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ABSTRACT: Advances in protein tagging and mass spec-
trometry have enabled generation of large quantitative
proteome and phosphoproteome data sets, for identifying
differentially expressed targets in case−control studies. The
power study of statistical tests is critical for designing strategies
for effective target identification and control of experimental
cost. Here, we develop a simulation framework to generate
realistic phospho-peptide data with known changes between
cases and controls. Using this framework, we quantify the
performance of traditional t-tests, Bayesian tests, and the ranking-by-fold-change test. Bayesian tests, which share variance
information among peptides, outperform the traditional t-tests. Although ranking-by-fold-change has similar power as the
Bayesian tests, its type I error rate cannot be properly controlled without proper permutation analysis; therefore, simply relying
on the ranking likely brings false positives. Two-sample Bayesian tests considering dependencies between intensity and variance
are superior for data sets with complex variance. While increasing the sample size enhances the statistical tests’ performance,
balanced controls and cases are recommended over a one-side weighted group. Further, higher peptide standard deviations
require higher fold changes to achieve the same statistical power. Together, these results highlight the importance of model-
informed experimental design and principled statistical analyses when working with large-scale proteomics and
phosphoproteomics data.
KEYWORDS: quantitative phosphorpoteomics, Bayesian statistics, empirical variance, proteomics, multiplex, two-sample,
bioinformatics, neuroproteomics, hierachical simulation, sample size

■ INTRODUCTION
Cellular responses depend on the absolute level of proteins
present in the cell and also on the relative activity of these
proteins, which are regulated by a host of post-translational
modifications. Phosphorylation is arguably the most common,
and surely most extensively studied post-translational mod-
ification, central for regulating diverse functions of proteins,
including enzymatic activity, protein localization, protein−
protein interaction, ion channel activation and inactivation, etc.
Mass-spectrometry-based proteomics is a powerful tool to

quantify phosphorylation levels in complex cellular systems. In
particular, isotope labelling technologies such as iTRAQ1 and
TMT2 have allowed relative quantification of proteins and
phosphorylation levels in multiple samples in a single
experimental run, to identify differentially regulated protein
or phosphorylation sites in case−control studies. Technical
and instrumentation advancement now enable the quantifica-
tion of more than 100 000 peptides, 10 000 proteins, and 10

000 unique phosphorylation sites in each run.3−5 This
approach promises to capture global phosphorylation changes
at the proteome level.
Despite technological advances in mass-spectrometry

protocols and computational power, identification of signifi-
cant targets are hindered. Within general modern mass
spectrometry (MS) pipelines, the measured intensity of each
peptide is reported as either the height of or the area under the
peak corresponding to the given peptide.4 Given this intensity
data, differential expression will be determined by testing
whether the mean intensities of the peptide measured in
channels corresponding to each condition significantly differs
in the background of tens or hundreds of thousands peptides.
Generally speaking, the effective sample size for each
phosphorylation site is very low, often just one peptide with
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less than 5 replicates per condition. Given (1) the high
variance in the data because of inherent biological and
technical variability, and (2) the relatively small sample size
due to technical limits for isobaric tags, cost, and sample
availability, it remains challenging to positively identify
significant targets from proteomics and phosphoproteomics
data sets. In some cases, target identification was achieved by
the fold-change test followed by validations using other
approaches, for example.6,7 The significance of differential
expression can be achieved with a two-sample t-test for
independent samples or a one-sample t-test for paired samples
for each peptide or phospho-peptide, for example.8 However,
the power and specificity of the tests are weakened by the small
sample size. In practice, when working with such large data
sets, the overall variance among peptides within all samples
needs to be taken into consideration to better estimate the
variance of any single peptide. A very similar challenge has
been encountered in the analysis of the gene expression data
from microarray experiments, promoting the development of
statistical tools addressing these concerns. Two of the most
successful tools of empirical Bayesian tests, the moderated t-
test (ModT) implemented in the limma R package,9 and the
regularized t-test (RegT) available on the Cyber-T web
server,10 rely on a Bayesian treatment to share variance
information between peptides and increase the effective sample
size. In contrast to nonparametric tests such as the Wilcoxon
rank-sum test11 or Bayesian mixture models,12 these tests
provide a principled estimator of the standard error of the fold
change estimator. Such methods have become de-facto
standards in microarray settings.13 However, the feasibility
and robustness of these statistical tools in analyzing
quantitative proteomics data, as well as the comparison
among them, has not been fully explored.
We aim to evaluate the performance of empirical Bayesian

tests, namely, ModT and RegT, in comparison to the ranking-
by-fold-change test and traditional t-tests using simulated data
on the phospho-peptide level. In addition, we investigate how
the data variance and the design of the proteomics experiment
will affect the performance of the statistical tests.

■ METHODS

Simulations
Our simulation framework is designed to produce a realistic
distribution of log 2 fold changes and intensities, with
variability similar to empirical mass spec results. Similar to
other studies,14−16 we log-transform the data for variance
stabilization, and assume that the distribution of the log 2
intensity of each peptide or protein is approximately normal.
Our sampling framework is described by the following
equations, which construct a hierarchical model to mimic the
realistic data properties. Here, we adopt the convention that
bold symbols are random variables, while nonbold variables are
constant.

μ σ≈ N u( , )ic 0 0
2

(1)

μ μ= + FCi ie c (2)

One of the following three assumptions on the variances
were used in the hierarchical model

σ σ σ=,i ic
2

e
2

1
2

(3)

which is the uniform variance model, as shown in Figure 1A.
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2
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which is the inverse gamma variance model, as shown in
Figure 1B.
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which is the intensity-dependent inverse gamma variance, as
shown in Figure 1C.
Each measurement xij corresponds to the intensity of

peptide i as measured in the channel j, in either control (xc)
or case (xe) conditions.

μ σ≈x N( , )ij i i
c

c c
2

(6)

μ σ≈x N( , )ij i i
e

e e
2

(7)

We first sample the “true” log 2 mean abundance μi of each
peptide i from a normal distribution described by the fixed

Figure 1. Overview of the simulation framework. (A−D) Scatterplots
of the sample variance versus the sample mean log intensity for each
peptide under the uniform (A), inverse gamma (B) or inverse gamma
with a mean-variance trend (C) variance models, and for empirical
data (D). The simulation models and experimental flow are shown on
the top panels. (E) Bayesian network in plate notation describing the
statistical model for the data simulation process. Fixed parameters are
indicated in grey circles with their default values, random variables in
white circles, and rectangles indicate repeated groups of variables.
Each random variable is annotated with the distribution conditioned
on the parent variables.
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■ RESULTS AND DISCUSSION

Control of the Type I Error Rate
We first evaluated the distribution of p-values generated by
each statistical test on a null simulation, where all peptides had
no significant fold change (Figure 2A,C,E). Under these
conditions, we expect the distribution of p-values to be uniform
between 0 and 1. A different distribution of p-values obtained
from the tests would indicate a failure to properly control the
FPR. Among the 9 tested methods, 7 produced approximately
uniform p-value distributions, showing that they properly
control the type I error rate, with the notable exception of the
ModTs when using the “robust” regression option (Figure
2B,D,F). Given the distorted p-value distribution, we discarded
the robust regression ModT from the remainder of the
analysis. Additionally, the one-sample ModT-trend test
incorporating a mean-variance trend deviates from a uniform
distribution for very small p-values when using a simulation
with randomly sampled variances from an inverse gamma
distribution (Figure 2D,F).
It is important to note, that in this simulated null data, we

still detected certain peptides with large fold changes between
control and experimental conditions, which would be counted
as significant events using the ranking-by-fold-change method.
Anything detected using the fold change threshold method is a
false positive under these conditions. There is no plausible
control of the type I error rate using just a threshold for the
fold change. In this case, the permutation analysis can be used
to exact the type I error rate.23,24 However, the effectiveness of
the permutation analysis is dependent on the sample size to
generate enough distinct numbers of shuffle to simulate the
null hypothesis.23 Therefore, the ranking-by-fold-change test is
not recommended as a single statistical test for significance.

Bayesian Statistics and the Ranking-by-Fold-Change Test
Perform Superior to t-Tests

We started the first series of simulations by approximating a
classic “spike-in” experiment (simulation model see Figure
S2A). A set of distinct peptides with a predetermined nonzero
fold change was added to samples containing an unperturbed
background mixture of peptides. The base simulation
generated 10 000 independent peptides, of which 9000 were
“background” with a true fold change of 0, and 1000 (10%)
were “spike-in” with a fixed nonzero fold change. Changing the
sample size (1000 and 100 000 peptides) and proportion of
perturbed peptides (4 and 25%) had minimal effect on the
performance of the statistical tests, as measured by the
pAUROC (Figure S2B).
A range of nonzero fold changes were implemented in the

simulation to visualize how the accuracy of each test evolves as
the true fold change increases. The data were simulated using
either a constant background variance (Figure 3A) across all
peptides, randomly sampled variance for each peptide from an
inverse gamma distribution (Figure 3C) or randomly sampled
variance scaled according to the mean-variance dependency in
the empirical data (Figure 3E). AUROC, pAUROC, and
AUPRC statistics were calculated for each fold change across
500 rounds of simulation (pAUROC, shown in Figure 3B,D,F,
AUROC and AUPRC in Figure S3A−F). As the pAUROC
distribution (Figure 3B) shows that the power of these tests
depends upon the size of the fold change. All methods perform
badly when the fold change is small compared to the variance.
As the fold change increases, the performance of all methods
increases. Notably, in the intermediate region, where the log 2
fold change lies between 0.3 and 1.0, distinctions between the
methods are evident. The Bayesian statistics dramatically

Figure 3. Performance of statistical tests with different variance models and a range of fold changes. (A,C, and E) Simulation models using the
uniform variance model (A), inverse gamma variance (C), or inverse gamma variance with a mean-variance trend (E). All parameters are fixed at
the default value except for the fold change perturbation (FC, highlighted in crimson) applied to changed peptides. (B,D, and F) pAUROC
performance for each method quantified over 500 rounds of simulation under the uniform (B), inverse gamma (D), or intensity dependent inverse
gamma variance (F) variance models across a range of fold change “spike-ins”.
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outperform the naive t-statistics for all three variance models.
Surprisingly, simply ranking peptides by the absolute fold
change difference between the case and control samples yields
performance approaching the empirical Bayesian tests. Under
the lower-complexity uniform variance simulation model, fold
change ranking slightly outperforms RegT and equals ModT
(Figure 3B). If more complex variance between peptides is
assumed, as with the inverse gamma distributed variances, the
empirical Bayesian tests slightly outperform the fold change
ranking and are superior to traditional t-tests (Figure 3D). In
this case both RegT and ModT (2-sample) perform equally
well. The moderated 1-sample t-test taking into account a
mean-variance trend over performs in this case although there
is no mean-variance trend in the simulated data (Figure 1C).
As evident in Figure 2D,F this test struggles to control the type
I error. If a mean-variance dependency is assumed, as with the
inverse gamma distributed variance scaled depending on
peptide intensities, Bayesian tests that assume a dependency
between intensity and variance outperform the other methods
including the ranking-by-fold-change (Figure 3F).
In light of the good performance of the fold change ranking

(Figure 3B,D) and the lack of type I error control, we conclude
that it is acceptable to prioritize or rank hits based on the fold
change when the existence of significant changes can be
otherwise established. However, because it is impossible to set
a principled threshold using fold change alone, this metric

should not be applied to determine the presence of significant
changes. Because the ranking-by-fold-change test performs well
as a prioritization scheme, we retained it during the remainder
of the analysis.
Two-Sample Bayesian Tests Are Superior for Identifying
Significant Targets in Data Sets with More Complex
Variance

In practice, significant targets from the phosphoproteomics
were identified using a cutoff from either the nominal p-value
or Benjamini−Hochberg (BH) adjusted p-value, calculated
from the selected statistical tests.25 To evaluate how the
empirical Bayesian tests and t-tests report the statistical
significance, we visualized the relationship between fold
changes and either nominal or adjusted p-values using volcano
plots and counts of positive and negative hits (example with
FC = 0.5, shown in Figure S4) from the simulated data (Figure
4A,C,E), and calculated TPR and FPR as illustrated in Figure
4B,D,F.
Under the low-complexity uniform variance model, all

statistical tests captured nominally significant targets (FC =
0.5, shown in Figure S4, top panels). With ModT, the nominal
p-values were strongly correlated with the mean fold change
because under conditions where the variance estimate is
consistent across all peptides, ModT shrinks the individual
sample variances more strongly compared to RegT, which uses
a fixed number of pseudo-observations for normalization.

Figure 4. TPR and FDR considerations of statistical tests with different variance models. (A) Simulation model using uniform variance, for data
analyzed in (B), Figure S4A,B. (B) Mean FDR and TPR performance for selected methods over 500 rounds of simulation as fold change varies
using either nominal (lighter lines) or BH adjusted (thicker lines) p-values at significance threshold of p < 0.05. (C) Simulation model using inverse
gamma variance, for data analyzed in (D), Figure S4C,D. (D) Mean FDR and TPR performance for selected methods, similar to (B). (E)
Simulation model using inverse gamma variance with a mean-variance trend, for data analyzed in (F), Figure S4E,F. (F) Mean FDR and TPR
performance for selected methods, similar to (B).
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Because the traditional t-tests do not share variance
information, the relationship between p-values and fold
changes was not strongly correlated. Using adjusted p < 0.05
as a cut off, we can calculate the percentage of true positives
and false positives for each method from the simulations (FC =
0.5, shown in Figures S4B, 4B, S4D, 4D, and S4F, 4F). As
expected (Figure 2B), the FPRs were similar among all five
tests. However, the empirical Bayesian tests had a higher TPR.
The traditional t-tests have a higher FDR, decreasing the
confidence for target identification. When the p-values are BH
adjusted, traditional t-tests failed to report significant targets
using p < 0.05 as a cutoff, whereas empirical Bayesian tests
reported significant targets (FC = 0.5, shown in Figure 4B,
bottom panel). Although with adjusted p-values, empirical
Bayesian tests showed lower FPR, resulting in low FDR, the
analyses suffer from high FNR with the small fold change (FC
= 0.5, shown in Figure 4C). Figure 4D shows the evolution of
the TPRs and FDRs derived from the nominal and adjusted p-
values, as the fold change increases. As expected, with a larger
fold change, the TPR increased, and the FDR derived from the
nominal p-value decreased. The analysis shows that FDR was
high with nominal p-values. Adjusting p-values successfully
controlled the FDR to below 0.05, as expected. The lower FDR
after adjustment provides greater certainty that significant
peptides represent true biological changes. However, one
should note that the TPR also decreased after adjustment;
therefore, it is prudent to reemphasize that a nonsignificant p-
value reflects only a failure to reject the null hypothesis and
should not be interpreted as the conclusive evidence against a
true change. After adjustment, ModT outperforms RegT over
the region in which the TPR progression is the most
pronounced.
Under the high-complexity inverse gamma variance model,

many attributes of the nominal p-value distribution are similar
to that under the uniform variance model. First, all statistical
tests captured nominally significant targets (FC = 0.5 shown in
Figure S4C, top panel). Second, the empirical Bayesian tests
gave better correlation between the nominal p-values and the
mean fold change (FC = 0.5 shown in Figure 4F). Third, the
empirical Bayesian tests had a higher TPR, and the traditional

t-tests had a higher FDR (FC = 0.5, shown in Figure S4D).
However, ModT displayed much less shrinkage of the sample
peptide variances toward a common mean, as evidenced by the
reduced correlation between the nominal p-values and the
mean fold change (Figure S4C, top panel). When the p-values
are BH adjusted, the ModTs reported very few significant
targets (Figure S4D), even though the ranking was maintained
in the data distribution because of this reduced shrinkage. This
reflects a feature of the ModT implementation: if the estimated
pooled variance differs greatly between peptides, the strength
of the variance regularization is reduced. In contrast, RegT uses
a fixed regularization independent of the empirically pooled
variance, and more strongly pools the sample variances (Figure
S4D). When we quantified the performance of these methods
over a range of fold changes, the relative performances of
ModT and RegT switched places. RegT quite dramatically
outperforms ModT, with a greater TPR over the entire fold
change range. However, at lower fold changes where the TPR
is low, the FDR for RegT is not properly controlled even after
adjustment (Figure 4D). Together, this implies that small sets
of significant hits in the low fold change region produced by
RegT are likely to contain a significant proportion of false
positives. Given the extremely low TPR at lower fold changes,
one should expect no significant discovery in this range using
any methods.
For the simulated data with a mean-variance dependency

(Figure 4E), all Bayesian tests display fewer shrinkage of the
sample peptide variances toward a common mean or trend
than for the simpler variance models, as evidenced by the
reduced correlation between the nominal p-values and the
mean fold change (Figure S4E, top panel). For this complex
variance model, ModT incorporating a mean-variance trend
has a higher TPR than ModT without this feature as expected
(Figure 4F). While its TPR is lower than that for RegT, its
FDR does not suffer for lower fold changes. Hence, targets
identified using the 2-sample ModT with the variance trend
option are more likely to be true positives than those for RegT
(Figure S4F).

Figure 5. Performance of statistical tests with different sample sizes. (A,B) Simulation model using inverse gamma variance with a mean-variance
trend (A) and pAUROC performance (B) quantified over 500 rounds of simulation. All parameters are fixed at the default value except for the
number of case and control channels. (C,D) Simulation model using inverse gamma variance with a mean-variance trend (C) and pAUROC
performance (D) quantified over 500 rounds of simulation. The total number of channels is fixed at 10, and the relative number of case and control
channels is varied.
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Balanced Sample Sizes Yield Optimal Performance

Current labeling technologies allow for between 4 and 10
channels in a single run. With the limited channel numbers in
proteomics and phosphoproteomics, there is the tradeoff
between the number of the total case channels, and the
number of control channels to capture the control variance.
The statistical benefit is not intuitively accessible.
We first examined how the sample size affects the

performance of each test under the model shown in Figure
5A (associated AUROC shown in Figure S5). The log 2 fold
change was fixed at 0.5, and the inverse gamma variance model
with a mean-variance dependence was used. As expected,
increasing the number of replicates/channels increases the
accuracy of all tests (Figure 5B). However, the effect is not
uniform. With lower channel numbers (2 controls vs 2 cases,
or 3 controls vs 3 cases), ModT two-sample t-test performed
better compared to RegT and fold change. RegT improved its
performance over both fold change and ModT as the number
of channels increased. As expected, the power of the analysis
benefits from increasing sample sizes to allow maximal
statistical power.
We next investigated the effect of imbalanced number of

case and control channels on the performance of the statistical
tests (Figure 5C). Given a total of 10 channels, we tested
different combinations of case and controls channel numbers
(1 vs 9, 2 vs 8, 3 vs 7, 4 vs 6, and 5 vs 5). One-sample ModT
was only tested with the 1 versus 9 condition, in which the
nine case channels were ratioed to the one control channel;
and with the 5 versus 5 condition, in which channels were
arbitrarily assigned in pairs. All statistical tests gave the worst
performance in the 1 versus 9 condition. The performance
improved when channel assignment geared toward more
balanced combinations. In fact, the 2 versus 8 condition
already greatly improved the performance of the statistical
tests, and the performance was the best in the 5 versus 5
condition. Our results indicate that taking into consideration
the variance in both the control and the case groups is critical
for optimal performance in a fixed number of channels, and
balanced sample size for cases and controls is the best
experimental practice for this purpose.
In many quantitative proteomics experimental design, a

reference channel is used to normalize across multiple TMT-
plex runs and increase the sample size when the sample
processing and sample size are not the rate limiting factor.
Depending on how the channels are arranged, the test
statistical frameworks may or may not directly work. If we
follow the similar setting described in the paper, that is, half
channels are for “case” group and half for the “control” group,
while each TMT-plex run spares one channel as a reference
channel (for normalizing cross multiple TMT-plex runs), then
our statistical framework should in principle apply. This is
because our concerned response variable is the relative change
(i.e., log fold change, or the log ratio between the intensities of
the case and the control). In the case of the pair-wise t-test, the
intensity of the reference will be cancelled out. As for other
two-sample t-tests and the data generation process, it could be
reasonable to assume that the reference channel perfectly
rescales the log ratios cross different runs into the same normal
distribution. Meanwhile, we could also assume that different
TMT-plex runs end up with extra variations. Then an extra
run/batch effect should be modeled (e.g., in eq 3 we could
replace σ1

2 to be σ1r
2 to be dependent on the run r). In this

case, further study would be needed to address the influence of
the extra variation.
Higher Peptide Variance Requires Higher Fold Changes to
Achieve the Same Statistical Power
The peptide variance influences the performance of the
statistical tests. When fixing the pAUROC score at
approximately 0.75, there is a linear relationship between the
peptide standard deviation and the smallest fold change
necessary to achieve this score for Bayesian tests as well as a
standard two-sample t-test (Figure 6). Bayesian tests reach

pAUROC = 0.75 at drastically lower fold changes than the
naive two-sample t-test. Together with the results from Figures
3 and 4, this highlights the importance of moderating or
regularizing the peptide variance using global estimates to
achieve maximum statistical power at low fold changes and
high variance.
Noise Distribution Influence the Performance of the
Statistical Tests
So far, we have used both the uniform and inverse gamma
peptide variance models. In addition, we have assumed that the
noise distribution E (methods) is Gaussian. However,
experimental conditions such as sample source consistency,
sample preparation, and instrumentation could introduce
differing amounts of variance into the data. In addition,
previous studies have suggested the noise distribution of the
measured intensities may be better described by a heavy-tailed
distribution.26,27 Therefore, to evaluate how different assump-
tions about the variance in the data affects the performance of
the statistical tests, we extended our simulation model to use
several different parameter settings for the peptide variance
model, corresponding to high, medium, and low variance, and
three different noise distributions with double-exponential tails
(Gaussian distribution), exponential tails (Laplace distribu-
tion), and power-law tails (t-distribution with 3 degrees of
freedom) (Figure 7A). When we altered the noise distribution,
the relative performance changed (Figure 7B, associated
AUROC curves shown in Figure S6). In particular, the
Laplacian noise compressed the differences between the
methods, and both empirical Bayes tests and fold change
ranking perform nearly identically. In contrast, the t-distributed
noise emphasizes the superiority of the Bayesian tests, and
greatly reduces the relative performance of fold change
ranking. Consistent with our previous results, the inverse

Figure 6. Performance of statistical tests with different peptide
standard deviations. (A) Simulation model using inverse gamma
variance with a mean-variance trend. Different fold changes and
peptide variances were used (B). (B) Estimated fold changes
necessary for pAUROC = 0.75, given a range of peptide standard
deviations. Only showing two-sample t-test, ModT (2-s, trend) and
RegT for simplicity. For each standard deviation the corresponding
fold change was estimated 50 times using a gradient descent-based
method.
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gamma peptide variance model also enhances the performance
differential between the Bayesian t-tests and especially reduces
the performance of the fold change ranking. Overall, these
results highlight the importance of a principled statistical
model when the dataset variance is high. Further, properly
evaluating the variance of the dataset is critical for analyzing
the expected power and positive detection probability.
In summary, we used a hierarchical simulation framework to

generate realistic proteomics data sets which are used to
evaluate statistical tests for differential peptide abundance. This
framework has the flexibility to implement different sizes and
distributions of variance using arbitrary parameters. Using our
simulation, we showed that (1) empirical Bayesian tests
outperform traditional t-tests; (2) given fixed channel
numbers, balanced control and case channel numbers provide
the best performance for the statistical tests; (3) absolute fold
change performs surprisingly well in terms of ranking, but a
principled statistical test is required to control type I error; (4)
even though RegT and ModT perform equally well in terms of
ranking, how well they detect significant targets using adjusted
p-values is dependent on variance models; and (5) Bayesian
two-sample tests that assume a dependency between intensity
and variance are superior for data sets with multiple sources of
variance.

■ CONCLUSIONS
Given the close relationship between power, variance, and fold
change, it is highly advisable to evaluate the distribution of the
variance noise within the data set. With the fitted model

parameters, one can estimate the expected AUROC, TPR, and
FDR of the analyses for any given fold change using our
simulation framework. This information about how well the
statistical analyses will perform will help appropriately interpret
the results, with expected proportion of true positives at a
certain fold change range, and prioritize targets for down-
stream analysis.
Several limitations should be acknowledged in our study,

and correspondingly the work can be extended in a few
directions in future research. First, our study is limited to the
classic assumption of independent observations. This assump-
tion is needed to reveal the fundamental relationship between
the effective sample size and the power of statistical methods in
phosphoproteomics data analysis. Meanwhile, in reality the
data could possess more complex patterns of dependence. Our
study can be extended based on the correlation-incorporated
modelling of observations, as well as the real-data-induced
simulation algorithms.28,29 Second, our study mainly focuses
on the study of the peptide intensities. For the protein
intensities, if their corresponding peptide intensities can be
collapsed to one intensity per protein (e.g., in the typical
practice the median peptide intensity is treated as the
representative protein intensity), current study results can be
applied. However, it would be more realistic to include the
consideration of the intensity variations among peptides of
each protein. In the future study, we will extend our
hierarchical model to include an extra protein layer, which
contains the peptide layer as described in the current study.
The multilayer hierarchical model could allow the simulation

Figure 7. Performance of statistical tests with different peptide variances and noise distributions. (A) Simulation model for data analyzed in (B).
The variance model (uniform or inverse gamma), the parameters governing the prior distribution on the variance, and the noise distribution are
varied. The FC, number of peptides, and number of channels are fixed at the default values. (B) pAUROC performance over 500 simulation runs as
the noise distribution and variance model are varied. For each variance model and noise distribution, three parameter settings corresponding to low,
medium, and high variance conditions were simulated.
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process better reflecting the real data generation mechanism.
Accordingly, we can extend the Bayesian strategy to address
the variance structure for developing more powerful tests for
real data analysis. Third, the study is limited to the typical
case−control study. It can be extended to include multiple
covariates to study associations between potential factors and
the differential expression of a target. The corresponding
power study can also help with optimizing the experimental
design, for example, for sample balancing among experiments.
For this purpose, one potential strategy is to extend the ModT
based on the multiple-regression framework. Under the similar
Bayesian estimation of variance in the ModT, the coefficients
of multiple covariates can be estimated, and the testing
procedure can be generalized from the two-sample t-test to the
more general linear-model-based tests of the covariates.
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