
Geometriae Dedicata (2021) 214:211–239
https://doi.org/10.1007/s10711-021-00612-3

ORIG INAL PAPER

Identifying Dehn functions of Bestvina–Brady groups from
their defining graphs

Yu-Chan Chang1

Received: 11 January 2020 / Accepted: 12 February 2021 / Published online: 5 March 2021
© The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021

Abstract
Let � be a finite simplicial graph such that the flag complex on � is a 2-dimensional tri-
angulated disk. We show that with some assumptions, the Dehn function of the associated
Bestvina–Brady group is either quadratic, cubic, or quartic. Furthermore, we can identify the
Dehn function from the defining graph �.
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1 introduction

Dehn functions are one of the quasi-isometry invariants of finitely presented groups, and they
have been studied by many people. One of the reasons people study Dehn functions is that
they are related to the solvability of the word problem for finitely presented groups. That is,
a finitely presented group has a solvable word problem if and only if its Dehn function is
recursive. Besides the solvability of the word problem, Dehn functions can also detect certain
structures in groups. For example, a group is hyperbolic if and only if it has a linear Dehn
function [14]. We refer to [8] for background on Dehn functions. In this paper, we study
Dehn functions of Bestvina–Brady groups, which are a class of subgroups of right-angled
Artin groups.

Given a finite simplicial graph �, the associated right-angled Artin group A� is generated
by the vertices of�. The relators are commutators: two generators u, v commute if and only if
they are adjacent vertices of �. Right-angled Artin groups have become an important objects
that people study in geometric group theory; see [11] for a general survey. They are known
to be CAT(0) groups; both categories of groups have at most quadratic Dehn functions. But
subgroups can have larger Dehn functions. Brady and Forester [4] gave examples of CAT(0)
groups that contain finitely presented subgroups whose Dehn functions are of the form nρ ,
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(a) (b) (c)

Fig. 1 Triangulated disks whose interior dimensions are 0, 1, and 2, respectively

for a dense set of ρ ∈ [2,∞). Brady and Soroko [6] proved that for each positive integer ρ,
there is a right-angled Artin group that contains a finitely presented subgroup whose Dehn
function is nρ .

For a right-angled Artin group A� , the associated Bestvina–Brady group H� is defined
to be the kernel of the homomorphism A� → Z, which sends all the generators of A�

to 1. This kernel had been studied prior to Bestvina–Brady. Stallings [16] constructed a
group that is finitely generated but not finitely presented. This group can be realized as the
Bestvina–Brady group H� = ker(F2 × F2 → Z), where � is a cycle graph C4. When
� is taken to be the (n + 1)-fold join of two vertices, the right-angled Artin group on
� is the n-copies of F2, and Bieri [3] proved that the associated Bestvina–Brady group
H� = ker(F2 ×· · ·× F2 → Z) satisfies the finiteness property FPn but not FPn+1. Bestvina
and Brady [2] gave a systematic construction of groups that satisfy some finiteness properties
but not others. Moreover, there are Bestvina–Brady groups that are either counterexamples
to the Eilenberg–Ganea Conjecture or counterexamples to the Whitehead Conjecture ([2],
Theorem 8.7).

Dison proved that the Dehn functions of Bestvina–Brady groups are bounded above by
quartic polynomials [13]. We are interested in knowing whether all the Bestvina–Brady
groups have Dehn functions of the form nα , α = 1, 2, 3 or 4. Our motivation is Brady’s
examples in ([5], Part I), where he gave Bestvina–Brady groups that realize quadratic, cubic,
and quartic Dehn functions. In each of those examples, the flag complex on the defining
graph �, denoted by �� , is a 2-dimensional triangulated disk with square boundary. In this
paper, we prove that the Dehn functions of Bestvina–Brady groups H� with such restrictions
on the defining graphs � are of the form nα , α = 1, 2, 3 or 4. Furthermore, we provide a
way to identify the Dehn functions of those Bestvina–Brady groups by their defining graphs.
A simplex of a 2-dimensional triangulated disk D is called an interior simplex if none of its
faces are on ∂D. If D has interior d-simplices, and no other interior k-simplices, k > d , then
we say that D has the interior dimension d, denoted by dim I (D) = d . If D has no interior
simplices, then we define dim I (D) = 0. Our main result is the following theorem:

Theorem 1.1 Let � be a finite simplicial graph such that�� is a 2-dimensional triangulated
disk whose boundary is a square. If dim I (��) = d for d ∈ {0, 1, 2}, then δH� (n) ∼= nd+2.

Example 1.2 The flag complexes on the graphs shown in Fig. 1 are 2-dimensional triangulated
disks with square boundary, and they have interior dimensions 0, 1, and 2, respectively.

We now briefly discuss the proof of Theorem 1.1. When dim I (��) = 0, we can eliminate
the square boundary condition on �� ; see Theorem 3.1. In this case, the Bestvina–Brady
group H� has a graph of groups decomposition, where the edge groups are infinite cyclic,
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and the vertex groups are right-angled Artin groups. In fact, these Bestvina–Brady groups are
CAT(0), therefore, their Dehn functions are at most quadratic. Since we assume that the flag
complexes are triangulated disks, the associated Bestvina–Brady groups have Z2 subgroups.
Thus, these Bestvina–Brady groups are not hyperbolic and have at least quadratic Dehn
functions. We remark that some cases of dim I (��) = 0 in Theorem 1.1 can be obtained by
a result of Carter and Forester [10]:

Theorem 1.3 ([10], Corollary 4.3) If a finite simplicial graph � is a join of three graphs
� = �1 ∗ �2 ∗ �3, then δH� is quadratic.

Example 1.4 Let � be the graph in Fig. 1a. Label the vertices as follows:

a

b c d

e

Let �1 = {c}, �2 = {b, d}, and �3 = {a, e}, then � = �1 ∗ �2 ∗ �3. Therefore, δH� is
quadratic by Theorem 1.3. It also follows from Theorem 1.1 that δH� is quadratic.

In [5], Brady proved that the Bestvina–Brady group on the graph shown in Fig. 1b has a
cubic Dehn function. This graph can be seen as the suspension of a path of length 3. When
dim I (��) = 1, we prove that � is the suspension of a path, and we show that the associated
Bestvina–Brady group has a cubic Dehn function. To achieve the cubic upper bound, we use
the corridor schemes [4] to analyse the van Kampen diagrams carefully. Lemma 4.10 is the
main technical result of this paper. In this technical lemma, we prove that the area of a special
region, called a stack, in a van Kampen diagram is bounded above by a cubic function of the
perimeter of that region. This result allows us to obtain the desired cubic upper bound; see
Lemma 4.15 for a detail proof.

Since there is a universal quartic upper bound on the Dehn functions of Bestvina–Brady
groups, the remaining cases are the cubic and quartic lower bounds for dim I (��) = 1, 2,
respectively. In [1], the authors introduced the height-pushing map to obtain the lower bound
on the higher Dehn functions of orthoplex groups. Their method can be adapted to our proof
to obtain the desired lower bounds. We want to point out that their theorem ([1], Theorem
5.1) recovers Dison’s quartic upper bound in [13]. We have discussed all the cases of our
main result Theorem 1.1.

Denote K4 to be the complete graph on four vertices. Note that the assumption of the
flag complex �� being 2-dimensional is equivalent to saying that the graph � does not have
K4 subgraphs. Suppose a given graph � whose flag complex is a triangulated disk but not
necessarily 2-dimensional or has square boundary. If � contains a subgraph that satisfies the
assumptions of Theorem 1.1, then we can obtain a lower bound on the Dehn function of the
associated Bestvina–Brady group H�:

Proposition 1.5 Let � be a finite simplicial graph such that �� is simply-connected. If �

contains an induced subgraph �′ such that ��′ is a 2-dimensional triangulated subdisk of
�� that has square boundary and dim I (��′) = d for d ∈ {0, 1, 2}, then nd+2 � δH� (n).
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This paper is organized as follows. Section 2 provides somenecessary background. In Sect.
3, we prove the case of dim I (��) = 0 without the square boundary assumption. Section 4
is devoted to the proof of Theorem 1.1. In Sect. 5, we prove Proposition 1.5.

2 preliminaries

2.1 Dehn functions

Let G be a group with a finite presentation P = 〈S|R〉. Let w be a word in F(S) that
represents the identity of G, denoted by w ≡G 1. The area of w, denoted by Area(w), is
defined as follows:

Area(w) = min

{
N

∣∣∣∣w F(S)=
N∏
i=1

xir
±1
i x−1

i , xi ∈ F(S), ri ∈ R
}
,

where F(S) is the free group generated by S. The Dehn function δG : N → N of a group G
over the presentation P = 〈S|R〉 is defined by

δP (n) = max

{
AreaG(w)

∣∣∣∣ w ≡G 1, |w| ≤ n

}
,

where |w| denotes the length of the word w.

Definition 2.1 Let f , g : [0,∞) → [0,∞) be two functions.We say that f is bounded above
by g, denoted by f � g, if there is a numberC > 0 such that f (n) ≤ Cg(Cn+C)+Cn+C
for all n > 0.We say that f and g are
-equivalent, or simply equivalent, denoted by f 
 g,
if f � g and g � f .

If P1 and P2 are finite presentations of a group G, then δP1 is equivalent to δP2 ; we refer
to [8] for a proof of this fact. We denote the 
-equivalent class of G by δG , and call it the
Dehn function of G. We say that the Dehn function δG is linear, quadratic, cubic or quartic
if for all n ∈ N, δG(n) 
 n, δG(n) 
 n2, δG(n) 
 n3 or δG(n) 
 n4, respectively.

2.2 Right-angled Artin groups, Bestvina–Brady groups, and the Dicks–Leary
presentation

Let � be a finite simplicial graph and V(�) the set of vertices of �. The right-angled Artin
group A� associated to � has the following presentation:

A� =
〈
V(�)

∣∣∣∣ [vi , v j ] whenever vi and v j are connected by an edge of �

〉
.

When � is a complete graph Kn on n vertices, A� = Z
n ; when � is a set of n distinct points,

A� = Fn , the free group of rank n.
For each finite simplicial graph �, its associated right-angled Artin group A� is the fun-

damental group of a cubical complex X� , called the Salvetti complex. It is well-known that
the Salvetti complex X� is compact and non-positively curved, and its universal cover X̃�

is a CAT(0) cube complex. Moreover, right-angled Artin groups are CAT(0) groups; thus,
they have at most quadratic Dehn functions. We refer to [11] for more details of these facts.
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Fig. 2 Realator of the
Dicks–Leary presentation

Given a finite simplicial graph �, we define a group homomorphism φ : A� → Z by
sending all the generators of A� to 1. The kernel of this homomorphism is called theBestvina–
Brady group defined by �, and is denoted by H� . In fact, the map φ : A� → Z is induced by
l : X� → S1, and the lift of l, denoted by h : X̃� → R is a φ-equivariant Morse function;
see [2], Theorem 5.12. Restricting the action of A� on X̃� to H� , we obtain a geometric
action of H� on the zero level set Z� = h−1(0).

The flag complex �� on a finite simplicial graph � is a simplicial complex such that
each complete subgraph Kn of � spans an (n − 1)-simplex in �� . When �� is connected,
H� is finitely generated; when �� is simply-connected, H� is finitely presented; see [2] for
the proof of these facts. When H� is finitely presented, we can write down its Dicks–Leary
presentation [12]:

Theorem 2.2 ([12], Corollary 3) Let� be a finite simplicial oriented graph. Suppose that��

is simply-connected. Then theBestvina–Brady group H� has the following finite presentation:

H� =
〈
E(�)

∣∣∣∣ e f = g = f e whenever e, f , g form an oriented triangle

〉
,

where E(�) is the set of oriented edges of �, and the oriented triangle is shown in Fig. 2

We will use the fact that H� is finitely presented when �� is simply-connected without
specifying an orientation on �. We will give an orientation on � when we need to work with
a finite presentation for H� . The Dicks–Leary presentation can be reduced further:

Corollary 2.3 ([15], Corollary 2.3) If the flag complex on a finite simplicial graph� is simply-
connected, then H� has a presentation H� = F/R, where F is the free group generated
by the edges in a maximal tree of �, and R is a finitely generated normal subgroup of the
commutator group [F, F].

While Dehn functions of right-angled Artin groups are at most quadratic, Dison [13]
proved that Dehn functions of Bestvina–Brady groups are bounded above by quartic func-
tions.

Theorem 2.4 ([13]) Dehn functions of Bestvina–Brady groups are at most quartic.

2.3 Interior dimensions

Let D be a triangulated disk. An interior i-simplex of D is an i-simplex whose faces do
not intersect ∂D. We also call an interior 0-simplex an interior vertex, an interior 1-simplex
an interior edge, and an interior 2-simplex an interior triangle. We say that D has interior
dimension d, denoted by dim I (D) = d , if D contains interior d-simplices, and it has no
interior k-simplices, k > d . If D contains no interior simplices, then we define dim I (D) = 0.
We refer to Example 1.2 for concrete examples.
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Fig. 3 Fan and Wheel

3 Disks with interior dimension 0

In this section, we prove the following theorem.

Theorem 3.1 Let � be a finite simplicial graph. If �� is a 2-dimensional triangulated disk
satisfying dim I (��) = 0, then δH� (n) 
 n2.

For such a graph �, we will see later that the associated Bestvina–Brady group H� has a
graph-of-groups decomposition, where the edges groups are infinite cyclic groups; and the
vertex groups are Bestvina–Brady groups on some induced subgraphs of �, namely, fans and
wheels. Moreover, each of the vertex groups is isomorphic to a non-hyperbolic right-angled
Artin group.

Recall that the join of two graphs �1 and �2, denoted by �1 ∗�2, is the graph obtained by
taking the disjoint union of �1 and �2 together with all the edges that connect the vertices of
�1 and the vertices of �2 (Fig. 3).

Definition 3.2 A fan Fn+1 is the join of a vertex and a path Pn . A wheel Wn+1 is the join of
a vertex and a cycle Cn .

Remark 3.3 Theflag complex onW4 is a tetrahedron,which is not 2-dimensional. Throughout
this paper, unless otherwise stated, all the wheels have at least five vertices, that is, Wn for
n ≥ 5. Note that a triangle is also a fan F3.

Fans and wheels have a special structure: they can be decomposed as a join of a vertex and
graph. When a finite simplicial graph � decomposes as a join � = {v} ∗�′, the Dicks–Leary
presentation gives H�

∼= A�′ (see Example 2.5 in [15]). That is, H� is a right-angled Artin
group. Thus, δH� is at most quadratic.

Proposition 3.4 Suppose a finite simplicial graph decomposes as a join � = {v} ∗ �′. Then
H�

∼= A�′ and δH� is at most quadratic. Moreover, if �′ contains an edge, then A�′ is
non-hyperbolic and δH� is quadratic.

Proof Since � = {v}∗�′, we have A� = Z× A�′ . We claim that H�
∼= A�′ . Label the edges

that have v as the common endpoint by e1, . . . , ek ; label the other end points of e1, . . . , ek by
v1, . . . , vk . Since e1, . . . , ek form a maximal tree of �, they generate H� ; see Corollary 2.3.
Meanwhile, v1, . . . , vk generate A�′ . Define a map ψ : H� → A�′ by sending ei to vi
for i = 1, . . . , k. This is a bijection between the generating sets of H� and A�′ . We now
argue that ψ preserves relators. Note that the relators of H� and A�′ are commutators. The
generators ei and e j commute when they are two edges of the same triangle, that is, when
their end points vi and v j are connected by an edge. Thus, vi , v j commute whenever ei , e j
commute; the converse is true. Hence, ψ is an isomorphism.

Since H�
∼= A�′ and δA�′ is at most quadratic, δH� is at most quadratic. If �′ contains an

edge, then H�
∼= A�′ contains Z × Z as a subgroup. Therefore, H�′ cannot be hyperbolic

and δH� has to be quadratic. ��
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Remark 3.5 In Proposition 3.4 � may have K4 subgraphs. So there are infinitely many non-
2-dimensional Bestvina–Brady groups whose Dehn functions are quadratic.

We want to point out that there are Bestvina–Brady groups that are not isomorphic to any
right-angled Artin groups ([15], Proposition 9.4). The following corollary is an immediate
consequence of Proposition 3.4.

Corollary 3.6 If � is a fan or wheel, then δH� is quadratic.

Lemma 3.7 Let � be a finite simplicial graph such that �� is a 2-dimensional triangulated
disk with dim I (��) = 0. Then � can be represented as a tree T : each vertex of T represents
a fan or a wheel; two vertices v,w of T are adjacent if the intersection of the graphs that
are represented by v and w is an edge.

Proof We observe that for any interior vertex of �� , the induced subgraph on the interior
vertex, together with its adjacent vertices, is a wheel. Also, note that if �� has two interior
vertices, then they are not connected. Otherwise, the edge that connects the two interior
vertices would be an interior edge of �� , which contradicts our assumption. Thus, there
are three types of edges of �� : (1) edges on ∂�� , (2) edges that connect interior vertices
and vertices on ∂�� , and (3) edges that intersect ∂�� at two vertices. Cutting along all the
edges of type (3), we obtain connected components of �� whose 1-skeletons are wheels and
fans (triangles). For each connected component, we assign a vertex to it; two vertices are
connected if the corresponding connected components intersect in �� . Thus, we have the
desire decomposition of � with an underlying graph T .

Nowwe show that T is a tree. Suppose T is not a tree, then T contains a circleCn of length
n. The flag complex on the subgraph of � whose decomposition corresponds to Cn would
be a triangulated annulus. Thus, �� would not be a triangulate disk, and this contradicts the
assumption that �� is a triangulated disk. Hence, T is a tree. ��

Note that the decomposition in Proposition 3.7 is not unique. Since for a fan Fn+1, there
are p(n) such decompositions, where p(n) is the partition function.

Let � = �1 ∪ �2 be a finite simplicial graph. If �1 ∩ �2 is a single edge, then the
Bestvina–Brady group H� splits over Z as H�1 ∗Z H�2 by the Dicks–Leary presentation (see
Theorem 2.2). It is not hard to see that Lemma 3.7 implies that H� splits overZ, and the vertex
groups are CAT(0) groups. We summarize these statements in the following proposition.

Proposition 3.8 Let � be a finite simplicial graph such that �� is a triangulated disk with
dim I (��) = 0. Then H� has a graph-of-groups decomposition, where the underlying graph
is the tree T in Lemma 3.7, the edge groups are Z, and the vertex groups are Bestvina–Brady
groups defined by the graphs that are represented by the vertex of T in the Lemma 3.7.
Moreover, the vertex groups are right-angled Artin groups, then hence, CAT(0) groups.

To prove our main theorem in this section, we need the following proposition in [9]:

Proposition 3.9 ([9], Chapter II.11, 11.17 Proposition) If each of the groups G1 and G2 is
the fundamental group of a non-positively curved compact metric space, then so is G1 ∗ZG2.
In particular, if G1 and G2 are CAT(0) groups, so is G1 ∗Z G2.

Proof of Theorem 3.1 Let � be a finite simplicial graph such that�� is a 2-dimensional trian-
gulated diskwith dim I (��) = 0.ByProposition 3.8, H� has a tree-of-groups decomposition,
where the edge groups are Z, and the vertex groups are CAT(0). Repeating Proposition 3.9
gives us that H� is a CAT(0) group. Thus, δH� is at most quadratic. Since�� is a triangulated
disk, H� containsZ×Z subgroups, and thus, it is not hyperbolic. Therefore, δH� is not linear.
Hence, δH� is quadratic. ��
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Fig. 4 The suspension of a path
of length at least 3

Fig. 5 An interior edge together with two vertices on ∂�� form two adjacent triangles. These two vertices
on ∂�� are not adjacent, see the picture on the left. Otherwise, � would contain a K4, see the picture on the
right

4 Disks with square boundaries

The goal of this section is to prove the following:

Theorem 4.1 Let � be a finite simplicial graph such that�� is a 2-dimensional triangulated
disk whose boundary is a square. If dim I (��) = d for d ∈ {0, 1, 2}, then δH� (n) ∼= nd+2.

When d = 0, Theorem 4.1 is a corollary of Theorem 3.1. In Sect. 4.1, we establish the
lower bound for δH� for d = 1, 2. Since there is a universal quartic upper bound given by
Dison [13], we only need to establish the cubic upper bound for δH� for d = 1; the detailed
proof is contained in Sect. 4.2. Before we proceed with the proof, we prove the following
lemma which will be used later on.

Lemma 4.2 Let � be a finite simplicial graph such that �� is a 2-dimensional triangulated
disk with square boundary. If dim I (��) = 1, then � is the suspension of a path of length at
least 3 (Fig. 4).

Proof Define �′ to be the graph whose edge set consists of all the interior edges of�� . Label
the four vertices on ∂�� by a, b, c, d as shown in Fig. 5. Since �� is a triangulated disk,
each edge of �′ together with two vertices on ∂�� form two adjacent triangles, and these
two vertices on ∂�� are not adjacent. Otherwise, there would be a K4 subgraph contained
in �; see Fig. 5.

We make two claims on �′. The first claim is: �′ has no vertices whose valency is greater
than 3. Suppose �′ has a vertex whose valency is greater than 3, that is, �′ contains a tripod.
Since each edge of the tripod together with two non-adjacent vertices on ∂�� , say b, d , form
two adjacent triangles, there are two triangles in �� share two consecutive edges; see Fig. 6.
Thus, � is not a simplicial graph, we get a contradiction. Hence, no vertex of �′ has valency
greater than 3. This proves the first claim.

The second claim is that �′ is a connected path. Suppose �′ is not connected, say �′ has k
connected components �′

1, . . . , �
′
k . Since none of the vertices of �′ has valency greater than
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Fig. 6 The picture shows the
simplest case: �′ is a tripod,
drown in thick lines. There are
two edges connecting the central
vertex of the tripod and the vertex
d

Fig. 7 Connected components of�′. Each pair of adjacent vertices of�′ are connected to a pair of non-adjacent
vertices on ∂��

Fig. 8 Between �i and �i+1,
vertices b, d are connected by an
edge

3, each of �′
1, . . . , �

′
k is a connected path. Also, all the pairs of adjacent vertices of �′ are

connected either to vertices a, c or vertices b, d simultaneously, say vertices b, d:
In Fig. 7, label from the left-most connected component to the right-most component of

�′ by �′
1, . . . , �

′
k , and define �i to be the join of �′

i and {b, d}. Since �� is a triangulated
disk, there must be an edge connecting b and d between �i and �i+1, i = 1, . . . k − 1:
In Fig. 8 we see that connecting b, d by an edge creates K4 subgraphs in �. This contradicts
our assumption. Thus, the graph �′ is a connected path.

Now, we have shown that�′ is a connected path, and all pairs of adjacent vertices of�′ are
connected either to vertices a, c or b, d simultaneously. Again, suppose b, d are connected
to all vertices of �′. The two end vertices of �′ have no choices but to be connected to a and
c. Hence, � is a suspension of �′. This proves the lemma. ��
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Remark 4.3 In [5], Brady gave an example of a cubic Dehn function δH� , where � is the
suspension of a path of length 3. Theorem 4.1 plus Lemma 4.2 gives a concrete family of
graphs � satisfying δH� (n) 
 n3.

4.1 Lower bound

In [1], the authors introduced height-pushing maps to give a lower bound on the higher
dimensional Dehn functions of orthoplex groups. The same technique can be used here to
obtain the desired lower bound. We give necessary background here; see [1] for more details.

Let � be a finite simplical graph. We use the notations X� , X̃� , Z� , h from Sect. 2.2.
Recall that X̃� is a CAT(0) cube complex. We put the 
1-metric on each cube and extend it
to the whole space X̃� . Let Br (x) and Sr (x) be the 
1-ball and 
1-sphere in X̃� centered at
x with radius r , respectively.

A subspace F ⊆ X̃� is called a k-flat if it is isometric to the Euclidean space Ek .

Theorem 4.4 ([1], Theorem 4.2) There is an H�-equivariant retraction, called the height-
pushing map

P : X̃� \
⋃

v /∈Z�

B1/4(v) → Z�,

where the union is over the vertices that are not in Z� , such that for all t > 0, when P is
restricted to h−1([−t, t]), P is a (ct + c)-Lipschitz map, where c is a constant which only
depends on �.

In the next lemma, we establish the lower bound for δH� in Theorem 4.1.

Lemma 4.5 Let � be a finite simplicial graph such that �� is a 2-dimensional triangulated
disk with square boundary. If dim I (��) = d, then δH� (n) � nd+2.

We give the idea of the proof of Lemma 4.5. Recall that Bestvina–Brady groups H� act
geometrically on the zero level set Z� = h−1(0). So the filling function of Z� is equivalent
to δH� . For each r , we construct a loop Sr in Z� whose length is 
 r , and it bounds a disk
in the ambient space X̃� and a disk in Z� . Then we use the height-pushing map to push the
filling of the disk in X̃� to get a lower bound of the filling of the loop Sr in Z� .

Proof of Lemma 4.5 The case d = 0 follows from Theorem 3.1; the case d = 2 appears in
[1]. We prove the case when d = 1 which uses the same strategy as the case d = 2. When
d = 1, recall from Lemma 4.2 that � is the suspension of a path of length at least 3. Label
the four vertices on the boundary of �� as shown in Fig. 9.

Fig. 9 The square boundary of
�� and an interior 1-simplex σ
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Fig. 10 The non-standard 2-dimensional flat F . The parallelogram drown in the thick lines is the intersection
F ∩ h−1(r)

Define bi-infinite geodesic rays γi , i = 0, 1, in the 1-skeleton of X̃� :

γi (0) = e, γi |R+ = aibi ai bi · · · , γi |R− = biai bi ai · · · .

Define a map F : Z × Z → A� by

F(x) = γ0(x0)γ1(x1), x = (x0, x1) ∈ Z × Z.

The image of F consists of elements in the non-abelian group 〈a0, a1, b0, b1〉. Let F be the
non-standard 2-dimensional flat in X̃� such that the set of its vertices is the image of F ; see
Fig. 10. Since

h(x) = h(F(x0, x1)) = |x0| + |x1|, x = (x0, x1) ∈ Z × Z,

the flat F has a unique vertex F(0, 0) = γ0(0)γ1(0) = e at height 0. We think of F as the
boundary of a reversed infinite square pyramid with the apex F(0, 0). For each r > 0, the
intersection F ∩ h−1(r) is homeomorphic to S1, which is a loop Lr at height r . This loop Lr

bounds a 2-disk F ∩ h−1([0, r ]) in F .
Using the group action A� on X̃� , we translate the 2-disk F ∩ h−1([0, r ]) to (a0)−r F ∩
h−1([−r , 0]). We denote the new 2-disk by Dr and its interior by D̊r . The loop Lr at height
r is translated to a loop Sr in Z� that is also homeomorphic to S1:

Sr := [(a0)−r F] ∩ h−1(0) = [(a0)−r F] ∩ Z�.

Notice that after performing this translation, the unique vertex (a0)−r F(0, 0) is at height−r .
Now we have that Sr is a loop in Z� and it bounds a 2-disk Dr . The next step is to use the
height-pushing map P to push this filling Dr of Sr in X̃� to fill Sr in Z� .

In order to use the height-pushing map, we need to do some surgery on Dr . At each vertex
v ∈ D̊r , replace B1/4(v) by a copy of�� .We now show that after applying the height-pushing
map to the surgered D̊r , the scaled copies of 1-simplices in the interior of �� at each vertex
of the surgered D̊r do not intersect much in Z� . We first consider two different 1-simplices
σ1 and σ2 in the interior of �� at a vertex v in D̊r . Since σ1 and σ2 either are disjoint or
intersect at a 0-simplex, the images P(σ1) and P(σ2) intersect at most at a 0-simplex.We next
consider 1-simplices in the interior of�� at different vertices v1, v2 in D̊r . Let σ = [x, y] be
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an 1-simplex in the interior of �� ; see Fig. 9. Let v′
1 and v′

2 be vertices of the scaled copies
P(σ ) in Z� , based at vertices v1 and v2 in D̊r , respectively. Then we have

v′
1 = (a0)

−rv1x
s1 yt1 and v′

2 = (a0)
−rv2x

s2 yt2

for some s1, t2, s2, t2 ∈ Z≥0. If v′
1 = v′

2, that is, the intersection of scaled copies P(σ ) based
at v1 and v2 is non-empty, then we have v1 = v2 since 〈a0, a1, b0, b1〉 ∩ 〈x, y〉 = {0}. Thus,
no vertices of different scaled copies of σ are the same. That is, scaled copies of σ in Z� are
disjoint. Each interior 1-simplex is an intersection of two 2-simplices in �� , so the image
of the surgered D̊r under P has the area at least 2 · |{number of1-simplices}|. Since we only
need a lower bound, we don’t need to count all the 1-simplices. For each vertex in D̊r , we
take one 1-simplex σ in�� based at that vertex. As we have seen that the scaled copies P(σ )

don’t cancel out. So the filling of Sr in Z� will be at least the sum of the length of these
scaled copies P(σ ). For each interior 1-simplex σ in �� based at a vertex v of D̊r , it follows
by Theorem 4.4 that the length of the scaled copied P(σ ) in Z� grows linearly in terms of
r , that is, the length of P(σ ) depends on how far is σ pushed into Z� by the height-pushing
map. Thus, the further the σ is from Z� , the longer the length of P(σ ). At height −r , there is
only one vertex in D̊r , namely, the apex (a0)−r F(0, 0). The image of the 1-simplex σ based
at the apex under P is cr + c, by Theorem 4.4. At each height i = −(r − 1), . . . , −1, there
are 4i vertices and the image of 1-simplex σ under P has length c(r − i) + c. We have

Area(Sr ) ≥ (cr + c) +
r−1∑
i=1

4i[c(r − i) + c] 
 r3.

Thus, the filling function of Z� is at least cubic. Hence, δH� is at least cubic. This proves the
lemma. ��

4.2 Upper bound

As we mentioned at the beginning of this section, we only need to establish the cubic upper
bound for d = 1 in Theorem 4.1. The proof relies on analyzing a van Kampen diagram of
an arbitrary word w ∈ H� that represents the identity. All the van Kampen diagrams in this
section are assumed to be minimal. The tool that we will be using is corridor schemes. Here
we only give the definition; more details can be found in [4]. Let� be a finite simplicial graph
with labelings on the edges such that �� is a 2-dimensional triangulated disk. A corridor
scheme for � is a collection τ of labeled edges of � such that every triangle of �� has
either zero or two edges in τ . Given a van Kampen diagram �, a τ -corridor is a corridor
in � that consists of triangles; each triangle has exactly two edges in σ , and every pair of
adjacent triangles intersect at an edge in σ . If α and β are two disjoint corridor schemes, then
α-corridors and β-corridors never cross each other. If � is oriented, then each triangle in a
diagram � is orientated.

Recalling the factweonly have to establish the cubic upper bound ford = 1 inTheorem4.1
and Lemma 4.2, the graph � in the rest of this subsection will be the suspension of a path of
length at least 3 with orientations and labels on the edges given by Fig. 11

The Dicks–Leary presentation (see Theorem 2.2) for H� is 〈A,B,X |R〉, where
A = {a1, · · · , ak+1}
B = {b1, · · · , bk+1}
X = {x1, · · · , xk}
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Fig. 11 The graph � with orientations and labels

Fig. 12 Boundary of a single
corridor

R = {ai xi = ai+1 = xiai , bi xi = bi+1 = xi bi }, i = 1, · · · , k

Let w be a freely reduced word of length at most n that represents the identity in H�

and � a minimal van Kampen diagram for w. Choose two disjoint corridor schemes α =
{a1, . . . , ak+1} and β = {b1, . . . , bk+1} for �. Note that α-corridors and β-corridors never
cross each other. For each corridor in �, fix a vertex p of the corridor that is on ∂�. When
reading along the boundary of a corridor starting from p, we get a boundary word u′v′′u′′v′
or its cyclic permutation, where u′, u′′ are letters in α or β; v′, v′′ are words in the free group
F(x1, . . . , xk). Note that u′ and u′′ are labelings of edges on ∂�.

Remark 4.6 Since� is an oriented simplicial graph, all the corridors and triangles of a diagram
� are oriented. For the pictures in the rest of this subsection, we omit the arrows on some of
the edges for simplicity. Since each edge is labeled with a letter, and consecutive edges form
a path, we don’t distinguish letters and edges, and words and paths.

Definition 4.7 Let Ci , 1 ≤ i ≤ h, be a corridor in � with the boundary word u′
iv

′′
i u

′′
i v

′
i (or

its cyclic permutation) where u′
i , u

′′
i are letters in α or β; v′

i , v
′′
i are words in the free group

F(x1, . . . , xk); see Fig. 12. If u′
1, . . . , u

′
h and u′′

1, . . . , u
′′
h are two sets of consecutive letters

on ∂� and v′′
i = v′

i+1 for i = 1, . . . h − 1, then the subdiagram T of � obtained by gluing
corridors C1, . . . ,Ch along the words v′′

1 = v′
2, . . . , v

′′
h−1 = v′

h is called a stack. The shorter
word of the words v′

1 and v′′
h is called the top of T ; the longer word of the words v′

1 and v′′
h

is called the bottom of T . If v′
1 and v′′

h have the same length, then we call either one the top
and the other one the bottom. The words u′

1 · · · u′
h and u

′′
1 · · · u′′

h are called the legs of T , and
the number h is called the height of T .

Remark 4.8 For two consecutive corridorsCi andCi+1 as defined in the Definition 4.7, every
2-cell of � with an edge labeled with a letter in the word v′′

i = v′
i+1 must be part of either

Ci or Ci+1. Otherwise, it would violate the minimality assumption on �.

Roughly speaking, a stack is a pile of corridors where one corridor sits on top of another.
Note that the top and bottom of a stack are not parts of ∂�, and they might have different
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Fig. 13 A simple example of a
stack

Fig. 14 Picture of a j-vertex. The number j around the vertex indicates that the vertex is a j-vertex

Fig. 15 A pair of adjacent
vertices p1 and p2 generates w

lengths; the legs are parts of ∂�, and they are not necessarily straight. Figure 13 shows an
example of a stack. For simplicity, we draw a stack with straight legs.

Definition 4.9 LetC be either a single α-corridor or β-corridor with boundaryword u′v′′u′′v′
(or its cyclic permutation), as shown in Fig. 12. We say that a vertex q on the boundary of C
labeled by the word v′ (respectively v′′) is a j-vertex, or q has type j , if there are j +1 edges
connecting q to j + 1 distinct consecutive vertices on the part of boundary of C labeled by
the word v′′ (respectively v′); see Fig. 14.

We say that a pair of adjacent vertices q1 and q2 on the boundary of C labeled by the word
v′ (respectively v′′) generate a vertex q3 in v′′ (respectively v′) if there is a triangle shown
as Fig. 15.

Lemma 4.10 Let � be the graph as shown in Fig. 11. Let w ∈ H� be a freely reduced word
that represents the identity. Let T be a stack in a minimal van Kampen diagram� forw such
that the top of T has length l and the height of T is h. Then the area of T satisfies

Area(T ) ≤ K (lh2 + h3),

where K is a positive constant that does not depend on l and h.

The proof of Lemma 4.10 relies on a series of lemmas that analyze the boundaries of
corridors of a stack. Since all the van Kampen diagrams are assumed to be minimal, in
Lemma 4.10 each vertex on the boundary of a corridor is of type at most k for a fixed k ≥ 3.
We label the boundary words of corridors of a stack T as shown in Fig. 16:

Let’s look at a single corridor Ci as shown in Fig. 17:
Each edge xm of ti , 1 ≤ m ≤ k, is a part of the boundary of a triangle in the interior of Ci ;
see Fig. 18.
Depending on Ci is an α-corridor or β-corridor, the orientation of xm , and the orientation of
u′
i , u

′′
i (they have the same orientation), we have the following eight possibilities:

123



Geometriae Dedicata (2021) 214:211–239 225

Fig. 16 Boundary words of corridors in a stack T

Fig. 17 A single corridor with
boundary words

Fig. 18 A 2-cell in a corridor

Fig. 19 The first row shows the cases where the arrows on u′
i and u

′′
i are pointing from ti to ti+1; the second

row shows the cases where the arrows on u′
i and u

′′
i are pointing from ti+1 to ti . The left two columns are the

cases where Ci is an α-corridor; the right two columns are the cases where Ci is a β-corridor
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Fig. 20 Possible combinations of edges that create 1-vertices

Fig. 21 Two choices to complete
a triangle

Note that the boundary word of each triangle in Fig. 19 is a relator of H� .

Lemma 4.11 Let Ci be either an α-corridor or β-corridor in a stack T as shown in Figs. 16
and 17.

(1) The area of Ci is |ti | + |ti+1|.
(2) Suppose |ti | < |ti+1|, then

|ti+1| =
∑
j

j · ∣∣{ j -vertices on ti }
∣∣.

Proof (1) Since each edge on ti and ti+1 is part of a unique triangle in Ci , the result follows.
(2) Since each j-vertex on ti contributes j edges on ti+1, the statement follows immediately.

��

Lemma 4.12 Let Ci be either an α-corridor or β-corridor in a stack T as shown in Figs. 16
and 17. There are eight combinations of edges on ti (respectively ti+1) that will create 1-
vertices on the ti (respectively ti+1) for a given m, 2 ≤ m ≤ k − 1, as shown in Fig. 20.

Proof We prove the case when Ci is an α-corridor; the case for a single β-corridor is similar.
To see the conclusion, we only need to know how to fill Ci . Take the left-most picture in the
first row of Fig. 20. Suppose the xm’s are edges on either ti or ti+1. By Fig. 19, we have two
choices to complete the triangles based on the xm’s; see Fig. 21.
Thus, the vertex is a 1-vertex. The arguments for other combinations are similar. ��

Lemma 4.13 Let Ci and Ci+1 be two consecutive corridors in a stack T . Suppose that the
arrows on the edges u′

i , u
′′
i , u

′
i+1, u

′′
i+1 have the same orientation, as shown inFig. 22. Assume

that there are no 0-vertices on ti . Then

(1) All the vertices on ti+1 are 1-vertices, 2-vertices, or 3-vertices, except possibly the two
vertices at the ends of ti+1.

(2) All the vertices on ti+2 are either 1-vertices or 2-vertices, except possibly the two vertices
at the ends of ti+1.

(3) We have |ti | ≤ |ti+1| ≤ |ti+2|.

Proof We prove the lemma for the case when Ci ,Ci+1 are consecutive α-corridors, and the
arrows on u′

i , u
′′
i , u

′
i+1, u

′′
i+1 are pointing away from ti . Other cases are similar.
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Fig. 22 Two consecutive corridors

Fig. 23 A pair of adjacent vertices on ti generates either a 1-vertex or 3-vertex on ti+1

Fig. 24 A 3-vertex

(1) We claim that every pair of adjacent vertices on ti generates either a 1-vertex or 3-vertex
on ti+1. Let two adjacent vertices on ti be connected by an edge xm . These two adjacent
vertices generate a vertex on ti+1; Fig. 23 lists all possible combinations of edges that
meet at the vertex on ti+1 that is generated by a pair of adjacent vertices on ti .

The 1-vertices in Fig. 23 are recognized by Lemma 4.12. The following picture shows that
the vertex in Fig. 23 is a 3-vertex; see Fig. 24.
There are four more cases obtained by flipping the pictures in Fig. 23 such that the arrow on
the edge xm of ti has the opposite orientation. This proves the claim.

Next, we show that the vertices on ti+1 that are not generated by pairs of adjacent vertices
on ti are 2-vertices, except the two vertices at the end of ti+1. We claim that each j-vertex
on ti creates j − 1 vertices on ti+1 that are all 2-vertices. For any j-vertex on ti (respectively
ti+1), by definition, there are j+1 edges connecting the j-vertex to j+1 consecutive distinct
vertices on ti+1 (respectively ti ). That is, there are j distinct triangles based on j consecutive
edges on ti+1 (respectively ti ) that has the j-vertex as the common vertex; see Fig. 25.
Let xr−1, xr be two consecutive edges, r ∈ {m, . . . ,m + j − 1}, and let the vertex vr be the
common vertex of xr−1 and xr . Figure 26 shows that vr is a 2-vertex. This proves the claim.

(2) We have shown that all the vertices on ti+1 are 1-vertices, 2-vertices, or 3-vertices. Each
of the vertices on ti+1 creates numbers of 0, 1, or 2 vertices on ti+2, respectively, and they
are all 2-vertices. Other vertices on ti+2 are generated by pairs of adjacent vertices on ti+1.
We now show that these vertices on ti+2 are 1-vertices. We prove the claim by showing
all the possible combinations of types of vertices on ti+1. We have six cases: pairs of
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Fig. 25 Each j-vertex on ti (respectively ti+1) creates j − 1 vertices on ti+1 respectively ti ) that are all
2-vertices

Fig. 26 The vertex vr on ti+1 is a 2-vertex

adjacent 1-vertices, adjacent 2-vertices, and adjacent 3-vertices; pairs of adjacent 1-vertex
and 2-vertex; pairs of adjacent 1-vertex and 3-vertex; and pairs of adjacent 2-vertex and
3-vertex. In the following pictures, all the 1-vertices are recognized by Lemma 4.12.

Figure 27 shows that a pair of adjacent 1-vertices on ti+1 generates a 1-vertex on ti+2:
Next, Fig. 28 shows that a pair of adjacent 1-vertex and 2-vertex on ti+1 generates a 1-

vertex on ti+2. Recall that Figs. 23 and 26 are the only situations of 1-vertex and 2-vertex on
ti+1.

For a pair of adjacent 2-vertices on ti+1, we have one combination up to orientation; see
Fig. 29.

For a pair of adjacent 1-vertex and 3-vertex on ti+1, we have (Fig. 30):
For a pair of adjacent 2-vertex and 3-vertex on ti+1, since the number of combinations of

edges on ti+1 that will create 2-vertices and 3-vertices are limited, we have fewer cases here
(Fig. 31):

Finally, for a pair of adjacent 3-vertices, we have only one possibility up to orientation;
see Fig. 32.

(3) Since we assume that there are no 0-vertices on ti , the number of vertices on ti+1 is no
less than the number of vertices on ti , and the number of vertices on ti+2 is also no less
than the number of vertices on ti+1. Thus, we have

|ti | = (number of vertices on ti ) − 1
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Fig. 27 Two adjacent 1-vertices on ti+1 generate a 1-vertex on ti+2

Fig. 28 A pair of adjacent 1-vertex and 2-vertex on ti+1 generates a 1-vertex on ti+2

Fig. 29 A pair of adjacent
2-vertices on ti+1 generates a
1-vertex on ti+2

Fig. 30 A pair of adjacent 1-vertex and 3-vertex on ti+1 generates a 1-vertex on ti+2

Fig. 31 A pair of adjacent
2-vertex and 3-vertex on ti+1
generates a 1-vertex on ti+2
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Fig. 32 A pair of adjacent
3-vertex on ti+1 generates a
1-vertex on ti+2

Fig. 33 Edges u′
i , u

′′
i and u′

i+1, u
′′
i+1 have different orientations

Fig. 34 Two triangles from different α-corridors with opposite orientations

≤ (number of vertices on ti+1) − 1

= |ti+1|
and

|ti+1| = (number of vertices on ti+1) − 1

≤ (number of vertices on ti+2) − 1

= |ti+2|.
Hence, |ti | ≤ |ti+1| ≤ |ti+2|.

��
Lemma 4.14 Let Ci andCi+1 be two consecutive corridors in a stack T as in the Lemma 4.13.
Let the arrows on the edges labeled by u′

i , u
′′
i and u′

i+1, u
′′
i+1 have different orientations.

There are two cases, as shown in Fig. 33. Assume that there are no 0-vertices on ti . Then
|t ′i+2| ≤ |ti+2|, where ti+2 is in Fig. 22.

Proof We prove the case when u′
i , u

′′
i , u

′
i+1, u

′′
i+1 are pointing toward ti+i . The other case is

similar. We claim that in this case, Ci and Ci+1 cannot be both α-corridors or β-corridors.
Suppose Ci and Ci+1 are both α-corridors (respectively β-corridors), then there are two
triangles that share a unique common edge on ti+1:
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Fig. 35 Every pair of adjacent vertices of the distinct j +1 vertices on ti+1 generates the same vertex on t ′i+2

The situation as shown in Fig. 34 contradicts the fact that T is part of a minimal van Kampen
diagram since we can obtain a smaller van Kampen diagram by canceling these two triangles.
This proves the claim.

Now suppose Ci is an α-corridor and Ci+1 is a β-corridor. By definition, each j-vertex
on ti is adjacent to j + 1 consecutive distinct vertices on ti+1:
From Fig. 35 we see that every pair of adjacent vertices of these j + 1 consecutive distinct
vertices on ti+1 generates the same vertex on t ′i+2 since Ci+1 is a β-corridor. That is, each
j-vertex on ti creates j −1 vertices on ti+1 and they are 0-vertices. It follows that the number
of vertices on t ′i+2 is less than the numbers of vertices on ti+2 in Lemma 4.13. Thus, we have

|t ′i+2| = (number of vertices on t ′i+2) − 1

≤ (number of vertices on ti+2) − 1

= |ti+2|.
This completes the proof. ��

Now, we prove Lemma 4.10.

Proof of Lemma 4.10. Let T be a stackwith labelings as shown inFig. 16.Recall that t0, . . . , th
are words in the free group F(x1, . . . , xk) and u′

i , u
′′
i are both letters either in the corridor

scheme α = {a1, . . . , ak+1} or β = {b1, . . . , bk+1}. Since the area of a stack T is the sum of
the areas of the corridors that contained in T , by Lemma 4.11 we have

Area(T ) = |t0| + 2|t1| + · · · + 2|th−1| + |th | ≤ 2 (|t0| + · · · + |th |) .

Thus, upper bounds on |t0|, . . . , |tn | give an upper on Area(T ). In order to obtain an upper
bound on |ti |, we need a few assumptions. Recall that for a fixed k, each vertex of T is at
most a k-vertex. The assumptions we need here are

(1) the vertices on t0 and the two vertices at the two ends of ti are k-vertices;
(2) the arrows on u′

i , u
′′
i , i = 1, . . . , h, are pointing away from t0 (Lemma 4.13 and

Lemma 4.14).

The first assumption gives us an upper bound on |t0|. From Lemma 4.11 we know that the
length of ti+1 depends on the types of the vertices on ti . The second assumption ensures that
|ti | ≤ |ti+1| ≤ |ti+2|. We compute |ti | as follows.

For |t1|, since |t0| = l and all the vertices on t0 are k-vertex, we have |t1| = k(l + 1).
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On t1, there are two k-vertices at the two ends. Lemma 4.13 tells us that every pair of
adjacent vertices on t0 generates either a 1-vertex or a 3-vertex on t1, but we may assume that
they are all 3-vertices so that we can get the largest possible |t2|. So the number of 3-vertices
on t1 is l; other vertices on t1 are 2-vertices and there are (k − 1)(l + 1) of them. Knowing
the types of vertices on t1 gives the length of t2:

|t2| = 2 · k + l · 3 + (k − 1)(l + 1) · 2 = 2kl + l + 4k − 2

For i ≥ 2, every pair of adjacent vertices on ti−1 generates a 1-vertex on ti by Lemma 4.13,
so the number of 1-vertices on ti is |ti−1|. Every 2-vertex on ti−1 creates a 2-vertex on ti
and the two k-vertices at the ends of ti−1 creates (k − 1) 2-vertices on ti . So the number of
2-vertices on ti is the number of 2-vertices on ti−1 plus 2(k − 1):

(kl + l + k − 1) + (i − 1) · 2(k − 1) = kl + l + (2i − 1)k − 2i + 1.

Having the information of the vertices on ti we get

|ti+1| = |ti−1| · 1 + [kl + l + (2i − 1)k − 2i + 1] · 2 + 2 · k
= |ti−1| + 2kl + 2l + 4ik − 4i + 2

for i = 2, . . . , h − 1. Let

d(i) = |ti+1| − |ti−1| = 2kl + 2l + 4ik − 4i + 2, i = 2, . . . , h − 1,

then {d(i)} is an arithmetic sequence whose difference is 4k − 4 and

d(i + 2) − d(i) = 8k − 8.

When i is even, we have

|ti+1| = |t1| + d(2) + d(4) + · · · + d(i)

= |t1| + i

2
d(2) + i(i − 2)(k − 1),

and when i is odd, we have

|ti+1| = |t2| + d(3) + d(5) + · · · + d(i)

= |t2| +
(
i − 1

2

)
d(3) + (i − 1)(i − 3)(k − 1).

When h is odd, we have

Area(T ) ≤ 2
h∑

i=1

|ti | = 2

⎛
⎜⎝|t0| + |t1| + |t2| +

h−1∑
i=2

i is even

|ti+1| +
h−2∑
i=3

i is odd

|ti+1|
⎞
⎟⎠ .

Furthermore,

h−1∑
i=2

i is even

|ti+1| =
h−1∑
i=2

i is even

[
|t1| + i

2
d(2) + i(i − 2)(k − 1)

]

≤ h|t1| + [d(2) − 2(k − 1)] h2 + (k − 1)h3

≤ 12klh2 + kh3.
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and
h−2∑
i=3

i is odd

|ti+1| =
h−2∑
i=3

i is odd

[
|t2| +

(
i − 1

2

)
d(3) + (i − 1)(i − 3)(k − 1)

]

≤ h|t2| + d(3)h2 + kh3 + kh2 + 2h

≤ 24klh2 + kh3.

Thus,

Area(T ) ≤ 2
[|t0| + |t1| + |t2| + (12klh2 + kh3) + (24klh2 + kh3)

]
≤ 92k(h3 + lh2).

When h is even, the computation is similar. Hence, Area(T ) ≤ K (h3 + lh2), where K is a
positive constant which does not depend on l and h. ��
Lemma 4.15 Let � be the graph as shown in Fig. 11. Then δH� (n) � n3.

Proof Letw be a freely reducedword of length atmost n that represents the identity in H� . Let
�be aminimal vanKampendiagram forw. Choose corridor schemesα = {a1, . . . , ak+1} and
β = {b1, . . . , bk+1} for �, then the van Kampen diagram � consists of stacks, T1, . . . , Tm .
Denote the two legs of Ti by U ′

i and U ′′
i , and the height of Ti by |U ′

i | = |U ′′
i | = hi ,

i = 1, . . . ,m. Note that U ′
i and U ′′

i are words on ∂� that consist of letters in the corridor
schemes α and β. The boundary word w is a cyclic permutation of the following word, and
we also denoted it by w:

w = A1B1A2B2 · · · Ar Bs,

where each of the words A1, . . . , Ar consists of one or more words from U ′
1, . . . ,U

′
m and

U ′′
1 , . . . ,U ′′

m ; each of the words B1, . . . , Bs is a word in the free group F(x1, . . . , xk). The
length of each of the words A1, . . . , Ar is either the height of a single stack or the sum of
the heights of multiple stacks; each of the words B1, . . . , Bs is a base of a stack or part of a
base of a stack. Denote the length of the words B1, . . . , Bs by l1, . . . , ls , respectively. Let

h = |A1| + · · · + |Ar | = 2(h1 + · · · + hm) = 2
m∑
i=1

hi

and

l = |B1| + · · · + |Bs | =
s∑

i=1

li .

Consider a stack T ′ whose top is the word B1 · · · Bs of length l and whose legs are
U ′
1 · · ·U ′

m and U ′′
1 · · ·U ′′

m and the height h = |U ′
1 · · ·U ′

m | = |U ′′
1 · · ·U ′′

m |, assuming that all
the the arrows on U ′

i ,U
′′
i are pointing away from the top; see Fig. 36.

There are three possible cases that the van Kampen diagram � could be. The first case is
that every stack has a base that is part of ∂�, as shown in Fig. 37. The second case is that
every stack has a base that is either on ∂�, or part of it is on ∂�, as shown in Fig. 38. The
third case is that there is a stack whose bases are not part of ∂�, as shown in Fig. 39. We
show that Area(�) ≤ Area(T ′) in each of these three cases.

Case 1 Recall that each of Ai is a leg of one or more stacks; each Bi is part of a base
of a stack or a base of a stack. By assumption, each stack Ti has a base that is on ∂�, say
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Fig. 36 The stack T ′

Fig. 37 Case 1 Every stack Ti has a base Bi that is part of ∂�

Bi is a base of the stack Ti . If Bi is the top of the stack Ti , then the top of the stack T ′
i in

Fig. 40 is longer than Bi . Thus, Area(Ti ) ≤ Area(T ′
i ). If Bi is the bottom of the stack Ti ,

then consider a stack whose heights are U ′
i ,U

′′
i and whose top is Bi . The area of this stack

is obviously greater than the area of Ti , but less than the area of T ′
i in Fig. 40. Thus, for

each stack Ti , i = 1, . . . ,m, there is a stack T ′
i in T ′ satisfying Area(Ti ) ≤ Area(T ′

i ). These
substacks T ′

1, . . . , T
′
m are disjoint inside T ′ because their legs are disjoint. Each substack T ′

is at different height inside T ′, as shown in Fig. 40:
We have

Area(w) = Area(�)

= Area(T1) + · · · + Area(Tm)

≤ Area(T ′
1) + · · · + Area(T ′

m)
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Fig. 38 Case 2 At least one of the stacks such that part of its bases is part of ∂�

Fig. 39 Case 3 At least one of the
stacks whose bases are not part of
∂�

≤ Area(T ′)
≤ C(h3 + lh2)

≤ 2Cn3

for some positive constant C , which does not depend on |w| = n. The second last inequality
follows by Lemma 4.10, and the last inequality holds since l ≤ n and h ≤ n. Thus, we prove
the claim for the first case.

Case 2 Suppose that the van Kampen diagram � has some stacks whose bases are not all
on ∂�, as shown in Fig. 38. Divide those stacks into smaller stacks as following:
In Figure 41, each of the stacks T i has at least one base Bi that is on ∂�. Thus, Case 2
follows by Case 1.
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Fig. 40 Disjoint substacks T ′
i and T ′

j in T ′

Fig. 41 A van Kampen diagram in Case 2

Case 3 Suppose that there is a stack in � whose bases are not on ∂�, as shown in Fig. 39.
Divide � and rearrange the stacks as follows:
Again, all the stacks in Fig. 42 have a base that is on ∂�. Thus, Case 3 follows by Case 1.

This completes the proof of the lemma. ��

5 Graphs with K4 subgraphs

In the previous sections, we considered finite simplicial graphs � that do not contain K4

subgraphs. In this section, we consider finite simplicial graphs that can contain K4 subgraphs.
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Fig. 42 A van Kampen diagram
in Case 3

The main difference is that the flag complexes on finite simplicial graphs with K4 subgraphs
are not 2-dimensional.

Unfortunately, we have not been able to characterize the Dehn function δH� when ��

is not 2-dimensional. Instead, we obtain a lower bound for δH� when � contains induced
subgraphs that satisfy the assumptions of Theorem 4.1.

Definition 5.1 We say that a subgroup H is a retract of a groupG if there is a homomorphism
r : G → H , such that r : H → H is the identity. We call the homomorphism r a retraction.

A standard fact about group retract is that if H is a retract of a finitely presented group
G, then H is also finitely presented. The following lemma says that group retractions do not
increase Dehn functions.

Lemma 5.2 ([7], Lemma 2.2) If H is a retract of a finitely presented group G, then δH � δG.

Proposition 5.3 Let � be a finite simplicial graph. If �′ is a connected induced subgraph of
�, then H�′ is a retract of H� .

Proof Since �′ is an induced subgraph of �, A�′ is a retract of A� . Let r : A� → A�′ be a
retraction; define r ′ = r |H� : H� → H�′ . Since � and �′ are connected, H� and H�′ are
finitely generated and their generating sets are sets of oriented edges of� and�′, respectively.
It suffices to show that r ′ is the identity on the generating set of H�′ . Let e be an oriented edge
of �′ with initial vertex v and terminal vertex w. The generator e of H�′ can be expressed in
terms of the generators of A�′ , that is, e = vw−1. Since r : A� → A�′ is a retraction, we
have

r ′(e) = r(vw−1) = vw−1 = e.

This shows that r ′ : H� → H�′ is a retraction. ��
We establish the lower bound as promised.
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Fig. 43 The graph �

Proposition 5.4 Let � be a finite simplicial graph such that �� is simply-connected. If �

contains an induced subgraph �′ such that ��′ is a 2-dimensional triangulated subdisk of
�� that has square boundary and dim I (��′) = d, d ∈ {0, 1, 2}, then nd+2 � δH� (n).

Proof By Theorem 4.1, we have δH�′ (n) 
 nd+2. Since �′ is an induced subgraph of �,
it follows from Proposition 5.3 and Lemma 5.2 that H�′ is a retract of H� and nd+2 

δH�′ (n) � δH� (n). ��

We remark that Proposition 5.4 can be used to give the cubic lower bound in Theorem 4.1
for the case d = 1. We close this section with an example.

Example 5.5 Let � be the graph as shown in Fig. 43:
The flag complex �� is not 2-dimensional since � contains K4 subgraphs. Observe that
� contains an induced subgraph �′ that is the suspension of a path of length 3. Hence, by
Theorem 4.1 and Proposition 5.3, we have n3 
 δH�′′ (n) � δH� (n).
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