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New experimental approach to nonlinear dielectric effects in the 

static limit 

Erik Thoms and Ranko Richert  
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We present a nonlinear dielectric technique that measures the real and imaginary 

component of permittivity in a time resolved fashion for a sequence of high field amplitudes. 

Data is recorded within a few milliseconds of exposing the sample to sinusoidal fields 

without dc-bias. This short exposure time and a sample thickness of only 10 m greatly 

reduces heating effects. The Piekara factor quantifying the nonlinear dielectric effect can be 

derived from analyzing the response at both the fundamental and the third harmonic 

frequency, and for both quantities the near quadratic field dependence is verified. The small 

deviations from the expected field dependence are ascribed to a resolved fifth harmonic 

response. In this manner, the nonlinear dielectric effect of the polar glass-forming liquid 

propylene glycol is determined in the static limit, and it is found that the Piekara factor 

changes from −2.910-16 V-2 m2 to −1.410-16 V-2 m2 when the temperature is raised from 

204 K to 235 K.  
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1. Introduction 

Since Debye recognized that "the dielectric constant would not be a true constant but would depend 

upon the field intensity" [1], many measurements of this nonlinear dielectric effect (NDE) in the static 

limit have been reported [2,3,4]. The aim of such experiments is to quantify the difference between the 

dielectric constant measured at a high electric field, E, and its low field limit counterpart, s = E→0. This 

difference is usually very small and (to first order) expected to depend quadratically on the amplitude E 

of the electric field. As a result, it is common to express the magnitude of the NDE in terms of the Piekara 

factor [5], 

 𝑎 =
𝜀𝐸 − 𝜀𝐸→0

𝐸2
 , (1) 

which can assume negative (explained by dielectric saturation) and positive (often termed as chemical 

effect) values [6]. 

The motivation for experimentally quantifying NDEs originates from the recognition that high field 

permittivities are able to reveal information about the material to which the linear-response dielectric 

experiments are blind [7,8,9,10,11]. This has led to a recent surge in the interest in nonlinear dielectric 

studies beyond the static limit, as these studies advanced our understanding of interactions, structure, 

dynamics, and phase transitions in liquids and glasses [12,13,14,15,16,17,18,19,20,21,22,23,24]. A 

quantitative characterization of NDE's may also help understanding dielectric breakdown [25] and 

optimize high energy capacitors. 

A survey of the literature reveals that considerable discrepancies regarding the Piekara factor can be 

found. For instance, values for diethyl ether at 25C vary between +1.510-18 V-2 m2 and −22010-18 V-

2 m2 [26]. There are numerous obstacles to a reliable measurement of the Piekara factor, most notably 

the following examples. (i) Most importantly, the difference 𝜀𝐸 − 𝜀𝐸→0 is usually small at practical field 

amplitudes, with the field magnitudes limited by dielectric breakdown of the sample. (ii) Electrostriction 

leads to a reduction of the electrode separation d, and thus to an apparent change in permittivity via a real 

change in the geometric capacitance, 𝐶𝑔𝑒𝑜 = 𝜀0𝐴 𝑑⁄ . (iii) Time dependent fields give rise to an 

irreversible energy transfer from the field to the sample, eventually leading to heating and the 

concomitant modifications of the dielectric constant and density. In the special case of sinusoidal fields, 

𝐸(𝑡) = 𝐸0𝑠𝑖𝑛(𝜔𝑡), heating effects are proportional to 𝜀′′(𝜔)𝐸2, where '' represents the dielectric loss. 

But generally, any time dependent field will lead to heating whenever '' > 0. 
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Many experiments aimed at quantifying the Piekara factor are based upon a small amplitude 

oscillating field superposed on a short but high amplitude field pulse. The idea is to restrict the time 

available for heating via the inevitable dc-conductivity of polar materials. However, for the short time in 

which a system behaves adiabatically, the reduction of configurational entropy by polarizing the 

dielectric will be balanced by additional heat [27], leading to a temperature increase as in electrocaloric 

materials [28]. A further detrimental effect of dc-conductivity is electrode polarization, leading to a rise 

in the apparent dielectric constant by space charge accumulation at the electrodes, an effect that is 

promoted by relatively low frequencies or by dc-bias fields. 

This work focuses on the permittivity in the static limit, where the polarization follows the electric 

field without lag. For the experiment, this implies that measurements need to determine permittivity in 

the long-time limit relative to the primary dielectric relaxation process. Our approach to measuring the 

Piekara factor eliminates the application of a dc-bias field, but instead uses a sequence of sinusoidal fields 

of varying field amplitude, with permittivity analyzed for each cycle. The technique facilitates verifying 

the quadratic field dependence of E and the time invariance of E after changing the field amplitude. 

Heating effects are strongly reduced by using an electrode distance of 9.2 m, leading to highly efficient 

heat transport to the electrodes, which can be regarded as high capacity thermal reservoirs. For propylene 

glycol (PG) we find that the Piekara factor changes from −2.910-16 V-2 m2 to −1.410-16 V-2 m2 when 

the temperature is raised from 204 K to 235 K. Consistency is observed for values derived from the 

evaluation at the fundamental frequency and those obtained from the third harmonic responses. 

2. Experiment 

The material propylene glycol (PG, >99.5%) has been obtained from Sigma-Aldrich and is used as 

received. In order to provide a well defined electrode separation, monodisperse silica microspheres with 

diameter 9.2 m (Cospheric) are mixed into an aliquot of PG to obtain a composition of approximately 

100 ppm by volume. This mixture is filled into a spring-loaded (force: 10 N) capacitor cell described 

previously [29], using a pair of titanium electrodes with 17 mm and 20 mm diameter. The cell is mounted 

onto the cold finger of a closed cycle He-refrigerator cryostat (Leybold RDK 6-320, Coolpak 6200), and 

its temperature is controlled by a Lakeshore Model 340 equipped with DT-470-CU diode sensors. The 

chamber was flushed with dry nitrogen gas and subsequently evacuated prior to performing the 

measurements. 

The field pattern applied to the sample is derived from an arbitrary waveform generator (Stanford 

Research Systems DS-345). The voltage of the generator signal is boosted by a factor of 100 via a high-
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voltage amplifier (Trek PZD-350), whose output is connected to the high-potential side of the sample 

capacitor. The low-potential side of the capacitor is connected to ground via an R =300 or 1000  shunt. 

Both electrode potentials, Vhi and Vlo, are measured with a data acquisition system (Nicolet Sigma 100) 

and yield the voltage across (V = Vhi − Vlo) and the current through (I = Vlo/R) the capacitor. Figure 1 

shows a typical signal pattern, but for clarity with half the number of cycles per zone relative to what is 

actually used. Within each zone the amplitude is constant, and the entire waveform is repeated 5000 

times at a slow repetition rate, such that the duty cycle remains below 10% and the voltage is maintained 

at zero for at least 90% of the time. The data acquisition system then averages over the 5000 waveforms 

of V(t) and I(t), recorded at a resolution of 12 bit with 250 points per cycle. All measurements are 

performed at frequencies sufficiently below the loss peak frequency max, such that the real part of the 

high field permittivity corresponds to the static limit E. 
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Fig. 1. Representation of the field pattern used in this study, with the top curve showing the voltage 

normalized to its peak value, while the bottom curve reflects the normalized current from a 10 nF 

capacitor. Each of the five zones (numbered 1 to 5 in the order of increasing time) is associated with 

its distinct value of Vpeak/Vmax, indicated as percentage value, while frequency and phase remains 

constant across the entire waveform. The actual experiments with PG employed twice the number of 

cycles per zone relative to this graph. 

In order to obtain time-resolved permittivity data, each period with duration 2/ of the voltage and 

the current signal is subject to Fourier analysis, yielding the in-phase (S') and out-of-phase (S'') 

component of the nth harmonic, according to 

 𝑆𝑛
′ =

𝜔

𝜋
∫ 𝑠𝑖𝑛(𝑛𝜔𝑡 ′) 𝑆(𝑡 ′)𝑑𝑡 ′

𝑡+2𝜋 𝜔⁄

𝑡

 , (2a) 
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 𝑆𝑛
′′ =

𝜔

𝜋
∫ 𝑐𝑜𝑠(𝑛𝜔𝑡 ′) 𝑆(𝑡 ′)𝑑𝑡 ′

𝑡+2𝜋 𝜔⁄

𝑡

 , (2b) 

respectively, where S = V for voltage and S = I for current. For each harmonic (n = 1, 3), amplitudes |𝑆𝑛| 

and phases 𝜑𝑆𝑛
 of each of the two signals are determined from the relations |𝑆𝑛| = (𝑆𝑛

′ 2
+ 𝑆𝑛

′′2)
1 2⁄

 and 

𝜑𝑆𝑛
= arctan(𝑆𝑛

′′ 𝑆𝑛
′⁄ ) [30]. Based on the resulting values for |𝑉1|, 𝜑𝑉1

, |𝐼1|, 𝜑𝐼1
, |𝐼3|, and 𝜑𝐼3

, 

'permittivity' values for the fundamental and third harmonic responses can be obtain for each period using 

 |𝜀𝑛| =
|𝐼𝑛| |𝑉1|⁄

𝑛𝜔𝐶𝑔𝑒𝑜
 , (3a) 

 𝜀𝑛
′ = |𝜀𝑛| sin(𝜑𝐼𝑛

− 𝜑𝑉1
) , (3b) 

 𝜀𝑛
′′ = |𝜀𝑛| cos(𝜑𝐼𝑛

− 𝜑𝑉1
) . (3c) 

Note that the voltage has only a fundamental frequency component, i.e., |V3| = 0. As this study focuses 

on the dielectric constant in the static limit ( << 1/), 𝜀1
′  will be denoted as E, and 𝜀3

′  as E,3, with 

𝜀1
′ and 𝜀3

′  defined via Eq. (3b). Note that Eq. (3a) defines n by normalizing to |V1| instead of |V1|n. As a 

result, E,3 has no units and depends on the field magnitude. For each period, the average power, pavg, 

transferred to the sample is also calculated according to 

 𝑝𝑎𝑣𝑔 =
𝜔

2𝜋
∫ 𝑉(𝑡 ′) 𝐼(𝑡 ′)𝑑𝑡 ′

𝑡+2𝜋 𝜔⁄

𝑡

 , (4) 

so that the resulting temperature increase of the sample can be estimated. 

The permittivity of PG in the low field (linear response) limit has been measured with a Solartron SI-

1260 gain/phase analyzer equipped with a DM-1360 transimpedance amplifier. To this end, the same 

cell used for the high-field experiments has been employed, but with a 100 m thick Teflon ring as spacer 

instead of the microspheres, see inset of Fig. 2. 

3. Results 

For the low field (E0 = 0.1 kV cm-1) experiment, both the real (') and imaginary components ('') 

versus frequency are depicted in Fig. 2 for temperatures covering the range in which high-field data is 

taken. The dielectric relaxation behavior observed here is consistent with previous reports [31,32]. From 

a comparison of the observed static dielectric constant values, s, with those reported by Davidson and 

Cole, we determine the actual electrode separation. For the low field experiment, we found d = 106 m 
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for the Teflon spacer with 100 m nominal thickness. For the high-field cases, the actual electrode 

distance was d = 10.5 m, slightly higher than the nominal silica microsphere diameter of 9.2 m. It has 

been demonstrated earlier by Bauer et al. [33] that such microspheres do not affect high field dielectric 

measurements adversely and do not lead to Maxwell-Wagner polarization. 
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Fig. 2. Plot of ' and '' versus frequency for PG at temperatures from T = 181 to 236 K in steps of 5 

K. The '' spectra are used to locate the frequency of minimum loss, min, between dc-conductivity 

and relaxation peak for each temperature, with min representing an ideal frequency for the high-field 

experiment. The inset shows a schematic cut view of the dielectric cell, the details of which can be 

found in Ref. [29]. 

As true for most measurements of permittivity, we derive  from the impedance of a planar capacitor 

filled with the sample. We also follow common practice and evaluate the high field analogue, E, in the 

same manner as in the regime of linear response, see Eq. (3). An example of an experiment using the 

field pattern of Fig. 1 is depicted in Fig. 3, which shows both the real and imaginary components of the 

high field permittivity, '1 and ''1, respectively. It is obvious that '1 is practically time invariant within 

each zone (region of constant field amplitude E0), whereas ''1 changes considerably even while E0 is 

constant. Because this effect is reduced at higher frequencies (not shown), free charges leading to dc-

conductivity are the most likely cause. Consequently, the following focuses on E = '1. 

The field induced relative change of E is shown as (𝜀𝐸 − 𝜀) 𝜀⁄  versus time for three different 

temperatures in Fig. 4, where the field reaches up to 340 kV cm-1. For each temperature the frequency is 

selected to lead to a small value of the dielectric loss, near the minimum between the contributions from 
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dc-conductivity and primary relaxation process, see Fig. 2. Such measurements have been performed at 

seven different temperatures between 204 and 235 K, but for clarity only a selection is shown in Fig. 4. 

The measurements leading to the data in Fig. 4 have also been analyzed at 3, and the real part of the 

third harmonic permittivity, E,3, is shown in Fig. 5. 
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Fig. 3. Results for the high field permittivity, 𝜀′1 and 𝜀′′1, of PG at T = 235 K, derived from the signals 

V1(t) and I1(t), i.e., at the fundamental frequency  = 8 kHz. The highest peak field (100%, zone 4, 

periods 40 to 52, see lower axis) is E0 = 340 kV cm-1. 

Data such as those shown in Fig. 4 and Fig. 5 are further analyzed by calculating the average value 

of E or E,3 within each zone of constant E0. For each temperature, this generates two sets of field 

dependent permittivities, E(E0) and E,3(E0). For the T = 210 K case, this field dependence is depicted 

versus the square of the field amplitude in Fig. 6, with the straight lines indicating consistency with the 

expected quadratic dependence on the electric field E0. 

In a final experiment, we deviate from the field pattern of Fig. 1. Instead of further increasing the 

field in zone 4, the frequency is increased by a factor of 4. As expected, the quantity (𝜀𝐸 − 𝜀) 𝜀⁄  at  = 4 

kHz changes a factor of four when the field is increased by a factor of two, and it reverts to the same 

lower value when the field is reduced again. The main feature of this experiment is that E is practically 

not affected by an increase in frequency by a factor of four, or by the concomitant increase in power by 

a factor of about 5. 
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Fig. 4. Results for the field induced relative change of the dielectric constant, (𝜀𝐸 − 𝜀) 𝜀⁄  (≈ ln𝜀𝐸 −
ln𝜀), for PG at temperatures T = 225, 215, and 204 K, using the respective frequencies 4000, 800, and 

400 Hz. For each case, the highest peak field (100%, zone 4) is E0 = 340 kV cm-1. 
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Fig. 5. Results for the third harmonic dielectric constant, 𝜀𝐸,3, for PG. From top to bottom curve, the 

temperatures are T = 204, 215, and 225 K, and the frequencies used are 400, 800, and 4000 Hz (same 

colors and symbols as in Fig. 4). For each case, the highest peak field (100%, zone 4) is E0 = 340 kV 

cm-1. The inset shows the fifth harmonic analogue, E,5, for T = 204 K, with the line indicating a 

change from 2.0210-3 to 8.410-3 as the field is increased from 238 to 340 kV cm-1. 
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Fig. 6. Representative field dependence of 𝜀𝐸 − 𝜀 (green diamonds) and of 𝜀𝐸,3 (red circles) for PG 

at T = 210 K, derived from measurements as depicted in Fig. 4 and Fig. 5, respectively. The solid line 

is a fit to 𝜀𝐸 = 𝑎𝐸0
2 with slope a = −2.410-16 V-2 cm2, the dashed line represents 𝜀𝐸,3 = −𝑎𝐸0

2 3⁄  

with the same value for a. 

4. Discussion 

A typical approach to determining the Piekara factor is to measure permittivity via a small amplitude 

oscillating field of appropriate frequency during the application of a high field pulse with amplitude EB 

[34,35]. The values of  and E are obtained from the capacitances 𝐶 = 𝜀𝐶𝑔𝑒𝑜 at zero and high bias field 

EB, with C derived from the resonance frequency of an LC circuit. As has been demonstrated recently 

[36], the typical manner to obtain E does not yield a material specific quantity. Instead, the values for E 

derived from a field 𝐸(𝑡) = 𝐸𝐵 + 𝐸0𝑠𝑖𝑛(𝜔𝑡) will differ for the two limiting cases, EB >> 0 and E0 → 0 

versus EB = 0 and E0 >> 0. An appropriate quantity to specify the nonlinear dielectric behavior of a 

material in the static limit is 3, defined as higher order susceptibility via 

 𝜀0
−1𝑃 = 𝜒𝐸 + 𝜒3𝐸3 , (5) 

where 0 is the permittivity of vacuum. For a given value of this third order susceptibility and disregarding 

higher order terms, it can be shown that the relations between 3 and the present experimental results E 

and E,3 are given by [36] 

 
(𝜀𝐸 − 𝜀)

𝐸0
2 =

𝜕𝜀𝐸

𝜕𝐸0
2 =

3

4
𝜒3 , (6) 
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𝜀𝐸,3

𝐸0
2 =

𝜕𝜀𝐸,3

𝜕𝐸0
2 = −

1

4
𝜒3 , (7) 

respectively. For the common high static field case, EB >> 0 and E0 → 0, the relation reads 

 
(𝜀𝐸 − 𝜀)

𝐸𝐵
2 = 𝑎 = 3𝜒3 , (8) 

cf., Eq. (1). For a quantitative comparison of results from different approaches, it thus seems 

advantageous to resort to the technique invariant and material specific quantity 3. It is important to 

realize that the notation |3| is commonly used for experimental results of frequency dependent NDEs 

derived from third harmonic responses, and is thus more equivalent to the present |E,3|E0
2 and not the 

same as 3 used in this work and defined in Eq. (5). 
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Fig. 7. Results for the field induced relative change of the dielectric constant, (𝜀𝐸 − 𝜀) 𝜀⁄  (≈ ln𝜀𝐸 −
ln𝜀), for PG at a temperature T = 228 K, using two frequencies. The electric fields and frequencies 

applied in each zone are provided in the legend. For the two high-field zones, the average power 

transferred irreversibly to the sample is also listed, 0.15 and 0.82 W, as determined via Eq. (4). For 

the first four periods only 25 kV cm-1 are applied (not shown), so that the sample can equilibrate with 

the oscillating field. 

Based upon Eq. (6) and Eq. (7), the slopes 𝜕𝜀𝐸 𝜕𝐸0
2⁄  and 𝜕𝜀𝐸,3 𝜕𝐸0

2⁄  are expected to differ by a factor 

of −3. Figure 6 validates this by demonstrating that both quantities depend quadratically on the electric 

field and by showing that the slope − 𝜕𝜀𝐸 3𝜕𝐸0
2⁄  (dashed line) agrees within 15% with the slope 

𝜕𝜀𝐸,3 𝜕𝐸0
2⁄  at T = 210 K. At all temperatures, the deviations between the 3 results from the first and 

third harmonic data remain less than 20%. Some deviation is expected on the basis of having disregarded 

higher order susceptibilities such as 5 in Eq. (5). The feature that higher orders cannot be omitted entirely 
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can be observed in the inset of Fig. 5, clearly showing a fifth order contribution with the expected field 

dependence, E,5  E0
4. Its contribution is about 10% of that of E,3, so that E,5 could be a major factor 

in the small deviation from 𝜕𝜀𝐸 𝜕𝐸0
2⁄ = −3 𝜕𝜀𝐸,3 𝜕𝐸0

2⁄  seen in Fig. 6. 

Our preference for measuring with a series of three distinct high fields originates from the observation 

that the low field limit data (see zone 1 in Fig. 4) is associated with small signal amplitudes and thus 

higher scatter. Using three high-field data points to define 𝜕𝜀𝐸 𝜕𝐸0
2⁄  eliminates the need to determine the 

low field limit accurately. Moreover, 𝜀𝐸(𝐸0) results such as those of the T = 210 K case shown in Fig. 6 

also facilitate the verification of the expected quadratic field dependence to ensure consistency. The 

slopes 𝜕𝜀𝐸 𝜕𝐸0
2⁄  have been evaluated for all temperatures and converted to 3 values. The 3(T) values 

obtained in this manner for PG are compiled in Fig. 8. In the T = 204 to 235 K range, a reduction of the 

nonlinearity in terms of 3 by a factor of 2 is observed. An extrapolation along the exponential dashed 

line would suggest that the NDE becomes negligible at a temperature around 370 K. 
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Fig. 8. Third harmonic susceptibility 3 for PG versus temperature, derived from 𝜕(𝜀𝐸 − 𝜀) 𝜕𝐸0
2⁄  

(solid hexagons). The dashed line represents the relation 𝜒3 = 𝐴 × exp(− 𝑇 𝐵⁄ ) with A = −3.810-14 

V-2 cm2 and B = 44.2 K, and is meant to serve as guide. 

We now turn to the effects that may lead to apparent nonlinear behavior: field-induced heating and 

electrostriction. To approximate the heating effects, we consider the highest power that occurred in the 

course of the present experiments leading to the results of Fig. 8, which was P = 0.67 W, reached for the 

situation given by T = 235 K,  = 8 kHz, and E0 = 340 kV cm-1. We assume that the metal electrodes 

positioned at z = 0 and z = d are heat sinks of infinite heat capacity, so that the temperature increase T 

vanishes at the interfaces. The steady state heat equation for this situations reads 𝜕2∆𝑇(𝑧) 𝜕𝑧2⁄ = − 𝑝 𝜅⁄ , 
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where p is the power density (p = power P divided by volume ) and  the thermal conductivity. The 

solution to the average temperature rise is 

 ∆𝑇𝑎𝑣𝑔 =
𝑃𝑑2

12𝜅𝜐
 . (9) 

With P = 0.67 W, d = 10.5 m,  = 2.410-9 m3, and  = 0.2 W m-1 K-1 [37], the average increase in 

temperature is Tavg = 19 mK, and the peak value at z = d/2 is only 50% higher. Using the data of 

Davidson and Cole [31] for PG to evaluate the temperature sensitivity of , we obtain /T = −0.26 K-1 

at T = 235 K. Therefore, the effect of heating on  amounts to /TTavg = −510-3, which is only a 

small fraction (3%) of the change E −  = −0.16 observed at these conditions. 

The time required to establish a temperature difference Tavg can be estimated by equating the thermal 

diffusivity 𝛼 = 𝜅 (𝜌𝐶𝑝)⁄  with the mean square displacement () per unit time, i.e., 𝛼 = 𝜆2 𝜏𝑇⁄ . Here,  

is the mass density and Cp is the specific heat capacity. Setting  = d/2, this yields 

 𝜏𝑇 =
𝑑2𝜌𝑐𝑝

4𝜅
 . (10) 

With Cp = 2.0 J K-1 g-1 [38] and  = 1.08 g cm-3, we estimate T = 0.3 ms, equivalent to 5 periods at the 

highest frequency used. Therefore, if heating were a significant contribution to the nonlinear effect, this 

time dependence should be discernable in data such as those shown in Fig. 4. 

Even more convincing regarding the lack of a significant heating effect is the experimental result 

shown in Fig. 7. By changing only the frequency from 4 to 16 kHz, the power absorbed from the field is 

increased about fivefold, from 0.15 to 0.82 W. At the temperature of this experiment, T = 228 K, both 

frequencies, 4 and 16 kHz, are positioned within the plateau region of '(). The observation that the 

data for E reveals only a minor sensitivity to this frequency and power change thus implies the absence 

of a significant heating effect. 

The second commonly encountered effect giving rise to apparent NDE, electrostriction, originates 

from the attractive force of the oppositely charged sample surfaces/electrodes. This force produces stress 

on the electrodes and tends to lower their distance, thus increasing geometric capacitance and creating 

an apparent change in permittivity. For a sinusoidal field with 𝐸(𝑡) = 𝐸0𝑠𝑖𝑛(𝜔𝑡), the resulting force has 

a steady state component F0 and a second harmonic component given by 𝐹0cos(𝜔𝑡). The value of F0 is 

determined by 
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 𝐹0 =
𝜀𝜀0𝐴𝐸0

2

4
 . (10) 

For the present case with  = 48 (T  220 K), A = (8.5 mm)2, and E0 = 340 kV cm-1 in the 100% field 

zone, this electrostatic force is 27 N. The microsphere concentration should supply a uniform support of 

43 silica beads (on average) across the area A. For the lower fields of the zones, the force F0 is only a 

fraction of that of the spring pushing the electrodes together (10 N). Moreover, the spring-loaded 

electrodes together with the absence of elasticity at the condition  << 1 argue against the electrode 

separation periodically adjusting to the sinusoidal change of E0. Therefore, a significant impact resulting 

from electrostriction appears unlikely. 

Finally, we compare the present technique with the common high-field pulse method, where 

permittivity is derived from the resonance frequency of an LC oscillator [34,35]. The pulse technique 

implies that the NDE is derived from E at a high dc-field and the low field limit, , so that multiple 

experiments are required to validate the quadratic field dependence. Electrode separations are typically 

around 500 m for these setups, thus 50 times larger than in the present case, which corresponds to a 

heat diffusion that is 502 times less effective than with d = 10 m. Therefore, large electrode separations 

may require levels of dc-conductivity and '' below what can be achieved with many polar materials to 

avoid significant heating. 

In comparison to previous approaches, the present technique derives the NDE from the slope of E 

versus E2 defined via several high field data points, so that possible deviations from the quadratic field 

dependence can be detected. The manner in which V(t) and I(t) traces are analyzed facilitate focusing on 

the real part of permittivity, which is not directly influenced by dc-conductivity. Moreover, the data 

allows us to assess the time dependence of E and the power transferred irreversibly from field to sample, 

which helps identifying potential heating effects. 

5. Summary and Conclusions 

This study has demonstrated several advantages of the present technique aimed at measuring 

nonlinear dielectric effects in the case of the static limit, i.e., for situations in which the polarization 

remains in equilibrium with the electric field. The main idea is to apply an alternating field (without dc-

bias) which is subject to a sequence of field amplitudes. The amplitude remains constant for several 

periods within each amplitude zone, see Fig. 1, and permittivity is evaluated for each period. High 

resolution is obtained by averaging over thousands of such field sequences, using a low repetition rate. 
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A set of voltage and current traces obtained in this manner provide several data points for the field 

dependence of permittivity, E(E), and its higher harmonics E,3(E) and E,5(E), as well as its time 

dependence, E(t), after changing the field amplitude. Focusing on the real component of permittivity, 

E, at suitable frequencies reduces the influence of the effects of conductivity, which impacts ''1 more 

than '1. The high field E(E) results allows one to verify the expected quadratic field dependence or 

identify deviations thereof. This approach does not rely on an experimental value for the low field limit, 

, which often involves high uncertainties. However, a more reliable  value can be obtained from E(E) 

data by extrapolation to zero field. Observations of time and power invariant E results can be used to 

confirm the absence of heating effects by direct experimental evidence. Although high amplitude 

alternating fields lead to considerable powers being transferred irreversibly from the field to the sample, 

the sample thickness of only 10 m guarantees efficient heat diffusion to the electrodes, which act as 

heat sinks. Using dispersed silica microspheres as spacers appears to counteract electrostriction 

effectively. 

A comparison with the common dc-pulse technique appears in order. The pulse fields with short 

duration may result in limited heat production, but the relatively large sample dimensions, while 

suppressing electrode polarization effects, reduce the efficiency of heat diffusion towards the electrode 

surfaces. Moreover, the present technique allows one to disregard the dielectric loss and thus suppress 

the influence of a field-dependent conductivity. Both heating and conductivity effects (including 

electrode polarization) may affect the result and lead to apparently time dependent Piekara factors. We 

are not aware of literature data on the Piekara factor of PG obtained via the dc-pulse technique for a 

direct comparison. Thus, future experiments based on the present technique should measure NDE 

standards such as diethyl ether and nitrobenzene. 

The present technique has revealed the following about the high field behavior of PG. In the entire 

temperature range of this study, dielectric saturation prevails, leading to a field-induced reduction of the 

dielectric constant. Dielectric saturation should occur in every polar liquid, but its magnitude can not be 

predicted by current theories. The observed Piekara factor changes from −2.910-16 V-2 m2 to −1.410-16 

V-2 m2 when the temperature is increased from 204 K to 235 K, with no indication of a transition to the 

so-called chemical effect, where the sign of the Piekara factor is positive. 



-  15  - 

Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal relationships 

that could have appeared to influence the work reported in this paper. 

Acknowledgments 

This research was supported by the National Science Foundation under grant number DMR-1904601. 

References 

[1] P. Debye, Polar Molecules, Chemical Catalog Company, New York, 1929. 

[2] A. Chełkowski, Dielectric Physics, Elsevier, Amsterdam, 1980. 

[3] S. J. Rzoska, V. P. Zhelezny (Eds.), Nonlinear Dielectric Phenomena in Complex Liquids, 

Kluwer Academic Publishers, Dordrecht, 2004. 

[4] A. Piekara, A. Chelkowski, New experiments on dielectric saturation in polar liquids, J. Chem. 

Phys. 25 (1956) 794. 

[5] A. Piekara, Dielectric saturation and hydrogen bonding, J. Chem. Phys. 36 (1962) 2145. 

[6] J. Małecki, The relaxation of the nonlinear dielectric effect, J. Mol. Struct. 436-437 (1997) 595. 

[7] D. V. Matyushov, Nonlinear dielectric response of polar liquids, J. Chem. Phys. 142 (2015) 

244502. 

[8] S. Albert, Th. Bauer, M. Michl, G. Biroli, J.-P. Bouchaud, A. Loidl, P. Lunkenheimer, R. 

Tourbot, C. Wiertel-Gasquet, F. Ladieu, Fifth-order susceptibility unveils growth of 

thermodynamic amorphous order in glass-formers, Science 352 (2016) 1308. 

[9] R. Richert (Ed.), Nonlinear Dielectric Spectroscopy, Springer, Cham, 2018. 

[10] R. Richert, Perspective: Nonlinear approaches to structure and dynamics of soft materials, J. 

Chem. Phys. 149 (2018) 240901. 

[11] R. Richert, Nonlinear dielectric effects in liquids: A guided tour, J. Phys.: Condens. Matter 29 

(2017) 363001. 

[12] J. L. Déjardin ,Y. P. Kalmykov, Nonlinear dielectric relaxation of polar molecules in a strong ac 

electric field: Steady state response, Phys. Rev. E 61 (2000) 1211. 

[13] L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, D. El Masri, D. L'Hôte, F. Ladieu, M. Pierno, 

Direct experimental evidence of a growing length scale accompanying the glass transition, 

Science 310 (2005) 1797. 

[14] R. L. Fulton, The nonlinear dielectric behavior of water: Comparisons of various approaches to 

the nonlinear dielectric increment, J. Chem. Phys. 130 (2009) 204503. 

[15] I. Szalai, S. Nagy, S. Dietrich, Nonlinear dielectric effect of dipolar fluids, J. Chem. Phys. 131 

(2009) 154905. 

[16] D. L'Hôte, R. Tourbot, F. Ladieu, P. Gadige, Control parameter for the glass transition of 

glycerol evidenced by the static-field-induced nonlinear response, Phys. Rev. B 90 (2014) 

104202. 

 



-  16  - 

 

[17] S. Samanta, R. Richert, Dynamics of glass-forming liquids. XVIII. Does entropy control 

structural relaxation times?, J. Chem. Phys. 142 (2015) 044504. 

[18] R. Richert, S. Weinstein, Nonlinear dielectric response and thermodynamic heterogeneity in 

liquids, Phys. Rev. Lett. 97 (2006) 095703. 

[19] W. Huang, R. Richert, Dynamics of glass-forming liquids. XIII. Microwave heating in slow 

motion, J. Chem. Phys. 130 (2009) 194509. 

[20] C. Crauste-Thibierge, C. Brun, F. Ladieu, D. L'Hôte, G. Biroli, J.-P. Bouchaud, Evidence of 

growing spatial correlations at the glass transition from nonlinear response experiments, Phys. ev. 

Lett. 104 (2010) 165703. 

[21] C. Brun, F. Ladieu, D. L'Hôte, M. Tarzia, G. Biroli, J.-P. Bouchaud, Nonlinear dielectric 

susceptibilities: Accurate determination of the growing correlation volume in a supercooled 

liquid, Phys. Rev. B 84 (2011) 104204. 

[22] Th. Bauer, P. Lunkenheimer, A. Loidl, Cooperativity and the freezing of molecular motion at the 

glass transition, Phys. Rev. Lett. 111 (2013) 225702. 

[23] P. Kim, A. R. Young-Gonzales, R. Richert, Dynamics of glass-forming liquids. XX. Third 

harmonic experiments of non-linear dielectric effects versus a phenomenological model, J. Chem. 

Phys. 145 (2016) 064510. 

[24] A. R. Young-Gonzales, S. Samanta, R. Richert, Dynamics of glass-forming liquids. XIX. Rise 

and decay of field induced anisotropy in the non-linear regime, J. Chem. Phys. 143 (2015) 

104504. 

[25] E. Logakis, L. Herrmann, T. Christen, Electric characterization of LDPE films with TSC and 

dielectric spectroscopy, IEEE Trans. Dielectr. Electr. Insul. 23 (2016) 142. 

[26] Y. Marcus, G. Hefter, On the pressure and electric field dependencies of the relative permittivity 

of liquids, J. Solution Chem. 28 (1999) 575. 

[27] J. A. Schellman, Dielectric saturation, J. Chem. Phys. 24 (1956) 912. 

[28] J. F. Scott, Electrocaloric materials, Annu. Rev. Mater. Res. 41 (2011) 229. 

[29] K. Adrjanowicz, M. Paluch, R. Richert, Formation of new polymorphs and control of 

crystallization in molecular glass-formers by electric field, Phys. Chem. Chem. Phys. 20 (2018) 

925. 

[30] The actual arctan(x''/x') calculation used is: arctan(x''/x') for x' > 0, [2−sgn(x'')]/2 for x' = 

0,.and arctan(x''/x') +  for x' < 0. 

[31] D. W. Davidson, R. H. Cole, Dielectric relaxation in glycerol, propylene glycol, and n-propanol, 

J. Chem. Phys. 19 (1951) 1484. 

[32] S. Weinstein, R. Richert, Nonlinear features in the dielectric behavior of propylene glycol, Phys. 

Rev. B 75 (2007) 064302. 

[33] Th. Bauer, M. Michl, P. Lunkenheimer, A. Loidl, Nonlinear dielectric response of Debye, α, and 

β relaxation in 1-propanol, J. Non-Cryst. Solids 407 (2015) 66. 

[34] M. Gorny, J. Ziolo, S. J. Rzoska, A new application of the nonlinear dielectric method for 

studying relaxation processes in liquids, Rev. Sci. Instrum. 67 (1996) 4290. 



-  17  - 

 

[35] K. Orzechowski, A. Burakowski, Experimental set-up for measuring the non-linear dielectric 

effect, Measurement 131 (2019) 219. 

[36] R. Richert, D. V. Matyushov, Quantifying dielectric permittivities in the nonlinear regime, J. 

Phys. Condens. Matter 33 (2021) 385101. 

[37] C. Deng, K. Zhang, Thermal conductivity of 1,2‑ethanediol and 1,2‑propanediol binary aqueous 

solutions at temperature from 253 K to 373 K, Int. J. Thermophys. 42 (2021) 81. 

[38] G. S. Parks, H. M. Huffman, Studies on glass. I. The transition between the glassy and liquid 

states in the case of some simple organic compounds, J. Phys. Chem. 31 (1927) 1842. 


