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Abstract

Let T" be a finite simplicial graph such that the flag complex on I is a 2-dimensional tri-
angulated disk. We show that with some assumptions, the Dehn function of the associated
Bestvina—Brady group is either quadratic, cubic, or quartic. Furthermore, we can identify the
Dehn function from the defining graph I'.
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1 introduction

Dehn functions are one of the quasi-isometry invariants of finitely presented groups, and they
have been studied by many people. One of the reasons people study Dehn functions is that
they are related to the solvability of the word problem for finitely presented groups. That is,
a finitely presented group has a solvable word problem if and only if its Dehn function is
recursive. Besides the solvability of the word problem, Dehn functions can also detect certain
structures in groups. For example, a group is hyperbolic if and only if it has a linear Dehn
function [14]. We refer to [8] for background on Dehn functions. In this paper, we study
Dehn functions of Bestvina—Brady groups, which are a class of subgroups of right-angled
Artin groups.

Given a finite simplicial graph I, the associated right-angled Artin group Ar is generated
by the vertices of I". The relators are commutators: two generators #, v commute if and only if
they are adjacent vertices of I". Right-angled Artin groups have become an important objects
that people study in geometric group theory; see [11] for a general survey. They are known
to be CAT(0) groups; both categories of groups have at most quadratic Dehn functions. But
subgroups can have larger Dehn functions. Brady and Forester [4] gave examples of CAT(0)
groups that contain finitely presented subgroups whose Dehn functions are of the form n”,
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(a) (b) (0

Fig. 1 Triangulated disks whose interior dimensions are 0, 1, and 2, respectively

for a dense set of p € [2, oo). Brady and Soroko [6] proved that for each positive integer p,
there is a right-angled Artin group that contains a finitely presented subgroup whose Dehn
function is n”.

For a right-angled Artin group Ar, the associated Bestvina—Brady group Hr is defined
to be the kernel of the homomorphism Ar — Z, which sends all the generators of Ar
to 1. This kernel had been studied prior to Bestvina—Brady. Stallings [16] constructed a
group that is finitely generated but not finitely presented. This group can be realized as the
Bestvina-Brady group Hr = ker(f> x F» — Z), where I' is a cycle graph C4. When
I' is taken to be the (n + 1)-fold join of two vertices, the right-angled Artin group on
I" is the n-copies of F>, and Bieri [3] proved that the associated Bestvina—Brady group
Hr = ker(F, x - - - X Fp — 7Z) satisfies the finiteness property FP, but not FP,,; {. Bestvina
and Brady [2] gave a systematic construction of groups that satisfy some finiteness properties
but not others. Moreover, there are Bestvina—Brady groups that are either counterexamples
to the Eilenberg—Ganea Conjecture or counterexamples to the Whitehead Conjecture ([2],
Theorem 8.7).

Dison proved that the Dehn functions of Bestvina—Brady groups are bounded above by
quartic polynomials [13]. We are interested in knowing whether all the Bestvina—Brady
groups have Dehn functions of the form n%, « = 1, 2, 3 or 4. Our motivation is Brady’s
examples in ([5], Part I), where he gave Bestvina—Brady groups that realize quadratic, cubic,
and quartic Dehn functions. In each of those examples, the flag complex on the defining
graph I', denoted by Ar, is a 2-dimensional triangulated disk with square boundary. In this
paper, we prove that the Dehn functions of Bestvina—Brady groups Hr with such restrictions
on the defining graphs I' are of the form n*, « = 1, 2, 3 or 4. Furthermore, we provide a
way to identify the Dehn functions of those Bestvina—Brady groups by their defining graphs.
A simplex of a 2-dimensional triangulated disk D is called an interior simplex if none of its
faces are on d D. If D has interior d-simplices, and no other interior k-simplices, k > d, then
we say that D has the interior dimension d, denoted by dim; (D) = d. If D has no interior
simplices, then we define dim; (D) = 0. Our main result is the following theorem:

Theorem 1.1 Let " be a finite simplicial graph such that Ar is a 2-dimensional triangulated
disk whose boundary is a square. If dim;(Ar) = d ford € {0, 1, 2}, then 5g. (n) = nd+2,

Example 1.2 The flag complexes on the graphs shown in Fig. 1 are 2-dimensional triangulated
disks with square boundary, and they have interior dimensions 0, 1, and 2, respectively.

We now briefly discuss the proof of Theorem 1.1. When dim; (Ar) = 0, we can eliminate
the square boundary condition on Ar; see Theorem 3.1. In this case, the Bestvina—Brady
group Hr has a graph of groups decomposition, where the edge groups are infinite cyclic,
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and the vertex groups are right-angled Artin groups. In fact, these Bestvina—Brady groups are
CAT(0), therefore, their Dehn functions are at most quadratic. Since we assume that the flag
complexes are triangulated disks, the associated Bestvina—Brady groups have Z2 subgroups.
Thus, these Bestvina—Brady groups are not hyperbolic and have at least quadratic Dehn
functions. We remark that some cases of dim;(Ar) = 0 in Theorem 1.1 can be obtained by
a result of Carter and Forester [10]:

Theorem 1.3 ([10], Corollary 4.3) If a finite simplicial graph T is a join of three graphs
I' =T % 'y % '3, then 8y is quadratic.

Example 1.4 Let I' be the graph in Fig. 1a. Label the vertices as follows:

a

e

LetI'y = {c}, T2 = {b,d}, and I'3 = {a, e}, then I" = I'| * I'p = I'3. Therefore, dpy. is
quadratic by Theorem 1.3. It also follows from Theorem 1.1 that 6. is quadratic.

In [5], Brady proved that the Bestvina—Brady group on the graph shown in Fig. 1b has a
cubic Dehn function. This graph can be seen as the suspension of a path of length 3. When
dim;(Ar) = 1, we prove that I" is the suspension of a path, and we show that the associated
Bestvina—Brady group has a cubic Dehn function. To achieve the cubic upper bound, we use
the corridor schemes [4] to analyse the van Kampen diagrams carefully. Lemma 4.10 is the
main technical result of this paper. In this technical lemma, we prove that the area of a special
region, called a stack, in a van Kampen diagram is bounded above by a cubic function of the
perimeter of that region. This result allows us to obtain the desired cubic upper bound; see
Lemma 4.15 for a detail proof.

Since there is a universal quartic upper bound on the Dehn functions of Bestvina—Brady
groups, the remaining cases are the cubic and quartic lower bounds for dim;(Ar) = 1,2,
respectively. In [1], the authors introduced the height-pushing map to obtain the lower bound
on the higher Dehn functions of orthoplex groups. Their method can be adapted to our proof
to obtain the desired lower bounds. We want to point out that their theorem ([1], Theorem
5.1) recovers Dison’s quartic upper bound in [13]. We have discussed all the cases of our
main result Theorem 1.1.

Denote K4 to be the complete graph on four vertices. Note that the assumption of the
flag complex Ar being 2-dimensional is equivalent to saying that the graph I' does not have
K4 subgraphs. Suppose a given graph I" whose flag complex is a triangulated disk but not
necessarily 2-dimensional or has square boundary. If I" contains a subgraph that satisfies the
assumptions of Theorem 1.1, then we can obtain a lower bound on the Dehn function of the
associated Bestvina—Brady group Hr:

Proposition 1.5 Let T" be a finite simplicial graph such that Ar is simply-connected. If T
contains an induced subgraph T’ such that A is a 2-dimensional triangulated subdisk of
Ar that has square boundary and dim;(Ar) = d ford € {0, 1,2}, then n+? < Spp(n).

@ Springer



214 Geometriae Dedicata (2021) 214:211-239

This paper is organized as follows. Section 2 provides some necessary background. In Sect.
3, we prove the case of dim;(Ar) = 0 without the square boundary assumption. Section 4
is devoted to the proof of Theorem 1.1. In Sect. 5, we prove Proposition 1.5.

2 preliminaries
2.1 Dehn functions

Let G be a group with a finite presentation P = (S|R). Let w be a word in F(S) that
represents the identity of G, denoted by w =¢ 1. The area of w, denoted by Area(w), is
defined as follows:

N
Area(w) = min {N ‘w F©&) Hx,-riilxi_],xi e F(S),r; € R},

i=1
where F(S) is the free group generated by S. The Dehn function §¢ : N — N of a group G
over the presentation P = (S|R) is defined by

ép(n) = max {AreaG(w) ‘ w=gl, |wl < n}
where |w| denotes the length of the word w.

Definition 2.1 Let f, g : [0, c0) — [0, 00) be two functions. We say that f is bounded above
by g, denoted by f < g, if there is anumber C > O such that f(n) < Cg(Cn+C)+Cn+C
foralln > 0. We say that f and g are ~-equivalent, or simply equivalent, denoted by f ~ g,
if f<gandg =< f.

If P1 and P, are finite presentations of a group G, then §p, is equivalent to §p, ; we refer
to [8] for a proof of this fact. We denote the ~-equivalent class of G by §¢, and call it the
Dehn function of G. We say that the Dehn function §¢ is linear, quadratic, cubic or quartic
ifforalln € N, 8g(n) ~ n, 8g(n) ~ n?, 8g(n) ~ n> or 8G(n) ~ n*, respectively.

2.2 Right-angled Artin groups, Bestvina-Brady groups, and the Dicks-Leary
presentation

Let I" be a finite simplicial graph and V(I") the set of vertices of I". The right-angled Artin
group Ar associated to I' has the following presentation:

Ar = <V(F)

[vi, vj] whenever v; and v; are connected by an edge of F>.

When T is a complete graph K, on n vertices, Ar = Z"; when I" is a set of n distinct points,
Ar = F,, the free group of rank n.

For each finite simplicial graph T, its associated right-angled Artin group Ar is the fun-
damental group of a cubical complex X, called the Salvetti complex. It is well-known that
the Salvetti complex Xt is compact and non-positively curved, and its universal cover Xr
is a CAT(0) cube complex. Moreover, right-angled Artin groups are CAT(0) groups; thus,
they have at most quadratic Dehn functions. We refer to [11] for more details of these facts.
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Fig.2 Realator of the
Dicks—Leary presentation

f

Given a finite simplicial graph I', we define a group homomorphism ¢ : Ar — Z by
sending all the generators of Ar to 1. The kernel of this homomorphism is called the Bestvina—
Brady group defined by T, and is denoted by Hr. In fact, the map ¢ : Ar — Z is induced by
1: Xr — S!, and the lift of 7, denoted by h : X r — R is a ¢-equivariant Morse function;
see [2], Theorem 5.12. Restricting the action of Ar on X r to Hr, we obtain a geometric
action of Hp on the zero level set Zp = h~! 0).

The flag complex Ar on a finite simplicial graph I' is a simplicial complex such that
each complete subgraph K, of I' spans an (n — 1)-simplex in Ar. When Ar is connected,
Hr is finitely generated; when Ar is simply-connected, Hr is finitely presented; see [2] for
the proof of these facts. When Hr is finitely presented, we can write down its Dicks—Leary
presentation [12]:

Theorem 2.2 ([12], Corollary 3) Let I" be a finite simplicial oriented graph. Suppose that Ar
is simply-connected. Then the Bestvina—Brady group Hr has the following finite presentation:

Hr = <E(r)

ef = g = fe whenevere, f, g form an oriented triangle >,

where E(T) is the set of oriented edges of T, and the oriented triangle is shown in Fig. 2

We will use the fact that Hr is finitely presented when Ar is simply-connected without
specifying an orientation on I". We will give an orientation on I' when we need to work with
a finite presentation for Hr. The Dicks—Leary presentation can be reduced further:

Corollary 2.3 ([15], Corollary 2.3) If the flag complex on a finite simplicial graph T is simply-
connected, then Hr has a presentation Hr = F /R, where F is the free group generated
by the edges in a maximal tree of I, and R is a finitely generated normal subgroup of the
commutator group [F, F].

While Dehn functions of right-angled Artin groups are at most quadratic, Dison [13]
proved that Dehn functions of Bestvina—Brady groups are bounded above by quartic func-
tions.

Theorem 2.4 ([13]) Dehn functions of Bestvina—Brady groups are at most quartic.

2.3 Interior dimensions

Let D be a triangulated disk. An interior i-simplex of D is an i-simplex whose faces do
not intersect 0. D. We also call an interior O-simplex an interior vertex, an interior 1-simplex
an interior edge, and an interior 2-simplex an interior triangle. We say that D has interior
dimension d, denoted by dim; (D) = d, if D contains interior d-simplices, and it has no
interior k-simplices, k > d.If D contains no interior simplices, then we define dim; (D) = 0.
We refer to Example 1.2 for concrete examples.
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%

Fig.3 Fan and Wheel

3 Disks with interior dimension 0

In this section, we prove the following theorem.

Theorem 3.1 Let T be a finite simplicial graph. If Ar is a 2-dimensional triangulated disk
2

satisfying dimj (Ar) = 0, then §py. (n) >~ n”.

For such a graph I', we will see later that the associated Bestvina—Brady group Hr has a
graph-of-groups decomposition, where the edges groups are infinite cyclic groups; and the
vertex groups are Bestvina—Brady groups on some induced subgraphs of I", namely, fans and
wheels. Moreover, each of the vertex groups is isomorphic to a non-hyperbolic right-angled
Artin group.

Recall that the join of two graphs ' and I';, denoted by I'{ x I, is the graph obtained by
taking the disjoint union of I'y and I'; together with all the edges that connect the vertices of
I'1 and the vertices of I'; (Fig. 3).

Definition 3.2 A fan F, 4 is the join of a vertex and a path P,. A wheel Wj 4 is the join of
a vertex and a cycle C,,.

Remark 3.3 The flag complex on W is a tetrahedron, which is not 2-dimensional. Throughout
this paper, unless otherwise stated, all the wheels have at least five vertices, that is, W, for
n > 5. Note that a triangle is also a fan F3.

Fans and wheels have a special structure: they can be decomposed as a join of a vertex and
graph. When a finite simplicial graph I" decomposes as a join I' = {v} % "/, the Dicks—Leary
presentation gives Hr = Aps (see Example 2.5 in [15]). That is, Hr is a right-angled Artin
group. Thus, 8. is at most quadratic.

Proposition 3.4 Suppose a finite simplicial graph decomposes as a join T' = {v} x I"". Then
Hr = Ap and 8gy. is at most quadratic. Moreover, if T’ contains an edge, then Ay is
non-hyperbolic and § . is quadratic.

Proof Sincel" = {v}*I", wehave Ar = Z x Ar. We claim that H = Ar. Label the edges
that have v as the common endpoint by ey, . .., ex; label the other end points of ey, . . ., ex by
V1, ..., V. Since ey, . . ., e form a maximal tree of I', they generate Hr; see Corollary 2.3.
Meanwhile, vy, ..., vx generate Ar/. Define a map ¢ : Hr — Ap by sending e; to v;
fori = 1, ..., k. This is a bijection between the generating sets of Hr and Ap/. We now
argue that ¢ preserves relators. Note that the relators of Hr and Ay are commutators. The
generators ¢; and e; commute when they are two edges of the same triangle, that is, when
their end points v; and v; are connected by an edge. Thus, v;, v; commute whenever e;, e;
commute; the converse is true. Hence, ¥ is an isomorphism.

Since Hr = A and SAp is at most quadratic, § - is at most quadratic. If I’ contains an
edge, then Hr = A contains Z X Z as a subgroup. Therefore, Hr» cannot be hyperbolic
and Sy has to be quadratic. O
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Remark 3.5 In Proposition 3.4 " may have K4 subgraphs. So there are infinitely many non-
2-dimensional Bestvina—Brady groups whose Dehn functions are quadratic.

We want to point out that there are Bestvina—Brady groups that are not isomorphic to any
right-angled Artin groups ([15], Proposition 9.4). The following corollary is an immediate
consequence of Proposition 3.4.

Corollary 3.6 IfT is a fan or wheel, then 8. is quadratic.

Lemma 3.7 Let I be a finite simplicial graph such that Ar is a 2-dimensional triangulated
disk with dimj(Ar) = 0. Then I" can be represented as a tree T : each vertex of T represents
a fan or a wheel; two vertices v, w of T are adjacent if the intersection of the graphs that
are represented by v and w is an edge.

Proof We observe that for any interior vertex of Ar, the induced subgraph on the interior
vertex, together with its adjacent vertices, is a wheel. Also, note that if Ar has two interior
vertices, then they are not connected. Otherwise, the edge that connects the two interior
vertices would be an interior edge of Ar, which contradicts our assumption. Thus, there
are three types of edges of Ar: (1) edges on dAr, (2) edges that connect interior vertices
and vertices on d Ar, and (3) edges that intersect d Ar at two vertices. Cutting along all the
edges of type (3), we obtain connected components of Ar whose 1-skeletons are wheels and
fans (triangles). For each connected component, we assign a vertex to it; two vertices are
connected if the corresponding connected components intersect in Ar. Thus, we have the
desire decomposition of I with an underlying graph T'.

Now we show that T is a tree. Suppose T is not a tree, then T contains a circle C,, of length
n. The flag complex on the subgraph of I' whose decomposition corresponds to C,, would
be a triangulated annulus. Thus, Ar would not be a triangulate disk, and this contradicts the
assumption that Ar is a triangulated disk. Hence, T is a tree. O

Note that the decomposition in Proposition 3.7 is not unique. Since for a fan F,4, there
are p(n) such decompositions, where p(n) is the partition function.

Let ' = I'y U T, be a finite simplicial graph. If I'; N I is a single edge, then the
Bestvina—Brady group Hr splits over Z as Hr, *z Hr, by the Dicks—Leary presentation (see
Theorem 2.2). Itis not hard to see that Lemma 3.7 implies that Hr splits over Z, and the vertex
groups are CAT(0) groups. We summarize these statements in the following proposition.

Proposition 3.8 Let I" be a finite simplicial graph such that Ar is a triangulated disk with
dim; (Ar) = 0. Then Hr has a graph-of-groups decomposition, where the underlying graph
is the tree T in Lemma 3.7, the edge groups are 7., and the vertex groups are Bestvina—Brady
groups defined by the graphs that are represented by the vertex of T in the Lemma 3.7.
Moreover, the vertex groups are right-angled Artin groups, then hence, CAT (0) groups.

To prove our main theorem in this section, we need the following proposition in [9]:

Proposition 3.9 ([9], Chapter II.11, 11.17 Proposition) If each of the groups G and G is
the fundamental group of a non-positively curved compact metric space, then so is G x7 G».
In particular, if G| and G, are CAT(0) groups, so is G1 xz G».

Proof of Theorem 3.1 Let I be a finite simplicial graph such that Ar is a 2-dimensional trian-
gulated disk withdim; (Ar) = 0. By Proposition 3.8, Hr has a tree-of-groups decomposition,
where the edge groups are Z, and the vertex groups are CAT(0). Repeating Proposition 3.9
gives us that Hr is a CAT(0) group. Thus, 6 - is at most quadratic. Since Ar is a triangulated
disk, Hr contains Z x Z subgroups, and thus, it is not hyperbolic. Therefore, § - is not linear.
Hence, § ;- is quadratic. m]
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e
N

Fig.4 The suspension of a path
of length at least 3

d d

Fig. 5 An interior edge together with two vertices on d Ar form two adjacent triangles. These two vertices
on AT are not adjacent, see the picture on the left. Otherwise, I' would contain a K4, see the picture on the
right

4 Disks with square boundaries

The goal of this section is to prove the following:

Theorem 4.1 Let T be a finite simplicial graph such that Ar is a 2-dimensional triangulated
disk whose boundary is a square. If dim;(Ar) = d ford € {0, 1, 2}, then §y. (n) = nd+2,

When d = 0, Theorem 4.1 is a corollary of Theorem 3.1. In Sect. 4.1, we establish the
lower bound for 8. for d = 1, 2. Since there is a universal quartic upper bound given by
Dison [13], we only need to establish the cubic upper bound for § 4. for d = 1; the detailed
proof is contained in Sect. 4.2. Before we proceed with the proof, we prove the following
lemma which will be used later on.

Lemma4.2 Let I be a finite simplicial graph such that Ar is a 2-dimensional triangulated
disk with square boundary. If dim; (Ar) = 1, then T is the suspension of a path of length at
least 3 (Fig. 4).

Proof Define I'’ to be the graph whose edge set consists of all the interior edges of Ar. Label
the four vertices on d Ar by a, b, ¢, d as shown in Fig. 5. Since Ar is a triangulated disk,
each edge of ' together with two vertices on d Ar form two adjacent triangles, and these
two vertices on dAr are not adjacent. Otherwise, there would be a K4 subgraph contained
in I'; see Fig. 5.

We make two claims on I'’. The first claim is: I'” has no vertices whose valency is greater
than 3. Suppose I'’ has a vertex whose valency is greater than 3, that is, I’ contains a tripod.
Since each edge of the tripod together with two non-adjacent vertices on d Ar, say b, d, form
two adjacent triangles, there are two triangles in Ar share two consecutive edges; see Fig. 6.
Thus, I is not a simplicial graph, we get a contradiction. Hence, no vertex of I'” has valency
greater than 3. This proves the first claim.

The second claim is that I'” is a connected path. Suppose I'’ is not connected, say I'” has k
connected components I'{, ..., I';.. Since none of the vertices of I'” has valency greater than
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Fig.6 The picture shows the b
simplest case: I' is a tripod,
drown in thick lines. There are
two edges connecting the central
vertex of the tripod and the vertex
d c a

Fig.7 Connected components of I'". Each pair of adjacent vertices of I'” are connected to a pair of non-adjacent
vertices on d A

Fig.8 Between I'; and I'; 1, b
vertices b, d are connected by an
edge
d
3,eachof I}, ..., F,’( is a connected path. Also, all the pairs of adjacent vertices of '’ are

connected either to vertices a, ¢ or vertices b, d simultaneously, say vertices b, d:

In Fig. 7, label from the left-most connected component to the right-most component of
I by I}, ..., '}, and define T'; to be the join of I'} and {b, d}. Since Ar is a triangulated
disk, there must be an edge connecting b and d between I'; and I'; 1, i = 1,... k — 1:

In Fig. 8 we see that connecting b, d by an edge creates K4 subgraphs in I". This contradicts
our assumption. Thus, the graph I'' is a connected path.

Now, we have shown that I' is a connected path, and all pairs of adjacent vertices of I'" are
connected either to vertices a, ¢ or b, d simultaneously. Again, suppose b, d are connected
to all vertices of I'”. The two end vertices of [’ have no choices but to be connected to a and
c. Hence, T is a suspension of I'". This proves the lemma. O
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Remark 4.3 1In [5], Brady gave an example of a cubic Dehn function 8., where T is the
suspension of a path of length 3. Theorem 4.1 plus Lemma 4.2 gives a concrete family of
graphs I' satisfying 8 g (n) =~ n.

4.1 Lower bound

In [1], the authors introduced height-pushing maps to give a lower bound on the higher
dimensional Dehn functions of orthoplex groups. The same technique can be used here to
obtain the desired lower bound. We give necessary background here; see [1] for more details.

Let I' be a finite simplical graph. We use the notations Xr, X r, Zr, h from Sect. 2.2.
Recall that X is a CAT(0) cube complex. We put the £!-metric on each cube and extend it
to the whole space X r. Let B.(x) and S, (x) be the £!-ball and El—sphere in X r centered at
x with radius r, respectively.

A subspace F C Xr is called a k-flat if it is isometric to the Euclidean space EX.

Theorem 4.4 ([1], Theorem 4.2) There is an Hr-equivariant retraction, called the height-
pushing map

P:Xr\ | Biav) > Zr,
v¢Zr

where the union is over the vertices that are not in Zr, such that for all t > 0, when P is
restricted to h='([—t, t]), P is a (ct + ¢)-Lipschitz map, where c is a constant which only
depends on T.

In the next lemma, we establish the lower bound for § ;. in Theorem 4.1.

Lemma 4.5 Let I be a finite simplicial graph such that Ar is a 2-dimensional triangulated
disk with square boundary. If dim; (Ar) = d, then ép (n) = nd+2,

We give the idea of the proof of Lemma 4.5. Recall that Bestvina—Brady groups Hr act
geometrically on the zero level set Zr = h=1(0). So the filling function of Zr is equivalent
to 8y For each r, we construct a loop S, in Zr whose length is 2 r, and it bounds a disk
in the ambient space X r and a disk in Zr. Then we use the height-pushing map to push the
filling of the disk in X r to get a lower bound of the filling of the loop S, in Zr.

Proof of Lemma 4.5 The case d = 0 follows from Theorem 3.1; the case d = 2 appears in
[1]. We prove the case when d = 1 which uses the same strategy as the case d = 2. When
d = 1, recall from Lemma 4.2 that I" is the suspension of a path of length at least 3. Label
the four vertices on the boundary of Ar as shown in Fig. 9.

Fig.9 The square boundary of aq
Ar and an interior 1-simplex o

bo Qo

by
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'\’YOP& /‘ 7 }]PH’

"/l}wf r\

F(0,0)=¢e

Fig. 10 1The non-standard 2-dimensional flat F. The parallelogram drown in the thick lines is the intersection
FNh=(r)

Define bi-infinite geodesic rays y;, i = 0, 1, in the 1-skeleton of X r:
yi(0) =e, vilgr =aibiaib;---, vilg- = biaibia;---
Defineamap F : Z x Z — Ar by
F(x) = yoxo)yi(x1), x = (x0,x1) € ZxZ.

The image of F consists of elementg in the non-abelian group (ao, a1, bo, b1). Let F be the
non-standard 2-dimensional flat in X1 such that the set of its vertices is the image of F'; see
Fig. 10. Since

h(x) = h(F(xo, x1)) = |xo| + |x1], x = (x0,x1) € Z X Z,

the flat F has a unique vertex F(0,0) = y9(0)y;(0) = e at height 0. We think of F as the
boundary of a reversed infinite square pyramid with the apex F(0, 0). For each r > 0, the
intersection F N A~ (r) is homeomorphic to S!, which is a loop L, at height r. This loop L,
bounds a 2-disk F N A~ ([0, r]) in F.

Using the group action Ar on ir, we translate the 2-disk F N A~1([0, r]) to (ap)"F N
h=1([—r, 0]). We denote the new 2-disk by D, and its interior by DO,. The loop L, at height
r is translated to a loop S, in Zr that is also homeomorphic to S 1.

Sy :=1[(ao) "F1Nh~'(0) = [(ao) "F1N Zr.

Notice that after performing this translation, the unique vertex (ag) " F (0, 0) is at height —r.
Now we have that S, is a loop in Zr and it bounds a 2-disk D,.. The next step is to use the
height-pushing map P to push this filling D, of S, in X r to fill S, in Zr.

In order to use the height-pushing map, we need to do some surgery on D,. At each vertex
ve D, replace By /4(v) by acopy of Ar. We now show that after applying the height-pushing
map to the surgered D,, the scaled copies of 1-simplices in the interior of Ar at each vertex
of the surgered D, do not intersect much in Zp. We first consider two different 1-simplices
o1 and o7 in the interior of Ar at a vertex v in lo)r. Since o1 and o either are disjoint or
intersect at a O-simplex, the images P (o) and P(02) intersect at most at a 0-simplex. We next
consider 1-simplices in the interior of Ar at different vertices vy, v> in Dor. Leto = [x, y]be
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an 1-simplex in the interior of Ar; see Fig. 9. Let v| and v} be vertices of the scaled copies
P(o) in Zr, based at vertices v and v; in ﬁ,, respectively. Then we have

V] = (ap) Tv1x* 1y and v) = (ag) T vpx"2yR

for some s1, 12, 52, 12 € Z>o. If v{ = vé, that is, the intersection of scaled copies P(o) based
at vy and v, is non-empty, then we have vy = v, since (ao, ai, bg, b1) N (x, y) = {0}. Thus,
no vertices of different scaled copies of ¢ are the same. That is, scaled copies of ¢ in Zr are
disjoint. Each interior 1-simplex is an intersection of two 2-simplices in Ar, so the image
of the surgered b,. under P has the area at least 2 - |{number of1-simplices}|. Since we only
need a lower bound, we don’t need to count all the 1-simplices. For each vertex in lo),, we
take one 1-simplex o in Ar based at that vertex. As we have seen that the scaled copies P(o)
don’t cancel out. So the filling of S, in Zr will be at least the sum of the length of these
scaled copies P(o). For each interior 1-simplex o in Ar based at a vertex v of lo)r, it follows
by Theorem 4.4 that the length of the scaled copied P(c) in Zr grows linearly in terms of
r, that is, the length of P(c0') depends on how far is ¢ pushed into Zr by the height-pushing
map. Thus, the further the o is from Zr, the longer the length of P(o). At height —r, there is
only one vertex in b,, namely, the apex (ag) ™" F (0, 0). The image of the 1-simplex o based
at the apex under P is cr + ¢, by Theorem 4.4. At each heighti = —(r — 1), ..., —1, there
are 4i vertices and the image of 1-simplex o under P has length c(r — i) 4+ c. We have

r—1
Area(S,) > (cr +¢) + Z4i[c(r — i) 4] =7,

i=1

Thus, the filling function of Zr is at least cubic. Hence, ;. is at least cubic. This proves the
lemma. o

4.2 Upper bound

As we mentioned at the beginning of this section, we only need to establish the cubic upper
bound for d = 1 in Theorem 4.1. The proof relies on analyzing a van Kampen diagram of
an arbitrary word w € Hr that represents the identity. All the van Kampen diagrams in this
section are assumed to be minimal. The tool that we will be using is corridor schemes. Here
we only give the definition; more details can be found in [4]. Let I" be a finite simplicial graph
with labelings on the edges such that Ar is a 2-dimensional triangulated disk. A corridor
scheme for T" is a collection 7 of labeled edges of I' such that every triangle of Ar has
either zero or two edges in 7. Given a van Kampen diagram A, a t-corridor is a corridor
in A that consists of triangles; each triangle has exactly two edges in o, and every pair of
adjacent triangles intersect at an edge in o. If « and 8 are two disjoint corridor schemes, then
a-corridors and B-corridors never cross each other. If I' is oriented, then each triangle in a
diagram A is orientated.

Recalling the fact we only have to establish the cubic upper bound ford = 1in Theorem 4.1
and Lemma 4.2, the graph I' in the rest of this subsection will be the suspension of a path of
length at least 3 with orientations and labels on the edges given by Fig. 11

The Dicks—Leary presentation (see Theorem 2.2) for Hr is (A, B, X|R), where

A={ay, -, aks1}
B={b17“' 7bk+1}
X ={xg, -, x}
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Fig. 11 The graph I' with orientations and labels

Fig. 12 Boundary of a single p v
corridor

R ={aixi = ai+1 = xja;, bixi =bjt1 =x;bi}, i =1,---,k

Let w be a freely reduced word of length at most n that represents the identity in Hp
and A a minimal van Kampen diagram for w. Choose two disjoint corridor schemes o =
{ai,...,ax+1} and B = {by, ..., br41} for I'. Note that a-corridors and S-corridors never
cross each other. For each corridor in A, fix a vertex p of the corridor that is on 9 A. When
reading along the boundary of a corridor starting from p, we get a boundary word u/'v"u”v’
or its cyclic permutation, where u’, u” are letters in « or 8; v, v are words in the free group

F(x1,...,x;). Note that u” and u” are labelings of edges on dA.

Remark 4.6 SinceI isan oriented simplicial graph, all the corridors and triangles of a diagram
A are oriented. For the pictures in the rest of this subsection, we omit the arrows on some of
the edges for simplicity. Since each edge is labeled with a letter, and consecutive edges form
a path, we don’t distinguish letters and edges, and words and paths.

Definition4.7 Let C;, 1 < i < h, be a corridor in A with the boundary word u}v/u v, (or

its cyclic permutation) where u}, u are letters in « or 8; v}, v/’ are words in the free group

F(x1,...,x); see Fig. 12. If u}, ..., u) and uf, ..., uj are two sets of consecutive letters
on dA and v/ = v;, fori = 1,...h — 1, then the subdiagram 7" of A obtained by gluing
corridors Ct, ..., Cp, along the words v{ = v}, ..., v)_, = v} is called a stack. The shorter

word of the words v| and v, is called the fop of T; the longer word of the words v} and v}/
is called the bottom of T . If v| and v;l/ have the same length, then we call either one the top
and the other one the bottom. The words u/ - - - u}, and u] - - - u}, are called the legs of T, and
the number 4 is called the height of T.

Remark 4.8 For two consecutive corridors C; and C; 4 as defined in the Definition 4.7, every
2-cell of A with an edge labeled with a letter in the word v’ = v; | must be part of either
C; or C;11. Otherwise, it would violate the minimality assumption on A.

Roughly speaking, a stack is a pile of corridors where one corridor sits on top of another.
Note that the top and bottom of a stack are not parts of dA, and they might have different
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Fig. 13 A simple example of a top

bottom

v1 V2 Vi Uj41

Fig. 14 Picture of a j-vertex. The number j around the vertex indicates that the vertex is a j-vertex

Fig. 15 A pair of adjacent q1 q2 q1 q2
vertices p1 and p; generates w v v
q3 g3

lengths; the legs are parts of dA, and they are not necessarily straight. Figure 13 shows an
example of a stack. For simplicity, we draw a stack with straight legs.

Definition 4.9 Let C be either a single a-corridor or B-corridor with boundary word u’v”u’"v’

(or its cyclic permutation), as shown in Fig. 12. We say that a vertex ¢ on the boundary of C
labeled by the word v’ (respectively v”) is a j-vertex, or g has type j, if there are j + 1 edges
connecting ¢ to j + 1 distinct consecutive vertices on the part of boundary of C labeled by
the word v” (respectively v’); see Fig. 14.

We say that a pair of adjacent vertices g; and g» on the boundary of C labeled by the word
v’ (respectively v”) generate a vertex g3 in v” (respectively v’) if there is a triangle shown
as Fig. 15.

Lemma 4.10 Let I be the graph as shown in Fig. 11. Let w € Hr be a freely reduced word
that represents the identity. Let T be a stack in a minimal van Kampen diagram A for w such
that the top of T has length | and the height of T is h. Then the area of T satisfies

Area(T) < K(h* + 1h3),
where K is a positive constant that does not depend on | and h.

The proof of Lemma 4.10 relies on a series of lemmas that analyze the boundaries of
corridors of a stack. Since all the van Kampen diagrams are assumed to be minimal, in
Lemma 4.10 each vertex on the boundary of a corridor is of type at most & for a fixed k > 3.
We label the boundary words of corridors of a stack T as shown in Fig. 16:

Let’s look at a single corridor C; as shown in Fig. 17:

Each edge x,, of t;, 1 < m < k, is a part of the boundary of a triangle in the interior of C;;
see Fig. 18.

Depending on C; is an a-corridor or B-corridor, the orientation of x,,, and the orientation of
u}, u} (they have the same orientation), we have the following eight possibilities:
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225
to
u) £ uff
ub " ul
th—2
/ 1
U U
h—1 th_1 h—1
/ "
up, i uy
Fig. 16 Boundary words of corridors in a stack T’
Fig.17 A single corridor with t;
boundary words
ul; ulf
tiv1
Fig. 18 A 2-cell in a corridor Tm
ul ulf
Tm Tm Tm Im
aerVm avm+l bm+1 bm bm+1
Tm Tm Tm Tm
anvm—&-l am+Vm bm bm+1 bm+1 bm

Fig. 19 The first row shows the cases where the arrows on u; and u;/ are pointing from #; to t;1; the second

row shows the cases where the arrows on u; and u;’ are pointing from #; | to t;. The left two columns are the
cases where C; is an a-corridor; the right two columns are the cases where C; is a B-corridor
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Tm 1 Tm Tm 1 Tm+1 Tm—1 1 Tm Tm—1 1 Tm+1

Tm 1 Tm Tm+1 1 Tm T 1 Tm—1 Tm+1l 1 Tm-—1

Fig. 20 Possible combinations of edges that create 1-vertices

Fig.21 Two choices to complete Tm 1 Tm Tm 1 Tm
o vv vv
Tm Tm

Note that the boundary word of each triangle in Fig. 19 is a relator of Hr.

Lemma 4.11 Let C; be either an a-corridor or B-corridor in a stack T as shown in Figs. 16
and 17.

(1) The area of C; is |t;| + |tix1]-
(2) Suppose |t;| < |tit1], then

ltiy1] = Zj . ’{ Jj-vertices on ti}’.
J

Proof (1) Since each edge on #; and f; 11 is part of a unique triangle in C;, the result follows.
(2) Since each j-vertex on ¢; contributes j edges on #; 1, the statement follows immediately.
O

Lemma4.12 Let C; be either an a-corridor or B-corridor in a stack T as shown in Figs. 16
and 17. There are eight combinations of edges on t; (respectively t;11) that will create 1-
vertices on the t; (respectively t;y1) for a given m, 2 < m < k — 1, as shown in Fig. 20.

Proof We prove the case when C; is an a-corridor; the case for a single S-corridor is similar.
To see the conclusion, we only need to know how to fill C;. Take the left-most picture in the
first row of Fig. 20. Suppose the x,,’s are edges on either #; or t;1. By Fig. 19, we have two
choices to complete the triangles based on the x,,’s; see Fig. 21.

Thus, the vertex is a 1-vertex. The arguments for other combinations are similar. O

Lemma4.13 Let C; and Ci41 be two consecutive corridors in a stack T. Suppose that the
arrows onthe edgesu;, u} , u; T u:/_H have the same orientation, as shown in Fig. 22. Assume
that there are no 0-vertices on t;. Then

(1) All the vertices on t;11 are 1-vertices, 2-vertices, or 3-vertices, except possibly the two
vertices at the ends of tj 1.

(2) Allthe vertices on ti+o are either 1-vertices or 2-vertices, except possibly the two vertices
at the ends of tj +1.

(3) We have |t;| < |tit1] < |tit2l.

Proof We prove the lemma for the case when C;, C;4 are consecutive «-corridors, and the

roon " C . C
arrows on u;, u;, u; 1, u; ; are pointing away from #;. Other cases are similar.
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t "
uj Corridor C; ul! v Corridor C; ul
tit1 tit1
uigq Corridor Ciyq uwly o ulyy Corridor Ci11 wy
tit2 7

Fig.22 Two consecutive corridors

Tm Tm Tm Tm
- ) amv awlv - )
Tm Tm-—1 Tm+1 Tm—1 Tm Tm Im+1 Tm

Fig.23 A pair of adjacent vertices on #; generates either a 1-vertex or 3-vertex on #; |

Tm+1 3 Tm—1

Am+4-2

Tm+1 Tm Tm—1

Fig.24 A 3-vertex

(1) We claim that every pair of adjacent vertices on #; generates either a 1-vertex or 3-vertex
on #;11. Let two adjacent vertices on #; be connected by an edge x,,. These two adjacent
vertices generate a vertex on #;41; Fig. 23 lists all possible combinations of edges that
meet at the vertex on ¢, that is generated by a pair of adjacent vertices on t;.

The 1-vertices in Fig. 23 are recognized by Lemma 4.12. The following picture shows that
the vertex in Fig. 23 is a 3-vertex; see Fig. 24.

There are four more cases obtained by flipping the pictures in Fig. 23 such that the arrow on
the edge x;, of #; has the opposite orientation. This proves the claim.

Next, we show that the vertices on #; 4 that are not generated by pairs of adjacent vertices
on ¢; are 2-vertices, except the two vertices at the end of #; ;. We claim that each j-vertex
on t; creates j — 1 vertices on #;1 that are all 2-vertices. For any j-vertex on #; (respectively
ti+1), by definition, there are j + 1 edges connecting the j-vertex to j + 1 consecutive distinct
vertices on #; 1 (respectively #;). That is, there are j distinct triangles based on j consecutive
edges on #; 11 (respectively ;) that has the j-vertex as the common vertex; see Fig. 25.

Let x,_1, x, be two consecutive edges, r € {m, ..., m + j — 1}, and let the vertex v, be the
common vertex of x,_ and x,. Figure 26 shows that v, is a 2-vertex. This proves the claim.

(2) We have shown that all the vertices on f;4 are 1-vertices, 2-vertices, or 3-vertices. Each
of the vertices on #; 1 creates numbers of 0, 1, or 2 vertices on ¢ 7, respectively, and they
are all 2-vertices. Other vertices on t; ;> are generated by pairs of adjacent vertices on #; 4 1.
We now show that these vertices on #; 4, are 1-vertices. We prove the claim by showing
all the possible combinations of types of vertices on f;41. We have six cases: pairs of
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Tm+j—1 Tm+1 Tm

Fig. 25 Each j-vertex on t#; (respectively ;1) creates j — 1 vertices on #; | respectively #;) that are all
2-vertices

Tr—1 (S Ty Ty Vr Tyr—1
Ar—1 Ar4-2 Ar+4+1 ar—1
Tr—1 Xy Xy Tr—1

Fig.26 The vertex v, on t;4 is a 2-vertex

adjacent 1-vertices, adjacent 2-vertices, and adjacent 3-vertices; pairs of adjacent 1-vertex
and 2-vertex; pairs of adjacent 1-vertex and 3-vertex; and pairs of adjacent 2-vertex and
3-vertex. In the following pictures, all the 1-vertices are recognized by Lemma 4.12.

Figure 27 shows that a pair of adjacent 1-vertices on #; | generates a 1-vertex on #; 7:

Next, Fig. 28 shows that a pair of adjacent 1-vertex and 2-vertex on ;1| generates a 1-
vertex on t; ;. Recall that Figs. 23 and 26 are the only situations of 1-vertex and 2-vertex on
tiy1.

For a pair of adjacent 2-vertices on ¢, 1, we have one combination up to orientation; see
Fig. 29.

For a pair of adjacent 1-vertex and 3-vertex on #; 41, we have (Fig. 30):

For a pair of adjacent 2-vertex and 3-vertex on ¢, , since the number of combinations of
edges on #; ¢ that will create 2-vertices and 3-vertices are limited, we have fewer cases here
(Fig. 31):

Finally, for a pair of adjacent 3-vertices, we have only one possibility up to orientation;
see Fig. 32.

(3) Since we assume that there are no O-vertices on ¢#;, the number of vertices on #; 4 is no
less than the number of vertices on ¢;, and the number of vertices on #;, is also no less
than the number of vertices on ¢, 1. Thus, we have

|t;] = (number of vertices on #;) — 1
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1 Tm 1 1 Tm 1
Tm+1 1 Tm Tm+1 1 Tm—1
Fig.27 Two adjacent 1-vertices on ;| generate a 1-vertex on ;42
Tm—1 2 Tm 1 Tm—1 Tm 2 Tm—1 1 Tm
aAm—1 am+1 am—1 am+41 aAm—1 am+1
am am
Tm—1 Im 1 Tm—1 Tm Tm—11 Tm

Fig. 28 A pair of adjacent 1-vertex and 2-vertex on #; | generates a 1-vertex on #; 7

Fig. 29 A pair of adjacent Tm—1 2 T 2 Tm+1
2-vertices on t; | generates a
1-vertex on t; o

am—1 Am+41 aAm4-2

am,

Tm—1 ZTm 1 Tm  Tm+l

am Am+1 am Am+1 am Am+1 am Am+1

Tm  Tm+1 Tm Tm Tm Tm Tm—-1 Tm

Fig.30 A pair of adjacent 1-vertex and 3-vertex on ;| generates a 1-vertex on t; 4,

o
3
3

w

Fig.31 A pair of adjacent 2 Tm 3
2-vertex and 3-vertex on #; 4
generates a 1-vertex on t; o

Am+1 am, am+1 am

Tm Tm Tm Tm
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Fig.32 A pair of adjacent 3 Tm, 3
3-vertex on ;| generates a
1-vertex on t; 42

Am+1 am,
Tm Tm
ti t;
u ul ul ul
tit1 tiv1
Ujigq u;’+1 wi “/L/+1
tiga tivo
Fig.33 Edges u}, u} and ”;-H , ”;/-H have different orientations
ug Qm Am+1 uy a-corridor
x'ﬂl
! 1" .
Ujitq am Am+1 Uit a-corridor

Fig.34 Two triangles from different o-corridors with opposite orientations

IA

(number of vertices on t; 1) — 1

7411
and

|ti+1| = (number of vertices on ;1) — 1

< (number of vertices on ;4,) — 1
= |tit2l.
Hence, |t;] < [ti41] < |tit2l.

m}

Lemma 4.14 Let C; and C;41 be two consecutive corridors in a stack T as in the Lemma4.13.
Let the arrows on the edges labeled by u;, u} and u;__,u}, | have different orientations.
There are two cases, as shown in Fig. 33. Assume that there are no 0-vertices on t;. Then
[t/ 5] < Itis2|, where t; 15 is in Fig. 22.

Proof We prove the case when uj, u}’, u;_ ,, uj  are pointing toward #; ;. The other case is
similar. We claim that in this case, C; and C; 1 cannot be both «-corridors or S-corridors.
Suppose C; and C;y; are both «-corridors (respectively S-corridors), then there are two

triangles that share a unique common edge on f;41:
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Tm J Tm+j—1

t;

tit1

/
. ¥ > thoo

Fig.35 Every pair of adjacent vertices of the distinct j + 1 vertices on #; 1| generates the same vertex on f; )

The situation as shown in Fig. 34 contradicts the fact that T is part of a minimal van Kampen
diagram since we can obtain a smaller van Kampen diagram by canceling these two triangles.
This proves the claim.

Now suppose C; is an a-corridor and C;4 is a B-corridor. By definition, each j-vertex
on ¢; is adjacent to j + 1 consecutive distinct vertices on ;4 1:
From Fig. 35 we see that every pair of adjacent vertices of these j 4+ 1 consecutive distinct
vertices on #;41 generates the same vertex on #; 4o since Cjy is a B-corridor. That is, each
Jj-vertex on t; creates j — 1 vertices on #;4| and they are O-vertices. It follows that the number
of vertices on tl.’ ) is less than the numbers of vertices on #; -, in Lemma 4.13. Thus, we have

|t/ > = (number of vertices on #/ ) — 1
< (number of vertices on #;2) — 1
= |ti42l.

This completes the proof. O
Now, we prove Lemma 4.10.

Proof of Lemma 4.10. Let T be astack with labelings as shown in Fig. 16. Recall thatz, .. ., t;
are words in the free group F(x1,...,x;) and u}, u; are both letters either in the corridor
scheme o = {ay, ..., ar+1} or B = {by, ..., bxy1}. Since the area of a stack T is the sum of
the areas of the corridors that contained in 7', by Lemma 4.11 we have

Area(T) = |to] +2|t1] + -+ + 2[tp—1] + |tal = 2 (lto| + - - - + 1tn]) -

Thus, upper bounds on ||, ..., |#,| give an upper on Area(T). In order to obtain an upper
bound on |#;|, we need a few assumptions. Recall that for a fixed &, each vertex of T is at
most a k-vertex. The assumptions we need here are

(1) the vertices on #y and the two vertices at the two ends of ¢; are k-vertices;
(2) the arrows on u},u}, i = 1,...,h, are pointing away from fo (Lemma 4.13 and
Lemma 4.14).

The first assumption gives us an upper bound on |fg|. From Lemma 4.11 we know that the
length of #; 11 depends on the types of the vertices on #;. The second assumption ensures that
[ti| < |ti+1] < |tix2]. We compute |#;| as follows.

For |t1], since |tg| = [ and all the vertices on 7y are k-vertex, we have |t1| = k(I + 1).
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On 11, there are two k-vertices at the two ends. Lemma 4.13 tells us that every pair of
adjacent vertices on fy generates either a 1-vertex or a 3-vertex on #1, but we may assume that
they are all 3-vertices so that we can get the largest possible |2 |. So the number of 3-vertices
on 1 is /; other vertices on t; are 2-vertices and there are (k — 1)(/ + 1) of them. Knowing
the types of vertices on #; gives the length of :

ol =2-k+1-3+Gk—DA+1)-2=2kI+1+4k—2

Fori > 2, every pair of adjacent vertices on t;_1 generates a 1-vertex on #; by Lemma4.13,
so the number of 1-vertices on ¢; is |t;_1|. Every 2-vertex on f;_| creates a 2-vertex on t;
and the two k-vertices at the ends of #; _; creates (k — 1) 2-vertices on #;. So the number of
2-vertices on ¢; is the number of 2-vertices on ;1 plus 2(k — 1):

kl+1l+k—D+G—-1D-2(k—1D =klI+1+ Qi — Dk —2i +1.
Having the information of the vertices on #; we get

il =1t - V+ [kl +14+Qi—Dk=2i+1]-2+2 -k
= |tio1| + 2kl + 21 + 4ik — 4i +2

fori =2,...,h—1.Let
d@) = tiq| —ltici| =2kl + 21+ 4ik—4i+2, i=2,....,h—1,
then {d (i)} is an arithmetic sequence whose difference is 4k — 4 and
d(i+2)—d@)=8k—8.
When i is even, we have
ltip1l =01l +d@2)+d@) +---+d (@)
=|n|+ %d(2) +i(i —2)(k—1),
and when i is odd, we have
ltip1l =02l +dB)+dS) +---+d (@)
= || + (%) dB)+ G -1 —-3)k—-1).
When 4 is odd, we have

h h—1 h—=2

Area(T) <2 |l =2 [ lrol + el + 12l + Y il + Y il
i=1 i=2 i=3
i is even iis odd
Furthermore,
h—1 h—1 ;
Y oltinl= Y [|z1|+7d(2)+i(i—2)(k—1)}
i=2 i=2 2
i is even i is even

< hin| + [d(2) — 2(k — D]1h* + (k — DA>
< 12klh® + kh’.
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and
h—2 h—2 i—1
Do ltiwl= ) [|rz| + (T) d3)+ (i — (i = 3)k — 1)}
=3 i=3
i is odd i is odd
< hlty| + d(3)h* + ki + kh?* + 2h
< 24klh® + kh?.
Thus,

Area(T) < 2[lto] + |t1] + |t2] + (12kIh* + ki®) + (24kIh* + kh?)]
< 92k(h> + Ih?).

When 7 is even, the computation is similar. Hence, Area(T) < K (h3 + lhz), where K is a
positive constant which does not depend on / and h. O

Lemma 4.15 Let I" be the graph as shown in Fig. 11. Then Sy (n) < n’.

Proof Letw be afreely reduced word of length at most n that represents the identity in Hr. Let
A be aminimal van Kampen diagram for w. Choose corridor schemes o = {ay, ..., ax+1}and
B = {b1, ..., bxy1} for I', then the van Kampen diagram A consists of stacks, T1, ..., T.
Denote the two legs of 7; by U/ and U/, and the height of 7; by |U/| = |U]| = h;,
i =1,...,m.Note that U/ and U/ are words on dA that consist of letters in the corridor
schemes « and S. The boundary word w is a cyclic permutation of the following word, and
we also denoted it by w:

w=A1B1A2B,--- A; By,

where each of the words Ay, ..., A, consists of one or more words from Ul’, R U,’n and
U/, ..., U,; each of the words By, ..., By is a word in the free group F (xi, ..., xx). The
length of each of the words Ay, ..., A, is either the height of a single stack or the sum of
the heights of multiple stacks; each of the words By, ..., B is a base of a stack or part of a
base of a stack. Denote the length of the words By, ..., B; by [, ..., I, respectively. Let

m
i=1
and
S
I=|Bil+-+[Bs| =) I
i=1

Consider a stack T’ whose top is the word By - -- B of length [ and whose legs are
Uj---U, and Uy --- U, and the height h = |U{ --- U,,| = |U} --- U,,|, assuming that all
the the arrows on U/, U/ are pointing away from the top; see Fig. 36.

There are three possible cases that the van Kampen diagram A could be. The first case is
that every stack has a base that is part of dA, as shown in Fig. 37. The second case is that
every stack has a base that is either on 0 A, or part of it is on dA, as shown in Fig. 38. The
third case is that there is a stack whose bases are not part of dA, as shown in Fig. 39. We
show that Area(A) < Area(T") in each of these three cases.

Case 1 Recall that each of A; is a leg of one or more stacks; each B; is part of a base
of a stack or a base of a stack. By assumption, each stack 7; has a base that is on dA, say
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Bi B Bs

U {// \U 1
o/ \os

U / \U,’,g

Fig.36 The stack 7’

B

Ul Ty Ul

Us
vy

Ty
T3

B>

vy B3
Bs

Fig.37 Case I Every stack T; has a base B; that is part of 0A

B; is a base of the stack 7;. If B; is the top of the stack 7;, then the top of the stack Tl/ in
Fig. 40 is longer than B;. Thus, Area(7;) < Area(Tl.’). If B; is the bottom of the stack Tj;,
then consider a stack whose heights are U/, U’ and whose top is B;. The area of this stack
is obviously greater than the area of 7, but less than the area of T/ in Fig. 40. Thus, for
eachstack 7;,i = 1, ..., m, there is a stack 7} in T" satisfying Area(T;) < Area(7}). These

substacks 77, ..., T,, are disjoint inside T’ because their legs are disjoint. Each substack T”
is at different height inside 7", as shown in Fig. 40:
We have

Area(w) = Area(A)
= Area(T}) + - - - + Area(T},)
< Area(Ty) + - - - + Area(T},)
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By

vl o oy
Bz BS

U, T2 Uy

Br

B3

Us T3 Uy

By BG
vy T4 uy

Bs

Fig.38 Case 2 At least one of the stacks such that part of its bases is part of 9 A

Fig.39 Case 3 At least one of the B1
stacks whose bases are not part of
dA
Uy T uy
B2 BG
U, T> vy
B3 Bs
Uj Ts vy
By
< Area(T")
< C(h* +1h?)
<2C n’

for some positive constant C, which does not depend on |w| = n. The second last inequality
follows by Lemma 4.10, and the last inequality holds since ! < n and & < n. Thus, we prove
the claim for the first case.

Case 2 Suppose that the van Kampen diagram A has some stacks whose bases are not all
on dA, as shown in Fig. 38. Divide those stacks into smaller stacks as following:
In Figure 41, each of the stacks T; has at least one base B; that is on dA. Thus, Case 2
follows by Case 1.
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B;
!
T;
By
Ul Uy
B Bs
Ta
Uy | T T3 uy
Ui | Ty Te |UY
Ts
By Bs
U Uy
Bs

Fig.41 A van Kampen diagram in Case 2

Case 3 Suppose that there is a stack in A whose bases are not on dA, as shown in Fig. 39.
Divide A and rearrange the stacks as follows:
Again, all the stacks in Fig. 42 have a base that is on dA. Thus, Case 3 follows by Case 1.
This completes the proof of the lemma. O

5 Graphs with K; subgraphs

In the previous sections, we considered finite simplicial graphs I" that do not contain K4
subgraphs. In this section, we consider finite simplicial graphs that can contain K4 subgraphs.
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Fig.42 A van Kampen diagram B’ B! B!
. 1 1 1
in Case 3 L
Up| T T, | Uf
Bz BG
Uy| Ts |UY
B3 Bs
Us | Ta Ts | Ug
L g
B, By By

The main difference is that the flag complexes on finite simplicial graphs with K4 subgraphs
are not 2-dimensional.

Unfortunately, we have not been able to characterize the Dehn function §. when Ar
is not 2-dimensional. Instead, we obtain a lower bound for §. when I" contains induced
subgraphs that satisfy the assumptions of Theorem 4.1.

Definition 5.1 We say that a subgroup H is a retract of a group G if there is a homomorphism
r: G — H,suchthatr : H — H is the identity. We call the homomorphism r a retraction.

A standard fact about group retract is that if H is a retract of a finitely presented group
G, then H is also finitely presented. The following lemma says that group retractions do not
increase Dehn functions.

Lemma 5.2 ([7], Lemma 2.2) If H is a retract of a finitely presented group G, then §g < d¢.

Proposition 5.3 Let I be a finite simplicial graph. If T is a connected induced subgraph of
[, then Hy is a retract of Hr.

Proof Since I' is an induced subgraph of ', Ap is a retract of Ap. Letr : A — A bea
retraction; define r’ = r|p. : Hr — Hp. Since I" and ' are connected, Hr and Hy are
finitely generated and their generating sets are sets of oriented edges of I" and ', respectively.
It suffices to show that r’ is the identity on the generating set of Hy. Let e be an oriented edge
of I'" with initial vertex v and terminal vertex w. The generator e of Hr can be expressed in
terms of the generators of Ar, that is, e = vw™ L. Since r : Ar —> Arv is a retraction, we
have
F)=rw H=vw ' =e.

This shows that ¥’ : Hr — Hp is a retraction. O

We establish the lower bound as promised.
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Fig.43 The graph I'

Proposition 5.4 Let I" be a finite simplicial graph such that Ar is simply-connected. If T’
contains an induced subgraph T such that A is a 2-dimensional triangulated subdisk of
Ar that has square boundary and dimj(Ar) = d, d € {0, 1, 2}, then nd+? < Sy (n).

Proof By Theorem 4.1, we have (SHF, (n) ~ n9%2, Since I' is an induced subgraph of I,

it follows from Proposition 5.3 and Lemma 5.2 that Hp is a retract of Hr and n?t? ~

SHF/ (I’l) = (SHF (n) O

‘We remark that Proposition 5.4 can be used to give the cubic lower bound in Theorem 4.1
for the case d = 1. We close this section with an example.

Example 5.5 Let I" be the graph as shown in Fig. 43:

The flag complex Ar is not 2-dimensional since I' contains K4 subgraphs. Observe that
" contains an induced subgraph I'” that is the suspension of a path of length 3. Hence, by
Theorem 4.1 and Proposition 5.3, we have nd~s Hpn (1) X 8pp ().

Acknowledgements I want to thank Pallavi Dani for introducing me to this project and her generous advice. I
want to thank Tullia Dymarz, Max Forester, and Bogdan Oporowski for many helpful conversations and their
support. I want to thank the referee for valuable suggestions and feedback.

References

1. Abrams, A., Brady, N., Dani, P., Duchin, M., Young, R.: Pushing fillings in right-angled Artin groups. J.
Lond. Math. Soc. 87(3), 663-688 (2013)

2. Bestvina, M., Brady, N.: Morse theory and finiteness properties of groups. Invent. Math. 129(3), 445-470
(1997)

3. Bieri, R.: Normal subgroups in duality groups and in groups of cohomological dimension 2. J. Pure Appl.
Algebra 7(1), 35-51 (1976)

4. Brady, N., Forester, M.: Snowflake geometry in CAT(0) groups. J. Topol. 10(4), 883-920 (2017)

5. Brady, N, Riley, T., Short, H.: The geometry of the word problem for finitely generated groups. Advanced
Courses in Mathematics. CRM Barcelona. Birkhduser Verlag, Basel, 2007. Papers from the Advanced
Course held in Barcelona, July 5-15, (2005)

6. Brady, N., Soroko, I.: Dehn functions of subgroups of right-angled Artin groups. Geom. Dedicata 200,
197-239 (2019)

7. Brick, S.G.: On Dehn functions and products of groups. Trans. Am. Math. Soc. 335(1), 369-384 (1993)

8. Bridson, M.R.: The Geometry of the Word Problem. Invitations to Geometry and Topology, Volume 7 of
Oxford Graduate Texts in Mathematics, pp. 29-91. Oxford University Press, Oxford (2002)

9. Bridson, M.R., Haefliger, A.: Metric Spaces of Non-positive Curvature. Grundlehren der Mathematischen
Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 319. Springer, Berlin (1999)

@ Springer



Geometriae Dedicata (2021) 214:211-239 239

10.

11.
12.

Carter, W., Forester, M.: The Dehn functions of Stallings—Bieri groups. Math. Ann. 368(1-2), 671-683
(2017)

Charney, R.: An introduction to right-angled Artin groups. Geom. Dedicata 125, 141-158 (2007)
Dicks, W., Leary, I.J.: Presentations for subgroups of Artin groups. Proc. Am. Math. Soc. 127(2), 343-348
(1999)

Dison, W.: An isoperimetric function for Bestvina-Brady groups. Bull. Lond. Math. Soc. 40(3), 384-394
(2008)

Gromov, M.: Hyperbolic Groups. Essays in Group Theory, Volume 8 of Mathematical Science Research
Institute Publication, pp. 75-263. Springer, New York (1987)

Papadima, S., Suciu, A.: Algebraic invariants for Bestvina-Brady groups. J. Lond. Math. Soc. 76(2),
273-292 (2007)

Stallings, J.: A finitely presented group whose 3-dimensional integral homology is not finitely generated.
Am. J. Math. 85, 541-543 (1963)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer



	Identifying Dehn functions of Bestvina–Brady groups from their defining graphs
	Abstract
	1 introduction
	2 preliminaries
	2.1 Dehn functions
	2.2 Right-angled Artin groups, Bestvina–Brady groups, and the Dicks–Leary presentation
	2.3 Interior dimensions

	3 Disks with interior dimension 0
	4 Disks with square boundaries
	4.1 Lower bound
	4.2 Upper bound

	5 Graphs with K4 subgraphs
	Acknowledgements
	References




