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ABSTRACT

Federated learning enables a cluster of decentralized mobile devices
at the edge to collaboratively train a shared machine learning model,
while keeping all the raw training samples on device. This decen-
tralized training approach is demonstrated as a practical solution to
mitigate the risk of privacy leakage. However, enabling efficient FL
deployment at the edge is challenging because of non-IID training
data distribution, wide system heterogeneity and stochastic-varying
runtime effects in the field. This paper jointly optimizes time-to-
convergence and energy efficiency of state-of-the-art FL use cases
by taking into account the stochastic nature of edge execution. We
propose AutoFL by tailor-designing a reinforcement learning algo-
rithm that learns and determines which K participant devices and
per-device execution targets for each FL model aggregation round
in the presence of stochastic runtime variance, system and data
heterogeneity. By considering the unique characteristics of FL edge
deployment judiciously, AutoFL achieves 3.6 times faster model
convergence time and 4.7 and 5.2 times higher energy efficiency
for local clients and globally over the cluster of K participants,
respectively.
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1 INTRODUCTION

The ever increasing computational capacities and efficiencies of
smartphones have enabled a large variety of machine learning (ML)
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Figure 1: The performance-per-watt (PPW) energy effi-
ciency of FL execution can be significantly improved by
up to 5.4x with judicious selections of participant devices
and execution targets (Performance and Oy — Section 5 for
methodology details).

applications at the edge [128], such as image recognition [36], vir-
tual assistant [4, 8], language translation [38], automatic speech
recognition [39], and recommendation [53]. As the mobile ML sys-
tem stack matures [6, 16, 92, 98, 100, 108, 117], on-device inference
becomes more efficient with innovations in algorithmic optimiza-
tions [45, 67, 82, 109, 115, 126, 145], neural network architecture op-
timizations [46, 109, 114, 127], and the availability of programmable
accelerators [7, 37, 50, 51, 100, 105, 106]. While on-device inference
is becoming more ubiquitous [14, 29, 41, 58, 63, 66, 103, 104, 122,
128, 143], performing ML model training in the cloud remains the
standard practice for most use cases [1, 29, 44, 55, 83, 90, 103] due
to the substantial computation and memory requirements [9, 35,
70, 102, 124, 125, 134, 142].

Recently, federated learning (FL) enables smartphones to col-
laboratively train a shared ML model while keeping all the raw
data on device [11, 34, 52, 64, 71, 77, 84, 116, 120, 135, 137]. This
decentralized approach is a practical way to mitigate the risk of
privacy leakage when training deep neural networks (DNNs), as
only the model gradients—not individual data samples—go to the
cloud to update the shared model [12, 43, 73]. The shared model is
trained iteratively using the model gradients from a large collection
of participating smartphones. While FL has shown great promise
for privacy sensitive tasks including sentiment learning, next word
prediction, health monitoring, and item ranking [11, 43, 71], its
deployment is still in a nascent stage.

A common practice for enabling efficient FL deployment at the
edge is to maximize the computation-communication ratio by em-
ploying fewer participant devices with higher per-device training
iterations [73, 84, 112]. In particular, FedAvg has been considered
as the de facto FL algorithm [64, 84]. For each aggregation round,
FedAvg trains a model over E epochs using stochastic gradient de-
scent (SGD) with minibatch size of Bon K selected devices, where K
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is a small subset of N devices participating in the FL. The K devices
then upload the respective model gradients to the cloud, where the
gradients get averaged into the shared model. By allowing lower
K, FedAvg reduces the amount of data transmission for each ag-
gregation round. Various previous works have been also proposed
to improve the accuracy of trained models [28, 71, 74] or security
robustness [34, 76, 79] atop the FedAvg algorithm.

While these advancements open up the possibility of efficient
FL deployment, a fundamental challenge remains—deciding which
K devices to participate in each aggregation round for a given
(B, E, K)!, and selecting the execution target for model training
on a participating device. State-of-the-art approaches randomly
select K participants from a total of N devices [11, 64, 73, 84, 112],
leaving a significant energy efficiency and model convergence co-
optimization opportunity on the table (Figure 1).

System heterogeneity and stochastic runtime variance: At
the edge, there are over two thousand unique systems-on-a-chip
(SoCs) with different compute resources, including CPUs, graph-
ics processing units (GPUs), and digital signal processors (DSPs),
in more than ten thousand different smart devices [63, 128]. The
high degree of system heterogeneity introduces varying, potentially
large, performance gaps across smartphones participating in FL.
Furthermore, mobile execution is stochastic by nature [32, 33, 128].
The performance variability can stem from interference between
and within applications [129] as well as the stability of network.
Altogether, these factors lead to the straggler problem—training
time of each aggregation round is limited by the slowest partic-
ipating smartphone. To mitigate the straggler problem, several
previous works built atop FedAvg by excluding stragglers from
each round [84] or allowing partial updates from the straggler [73].
However, these approaches sacrifice accuracy.

Data heterogeneity: Varying characteristics of training data
per participating device introduce additional challenge to efficient
FL execution [15, 75]. To guarantee model convergence, it is impor-
tant to ensure that training data is independently and identically
distributed (IID) across the participating devices [15, 40, 131]. For
example, if a model classifies images into 10 distinct label categories,
the data samples are IID if each individual device has independent
data representing all 10 categories [120]. However, in a realistic
environment, the training data samples on each device are usually
based on the user behavior, preference, or both. Thus, local train-
ing samples for any particular user will be unrepresentative of the
population, deferring convergence [75, 84]. To mitigate data hetero-
geneity, previous approaches excluded the non-IID devices [17, 18],
used a warm up model [141], or shared data across a subset of the
participant devices [28, 71]. However, none has considered both
data and system heterogeneity with runtime variance.

Furthermore, there has been little work on energy efficiency
optimization for FL. Most prior work assumed FL is only activated
when smartphones are plugged into wall power, due to the signifi-
cant energy consumption of model training [17, 99, 120, 130, 135].
Unfortunately, this assumption has limited the practicality of FL,

! The FL global parameters B, E, and K are usually determined by the service providers
on the basis of service-level accuracy requirements as well as the computation and
memory capabilities of edge devices [11, 64].
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increasing model convergence time and degrading model accu-
racy [77, 120]. Energy efficient FL could enable on-device training
anytime, with better model quality and user experience.

To tackle challenges in a realistic execution environment, this
paper proposes a learning-based energy optimization framework—
AutoFL—that selects K participants as well as execution targets to
guarantee model quality, while maximizing the energy efficiency of
individual participants (or the cluster of all participants), for FL. The
optimization is performed by considering the presence of system
and data heterogeneity and runtime variance. Since the optimal
decision varies with NN characteristics, FL global parameters, pro-
files of participating devices, distributions of local training samples,
and stochastic runtime variance, the design space is massive and
infeasible to enumerate. Thus, we design a reinforcement-learning
technique. For each aggregation round, AutoFL observes the NN
characteristics, FL global parameters, and system profiles of devices
(including interference intensity, network stability, and data distri-
butions). It then selects the participant devices for the round and
simultaneously determines the execution target for each partici-
pant, to maximize energy efficiency while satisfying the training
accuracy requirements. The result of the decision is measured and
fed back to AutoFL, allowing it to continuously learn and predict
the near-optimal action for subsequent rounds.

AutoFL is implemented and runs on the centralized, model ag-
gregation server. We evaluate our design using 200 mobile systems
comprising three major categories: high, medium, and low perfor-
mance. The key contributions of this work are as follows:

e We present an in-depth performance and energy efficiency
characterization for FL by considering a realistic edge-cloud
execution environment. The results show that the optimal
participant selection and resource allocation in FL can vary
significantly with NN characteristics, the varying degree of
data and system heterogeneity, and the stochastic nature of
mobile execution (Section 3).

e We propose a FL energy optimization framework, AutoFL,
that identifies near-optimal participant selection and re-
source allocation at runtime, enabling heterogeneity-aware
energy efficient federated learning (Section 4).

e To demonstrate the feasibility and practicality, we design,
implement, and evaluate AutoFL for a variety of FL use cases
in the edge-cloud environment (Section 6). Real-system ex-
periments show that AutoFL improves energy efficiency of
individual participant devices as well as for the cluster of
all participating devices by an average of 4.7x and 5.2x, re-
spectively, while also satisfying the accuracy requirement.
By considering runtime variance along with system and
data heterogeneity, AutoFL achieves an average of 49.8% and
39.3% higher energy efficiency, compared to the state-of-the-
art techniques, FedNova [121] and FEDL [26], respectively.

2 BACKGROUND
2.1 Federated Learning

To improve data privacy for ML training, federated learning (FL) is
introduced by allowing devices at the edge, such as smartphones, to
collaboratively train a shared ML model while keeping all user data
locally on the device [11, 34, 52, 64, 71, 77, 84, 116, 120, 135, 137].
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Figure 2: Overview for federated learning (FL).

Figure 2 depicts the overall system architecture for the FL base-
line [11, 64, 84]. There are two entities in the FL system: an aggrega-
tion server as the model owner and a collection of local devices (data
owners). Given N local devices, the server first initializes a global
deep learning model and its global parameters by specifying the
number of local training epochs E, the local training minibatch size
B, and the number of participant devices K. (B, E, K) is determined
by the FL-based services [11, 84].

In each aggregation round, the server selects K participants
among the N devices (Step (D)) and broadcasts the global model
to the selected devices (Step (2)). Each participant independently
trains the model using local data samples with the batch size of B
over E epochs (Step (3). Once the local training step is complete,
the computed model gradients are sent back to the server (Step @).
The server then aggregates the local gradients and calculates their
average [84] to update the global model (Step (). The steps are
repeated until a desirable accuracy is achieved.

2.2 Realistic Execution Environment

System heterogeneity, runtime variance, and data heterogeneity
form a massive optimization space for FL. Figure 3 illustrates FL ex-
ecution in a realistic environment. In this example, a cluster of two
hundred devices participate in FL. Depending on the performance
of an individual device (i.e., high-end, mid-end, or low-end smart-
phone) and the availability of co-processors, such as GPUs, DSPs, or
neural processing units (NPUs), the training time varies. Extensive
system heterogeneity introduces large performance gaps among
the devices, leading to the straggler problem [73, 77, 84, 120, 135].

In addition, stochastic runtime variance can exacerbate the strag-
gler problem. Depending on the amount of on-device interference
and the execution conditions, such as ambient temperature and
network signal strength, the execution time performance of each
participant—the training time per round (Computation Time) and
the model gradient aggregation time (Communication Time)—is
highly dynamic. Finally, not all participant devices possess IID
training samples. Heterogeneous data across devices can signifi-
cantly deteriorate FL model convergence and quality.

3 MOTIVATION

This section presents FL system characterization results. We ex-
amine the design space covering three important axes: energy effi-
ciency, convergence time, and accuracy.
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Figure 3: Optimization space of FL is large due to the scale
of decentralized training, system heterogeneity, data hetero-
geneity, and runtime variance.

3.1 Impact of FL Global Parameters and NN
Characteristics

The optimal cluster of participating devices depends on the FL
global parameters and the resource requirement of NN models.
From the system’s perspective, the global parameters determine
the amount of computations performed on each individual device.
Figure 4 compares the energy efficiency achieved under the four
different FL global parameter settings (S1 to S4 defined in Table 5
of Section 5.2) for training the CNN model with the MNIST dataset
(CNN-MNIST) over the eight different combinations of participant
devices (CO to C7 defined in Table 4. The optimal device cluster
changes from C1 to C2, C3 and C4 when the global parameter setting
changes from S1 to S2, S3, and S4, respectively.

When the number of computations assigned to each device is
large (i.e., S1), including more number of high-end devices is bene-
ficial as they exhibit 1.7x and 2.5x better training time, compared to
mid-end and low-end devices, respectively, due to powerful CPUs
and co-processors along with larger size of cache and memory. On
the other hand, when the number of computations assigned to each
device decreases (i.e., from S1 to S2 and S3), including mid-end and
low-end devices along with the high-end devices results in better
energy efficiency since their lower power consumption (35.7% and
46.4% compared to high-end devices respectively) amortizes the
performance gap. If K is decreased (i.e., from S3 to S4), reducing
the number of high-end devices is beneficial as the devices can stay
idle during the round — though mid-end devices exhibit longer
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resource needs, the optimal clusters of K participating de-
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Figure 5: With runtime variance from various sources, the
optimal cluster of K participating devices shifts from C3 to C1
and C5. PPW is normalized to C0 with no runtime variance.

training-time-per-round than high-end devices, similar to S3, the
mid-end devices have better energy efficiency in this case.

When we use the LSTM model with Shakespeare dataset (de-
noted as LSTM-Shakespeare), the optimal device cluster over S1-S4
is C3, C4, C5, and C5, respectively, compared with CNN-MNIST’s C1,
C2, C3, C4. In the case of CNN-MNIST, high-end devices with more
powerful mobile SoCs exhibit better performance and energy effi-
ciency than mid- and low-end devices, due to the compute-intensive
CONYV and FC layers. On the other hand, for LSTM-Shakespeare,
the energy efficiency of mid- and low-end devices is similar to that
of high-end devices. The reason is that the performance variation
among the devices diminishes (from 2.1x to 1.5x) due to the memory
operations, so that the low power consumption of the mid- and
low-end devices compensates for their performance loss.

3.2 Impact of Runtime Variance

The optimal cluster of participants also significantly varies along
with the runtime variance. Figure 5(a) compares the energy effi-
ciency when on-device interference is absent and when the network
signal is stable. In such an ideal execution environment, the most
energy efficient cluster is C3, balancing the trade-off between the
training-time-per-round and power consumption of different de-
vice categories — C3 achieves 3.2x higher energy efficiency than the
baseline C@. In the presence of on-device interference, the optimal
cluster becomes C1 (Figure 5(b)), whereas when the network signal
strength is weak, the optimal cluster switches to C5 (Figure 5(c)).
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Figure 6: (a) FL Model quality and (b) energy efficiency
change with varying levels of data heterogeneity.

Intuitively, in the presence of on-device interference, it is more
beneficial to select high-end devices to participate in FL— they have
a high computation and memory capabilities [63], achieving 2.0x
and 3.1x better performance compared to mid-end and low-end
devices, respectively. On the other hand, when the network signal
strength is poor, the communication time and energy on each device
is significantly increased [25, 62] (4.3x, on average). In this case, the
impact of performance gap among different categories of devices
decreases along with the decreased portion of computation time.
For this reason, including low-power devices is beneficial in terms
of energy efficiency due to lower computation and communication
power consumption.

3.3 Impact of Data Heterogeneity

Participant device selection strategies that ignore data heterogene-
ity lead to sub-optimal FL execution. Figure 6(a) depicts the con-
vergence patterns for CNN-MNIST over varying degrees of data
heterogeneity—the x-axis shows the consecutive FL rounds and the
y-axis shows the model accuracy. Here, Non-IID (M%) means M%
of K participant devices have non-IID data where a portion of the
samples of each data class is distributed following Dirichlet distri-
bution with a concentration parameter of 0.1 [15, 57, 72, 75, 78],
while the rest of devices have all the data classes independently —
the smaller concentration parameter, the more each data class is
concentrated on one device.

Data heterogeneity can significantly affect model convergence—
when devices with non-IID data participate in FL, the convergence
time is significantly increased compared to the ideal IID scenario.
The increased convergence time eventually deteriorates FL energy
efficiency. Figure 6(b) illustrates the large (>85%) energy efficiency
gap between the ideal device selection scenario and the sub-optimal
selection scenarios with non-IID data.

4 AUTOFL

To capture stochastic runtime variance in the presence of system
and data heterogeneity, we propose an adaptive prediction mecha-
nism based on reinforcement learning?, called AutoFL. In general,

2We exploit RL instead of other statistical methods, such as Gaussian Process, since
RL has the following advantages: (1) faster training and inference due to lower com-
plexity [10, 93], (2) higher sample efficiency (i.e., the amount of experiments to reach
a certain level of accuracy) [59, 86, 133], and (3) higher prediction accuracy under
stochastic variance [63, 93].
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Figure 7: AutoFL Design Overview.

an RL agent learns a policy to select the best action for a given
state through accumulated rewards [93]. In the context of FL, given
an NN and the corresponding global parameters, AutoFL learns to
select a near-optimal cluster of participants and an energy-efficient
execution target for each one in every aggregation round.

Figure 7 shows the AutoFL design overview. In each FL aggre-
gation round, AutoFL observes the global configurations of FL,
including the target NN and the global parameters. In addition, it
collects the execution states of participant devices, including their
resource usage and network stability®, and the number of data
classes each device has. Based on the information, AutoFL identi-
fies the current execution state*. For the identified state, AutoFL
selects participant devices that are expected to maximize the en-
ergy efficiency of FL, while satisfying the accuracy requirement. It
also determines the execution target for each device to additionally
improve the local energy efficiency. The selections are based on
per-device lookup tables (i.e., Q-tables) that contain the accumu-
lated rewards of previous selections. After the gradient updates are
aggregated in the server, AutoFL measures the results (i.e., train-
ing time, energy consumption, and test accuracy) to calculate the
reward—how the selected action improves global as well as local
energy efficiency and accuracy. Finally, it updates the per-device
Q-table with the calculated reward. Optimizing a system through
RL involves three important design requirements.

High prediction accuracy: High prediction accuracy is essen-
tial to the success of an RL-based approach. To handle the dynamic
execution environment of FL, it is important to model the core
components—state, action, and reward—in a realistic environment.
We define these components in accordance with our observations
(Section 4.1). In addition to the core components, avoiding local
optima is also important. The fine balance between exploitation ver-
sus exploration is at the heart of RL [30, 65]. If an RL agent always
exploits an action with the temporary highest reward, it can get

3 AutoFL relies on the resource usage and network bandwidth information collected
by the de facto FL protocol [11] — the protocol collects such information to ensure
robust model training. Note, to keep system usage information private, it is possible
to run training of per-device Q-table locally, without sharing the information with
the cloud server at the expense of increased training cost (336.2 ps in low-end device
including communication cost.).

4 AutoFL assumes that runtime variance does not significantly vary during a short
time period (e.g., in the order of 10-100 milliseconds).
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stuck in a local optimum. On the other hand, if it keeps exploring
all possible actions, convergence of RL may take too long. To tackle
this challenge, we employ the epsilon-greedy algorithm. This algo-
rithm is one of the commonly-adopted algorithms [63, 81, 91, 93]
due to its effectiveness and simplicity (Section 4.2) — it achieves
prediction accuracy similar to that of other complex algorithms,
such as Exp3, Softmax, UCB, and Thompson Sampling, but incurs
less overhead [21, 118].

Low training and inference overhead: To minimize the tim-
ing and energy overhead of on-device RL, AutoFL expedites the
RL training by enabling devices within the same performance cate-
gory to share the learned results — in a realistic environment, each
user can experience different degree of the data heterogeneity and
runtime variance, and thus sharing the learned results across the
devices complements one another. We present the training time
reduction of this approach in Section 6.4.

The inference latency of per-device RL models determines the
decision making performance of AutoFL. Thus, among the various
RL implementation choices, e.g., Q-learning [20] and deep RL [85],
Q-learning is most suitable to this work — it achieves low train-
ing and inference latency using look-up tables, whereas deep RL
usually suffers longer latency because of forward and backward
propagation of DNNs [93].

Scalability: As energy efficient FL can enable many more de-
vices to participate in FL, scalability to a large number of devices
is crucial. To permit a large number of participant, AutoFL can
exploit a shared Q-table for devices within the same performance
category — additional clustering algorithm can be used along with
the AutoFL for binding similar category of devices. By updating
the shared Q-table instead of all the per-device Q tables, AutoFL
can handle the large number of devices, at the expense of a small
prediction accuracy loss (see details in Section 6.4).

4.1 AutoFL Reinforcement Learning Design

We define the core RL components—State, Action, and Reward—to
formulate the optimization space for AutoFL.

State: Based on the observations presented in Section 3, we
identify states that are critical to energy-efficient FL execution.
Table 1 summarizes the states.
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Table 1: State features for AutoFL.

State Description Discrete Values

NN- SCONV # of CONV layers Small (<10), medium (<20), large (<30), larger (>=40)

related SFc # of FC layers Small (<10), large (>=10)

Features Src # of RC layers Small (<5), medium (<10), large (>=10)

Global SB Batch size Small (<8), medium (<32), large (>=32)

Parameters SE # of local epochs Small (<5), medium (<10), large (>=10)
Sk # of participant devices Small (<10), medium (<50), large (>=50)

Runti Sco cpu | CPU utilization of co-running apps | None (0%), small (<25%), medium (<75%), large (<=100%)

untime = . .

Variance Sco MEM | Memory usage qf co-running apps | None (0%), small (<25%), medium (<75%), large (<=100%)
SNetwork | Network bandwidth Regular (>40Mbps), bad (<=40Mbps)

Data Classes | Spara # of data classes for this round Small (<25%), medium (<100%), large (=100%)

First, the energy efficiency of devices highly depends on NNs and
the given global parameters. To model the impact of NN character-
istics and global parameters, we identify states with layer types that
are deeply correlated with the energy efficiency and performance
of on-device training. We test the correlation between each layer
type and the energy efficiency by calculating the squared corre-
lation coefficient (p?) [144]. We find convolution layers (CONV),
fully-connected layers (FC), and recurrent layers (RC) impact en-
ergy efficiency differently due to their respective compute- and/or
memory-intensive natures. Thus, we identify Sconv, Src, and
Src to represent the number of CONV, FC, and RC layers in a NN,
respectively. We also identify Sg, Sg, and Sk as the global parame-
ters of batch size, the number of local epochs, and the number of
participant devices, respectively.

The energy efficiency of participating devices is highly subject
to the runtime variance—namely, on-device interference and net-
work instability. To model on-device interference, we identify the
per-device states of Sc, cpy and Sco mEM to represent CPU uti-
lization and memory usage of co-running applications, respectively.
We also model per-device network instability with Syezwork tO
represent the network bandwidth of the respective wireless net-
work (e.g., Wi-Fi, LTE, and 5G). In addition, data heterogeneity also
has a substantial impact on the FL convergence time and energy
efficiency. Therefore, to model the impact of data heterogeneity on
the FL efficiency, we identify Spg;, which stands for the number
of data classes that each device has for an aggregation round”.

When a feature has a continuous value, it is difficult to define the
state in a discrete manner for the lookup table of Q-learning [20,
63, 91]. To convert the continuous features into discrete values, we
applied the DBSCAN clustering algorithm to each feature [20, 63]—
DBSCAN determines the optimal number of clusters for the given
data. The last column of Table 1 summarizes the discrete values.

Action: Actions in reinforcement learning represent the tunable
control knobs of a system. In FL, we define the actions in two levels.
At the global level, we define the selection of participant devices
as an action. For each selected device, we define the selection of
on-device execution targets available for training execution, such
as CPUs, GPUs, or DSP, as another action. The execution targets

Note, while per-device data class distribution is also used in a number of prior
works [19, 42, 80, 87, 132, 140], it reveals additional information. To mitigate privacy
concerns, AutoFL can exclude the use of data class distribution from the RL state
encoding. In this case, although the convergence of RL can become slightly slower
(from 50-80 to 70-90 aggregation rounds to convergence), AutoFL can still select the
near-optimal participant cluster and achieves an average of 90.8% prediction accuracy.
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can be augmented to include CPU dynamic voltage and frequency
scaling (DVFS) settings, to exploit the performance slack caused by
stragglers for further energy saving.

Reward: In RL, rewards track the optimization objective of the
system. To represent the main optimization axes, we encode three
rewards: Renergyilocal) Renergyfglobal) and Raccuracy- Renergyflocal
is the estimated energy consumption of each individual device and
Renergy_global is the estimated energy consumption of all partici-
pating devices. Rgccuracy represents the test accuracy of NN.

We estimate Renergy local @04 Renergy_global as follows. For
each selected participant device, we first calculate the computation
energy, Ecomp. When the CPU is selected as the execution target,
Ecomp is calculated using a utilization-based CPU power model
[13, 54, 63, 138], as in (1), where EL .,
the ith core, tiusy and t;4;, are the time spent in the busy state at

is the power consumed by

frequency f and that in the idle state, respectively, and Pl]:usy and

P;41. are the power consumed during tl):usy at f and that during
tidle, respectively.

i
Ecomp = ZEcore’
i

(1)
Ecore = Z(Pl]:usy X tgusy) + Pidle X tidle
f

Similarly, if GPU is selected as the execution target, Ecomyp is calcu-

lated using the GPU power model [24] as in (2). Note that tZusy

tiq1e for CPU/GPU are obtained from procfs and sysfs in the Linux
kernel [20], whereas P{usy and P;y;, for CPU/GPU are obtained
by power measurement of the CPU/GPU at each frequency in the
busy and idle states, respectively®. Those values are obtained for
representative edge device categories (i.e., high-end, mid-end, and
low-end devices) and stored in a look-up table of AutoFL.

Ecomp = Z(P{usy X t]bcusy) + Pidie X tidle
!

and

@)

After calculating the computation energy, we calculate the com-
munication energy, Ecomm, for each selected participant using the
signal strength-based energy model [62], as in (3). Here, t7x is the
latency measured while transmitting the gradient updates, and P.f X

® Although we only present the energy estimation for CPU and GPU in this paper due
to the limited programmability of on-device training, a similar practice can also be
used for other co-processors, such as DSPs and NPUs [41, 123].
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is the power consumed by the device during t7x at signal strength
S. Note P% s obtained by measuring the power consumption of
devices at each signal strength when transmitting data.

®)

We also calculate the idle energy, E; 4;., for non-selected devices,
as in (4). Here, t, 4,4 is the time spent during the training round.

©

Based on the estimated energy values, Repergy_local iS calculated
for each device, as in (5), where S; represents a set of selected
participants.

S
Ecomm :PTX X irx

Eiale =Pidie X tround

if device C S;
Renergy_local =Ecomp + Ecomm

®)

else
Renergyflocal =Eidle
In addition, Renergy global is calculated for a cluster of all N par-
ticipating devices, as in (6), based on the Repergy_tocal-
N

Renergy_global = Z Renergy_local
i

(6)

Since the energy estimation is based on the measured latency, its
mean absolute percentage error is 7.3%—low enough to identify the
optimal participants and execution targets.

To ensure AutoFL selects participants and their corresponding
execution targets that maximize energy efficiency while satisfying
the accuracy requirements, the reward R is calculated as in (7)7,
where Rgccuracy prew is the test accuracy of the training NN from
the previous round. « and f are, respectively, the weights for the ac-
curacy and the amount of accuracy improvement, which is directly
related to the convergence speed.

if Raccuracy - Raccuracyﬁprev <= 0,
R= Raccuracy — 100

else

™
R= _Renergyfglobal - Renergyilocal
+ aRaccuracy + B(Raccuracy — Raccuracy_prev)

If the selected action fails to improve the accuracy from the previous
round, the reward is Rgccuracy — 100 (i.e., how much the accuracy
is far from 100%) to avoid choosing the action for the next inference.
Otherwise, the reward is calculated for each device based on the
global energy, local energy, accuracy, and the amount of accuracy
improvement.

4.2 AutoFL Implementation Detail

AutoFL is built based on Q-learning. To strike a balance between
exploitation and exploration in RL, it employs the epsilon-greedy
algorithm with a uniformly random action, based on a pre-specified
exploration probability. For the rest, AutoFL chooses an action with
the highest reward.

"We include the energy consumption as a reward to model the impact of selections
on the global and local energy efficiency. We include accuracy to model the impact of
selections on model quality.
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Algorithm 1 Training the Q-learning model

Variable: Sglabal’ Slocal’ A
Sglobal is the global state
Siocal 1s the local state
A is the action (execution target)
Constants: y, y1, €
y is the learning rate
4 is the discount factor
€ is the exploration probability
Initialize Q(Sy10pal> Siocals A) as random values
Repeat (whenever an aggregation round begins):
Observe global state and store in Sgjopal
Observe local state for each device and store in Sj,cq1
if rand() < € then
Choose K participants randomly
Choose action A randomly for selected participants
else
Sort devices by Q(Sqi0bals Stocats A)
Choose at most top K participants
Choose action A with the largest Q(Sgiopals Siocals A)
Run training on a target defined by A in each device
(when local training and aggregation end)
Estimate Repergy_globals Renergy_locals and obtain
Raccurucy
Calculate reward R

’
Observe new global state Sg lobal

Observe new local state Sl’
oc,al
S

. ’ ’
Sort devices by Q(Sglobal’ tocarr )
Choose at most top K participants

. P ’ / ’
Choose action A’ with the largest Q(Sglobal’ SloearA )
Q(sglobal’ Stocal> A) — Q(Sglobalv Stocal>A)

+y[R+p QS Siocar )

global’ “local’
- Q(Sglobal’ Stocal>A)

In Q-learning, the value function Q(Syiopais Siocal> A) takes the
global state Syjopq1, the local state Sjpcq1, and the action A as pa-
rameters in the form of a lookup table (Q-table). Algorithm 1 shows
the detailed algorithm for training the per-device Q-table. At the
beginning, AutoFL initializes the Q-tables with random values. At
runtime, it observes Sgjopq1 and Sjocq; for each aggregation round
by checking the NN characteristics, runtime variance, and data
heterogeneity. It evaluates a random value compared with €5. If
the random value is smaller than e, AutoFL selects participants
randomly and determines A for exploration. Otherwise, it sorts the
devices by Q(Sgiobals Siocal» A) and selects the top K devices.

Next, AutoFL chooses A with the largest Q(Sgiobats Siocals A)
for each selected participant. After the local training and the ag-
gregation end, AutoFL estimates Repergy local a0d Renergy global
as explained in Section 4.1. In addition, it obtains Rgccyracy and
Raccuracy_prev- Based on these values, it calculates the reward R as
in (7) of Section 4.1. Afterward, AutoFL observes the new states and

8Note that we use 0.1 for € based on our sensitivity analysis.



MICRO’21, October 18-22, 2021, Athens, Greece

Table 2: Amazon EC2 instance specification.

Level Instance Performance | RAM
(GFLOPS) (GB)
H m4.large 153.6 8
M t3a.medium 80.0 4
L t2.small 52.8 2

Table 3: Mobile device specification.

Device CPU GPU
Cortex-A75 (2.8GHz) | Adreno 630 (0.7GHz)
MigPro (H) 23 V/F steps 7 V/F steps
55W 28 W
Galaxy S10e Mongoose (2.7GHz) Mali-G76 (0.7GHz)
21 V/F steps 9 V/F steps
(M) 56 W 24W
Moto X Cortex-A57 (1.9GHz) | Adreno 430 (0.6GHz)
Force (L) 15 V/F steps 6 V/F steps
3.6 W 2.0W

chooses the corresponding participants and execution targets us-

ing Q(S;lobal’ SlocarA))- It then updates the Q(Syropals Siocal> A)

based on the equation in Algorithm 1. In the equation, y and y are
hyperparameters that represent the learning rate and discount fac-
tor, respectively. We set y and y in accordance with the sensitivity
evaluation. Section 5.3 describes hyperparameter tuning.

After learning is completed—i.e., the largest Q(Syiobal Siocal> A)
value is converged for each Sgjopq; and Spocq—AutoFL uses the
per-device Q-tables to select participants and the corresponding
A, which maximizes Q(Sg10pals Stocal> A) for the observed Sgiopa;
and Sj,,;- Note, among the devices with the same Q value, AutoFL
randomly selects participants to avoid biased selection [73, 74].

5 EXPERIMENTAL METHODOLOGY

5.1 System Measurement Infrastructure

We set up an edge-cloud FL system that consists of 200 mobile
devices (N = 200) and one model aggregation server. Similar FL
system infrastructures have been used in prior works [28, 64, 73, 84].
We emulate the performance of FL execution by using Amazon EC2
instances [5] that provide the same theoretical GFLOP performance
as the three representative smartphone categories: high-end (H),
mid-end (M), and low-end (L) devices. Table 2 summarizes the
system profiles. Among the 200 instances, there are 30 H, 70 M, and
100 L devices, representative of in-the-field system performance
distribution [128].

For model aggregation, we connect the aforementioned systems
to a high-performance Amazon EC2 system instance, c5d.24xlarge,
which has a theoretical performance of 448 GFLOPS and is equipped
with 32GB of RAM. We perform power measurement directly us-
ing an external Monsoon Power Meter [88] for the three smart-
phones during on-device training (implemented with DL4j [27]):
Mi8Pro [50], Galaxy S10e [107], and Moto X Force [89] (Table 3).
Similar power measurement methodologies are used in prior works
[95, 96, 111].
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Table 4: Cluster of devices used for characterization.

Cluster | H | M | L Policy
Co - - - | FedAvg-Random (Baseline)
C1 20| 0 0 Performance
C2 15| 5| 0
C3 10 | 5 5
C4 5 10 | 5
C5 51| 51|10
Ce 0 5 |15
C7 0 20 Power

Table 5: Global parameter settings.

Setting | B | E | K
S1 3210 | 20
S2 325 |20
S3 16 | 5 | 20
S4 16 | 5 | 10

Based on the measured performance and power consumption, we
evaluate the energy efficiency of participant devices in FL. To char-
acterize the FL energy efficiency, we compare the energy efficiency
of the various participant device clusters (Table 4) in Section 3.
Based on the characterization results, we build AutoFL as described
in Section 4, and implement it upon the FedAvg algorithm [64, 84]
using PyTorch [97].

To evaluate the effectiveness of AutoFL, we compare it with five
other design points:

e the FedAvg-Random baseline [84] where K participants are
chosen randomly,

e Power where K participants are determined by minimizing
power draw (i.e., C7 in Table 4),

e Performance where K participants are selected to achieve
the best time performance (i.e., C1 in Table 4),

® Oparticipant Where the optimal cluster of K participants
is determined by considering heterogeneity and runtime
variance, and

e Opy that considers available on-device co-processors for
energy efficiency improvement over Oparticipant-

We also compare AutoFL with two closely related prior works:
FedNova [121] and FEDL [26].

5.2 Workloads and Execution Scenarios

Workloads: We evaluate AutoFL using two common FL work-
loads: (1) training a CNN model with the MNIST dataset (CNN-
MNIST) for image classification [68, 69, 113] and (2) training an
LSTM model with the Shakespeare dataset (LSTM-Shakespeare)
for the next character prediction [64, 84]. The workloads repre-
sent state-of-the-art FL use cases [28, 64, 73, 84]. In addition, we
complement CNN-MNIST and LSTM-Shakespeare with another
workload: (3) training the MobileNet model with the ImageNet
dataset (MobileNet-ImageNet) for image classification [23, 47].
Table 5 summarizes the value ranges of the global parameters we
consider in this work. Note, once the global parameters are deter-
mined for an FL use case, the values remain fixed until the model
convergence [11, 64].
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Runtime variance: To emulate realistic on-device interference,
we initiate a synthetic co-running application on a random sub-
set of devices, mimicking the effect of a real-world application
(e.g., web browsing [49, 56, 95, 110, 111]). The synthetic applica-
tion generates CPU and memory utilization patterns following the
observed utilization patterns of web browsing. In addition, since
the real-world network variability typically follows a Gaussian dis-
tribution [25], we emulate the random network bandwidth with a
Gaussian distribution by adjusting the network delay.

Data distribution: We emulate different levels of data hetero-
geneity by distributing the total training dataset in four different
ways [15, 75]: Ideal IID, Non-IID (50%), Non-IID (75%), and Non-IID
(100%). In case of Ideal IID, all the data classes are evenly distributed
to the devices in the cluster. On the other hand, in case of Non-
IID (M%), M% of total devices have non-IID data while the rest have
IID samples of all data classes. For non-IID devices, we distribute
each data class randomly following a Dirichlet distribution with a
0.1 concentration parameters [15, 57, 72, 75, 78] — the smaller the
value of the concentration parameter, the more each data class is
concentrated on one device.

5.3 AutoFL Design Specification

Actions: We determine the 2-level actions for AutoFL. The first-
level action determines a cluster of participant devices (Section 4.1)
whereas the second-level action determines an execution target for
the FL. Since the energy efficiency of local devices can be further
improved via DVFS when stragglers are present, we identify V/F
steps available in the FL system [5] as the augmented second-level
action. Note, we measure the power consumption of different mobile
devices at various frequency steps, in order to accurately model the
energy efficiency of the FL execution.

Hyperparameters: There are two hyperparameters in the FL
system: the learning rate and the discount factor. To determine them,
we evaluate three values of 0.1, 0.5, and 0.9 for each one [20, 63].
We observe that the learning rate of 0.9 shows 20.1% and 32.5%
better prediction accuracy than 0.5 and 0.1, respectively, meaning
the more portion of the reward is added to the Q values, the better
AutoFL works. This is because AutoFL needs to adapt to the runtime
variance and data heterogeneity during the limited aggregation
rounds. On the other hand, we observe that the discount factor
of 0.1 shows 20.1% and 53.4% better prediction accuracy than 0.5
and 0.9, respectively, meaning the less portion of reward value
for the next state is added to that for the current state, the better
AutoFL works. This is because the consecutive states have a weak
relationship owing to their stochastic nature, so that giving less
weight to the reward in the near future improves the efficiency of
AutoFL. Thus, in our evaluation, we use 0.9 and 0.1 for the learning
rate and the discount factor, respectively.

6 EVALUATION RESULTS AND ANALYSIS

6.1 Result Overview

Compared with the baseline settings of FedAvg-Random, Power, and
Performance, AutoFL improves the average FL energy efficiency
of CNN-MNIST, LSTM-Shakespeare, and MobileNet-ImageNet by
4.3x, 3.2x, and 2.0x, respectively. It also exhibits better training
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Figure 8: AutoFL improves the convergence time and the
energy efficiency of FL, while also increasing model qual-
ity. It achieves 4.0x, 3.7x, and 5.1x higher energy efficiency
than the baseline FedAvg-Random for CNN-MNIST, LSTM-
Shakespeare, and MobileNet-ImageNet, respectively.

accuracy. Figure 8 compares the energy efficiency in performance-
per-watt (PPW), the convergence time, and the training accuracy
for the respective FL use cases, where PPW and the convergence
time improvement are normalized to the FedAvg-Random baseline.

The energy efficiency gains of AutoFL come from two major
sources. First, it can accurately identify near-optimal participants
among a wide variety for each FL use case, reducing the perfor-
mance slack of the stragglers. As a result, it improves the train-
ing time per round by an average of 3.5x, 2.9x, and 1.8x, over
FedAvg-Random, Power, and Performance, respectively. This leads
to faster convergence time. Second, AutoFL identifies more energy
efficient execution targets for the individual participants. The en-
ergy efficiency is thus improved further by an average of 19.8% over
Oparticipant- Compared with Oparticipant, AutoFL and Of ex-
perience slightly higher convergence time. This is because AutoFL
leverages the remaining performance slack by considering alter-
native on-device execution targets and DVFS settings despite the
slight increase in computation time.

In the case of CNN-MNIST and MobileNet-ImageNet, compute-
intensive CONV and FC layers are dominant. In this case, performance-
oriented selection (i.e., Performance) shows much higher energy
efficiency than power-oriented selection (i.e., Power) due to the
higher computation and memory capabilities of high-end devices.
On the other hand, in the case of LSTM-Shakespeare, compute- and
memory-intensive RC layers are dominant. In this case, the differ-
ence between the performance-oriented selection (i.e., Performance),
and the power-efficient selection (i.e., Power) decreases. Neverthe-
less, since the baseline settings neglect to consider the NN character-
istics explicitly in the participant device selection process, AutoFL’s
achieved energy efficiency outweighs that of other design points.

6.2 Adaptability and Accuracy Analysis

Adaptability to global parameters: AutoFL improves the energy
efficiency and convergence time of various global parameter com-
binations. Figure 9 shows the average energy efficiency and conver-
gence time of CNN-MNIST across four global parameter settings:
S1to 54 (Table 4 in Section 5.2). Although the optimal device cluster
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Figure 9: Across the (B, E, K) global parameter settings of S1—
S4, AutoFL achieves better training time performance and
higher energy efficiency consistently.
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Figure 10: In the presence of runtime variance, AutoFL
can consistently and significantly improve the time-to-
convergence and energy efficiency for FL in different exe-
cution environments.

varies along with the global parameters (as we observed in Sec-
tion 3), AutoFL tries to accurately predict the near-optimal cluster of
participant devices regardless of global parameters. Hence, it always
outweighs the baseline settings of FedAvg-Random, Performance,
and Power in terms of energy efficiency and convergence time.
Moreover, since AutoFL also accurately predicts the near-optimal
execution targets for individual devices, it achieves 15.9% better
energy efficiency than Oparticipant-

Adaptability to stochastic variance: AutoFL can improve the
energy efficiency and convergence time in the presence of stochas-
tic on-device interference and network variance, independently.
Figure 10 shows the PPW, convergence time, and training accuracy
of CNN-MNIST, (a) when there is no on-device interference, (b)
when there is on-device interference from co-running applications,
and (c) when there is network variance. Even in the presence of
runtime variance, AutoFL improves the average energy efficiency
by 5.1x, 6.9x%, and 2.6x, compared to FedAvg-Random, Power, and
Performance. Note other NNs show similar result trends.

In the presence of runtime variance, the training time per round
of the baseline settings significantly increases because of the in-
creased on-device computation time or communication time. Even
worse, since FedAvg excludes the severe stragglers from the round,
the convergence time and the training accuracy is degraded as
well. On the other hand, AutoFL selects the near-optimal cluster of
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Figure 11: By explicitly taking into account data heterogene-
ity when selecting K devices, AutoFL achieves 4.0x, 5.5x, 9.3x,
and 7.3x higher energy efficiency than the baseline FedAvg-
Random for the four data distribution scenarios: (a)—(d).

participant devices even in the presence of runtime variance, miti-
gating the straggler problem. By doing so, it improves the conver-
gence time by 3.4x, 3.3x, and 2.3x, compared with FedAvg-Random,
Power, and Performance, respectively. Additionally, AutoFL also
exploits the increased performance gap from the stragglers, improv-
ing 26.3% more energy efficiency compared to Opgarticipan: at the
cost of training time per round. As a result, AutoFL achieves similar
energy efficiency, convergence time, and training accuracy with
OFL.

Adaptability to data heterogeneity: In the presence of data
heterogeneity, AutoFL improves the energy efficiency by 7.4x, 5.5x,
and 4.3x, respectively, compared with FedAvg-Random, Power, and
Performance. It also exhibits much better convergence time and
training accuracy. Figure 11 illustrates the energy efficiency, con-
vergence time, and training accuracy of CNN-MNIST. Each column
shows the varying level of data heterogeneity: (a) Ideal IID, (b)
Non-IID (50%), (c) Non-IID (75%), (d) Non-IID (100%). Note other
NNs also show similar result trends.

When there exist non-IID participants, the baseline settings (i.e.,
FedAvg-Random, Power, and Performance) that neglect to consider
data heterogeneity experience sub-optimal energy efficiency, con-
vergence time, and training accuracy. This is because naively in-
cluding non-IID participants can significantly deteriorate model
convergence — in the case of Non-IID (75%) and Non-IID (100%),
CNN-MNIST with the baseline settings does not even converge in
1000 rounds (Figure 11(c) and Figure 11(d)). In contrast, AutoFL
learns the impact of data heterogeneity on the convergence time and
energy efficiency dynamically and adapts to the different level of data
heterogeneity among the devices. Therefore, it achieves near-optimal
energy efficiency, convergence time, and model quality even in the
presence of data heterogeneity.

Prediction accuracy: AutoFL accurately selects the near-optimal
participant cluster in varying data heterogeneity and runtime vari-
ance for the given NNs. Figure 12 shows how AutoFL and Op] make
the participant selection on three different categories of devices.
For participant selection. AutoFL achieves 93.9% average prediction
accuracy.
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Figure 12: AutoFL can accurately track the decisions from
the optimal policy (Ofp).

AutoFL selects the near-optimal participant cluster for different
NNs. In Figure 12(a), the optimal selection varies with the NN
characteristics. For example, Oy includes more high-end devices
for CNN-MNIST and MobileNet-ImageNet, whereas it includes
more mid-end and low-end devices for LSTM-Shakespeare. AutoFL
accurately captures those trends, achieving 94.2% average accuracy.

AutoFL also accurately adapts to the data heterogeneity and
runtime variance. As shown in Figure 12(b), even in the presence of
runtime variance and data heterogeneity, AutoFL makes the near-
optimal participant selection, achieving 93.7% prediction accuracy
on average.

AutoFL also selects the near-optimal execution targets in indi-
vidual participant device. In the absence of runtime variance, CPU
exhibits better energy efficiency than GPU, because of compute- and
memory-intensive nature of training workloads. On the other hand,
when on-device interference exists, the optimal execution target
usually shifts from CPU to GPU, as the CPU performance is de-
graded due to 1) the competition for CPU time slices and cache, and
2) frequent thermal throttling. In case of unstable network, CPU and
GPU show similar energy efficiency as FL becomes communication
bound. AutoFL accurately captures such impact of runtime variance
on optimal execution targets, achieving 92.9% average accuracy.
Hence, as shown in Figure 8, 9, 10, and 11, AutoFL substantially im-
proves energy efficiency, compared sith Oparticipant, Which does
not select the optimal execution target in each participant.

6.3 Comparison with Prior Work

We compare AutoFL with two closely related prior works: Fed-
Nova [121] and FEDL [26]. FedNova normalizes gradient updates
from stragglers or non-IID devices to those from ideal devices,
whereas FEDL lets each client device to approximately adjust gradi-
ent updates based on the global weights. Both FedNova and FEDL
allow partial updates from stragglers but implement random par-
ticipant selections without considering runtime variance, such as
on-device interference and network variability. Furthermore, nei-
ther exploits other available execution targets to improve FL per-
formance or energy efficiency. On average, compared with Fed-
Nova and FEDL, AutoFL achieves 49.8% and 39.3% higher energy

MICRO’21, October 18-22, 2021, Athens, Greece

[0 FedAvg-Random [ FedNova [121]
M AutoFL g O

(a) CNN-MNIST (b) LSTM-Shakespeare (c) MobileNet-ImageNet

M FEDL [26] ‘

o e 6
28 5
o9 4
c‘)ﬂ)
5o 3
£ 1
o
O o [
6
5
34
z 3
a2
1
R - - D - N - G- - - N -
Training & & & & = & I & & @ © % = & ©n
Accuracy & & &2 & &2 & 8 5 5 5 8 8 § § K

Figure 13: Compared with FedNova [121] and FEDL [26], Aut-
oFL achieves better convergence time and energy efficiency.
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Figure 14: AutoFL outperforms both FedNova [121] and
FEDL [26], even in the presence of runtime variance (a)(b)
and data heterogeneity (c).

efficiency, respectively (Figure 13). In the presence of stochastic
variance, FedNova and FEDL improve the execution time perfor-
mance and PPW over the baseline, as expected. Similarly, AutoFL
can further increase PPW by 62.7% and 48.8% over FedNova and
FEDL, respectively (Figure 14).

Compared with the baseline, FedNova and FEDL are robust to
data heterogeneity by giving less weights to gradient updates from
non-IID devices. Nonetheless, including non-IID users can degrade
model convergence, degrading time-to-convergence and energy
efficiency. By contrast, AutoFL achieves near-optimal energy effi-
ciency, convergence time, and model quality, even in the presence
of data heterogeneity.

6.4 Overhead Analysis

Figure 15 shows that when training per-device Q-tables from scratch,
the reward converges after about 50-80 aggregation rounds on aver-
age; more than 200 rounds are usually required for FL convergence.
Before convergence, AutoFL exhibits 28.3% lower average energy
efficiency than Ofy owing to the design space explorations. Never-
theless, it sill achieves 52.1% energy saving against FedAvg-Random.
After the reward is converged, AutoFL accurately selects the partic-
ipants and execution targets, as we observed in Section 6.2. As a
result, it can achieve 5.2x energy efficiency improvement for the
entire FL, on average.
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Figure 15: The reward is usually converged in 50-80 aggregations rounds. Sharing the Q-tables among the same category of

devices expedites convergence.

The training overhead from the explorations can be alleviated
by using the shared Q-tables. As shown in Figure 15, when the
learned results are shared across the same category of devices, the
RL training converges more rapidly, reducing the average training
overhead by 29.3%; the prediction accuracy of AutoFL is slightly
degraded by 2.7% though. This implies that, although each user
experiences a different degree of runtime variance and data het-
erogeneity, learned results from various devices complement one
another.

The runtime cost of training per-device Q-tables is 531.5 s, on
average, excluding the time for FL execution. It corresponds to 0.8%
of the average time for aggregation rounds. The overhead consists
of observing the per-device states (496.8 ys), selecting participants
and execution targets based on the per-device Q-tables (10.5 pus),
calculating the reward (2.1 ps), and updating the Q-tables (22.1 us).
The overhead from training computation can be further alleviated
by leveraging idle cores in mobile SoCs — the average thread-level
parallelism for mobile applications is about 2 [31, 61], which is
usually less than the number of available cores. Although AutoFL
uses per-device Q-tables, its total memory requirement is feasible —
for our experiments with 200 devices, the total requirement is 80MB,
0.25% of the typical 32GB DRAM capacity of commodity cloud
servers. During the inference phase, misprediction contributed a
negligible 5.6% timing and 8.8% energy efficiency overhead. AutoFL
achieves an overall 93.8% prediction accuracy.

7 RELATED WORK

Energy optimization for mobile: Several prior works proposed
statistical models to capture uncertainties in the mobile environ-
ment for dynamic energy management [32, 33, 110]. For example,
Gaudette et al. proposed arbitrary polynomial chaos expansions as
a way to consider the effect of uncertainties on mobile user experi-
ence [33]. Other computation offloading techniques also consider
the performance variability of the mobile environment for energy
efficiency optimization [2, 3, 22, 48, 60, 62, 63, 94, 101, 136, 139]. Al-
though the aforementioned techniques addressed similar runtime
variance in the edge-cloud execution environment, prior works
are sub-optimal for FL because of the highly distributed nature
of FL use cases—not only that system and data heterogeneity can
easily degrade the quality of FL, but runtime variance can also in-
troduce uncertainties in the training time and execution efficiency
of federated learning.
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Optimization for FL: FL enables a large cluster of decentral-
ized mobile devices to collaboratively train a shared ML model
while keeping the raw training samples on device [11, 34, 52, 64,
71, 77, 84, 116, 120, 135, 137]. To enable efficient FL deployment
at the edge, FedAvg has been considered as the de facto FL algo-
rithm [64, 84], maximizing the computation-communication ratio
by using few participant devices with more per-device training
iterations [73, 84, 112]. On top of FedAvg, various works have at-
tempted to improve the model accuracy [28, 71, 74] or security
robustness [34, 76, 79]. While FedAvg has opened up the possibility
for practical FL deployment, it faces critical optimization challenges.

The high degree of system heterogeneity and stochastic edge-
cloud execution environment introduces the straggler problem in
FL, where the training time of each aggregation round is limited
by the slowest device. To mitigate the straggler problem, previous
works excluded stragglers from aggregation rounds [84, 87] or al-
lowed asynchronous gradient updates [18, 119]. These approaches,
however, often sacrifices accuracy, because of insufficient gradient
updates. On the other hand, Zhan et al. tried to exploit the strag-
glers for power savings by adjusting the CPU frequency only [135].
However, their technique can increase the overall training time.

Varying characteristics of training samples per device introduce
additional challenges to FL optimization. In particular, devices
with non-IID data can degrade model quality and convergence
time [15, 75]. To mitigate the effect of data heterogeneity, previ-
ous approaches proposed to exclude updates from non-IID devices
with asynchronous aggregation algorithms [17, 18], to warm up
the global model with a subset of globally shared data [141], or to
share data across a subset of devices [28, 71]. However, none of the
aforementioned techniques explicitly takes into account the sto-
chastic runtime variance observed at the edge while simultaneously
handling data and system heterogeneity. Another FedAvg-based
algorithm, FedProx [73], handles system and data heterogeneity
by allowing partial updates from stragglers and from devices with
non-IID training data distributions. However, since FedProx applies
the same partial update rate to the randomly selected participants,
it still fails to address the heterogeneity and stochastic runtime
variance that can come from those randomly selected participants.
In practice, AutoFL can be used with FedProx for improving the
device selection approach.

Finally, there has been very little work on FL energy efficiency op-
timization. Most prior work assume that FL is only activated when
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smartphones are plugged into wall power [17, 99, 120, 130, 135]
limiting its practicality. To the best of our knowledge, AutoFL is
the first work that demonstrates the potential of energy-efficient
FL execution in the presence of realistic in-the-field effects: sys-
tem and data heterogeneity with performance uncertainties. By
customizing a reinforcement learning-based approach, AutoFL can
identify a near-optimal device cluster and respective execution
targets, adapting to heterogeneity and runtime variance.

8 CONCLUSION

Federated learning has shown great promises in various applica-
tions with security-guarantee. To enable energy efficient FL on
energy-constrained mobile devices, we propose a lightweight adap-
tive framework — AutoFL. The in-depth characterization of FL in
edge-cloud systems demonstrates that an optimal cluster of par-
ticipants and execution targets depend on various features: FL use
cases, device and data heterogeneity, and runtime variance. Aut-
oFL continuously learns and identifies a near-optimal cluster of
participant devices and their respective execution targets by taking
into account the aforementioned features. We design and construct
representative FL use cases deployed in an emulated mobile cloud
execution environment using off-the-shelf systems. On average,
AutoFL improves FL energy efficiency by 5.2x, compared with the
baseline setting of random selection, while improving convergence
time and accuracy. By considering runtime variance along with
system and data heterogeneity, AutoFL achieves an average of 49.8%
and 39.3% higher energy efficiency, compared to the state-of-the-
art techniques, FedNova [121] and FEDL [26], respectively. We
demonstrate that AutoFL is a viable solution and will pave the path
forward by enabling future work on energy efficiency improvement
for FL in realistic execution environment.
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