinewere used to predict plaque progression. The prediction results
of plaque progression supported our hypothesis that the predictor com-
bining morphology and biomechanics risk factors was more accurate
than any single risk factor. 3D thin-layer models showed good agree-
ment with 3D full vessel models.
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