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Abstract 38 

Remote sensing capabilities to monitor evergreen broadleaved vegetation are limited by the low 39 

temporal variability in the greenness signal. With canopy greenness computed from digital repeat 40 

photography (PhenoCam), we investigated how canopy greenness related to seasonal changes in 41 

leaf age and traits as well as variation of trees’ water fluxes (characterized by sap flow and canopy 42 

conductance). The results showed sprouting leaves are mainly responsible for the rapid increase 43 

in canopy green chromatic coordinate (GCC) in spring. We found statistically significantly 44 

differences in leaf traits and spectral properties between different leaf-age leaves with respect 45 

compared: mean GCC of young leaves was 0.385 ± 0.010 (mean ± SD), while for mature and old 46 

leaves was 0.369 ± 0.003, and 0.376 ± 0.004, respectively.  Thus, the temporal dynamics of canopy 47 

GCC can be explained by leaf spectral properties and leaf age. Sap flow and canopy conductance 48 

are both well explained by a combination of environmental drivers and greenness (96% and 87% 49 

of the variance explained, respectively). In particular, air temperature and vapor pressure deficit 50 

(VPD) explained most of sap flow and canopy conductance variance, respectively. Besides, GCC 51 

is an important explanatory variable for variation of canopy conductance may because GCC can 52 

represent the leaf ontogeny information. We conclude that PhenoCam GCC can be used to identify 53 

the new leaf flushing for evergreen broadleaved trees, which carries important information about 54 

leaf ontogeny and traits. Thus, it can be helpful for better estimating canopy conductance that can 55 

be used to constraining water fluxes. 56 

Key words: evergreen broadleaved trees; digital repeat photography; PhenoCam; green 57 

chromatic coordinate (GCC); leaf age; water fluxes 58 



1. Introduction 59 

Remote and near-surface spectral observations provide Vegetation Indices (VIs) sensitive to 60 

canopy greenness (Tucker, 1979; Huete et al., 2002; Richardson et al., 2009), which can be used 61 

to monitor canopy development, phenology, and vegetation functioning (Wu et al., 2009; 62 

Migliavacca et al., 2011; Toomey et al., 2015). This linkage between the variation of greenness 63 

and vegetation functioning is strong in canopies with a pronounced seasonal dynamics of leaf area 64 

index (LAI) and chlorophyll content (Myneni et al., 1997; Zhang et al., 2003) like grassland and 65 

deciduous forests. By contrast, evergreen forests, especially those with broadleaf trees, exhibit low 66 

temporal variability in their canopy greenness (Moore et al., 2016; Moser et al., 2020), which 67 

results in a desynchronization between seasonal changes in canopy-scale greenness and seasonality 68 

of vegetation functioning such as carbon and water fluxes (Moore et al., 2016).  69 

Evergreen broadleaved forest are widely distributed in the tropics and warm temperate regions 70 

(Hengl et al., 2018). Among the distribution area, the tree-grass ecosystem (e.g. open woodlands 71 

and savannah ecosystems in the subtropical, semi-arid and/or in Mediterranean areas) is one of the 72 

most important ecosystem types that host evergreen trees. They are located in semi-arid regions 73 

covering between 16-35% of the global land surface (Friedl et al., 2002; Hanan & Hill, 2012) and 74 

play an essential role for the global interannual variability of biosphere-atmosphere carbon and 75 

water fluxes (Poulter et al., 2014; Ahlström et al., 2015). However, with co-existence of growth 76 

forms featuring different functioning and dynamics (i.e. trees and grasses), it is difficult to explore 77 

evergreen trees’ functioning-greenness relationship in tree-grass ecosystems because of the 78 

necessity to separate the variation in trees’ greenness (Liu et al., 2017; Perez-Priego et al., 2017; 79 

Luo et al., 2018; El-Madany et al., 2021) and vegetation functioning compared to more 80 

homogenous forest ecosystems.  81 



The development of near-surface observations of plants through digital cameras (Richardson et al., 82 

2009), namely PhenoCams, and the establishment of global PhenoCam observation networks 83 

facilitates the study of not only canopies but also individual trees (Nasahara & Nagai, 2015; 84 

Wingate et al., 2015; Brown et al., 2016; Richardson et al., 2018; Seyednasrollah et al., 2019). 85 

PhenoCam can easily discriminate individual tree crowns due to their proximity to the observed 86 

objects, minimizing the influence of background and understory optical signals (Richardson et al., 87 

2007). Therefore, this allows us to monitor the changes in individual trees’ VIs and facilitate their 88 

linkage with crown structure development and functional dynamics. 89 

In recent years, an increasing number of studies have evaluated how PhenoCam green chromatic 90 

coordinate (GCC) and other VIs such as camera-based normalized difference vegetation index 91 

(CamNDVI) relate to leaf traits (Keenan et al., 2014; Yang et al., 2014) and dynamics of trees’ 92 

functioning (Luo et al., 2018). These studies sought a biological interpretation of the temporal 93 

variability of leaf color changes (Keenan et al., 2014; Yang et al., 2014) or leaf development 94 

mainly in deciduous forests and evergreen needle forest (Yang et al., 2017; Filippa et al., 2018). 95 

However, despite the PhenoCam network growth, only a handful of studies focused on evergreen 96 

broadleaved trees, which have different pattern of VI seasonality compared to colder evergreen 97 

needle forest (Zhao et al., 2012; Nasahara & Nagai, 2015; Lopes et al., 2016; Yan et al., 2019). 98 

Besides, to our knowledge, only a few studies have investigated the relationship between greenness 99 

and leaf traits (e.g. chlorophyll content and nitrogen content) in evergreen broadleaved trees and 100 

mainly focused on the leaf-scale in tropics (Chavana-Bryant et al., 2017; Wu et al., 2017a). They 101 

demonstrated that the leaf age is a key factor to affect leaf traits and their spectral properties. 102 

However, studies still lack a biologically understanding of the seasonality in canopy greenness and 103 



its relation with trees’ functioning, such as water fluxes especially with high temporal resolution 104 

(e.g., daily).  105 

In this study, we first aimed to identify the reasons for canopy greenness variation (crowns-based) 106 

in the evergreen broadleaved trees of a Mediterranean tree-grass ecosystem and, second to explore 107 

the relationship between greenness variation and the changes in leaf traits and trees’ water fluxes 108 

(characterized by sap flow and canopy conductance). To do so, we combined leaf- and canopy-109 

scale greenness measured with field spectrometers and PhenoCams, measurements of leaf traits, 110 

tree water fluxes measured with sap flow (SF) meters and derived tree canopy conductance (Gc). 111 

Specifically, we intend to answer the following questions:  112 

(1) What does the measured PhenoCam GCC biologically represent (e.g. the GCC variation 113 

relates to leaf ontogeny)?  114 

(2) Is the variability in GCC related to leaf traits or other structural properties of the canopy? 115 

(3) Are the variations in greenness (represented by GCC and CamNDVI) temporally related 116 

to changes in trees’ water fluxes? 117 

2. Materials and Methods  118 

2.1 Study area and environmental variables  119 

The study focuses on a Mediterranean tree-grass ecosystem located in Extremadura, western Spain 120 

(Majadas de Tiétar, 39°56′24.68″N, 5°46′28.70″W). This ecosystem, named dehesa, consists of a 121 

dominant herbaceous (grass) layer combined with approximate 20 tree ha-1 of evergreen oak trees 122 

(Bogdanovich et al., 2021), with 98% of trees being Holm oak, i.e. Quercus ilex L. (El-Madany et 123 

al., 2018; Luo et al., 2020). The average height of trees is 8.9 (±1.0) m, with a mean DBH of 46.4 124 

(± 6.7) cm (El-Madany et al., 2018; Bogdanovich et al., 2021). The study ecosystem has a typical 125 



Mediterranean climate: hot and dry summer from mid-May to mid-October, and mild and wet 126 

winters from late October to February. The mean annual air temperature is 16.7 °C and annual 127 

rainfall approximates 700 mm, typically falling from October to May with a dry summer  (Perez-128 

Priego et al., 2017; Luo et al., 2018; El-Madany et al., 2021). 129 

Three closely located EC towers measure the carbon, water, and energy fluxes at three sites in the 130 

study ecosystem, and their FLUXNET ID abbreviations are ES-LMa, ES-LM1, and ES-LM2 (Luo 131 

et al., 2018). Micrometeorological variables were measured at each EC tower (El-Madany et al. 132 

(2018) for details) with 20 Hz time frequency and processed to obtain half-hourly water and energy 133 

flux measurements (El-Madany et al., 2018; El-Madany et al., 2020; El-Madany et al., 2021). 134 

Meteorological measurements were measured every 5 minutes and average at half-hourly to match 135 

the EC temporal resolution. We measured air temperature (Ta; ºC), shortwave downwelling 136 

radiation (SWDR; W m-2), wind speed (WS; m s-1), incoming photosynthetically active radiation 137 

(PAR; μmol m-2 s-1), vapor pressure deficit (VPD; hPa), and precipitation (Prec; mm). Volumetric 138 

soil water content (SWC) was recorded at 0.05, 0.10, 0.20, 0.30, 0.50, 1.00 m below ground with 139 

four replicated profiles of sensors (ML2x, Delta-T Devices Ltd, Cambridge, UK) in the footprint 140 

of each EC tower (two under the tree canopy and two in the open grassland). We further classified 141 

the measured SWC under the tree canopy into three different soil depth layers: shallow (soil depth 142 

smaller than 0.30 m where roots of herbaceous plants are dominant (Rolo & Moreno, 2012)), 143 

medium (0.50 m), and deep (1.00 m). We aggregated the soil moisture measurements at a daily 144 

scale for each sensor at different soil depths. Then for each soil depth layer (shallow, medium, and 145 

deep), we calculated the mean of daily soil moisture from the six soil moisture sensors. 146 

Additionally, average longwave downwelling and upwelling radiation (LWDR and LWUR; W m-147 



2) was measured every 15 mins on three individual trees close to three EC towers by radiometric 148 

towers and used to calculate the surface temperature (Ts; ºC) of trees (see details in section 2.4).  149 

2.2 Canopy and leaf-level spectral measurements for evergreen broadleaved trees 150 

2.2.1 Tree crowns GCC from PhenoCam 151 

At the top of each EC tower, a north-facing near-infrared-enabled PhenoCam (Stardot NetCam, 152 

StarDot Technologies, USA) sampled sequential red, blue, green (RGB), and RGB + near-infrared 153 

(NIR) images every half hour (from 10:00 to 14:30 UTC) in JPEG format from March, 2014 (Luo 154 

et al., 2018). In the field of view of each camera, we selected six regions of interest (ROIs) 155 

corresponding to six tree crowns from each site for further analysis (examples from ES-LM1 site 156 

in Figure S1) and for a total of 18 trees in the study area (Figure S1). We limited the ROIs selection 157 

to the intermediate distance (approximately 90.3 ± 18.3 m (mean ± standard deviation (SD))) 158 

because of the time series’ lower noise (see details in Note S1). The digital numbers (DNs) from 159 

blue (BDN), green (GDN), red (RDN), and near-infrared (NIRDN) channels were extracted from 160 

pixels in different ROIs from every PhenoCam image and averaged for each ROI (tree crown). 161 

GCC was then calculated as the ratio between GDN and the sum of the RGB-DNs for each crown 162 

(Eq.1). Daily crown GCC time series were produced from the 90th percentile of GCC at 1-day 163 

intervals according to the protocol of PhenoCam Dataset version 2 (Seyednasrollah et al., 2019).  164 

                                                                                                              (1) 165 

The GCC from different crowns at each site concurred over the seasonal pattern, being highly 166 

correlated to each other (e.g., r > 0.74; Figure S2). Then we calculated the mean GCC from the 167 

different tree crowns as site-level GCC. The variation pattern of GCC from the three sites was also 168 

highly consistent. Furthermore, we confirmed that the GCC of the 18 selected trees was 169 
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representative of the trees’ GCC in the study area (see details in supplementary material Note S2 170 

and Figure S3, S4). Hence, we obtained daily PhenoCam GCC of the whole study area by 171 

averaging the daily GCC from the three individual sites (for a total of 18 tree crowns). 172 

We also computed the PhenoCam normalized difference vegetation index (CamNDVI; Eq.2). 173 

CamNDVI is considered a good proxy for LAI and biomass (Filippa et al., 2018; Luo et al., 2018). 174 

Compared to GCC, it might carry different information regarding leaf development and therefore 175 

changes in water fluxes of trees. CamNDVI was computed using the same ROIs as for GCC 176 

according to equation 2 using the “phenopix” R package (Filippa et al., 2016): 177 

                                                                                                                       (2) 178 

where NIRDN’ and RDN’ are the exposure-adjusted NIRDN and RDN (Petach et al., 2014). CamNDVI 179 

variation was also consistent among different crowns and sites. Hence, daily CamNDVI for the 180 

study area was obtained with the same procedures as for GCC. Because absolute values of 181 

CamNDVI are not comparable to other direct reflectance measurements (Petach et al., 2014; 182 

Filippa et al., 2018; Luo et al., 2018), we rescaled the CamNDVI between 0-1 for a more intuitive 183 

interpretation.  184 

2.2.2 Leaf spectral reflectance 185 

Optical measurements at the leaf scale were conducted to support the interpretation of PhenoCam 186 

GCC signals at the canopy scale. Holm oak leaves’ reflectance factors were measured between 187 

2014 and 2016 in 21 field campaigns, using a plant probe with a leaf clip attached to an ASD 188 

spectroradiometer (FieldSpec3, Analytical Spectral Devices Inc., Boulder, CO, USA). Leaves 189 

were measured in all the seasons but more intensively in spring when leaves properties change 190 
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faster (Pacheco-Labrador et al., 2014). The FieldSpec3 spectral range covers 350-2500 nm. The 191 

original spectral resolution and spectral sampling interval are 3.0 and 1.4 nm in the visible (VIS) 192 

and 10.0 and 2.2 nm in the NIR and beyond. However, the ASD interpolates the spectra at 1 nm 193 

step by default. In each campaign, leaves of two different ages were sampled in each tree: current 194 

and old leaves (i.e. younger and older than one year, respectively). In practice, this was determined 195 

by the position of the leaves with respect to scars in the branch and leaves’ underside color 196 

(personal communication with Gerardo Moreno). Twelve leaves were collected for each category 197 

in each tree, from the upper part of the crown at two principal orientations (i.e. six north leaves 198 

and six south leaves). However, as newly flushed leaves have distinct spectral properties 199 

(Pacheco-Labrador et al., 2014; González-Cascón et al., 2016; Wu et al., 2017b), we re-classified 200 

the leaves into three categories according to leaf ontogeny: young leaves (less than 3 months from 201 

sampling date when flushed leaves were measured for the first time), mature leaves (between 3 202 

months and 1 year), and old leaves. Next, we convolved ASD leaves’ spectra according to 203 

PhenoCam spectral response function (Figure S5) to compute leaf ASD GCC (GCCASD) in Eq.1.  204 

2.3 Leaf traits and leaf development 205 

2.3.1 Leaf traits 206 

From 2015 to 2019, we measured leaf traits of the Holm oak trees. We sampled the leaves in 207 

different seasons, but more intensively in spring. Leaf chlorophyll content per leaf area (Chlab, μg 208 

cm-2) was estimated by using an empirical relationship established between pigment content and 209 

the SPAD chlorophyll meter (SPAD-501, Konica Minolta Inc, Osaka, Japan) at the same site 210 

following Gonzalez-Cascon et al. (2017). Area-based nitrogen content (Narea, mg cm-2), leaf 211 

nitrogen concentration (%N, mg g-1), and leaf carbon concentration (LCC, mg g-1) were 212 

determined using the dry combustion method with a LECO CN-2000 analyzer (65 °C) and leaf 213 



area. Water content per area (WCA), leaf mass per area (LMA), and leaf dry-matter content 214 

(LDMC) were also calculated based on the leaf area and fresh and dry leaf weight (Eq.3-5):  215 

                                                                              (3) 216 

                                                                                                                                  (4) 217 

                                                                                              (5) 218 

where Wf and Wd are fresh and dry leaf weight, respectively. Aleaf is the leaf area for fresh leaves. 219 

Chlab was estimated based on the same 12 leaves per leaf age class in each sampled tree where 220 

ASD measurements were obtained. For the other biological traits, we sampled 40 current and 40 221 

old leaves per tree in each field campaign to analyze the leaf traits before 2016. From 2016-2019, 222 

apart from 12 leaves sampled in the same trees as Chlab, we randomly sampled 100 additional 223 

leaves in the study area to determine those biological traits. Similarly, we classified the leaves as 224 

young, mature, and old as described in section 2.2.2.  225 

2.3.2 Leaf flushing period 226 

Oak leaf flushing episodes generally occur once and occasionally twice per year. Spring flushing 227 

contributes the most of new leaves production (Barbeta & Peñuelas, 2016), whereas autumn 228 

flushing happens under adverse climate condition or biotic stress such as drought or caterpillar 229 

attack (G. Moreno, R. Gonzalez‐Cascon, and M.P. Martín, personal communication, and Luo et 230 

al. (2020)). This study focused on spring flushing because of its importance and the considerable 231 

variation of biochemical and biophysical traits during this period. 232 
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The timing of spring leaf flushing was evaluated both by visually checking the PhenoCam images 233 

and by direct observation in the field. The flushing period was identified as the period between the 234 

first and last time new leaves were observed in the PhenoCam images and also considering the 235 

first time the leaves where measured with the ASD in annual sampling campaigns. This occurred, 236 

on average, when the foliar area of new (young) leaves was larger than 2.7 cm2. These two sources 237 

of information, used to determine the flushing period, led to consistent estimates (Figure S6a) 238 

despite smaller number of trees sampled during field campaigns.  239 

2.3.3 Leaf fraction of different leaf age classes in the canopy 240 

The fraction of each leaf type (current (young and mature) and old leaves) was estimated in the 241 

field campaigns between 2015-2019. We empirically fit a 2nd-degree polynomial function to 242 

predict the temporal variation of the fraction of current leaves as a function of the day of the year 243 

(DOY, see details in Note S3 and Figure S7a). Canopy GCC can be represented by using leaf 244 

spectral reflectance and leaf fraction in two leaf types: old and current leaves. The latter were 245 

featured by young or mature leaves, depending on the time after the flushing date. Young leaves’ 246 

spectra and properties represented the current leaves during the first three months after flushing, 247 

and were replaced by the mature leaves afterward (Note S3 and Figure S7b). We adopted this 248 

simplified approach to represent the leaf fraction of different leaf age classes because:1) most of 249 

the new leaves are flushed in the spring (see 2.3.2); 2) the fraction of young leaves was not directly 250 

measured in the field, and mature leaves are more similar to old leaves compared to young leaves 251 

regarding the spectral properties (Pacheco-Labrador et al., 2014). The estimated leaf age from the 252 

periodical field campaigns confirmed the rationality of the changes in leaves fraction estimated 253 

from the polynomial function (Note S3 and Figure S8a).  254 



2.4 Sap flow and canopy conductance  255 

2.4.1 Daily SF fluxes  256 

Sap flow (SF) meters (SFM1, ICT International Pty Ltd, Armidale, Australia) were installed at 257 

breast height (1.3m above ground) of six trees in the footprint of each EC tower (18 trees in total). 258 

The SFM1 sensor consisted of two 35-mm long temperature probes, each one with two 259 

thermocouple junctions at 7.5 mm and 22.5 mm distance from the needle tip that cover variations 260 

of the sap flow velocity profile. A heater probe was inserted equidistant (5 mm) from the two 261 

temperature probes. Heat pulses, powered with 20 J, were set at the two sampling points at half-262 

hourly intervals and their respective sap velocities were computed from the ratio of the average 263 

temperature rise of the upper to lower sensor between 60 and 100 s after each heat pulse. In post-264 

processing, corrections for probe misalignment, wounding effects (when applicable), and sap 265 

velocity determination were applied according to Burgess et al. (2001). To integrate the sap 266 

velocity profile from the two sampling points, sap flow density (SFD) was weighted by the cross-267 

sectional area of sapwood defined within each annulus around the two-point temperature 268 

measurements. Total sapwood area was derived from an empirical relationship between tree 269 

sapwood area and the diameter at the beast height determined by destructive sampling (See Perez-270 

Priego et al., 2017 for more details). In each site, six trees with diameters that covered the range 271 

of variations were sampled. The ensemble of the six half-hourly SFD values was used to calculate 272 

the mean as an integrative quantity of the overstory water fluxes. In turn, the mean value allowed 273 

us to minimize the impact of data gaps due to any sensor failure, which accounted for the 25 % of 274 

the raw data set. We used the SFD to approximate the variation pattern of trees’ transpiration and 275 

the SFD are available from February 2015 to March 2019. As the variation pattern of SFD (referred 276 



as SF hereafter) among three sites is consistent, therefore, the SF was averaged across three sites 277 

to derived the average daily SF flux in the whole study area. 278 

 279 

2.4.2 Tree canopy conductance  280 

Canopy conductance (Gc; cm s-1) was estimated using the empirical relationship from Phillips and 281 

Oren (1998) (Eq. 6): 282 

                                                                                                           (6) 283 

where SF is sap  flux density (kg cm-2 hour-1), and VPD (KPa) is vapor pressure deficit as indicated 284 

before. Surface temperature (Ts ( ̊ C)) of tree canopy was estimated through Stefan–Boltzmann law 285 

(Eq.7): 286 

                                                                                               (7) 287 

where LWDR and LWUR (W m-2) were measured from the radiometric towers, ε is the emissivity 288 

(set to 0.98 (Knauer et al., 2018)) and σ is Stefan–Boltzmann constant (5.67 ×10-8 W m-2 K-4).  289 

2.5 Statistical analyses 290 

To biologically interpret the seasonal changes in PhenoCam GCC and understand how leaves of 291 

different leaf-age impact the greenness, we first tested the significant differences of GCCASD 292 

among young, mature, and old leaves with the Tukey’s honest significant difference test (Tukey’s 293 

HSD). Age-weighted average GCCASD was compared with PhenoCam GCC to confirm whether 294 

the variation of GCC at the canopy scale could be well represented by considering spectral 295 

information from different leaf age classes. Then, we further applied linear regression analysis 296 
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between leaf traits and GCCASD to biologically understand the relationship between the variation 297 

of leaf traits and leaf greenness. We conducted this analysis mainly using the available data 298 

between 2014 and 2016. 299 

We used Generalized Additive Models (GAM (Hastie & Tibshirani, 1990)) to analyze the 300 

relationship between the trees’ water fluxes (specifically for Gc and SF) and greenness (PhenoCam 301 

GCC and CamNDVI). We used the available data during the period of 2015- 2019 to conduct this 302 

analysis. Daily Gc (and SF) were used as the response variables, and we ran different GAMs by 303 

using daily VIs and environmental factors as predictors: GCC, CamNDVI, SWDR, Ta, WS, 304 

SWCshallow, SWCmedium, SWCdeep, and VPD (only for predicting SF since VPD was used to 305 

calculate the Gc). GAM fitting applied penalized regression smoothing splines using “gam ()” 306 

function implemented in the mgcv R package (Wood, 2017). We also calculated each variable’s 307 

variance inflation factor (VIF) to measure how much regression variance was inflated due to 308 

multicollinearity in the model. We removed any variables with VIF > 10, keeping GCC, 309 

CamNDVI, SWDR, Ta, WS, SWCshallow, and SWCdeep in the Gc GAM and GCC, CamNDVI, 310 

SWDR, VPD, WS, SWCshallow, and SWCdeep in the SF model (Table 1). 311 

To understand how VIs contribute to the estimation of Gc and SF, we selected four combinations 312 

of predictors listed in Table 1 and compared the AIC value of the fitted models. We run a set of 313 

environmental predictors, environmental predictors plus GCC, environmental predictors plus 314 

CamNDVI, and environmental predictors plus CamNDVI and GCC. The smoothing functions 315 

resulting from the best GAM models were used to evaluate the sensitivity of Gc or SF to each 316 

predictor.  317 



Table 1. Four combinations of predictors in the Generalized Additive Models (GAMs: M1-M4) to 318 

understand the contribution of VIs to estimate the canopy conductance (Gc) and sap flux density 319 

(SF)1. 320 

 GCC CamNDVI SWDR Ta WS VPD SWCshallow SWCdeep 

M1: “No VIs”   x x x x x x 

M2: “GCC” x  x x x x x x 

M3: “CamNDVI”  x x x x x x x 

M4: “All VIs” x x x x x x x x 

1 The predictors of Gc (grey and orange) and SF (grey and pink) GAM models. Those variables were 321 

selected for the different GAM models (M1-M4) were marked as “x” in the table.  322 

3. Results 323 

3.1 Relationship between PhenoCam, GCCASD, and leaf traits 324 

3.1.1 Relation between PhenoCam GCC (canopy scale) and GCCASD (leaf scale)  325 

The PhenoCam GCC significantly increased during the leaf flushing period in the spring. Autumn 326 

precipitation also led to an increase in tree greenness, even though the amplitude of this increase 327 

was much smaller than in spring (Figure 1). At the leaf scale, GCCASD from different leaf age 328 

classes showed that young leaves had larger GCCASD than mature and old leaves (Figure 2). Field 329 

observations confirmed this contrasting leaf color in young and old leaves (Figure S9). GCCASD 330 

was significantly different (p < 0.001) among three age classes (Figure 2): mean GCCASD was 331 

0.385 ± 0.010 (mean ± SD), 0.369 ± 0.003, and 0.376 ± 0.004 for young, mature, and old leaves, 332 

respectively. 333 



 334 

Figure 1. Variation of (a) daily PhenoCam green chromatic coordinate (GCC) for evergreen oak trees, (b) 335 

daily mean temperature (Ta), and precipitation in the study area. The red dots in panel a) indicate the dates 336 

when leaf traits were measured. GCC and Ta time series were smoothed with a 20 days average moving 337 

window. 338 

 339 

Figure 2. Comparison of green chromatic coordinate (GCC) for leaves of different age classes. (a) GCCASD 340 

(leaf-level GCC measured by an ASD spectroradiometer) was calculated for young (leaf age <=3 months), 341 



mature (3 months< leaf age <=1 year), and old leaves (leaf age > 1 year). The blue shaded areas indicate 342 

the leaf flushing periods visually determined using PhenoCam images. (b) Comparison of GCCASD between 343 

young, mature, and old leaves. The length of each box indicates the interquartile range: the horizontal line 344 

inside each box the median, and the bottom and top of the box the first and third quartiles, respectively. 345 

Tukey’s honest significant difference (Tukey’s HSD) test evaluated GCCASD differences among the three 346 

age groups, and letters a, b, and c indicate the significant differences (p < 0.05).  347 

We compared the PhenoCam GCC and the age-weighted average GCCASD (Figure 3 and Figure 348 

S10). The results show that the weighted average GCCASD captured the temporal variability of 349 

PhenoCam GCC (Figure 3a). They had strongly linear relationship (R2=0.72), although age-350 

weighted average GCCASD featured higher values (Figure 3c). We found that GCCASD from current 351 

(young and mature) leaves had a much stronger link with PhenoCam GCC compared to old leaves 352 

(Figure S10). By considering the fraction of both current and old leaves, the bias in the relationship 353 

between the PhenoCam GCC and the weighted average GCCASD was smaller than in the 354 

PhenoCam GCC relationships with current or old leaves GCCASD (mean absolute error (MAE) was 355 

0.007, 0.008, and 0.009 for weighted mean, current and old leaves, respectively). PhenoCam GCC 356 

was generally negatively related to leaf age, especially between leaf flushing and the end of the 357 

year (Figure S8b). 358 



 359 

Figure 3. Comparison of age-weighted average ASD green chromatic coordinate (GCCASD) with PhenoCam 360 

GCC. (a) Comparison of time series of PhenoCam GCC and age-weighted average GCCASD. The weight-361 

averaged GCCASD was calculated according to the estimated fraction of new, mature, and old leaves from 362 

(b). (b) Estimated fraction of different-age leaves. Leaf age fraction was estimated according to field 363 

observations (see details in Note S3). The drop of current leaves during leaf flushing was caused by the 364 

current leaves being assigned into the old leaves category. The blue shaded area indicates the leaf flushing 365 

period visually determined by PhenoCam images. (c) Scatterplot of PhenoCam GCC and age-weighted 366 

average GCCASD. The error bars in (c) stand for the standard deviation.  367 

3.1.2 Relationship between GCCASD and leaf traits among different leaf age classes 368 

Leaf traits such as Chlab, Narea, and LMA were significantly lower in young than in mature and old 369 

leaves, while WCA was larger in young leaves than in mature and old leaves (Figure 4). In contrast, 370 

all these traits were similar or only slightly different between mature and old leaves. This 371 

difference in leaf traits (Figure S11) coincide with the distinct optical properties (i.e. green 372 

reflectance (Figure S12)) and GCCASD (Figure 2) in young leaves.  373 



The linear relationship between leaf traits and GCCASD differed among different age classes and 374 

traits (Figure 5). We found significant negative linear relationships between GCCASD and Chlab or 375 

Narea in young leaves, while no significant linear relationships were observed for WCA and LMA. 376 

Generally, there were no significant relationships between GCCASD and leaf traits in mature and 377 

old leaves, except for the positive linear relationship for GCCASD and WCA in old leaves (Figure 378 

5c). These leaves also offered lower variability than young leaves in both axes compared (spectral-379 

trait). 380 

 381 

Figure 4. Comparison of biological traits (a-d) among different leaf-age classes. Biological traits are 382 

chlorophyll content per leaf area (including chlorophyll a, and b: Chlab), nitrogen content per leaf area (Narea), 383 

water content per area (WCA), leaf mass per area (LMA) observed among different age classes. The bold 384 

lines within the boxes are the medians, and the boxes are the interquartile ranges (Q25, Q75). The black 385 

points outside the boxes represent outliers. Tukey’s honest significant difference test (Tukey’s HSD) 386 



evaluated biological traits differences among the three age groups, and letters a, b, and c indicate the 387 

significant differences (p < 0.05). 388 

 389 

 390 

Figure 5. Relationship between GCCASD and biological traits for young, mature, and old leaves. Biological 391 

traits are chlorophyll content per leaf area (including chlorophyll a, and b: Chlab), nitrogen content per leaf 392 

area (Narea), water content per leaf area (WCA), and leaf mass per area (LMA). Young, mature, and old 393 

leaves are defined as the leaves younger than 3 months, younger than 1 year but older than 3 months, and 394 

older than 1 year, respectively. The shaded area around each regression line represents 95% confidence 395 

interval. The linear regression lines and their equations and coefficient of determination (R2) are displayed 396 

at the bottom of each panel if the regression is statistically significant. The significances (with p-value in 397 

the brackets) of linear regression for different age classes are displayed in the upper right in each panel. 398 

The p-value is reported as follows: *.01 ≤ p < .05, **.001 ≤ p < .01, and ns when p > .05.                                                                                                                                                                                                                                                                                                       399 



3.2 Relationship between trees’ water fluxes and their explanatory variables 400 

3.2.1 Temporal variations 401 

Figure 6 shows the temporal variation of trees’ greenness and water fluxes for the different periods 402 

(Figure 6). Both GCC and SF started to increase at the beginning of the year, but they differed 403 

largely in the peak timing. GCC peaked in the middle of the flushing period in spring (DOY 127 404 

± 30 days), whereas SF peaked in summer (DOY 188 ± 10 days), which was earlier than the period 405 

of highest Ta, VPD, and CamNDVI (Figure 6). Compared to GCC, CamNDVI decreased at the 406 

beginning of the leaf flushing and then increased until autumn. SWC decreased rapidly before or 407 

during the leaf flushing, with the larger changes in the shallow and medium compared to deep soil 408 

depth. SWC reached the lowest value in late summer unless some rainfall occurred late in the 409 

season (Figure 6).  410 



 411 

Figure 6. Time series of daily (a) canopy conductance (Gc), (b) SF (sap flux  density), (c) PhenoCam green 412 

chromatic coordinate (GCC) and normalized difference vegetation index (CamNDVI), (d) meteorological 413 

factors (precipitation (Prec), air temperature (Ta), and vapor pressure deficit (VPD)), and (e) soil water 414 

content (SWC) of three different depths during 2015-2019 for evergreen oak trees. Gc time series starts in 415 

autumn 2015 because canopy surface temperature (Ts) used to calculate Gc was available only since that 416 



time. Apart from Prec and SWC, all the variables are smoothed with a 20-day average moving window. 417 

The arrows represent the start (dashed) and the peak (solid) of the time series in each growing period (in 418 

panel b-f; the details of extraction method can be found in Note S5) between February and August each 419 

year. The blue shaded area indicates the leaf flushing period visually determined by PhenoCam images. 420 

The red arrow in panel (d) shows the second leaf flush after a caterpillar attack. 421 

3.2.2 Relationships between water fluxes and their explanatory variables  422 

The results of the multi-model GAM analysis indicated that the Gc model that included all the 423 

drivers (M4, “All VIs”) performed best according to the AIC values and explained 87% of the 424 

variance for variation of Gc (Table 2). It was followed by M2 (“GCC”). The GAM smoothing 425 

functions (Figure 7) showed that Ta and GCC were the most important drivers (larger partial 426 

effects than other drivers) for estimating variation of Gc. Specifically, GCC positively correlated 427 

with its partial effects on Gc. In contrast, it seems that CamNDVI had a varied relationship with 428 

its partial effects on Gc (decreasing and then slight increasing with the increase of CamNDVI 429 

value), with less partial contribution than GCC (Figure 7). 430 

Likewise, M4 (“All VIs”) was the best model for estimating SF and explained 96% of the variance 431 

for variation of SF (Table 2). The partial effects plots indicated that the variation of SF was most 432 

sensitive to VPD changes, especially with a very strong positive relationship at low VPD values 433 

(Figure 8). The other drivers had a similar partial contribution to the variation of SF.  434 



Table 2. Statistics of best Generalized Additive Model (GAM) for canopy conductance (Gc) and sap flux 435 

density (SF)1, 2. Abbreviations: N, number of non-NA observations; Radj2, adjusted coefficient of 436 

determination; ∆AIC, difference of Akaike Information Criteria (AIC) values between different GAM 437 

models.  438 

1 s (variables) stands for smooth function for each predictor. The symbols “***” indicate the predictor’s 439 

partial effect significance levels of 0.001.  440 

2 The AIC differences (∆AIC) between M1 and M4, M2 and M4, M3 and M4 were shown in the last three 441 

columns (M1-M4 are the four GAM models in Table1). ∆AIC compares the full model performance  with 442 

the performance of the models only driven by climate, by climate and GCC, or by climate and CamNDVI, 443 

respectively.   444 

 Best GAM N Radj2 ∆AICM1-M4 ∆AICM2-M4 ∆AICM3-M4 

Gc 

Gc ~ Intercept***+ 

s(SWDR)*** +  

s(Ta)*** +  

s(WS)*** + 

s(SWCshallow)*** + 

s(SWCdeep)*** +  

s(GCC)*** + 

s(CamNDVI)*** 

953 0.87 218.0 62.3 137.2 

SF 

SF ~ Intercept*** + 

s(SWDR)*** +  

s(VPD)***+ 

s(WS)*** + 

s(SWCshallow)*** + 

s(SWCdeep)*** +  

s(GCC)***+ 

s(CamNDVI)*** 

953 0.96 260.0 50.8 183.8 



 445 

Figure 7. Partial effect plots for the drivers of canopy conductance (Gc) from the GAM analysis. The data 446 

points in each panel are the partial residuals. The y axis stands for the partial effects of each driver to the 447 

variation of Gc. The blue lines are GAM fitting lines. The orange shaded area represents the 95% confidence 448 

interval. The values in brackets in the y-axis labels are the effective degrees of freedom (edf) directly related 449 

to the complexity of the smooth function. The explanatory variables of Gc and their abbreviations are: 450 

PhenoCam green chromatic coordinate (GCC) and normalized difference vegetation index (CamNDVI), 451 

shortwave downwelling radiation (SWDR), air temperature (Ta), wind speed (WS), vapor pressure deficit 452 

(VPD), soil water content at shallow and deep soil depth (SWCshallow, SWCdeep). 453 



 454 

Figure 8. Partial effect plots for the drivers of sap flux density (SF) from the GAM analysis. The points in 455 

each panel are the partial residuals. The y axis stands for the partial effects of each driver to the variation 456 

of Gc. The blue lines are GAM fitting lines. The shaded area represents the 95% confidence interval. The 457 

values in brackets in the y-axis labels are the effective degrees of freedom (edf), directly related to the 458 

complexity of the smooth function for each variable. The explanatory variables of SF and their 459 

abbreviations are: PhenoCam green chromatic coordinate (GCC) and normalized difference vegetation 460 

index (CamNDVI), shortwave downwelling radiation (SWDR), air temperature (Ta), wind speed (WS), 461 

vapor pressure deficit (VPD), soil water content at shallow and deep soil depth (SWCshallow, SWCdeep). 462 



4. Discussion  463 

4.1 New leaves flushing explains the rapid increase of canopy greenness in spring 464 

Combining leaf and canopy-scale measurements, we proved that the annual variability of the 465 

evergreen Holm oak optical properties is dominated by the sprout and development of young 466 

leaves. Mature and old leaves’ biophysical and optical properties are relatively similar and steady 467 

in time (Pacheco-Labrador et al., 2017). Contrarily, young leaves feature distinct properties after 468 

sprouting. Such difference reduces as the new leaves mature, at the same time that the mature 469 

leaves become more and more abundant in the crown (Figure 3b). The combination of different 470 

properties and abundances in time leads to the rapid increase of PhenoCam GCC during the leaf 471 

flushing period. 472 

Young leaves of Holm oak trees in our study ecosystem present significantly lower Chlab, Narea, 473 

LMA, and higher WCA than mature and old leaves (Figure 4). This variation is consistent with 474 

previous studies in Mediterranean (Niinemets et al., 2004; Mediavilla et al., 2011) and tropical 475 

evergreen tree species (Chavana-Bryant et al., 2017; Wu et al., 2017a). According to Figure 5 and 476 

sound radiative transfer theory (Féret et al., 2017), the lower Chlab (correlated with Narea) is the 477 

main responsible for the lower VIS absorption and the higher GCCASD values in young leaves. 478 

These leaves darken (Figure S9), and their GCCASD rapidly decreases with maturation (Figure S12) 479 

as leaves accumulate more pigments, among other biochemical and anatomical changes (Sims & 480 

Gamon, 2003; Kokaly et al., 2009; Serbin et al., 2014; Chavana-Bryant et al., 2017). In addition, 481 

as young leaves appear, a similar effect is observed in the canopy, both by the PhenoCam as well 482 

as more advanced optical sensors (Figure S13, Note S6).Leaf reflectance in the NIR and the SWIR 483 

regions also vary with the leaf age due to the development of complex internal cellular structure, 484 

epicuticular waxes or cuticles, and variation of leaf water and dry matter content in the leaves 485 



(Reicosky & Hanover, 1978; Mulroy, 1979; Kokaly et al., 2009; Asner et al., 2015). Since LMA 486 

and WCA mainly related to the radiation absorption in the SWIR (Jacquemoud et al., 1996), we 487 

observed the significant changes observed in WCA and LMA (Figure 4) had little effect on 488 

GCCASD (Figure 5). The variation in LMA and WCA can be characterized with high-resolution 489 

spectra measurements becoming more available (Wu et al., 2017a; Meireles et al., 2020). 490 

We represented the canopy-scale GCC variation using the weighted leaf-level GCCASD by 491 

considering the distinct differences in spectral reflectance between young and mature/old leaves 492 

(Figure 2 and Figure 3). PhenoCam GCC and the weighted average of GCCASD run in parallel and 493 

were strongly correlated (Figure 3). These results align with previous studies, which found that 494 

leaf demography contributes significantly to the observed variation of canopy reflectance (Roberts 495 

et al., 1998; Wu et al., 2017a) and satellite greenness (Wu et al., 2018). We are aware that the 496 

uncertainties in leaf age fractions propagate to the comparison between weighted average GCCASD 497 

and PhenoCam GCC. The direct up-scaling of GCCASD (weighted average) omits spectral 498 

contributions from branches, shadows, and different leaf angles and multiple-scattering. However, 499 

the structural properties of the Holm oaks in the site are known to be relatively stable (Melendo-500 

Vega et al., 2018). Thus, the variability of the upscaled leaf GCC should still covary with 501 

PhenoCam GCC despite a bias. This covariance proves the control of young leaves on canopy 502 

greenness variability during the phenological cycle. Wu et al. (2017b) have illustrated estimation 503 

of photosynthesis for tropical evergreen canopies can be improved by considering the effect of 504 

different leaf-age leaves’ fraction and properties into the ecological modelling. Hence, proper 505 

consideration of leaf demography could improve the representation of greenness and functioning, 506 

providing insights into the functioning and properties of the different leaf cohorts and the resources 507 



management strategies of the trees in response to the environment (Albert et al., 2018; Gast et al., 508 

2020).  509 

4.2 Can greenness explain the canopy conductance variation of evergreen broadleaved trees? 510 

Variation of Gc in evergreen broadleaved trees can be explained by both of the changes in 511 

greenness and environmental drivers such as Ta (Figure 6 and Figure 7). Gc decreased with VPD 512 

due to stomatal closure, preventing excessive water loss under high evaporative demand (Way et 513 

al., 2015; Slot & Winter, 2017). This is a recurrent strategy of iso-hydric vegetation such as the 514 

Mediterranean Holm oak in our study ecosystem (Quero et al., 2011). In contrast, the GCC 515 

positively correlated to the variation of Gc (Figure 7). This positive correlation could be attributed 516 

to the leaf ontogeny information conveyed in GCC. Previous studies have found that young leaves 517 

exhibit higher canopy conductance than mature leaves (Mediavilla & Escudero, 2003; Whitehead 518 

et al., 2011). As we showed, canopy GCC conveys age-related physiological information from 519 

different leaf-age classes (Figure 4). Therefore, it is plausible to use GCC as one of the explanatory 520 

variables to explain Gc’s variation in evergreen broadleaved trees.  521 

VPD is the main driver of SF for evergreen broadleaved trees, while greenness marginally explains 522 

the variation of SF (Figure 6 and Figure 8). Consistent with previous studies (Gates, 1968; O'Grady 523 

et al., 1999; Vicente-Serrano et al., 2020), the water transport of trees is accelerated by the rise of 524 

evaporative demand especially when the water is not limited during the period of the spring in our 525 

study sites (Figure 6). With continuous high temperature and low precipitation from mid-to-late 526 

summer (Perez-Priego et al., 2017; Luo et al., 2018), water from deep soil accessed by deep roots 527 

from trees also becomes limiting (Figure 6; Moreno et al. (2005)). Consequently, the driving force 528 

from VPD to the SF becomes flat, which is also confirmed from former studies in other semi-arid 529 

ecosystems (Skelton et al., 2013; Zha et al., 2017; El-Madany et al., 2020). We only found 530 



marginal contribution from VIs to the variation of SF (Figure 8). The development of observation 531 

networks such as PhenoCam (Richardson et al., 2018) and global sap flow networks (Poyatos et 532 

al., 2020) would enable us to further explore and validate the relationships we observed between 533 

greenness and water fluxes for evergreen broadleaved trees.  534 

We demonstrated that linking evergreen broadleaved trees’ greenness with their water flux 535 

dynamics in semi-arid tree-grass ecosystems is feasible. We showed that PhenoCam data might 536 

help to interpret the variation of Gc, SF, and potentially the changes in stem growth (peak of GCC 537 

shows the coordination with the start of trunk perimeter demonstrated in Figure S14). Further 538 

research can seek additional connections of greenness with canopy development by focusing on 539 

the specific important periods (e.g. rapid greenness increases), which might help us better 540 

understand the variation of functioning. For instance, compared to the rapid increase of GCC 541 

during the leaf flushing period, we observed the first decreasing and then increasing CamNDVI 542 

(Figure 6). This is most likely resulting from the changes in LAI induced by litterfall according to 543 

a study conducted on the same species in the Mediterranean ecosystem (Soudani et al., 2012). 544 

Including more field LAI and litterfall measurements in this period, we could better disentangle 545 

the contribution from different leaf-age (young, mature, and old) leaves to the changes in trees’ 546 

water fluxes through using leaf demography-ontogeny models (Wu et al., 2016; Wu et al., 2017b). 547 

The linkage between PhenoCam greenness and leaf measurements as well as plants’ functioning 548 

(water fluxes and stem growth) highlights the opportunities to biologically interpretation of near-549 

surface remote sensing greenness in different biomes and better representation of the functioning 550 

with the continuous growth of PhenoCam network.   551 



5. Conclusion 552 

In this work, we analyzed the relationships between evergreen trees’ greenness (at the leaf- and 553 

canopy-scales) and their leaf traits, canopy conductance, and sap flow. We showed that: 1) young 554 

leaves flushing with distinct leaf spectral properties lead to a rapid increase of PhenoCam canopy 555 

GCC in spring; 2) variation of PhenoCam GCC is related to the leaf traits properties in different 556 

leaf-age classes, and considering the leaf fraction of different leaf-age leaves and their spectral 557 

properties can well explain the variation of canopy GCC; 3) PhenoCam GCC is an important 558 

explanatory factor of variation in the canopy conductance for evergreen broadleaved trees. VPD 559 

mainly drives while greenness marginally explains the variation of sap flow. In summary, we 560 

demonstrated that variation of PhenoCam GCC is biologically linked to leaf ontogeny and trait 561 

variation among different leaf-age classes. It can be used to identify the leaf flushing and explain 562 

the variation of trees’ functioning. This highlights the opportunities to biologically interpret the 563 

near-surface greenness in different biomes and improve predicting or representation of plant 564 

functioning with the continuous growth of PhenoCam and functioning-related global observation 565 

networks.  566 

Acknowledgments  567 

The authors acknowledge the Alexander von Humboldt Foundation for supporting this research 568 

with the Max Planck Prize to Markus Reichstein. Yunpeng Luo and Mirco Migliavacca gratefully 569 

acknowledge the financial support from the China Scholarship Council. ADR acknowledges 570 

support for the PhenoCam network from the National Science Foundation (DEB- 1702697). Javier 571 

Pacheco-Labrador and Mirco Migliavacca acknowledge the German Aerospace Center (DLR) 572 

project OBEF-Accross2 “The Potential of Earth Observations to Capture Patterns of Biodiversity” 573 

(Contract No. 50EE1912). The research also received funding from the European Union’s Horizon 574 



2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 575 

721995 and Ministerio de Economíay Competitividad through FLUXPEC CGL2012-34383 and 576 

SynerTGE CGL2015-G9095-R (MINECO/FEDER, UE) projects. We are grateful to all the 577 

colleagues who contributed to the acquisition and processing of the field data. 578 

References 579 

Ahlström A, Raupach MR, Schurgers G, Smith B, Arneth A, Jung M, Reichstein M, Canadell JG, 580 
Friedlingstein P, Jain AK, et al. 2015. The dominant role of semi-arid ecosystems in the trend 581 
and variability of the land CO2 sink. Science 348(6237): 895-899. 582 

Albert LP, Wu J, Prohaska N, de Camargo PB, Huxman TE, Tribuzy ES, Ivanov VY, Oliveira RS, Garcia S, 583 
Smith MN, et al. 2018. Age-dependent leaf physiology and consequences for crown-scale 584 
carbon uptake during the dry season in an Amazon evergreen forest. New Phytologist 219(3): 585 
870-884. 586 

Asner GP, Martin RE, Anderson CB, Knapp DE. 2015. Quantifying forest canopy traits: Imaging 587 
spectroscopy versus field survey. Remote Sensing of Environment 158: 15-27. 588 

Barbeta A, Peñuelas J. 2016. Sequence of plant responses to droughts of different timescales: lessons 589 
from holm oak (Quercus ilex) forests. Plant Ecology & Diversity 9(4): 321-338. 590 

Bogdanovich E, Perez-Priego O, El-Madany TS, Guderle M, Pacheco-Labrador J, Levick SR, Moreno G, 591 
Carrara A, Pilar Martín M, Migliavacca M. 2021. Using terrestrial laser scanning for 592 
characterizing tree structural parameters and their changes under different management in a 593 
Mediterranean open woodland. Forest Ecology and Management 486: 118945. 594 

Brown TB, Hultine KR, Steltzer H, Denny EG, Denslow MW, Granados J, Henderson S, Moore D, Nagai 595 
S, SanClements M, et al. 2016. Using phenocams to monitor our changing Earth: toward a global 596 
phenocam network. Frontiers in Ecology and the Environment 14(2): 84-93. 597 

Burgess SSO, Adams MA, Turner NC, Beverly CR, Ong CK, Khan AAH, Bleby TM. 2001. An improved 598 
heat pulse method to measure low and reverse rates of sap flow in woody plants†. Tree 599 
Physiology 21(9): 589-598. 600 

Chavana-Bryant C, Malhi Y, Wu J, Asner GP, Anastasiou A, Enquist BJ, Cosio Caravasi EG, Doughty CE, 601 
Saleska SR, Martin RE, et al. 2017. Leaf aging of Amazonian canopy trees as revealed by spectral 602 
and physiochemical measurements. New Phytologist 214(3): 1049-1063. 603 

El-Madany TS, Carrara A, Martín MP, Moreno G, Kolle O, Pacheco-Labrador J, Weber U, Wutzler T, 604 
Reichstein M, Migliavacca M. 2020. Drought and heatwave impacts on semi-arid ecosystems' 605 
carbon fluxes along a precipitation gradient. Philosophical Transactions of the Royal Society B: 606 
Biological Sciences 375(1810): 20190519. 607 

El-Madany TS, Reichstein M, Carrara A, Martín MP, Moreno G, Gonzalez-Cascon R, Peñuelas J, 608 
Ellsworth DS, Burchard-Levine V, Hammer TW, et al. 2021. How Nitrogen and Phosphorus 609 
Availability Change Water Use Efficiency in a Mediterranean Savanna Ecosystem. Journal of 610 
Geophysical Research: Biogeosciences 126(5): e2020JG006005. 611 

El-Madany TS, Reichstein M, Perez-Priego O, Carrara A, Moreno G, Pilar Martín M, Pacheco-Labrador 612 
J, Wohlfahrt G, Nieto H, Weber U, et al. 2018. Drivers of spatio-temporal variability of carbon 613 
dioxide and energy fluxes in a Mediterranean savanna ecosystem. Agricultural and Forest 614 
Meteorology 262: 258-278. 615 



Féret JB, Gitelson AA, Noble SD, Jacquemoud S. 2017. PROSPECT-D: Towards modeling leaf optical 616 
properties through a complete lifecycle. Remote Sensing of Environment 193: 204-215. 617 

Filippa G, Cremonese E, Migliavacca M, Galvagno M, Forkel M, Wingate L, Tomelleri E, Di Cella UM, 618 
Richardson AD. 2016. Phenopix: AR package for image-based vegetation phenology. Agricultural 619 
and Forest Meteorology 220: 141-150. 620 

Filippa G, Cremonese E, Migliavacca M, Galvagno M, Sonnentag O, Humphreys E, Hufkens K, Ryu Y, 621 
Verfaillie J, Morra di Cella U, et al. 2018. NDVI derived from near-infrared-enabled digital 622 
cameras: Applicability across different plant functional types. Agricultural and Forest 623 
Meteorology 249: 275-285. 624 

Friedl MA, McIver DK, Hodges JCF, Zhang XY, Muchoney D, Strahler AH, Woodcock CE, Gopal S, 625 
Schneider A, Cooper A, et al. 2002. Global land cover mapping from MODIS: algorithms and 626 
early results. Remote Sensing of Environment 83(1-2): 287-302. 627 

Gast A, Römermann C, Bucher S. 2020. Special issue in honour of Prof. Reto J. Strasser–Seasonal 628 
variation and trade-off between frost resistance and photosynthetic performance in woody 629 
species. Photosynthetica 58(SPECIAL ISSUE): 331-340. 630 

Gates DM. 1968. Transpiration and leaf temperature. Annual Review of Plant Physiology 19(1): 211-238. 631 
Gonzalez-Cascon R, Jiménez-Fenoy L, Verdú-Fillola I, Martín MP. 2017. Aqueous-acetone extraction 632 

improves the drawbacks of using dimethylsulfoxide as solvent for photometric pigment 633 
quantification in Quercus ilex leaves. Forest Systems (Online) 26(2): 5. 634 

González-Cascón R, Pacheco-Labrador J, Martín M. 2016. Evolution of spectral behavior and chemical 635 
composition in the tree canopy of a dehesa ecosystem. Revista de Teledetección(46): 31-43. 636 

Hanan N, Hill M. 2012. Savannas in a Changing Earth System: The NASA Terrestrial Ecology Tree-Grass 637 
Project. White Paper for the NASA Terrestrial Ecology Program. Earth Science Division, 638 
Washington, USA. 639 

Hastie TJ, Tibshirani RJ. 1990. Generalized additive models, volume 43 of. Monographs on statistics and 640 
applied probability 15. 641 

Hengl T, Walsh MG, Sanderman J, Wheeler I, Harrison SP, Prentice IC. 2018. Global mapping of 642 
potential natural vegetation: an assessment of machine learning algorithms for estimating land 643 
potential. PeerJ 6: e5457-e5457. 644 

Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG. 2002. Overview of the radiometric and 645 
biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment 646 
83(1): 195-213. 647 

Jacquemoud S, Ustin SL, Verdebout J, Schmuck G, Andreoli G, Hosgood B. 1996. Estimating leaf 648 
biochemistry using the PROSPECT leaf optical properties model. Remote Sensing of Environment 649 
56(3): 194-202. 650 

Keenan TF, Darby B, Felts E, Sonnentag O, Friedl MA, Hufkens K, O'Keef J, Klosterman S, Munger JW, 651 
Toome M, et al. 2014. Tracking forest phenology and seasonal physiology using digital repeat 652 
photography: a critical assessment. Ecol Appl 24(6): 1478-1489. 653 

Knauer J, El-Madany TS, Zaehle S, Migliavacca M. 2018. Bigleaf—An R package for the calculation of 654 
physical and physiological ecosystem properties from eddy covariance data. PLOS ONE 13(8): 655 
e0201114. 656 

Kokaly RF, Asner GP, Ollinger SV, Martin ME, Wessman CA. 2009. Characterizing canopy biochemistry 657 
from imaging spectroscopy and its application to ecosystem studies. Remote Sensing of 658 
Environment 113: S78-S91. 659 

Liu Y, Hill MJ, Zhang X, Wang Z, Richardson AD, Hufkens K, Filippa G, Baldocchi DD, Ma S, Verfaillie J, 660 
et al. 2017. Using data from Landsat, MODIS, VIIRS and PhenoCams to monitor the phenology of 661 
California oak/grass savanna and open grassland across spatial scales. Agricultural and Forest 662 
Meteorology 237-238: 311-325. 663 



Lopes AP, Nelson BW, Wu J, Graca P, Tavares JV, Prohaska N, Martins GA, Saleska SR. 2016. Leaf flush 664 
drives dry season green-up of the Central Amazon. Remote Sensing of Environment 182: 90-98. 665 

Luo Y, El-Madany T, Ma X, Nair R, Jung M, Weber U, Filippa G, Bucher SF, Moreno G, Cremonese E, et 666 
al. 2020. Nutrients and water availability constrain the seasonality of vegetation activity in a 667 
Mediterranean ecosystem. Global Change Biology 26(8): 4379-4400. 668 

Luo Y, El-Madany TS, Filippa G, Ma X, Ahrens B, Carrara A, Gonzalez-Cascon R, Cremonese E, Galvagno 669 
M, Hammer TW, et al. 2018. Using Near-Infrared-Enabled Digital Repeat Photography to Track 670 
Structural and Physiological Phenology in Mediterranean Tree–Grass Ecosystems. Remote 671 
Sensing 10(8): 1293. 672 

Mediavilla S, Escudero A. 2003. Stomatal responses to drought at a Mediterranean site: a comparative 673 
study of co-occurring woody species differing in leaf longevity. Tree Physiology 23(14): 987-996. 674 

Mediavilla S, González-Zurdo P, García-Ciudad A, Escudero A. 2011. Morphological and chemical leaf 675 
composition of Mediterranean evergreen tree species according to leaf age. Trees 25(4): 669-676 
677. 677 

Meireles JE, Cavender-Bares J, Townsend PA, Ustin S, Gamon JA, Schweiger AK, Schaepman ME, Asner 678 
GP, Martin RE, Singh A, et al. 2020. Leaf reflectance spectra capture the evolutionary history of 679 
seed plants. New Phytologist 228(2): 485-493. 680 

Melendo-Vega JR, Martín MP, Pacheco-Labrador J, González-Cascón R, Moreno G, Pérez F, Migliavacca 681 
M, García M, North P, Riaño D. 2018. Improving the Performance of 3-D Radiative Transfer 682 
Model FLIGHT to Simulate Optical Properties of a Tree-Grass Ecosystem. Remote Sensing 10(12): 683 
2061. 684 

Migliavacca M, Galvagno M, Cremonese E, Rossini M, Meroni M, Sonnentag O, Cogliati S, Manca G, 685 
Diotri F, Busetto L, et al. 2011. Using digital repeat photography and eddy covariance data to 686 
model grassland phenology and photosynthetic CO2 uptake. Agricultural and Forest 687 
Meteorology 151(10): 1325-1337. 688 

Moore CE, Brown T, Keenan TF, Duursma RA, van Dijk A, Beringer J, Culvenor D, Evans B, Huete A, 689 
Hutley LB, et al. 2016. Reviews and syntheses: Australian vegetation phenology: new insights 690 
from satellite remote sensing and digital repeat photography. Biogeosciences 13(17): 5085-691 
5102. 692 

Moreno G, Obrador JJ, Cubera E, Dupraz C. 2005. Fine Root Distribution in Dehesas of Central-Western 693 
Spain. Plant and Soil 277(1): 153-162. 694 

Moser WK, Coble AP, Hallik L, Richardson AD, Pisek J, Adamson K, Graham RT, Moser CF. 2020. 695 
Advances in understanding canopy development in forest trees [Chapter 3]. In: Stanturf, John A., 696 
ed. Achieving sustainable management of boreal and temperate forests. Cambridge, UK: 697 
Burleigh and Dodds Science Publishing. p. 59-98.: 59-98. 698 

Mulroy TW. 1979. Spectral properties of heavily glaucous and non-glaucous leaves of a succulent 699 
rosette-plant. Oecologia 38(3): 349-357. 700 

Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR. 1997. Increased plant growth in the northern 701 
high latitudes from 1981 to 1991. Nature 386(6626): 698-702. 702 

Nasahara KN, Nagai S. 2015. Review: Development of an in situ observation network for terrestrial 703 
ecological remote sensing: the Phenological Eyes Network (PEN). Ecological Research 30(2): 211-704 
223. 705 

Niinemets Ü, Tenhunen JD, Beyschlag W. 2004. Spatial and age-dependent modifications of 706 
photosynthetic capacity in four Mediterranean oak species. Functional Plant Biology 31(12): 707 
1179-1193. 708 

O'Grady AP, Eamus D, Hutley LB. 1999. Transpiration increases during the dry season: patterns of tree 709 
water use in eucalypt open-forests of northern Australia. Tree Physiology 19(9): 591-597. 710 



Pacheco-Labrador J, El-Madany TS, Martín MP, Migliavacca M, Rossini M, Carrara A, Zarco-Tejada PJ. 711 
2017. Spatio-temporal relationships between optical information and carbon fluxes in a 712 
mediterranean tree-grass ecosystem. Remote Sensing 9(6): 608. 713 

Pacheco-Labrador J, González-Cascón R, Martín MP, Riaño D. 2014. Understanding the optical 714 
responses of leaf nitrogen in Mediterranean Holm oak (Quercus ilex) using field spectroscopy. 715 
International Journal of Applied Earth Observation and Geoinformation 26: 105-118. 716 

Perez-Priego O, El-Madany TS, Migliavacca M, Kowalski AS, Jung M, Carrara A, Kolle O, Martín MP, 717 
Pacheco-Labrador J, Moreno G, et al. 2017. Evaluation of eddy covariance latent heat fluxes 718 
with independent lysimeter and sapflow estimates in a Mediterranean savannah ecosystem. 719 
Agricultural and Forest Meteorology 236: 87-99. 720 

Petach AR, Toomey M, Aubrecht DM, Richardson AD. 2014. Monitoring vegetation phenology using an 721 
infrared-enabled security camera. Agricultural and Forest Meteorology 195-196: 143-151. 722 

Phillips N, Oren R. 1998. A comparison of daily representations of canopy conductance based on two 723 
conditional time-averaging methods and the dependence of daily conductance on 724 
environmental factors. Ann. For. Sci. 55(1-2): 217-235. 725 

Poulter B, Frank D, Ciais P, Myneni RB, Andela N, Bi J, Broquet G, Canadell JG, Chevallier F, Liu YY, et 726 
al. 2014. Contribution of semi-arid ecosystems to interannual variability of the global carbon 727 
cycle. Nature 509(7502): 600-603. 728 

Poyatos R, Granda V, Flo V, Adams MA, Adorján B, Aguadé D, Aidar MPM, Allen S, Alvarado-Barrientos 729 
MS, Anderson-Teixeira KJ, et al. 2020. Global transpiration data from sap flow measurements: 730 
the SAPFLUXNET database. Earth Syst. Sci. Data Discuss. 2020: 1-57. 731 

Quero JL, Sterck FJ, Martínez-Vilalta J, Villar R. 2011. Water-use strategies of six co-existing 732 
Mediterranean woody species during a summer drought. Oecologia 166(1): 45-57. 733 

Reicosky DA, Hanover JW. 1978. Physiological Effects of Surface Waxes: I. Light Reflectance for 734 
Glaucous and Nonglaucous Picea pungens. Plant physiology 62(1): 101-104. 735 

Richardson AD, Braswell BH, Hollinger DY, Jenkins JP, Ollinger SV. 2009. Near-surface remote sensing 736 
of spatial and temporal variation in canopy phenology. Ecological Applications 19(6): 1417-1428. 737 

Richardson AD, Hufkens K, Milliman T, Aubrecht DM, Chen M, Gray JM, Johnston MR, Keenan TF, 738 
Klosterman ST, Kosmala M, et al. 2018. Tracking vegetation phenology across diverse North 739 
American biomes using PhenoCam imagery. Scientific Data 5(1): 180028. 740 

Richardson AD, Jenkins JP, Braswell BH, Hollinger DY, Ollinger SV, Smith M-L. 2007. Use of digital 741 
webcam images to track spring green-up in a deciduous broadleaf forest. Oecologia 152(2): 323-742 
334. 743 

Roberts DA, Nelson BW, Adams JB, Palmer F. 1998. Spectral changes with leaf aging in Amazon 744 
caatinga. Trees-Structure and Function 12(6): 315-325. 745 

Rolo V, Moreno G. 2012. Interspecific competition induces asymmetrical rooting profile adjustments in 746 
shrub-encroached open oak woodlands. Trees 26(3): 997-1006. 747 

Serbin SP, Singh A, McNeil BE, Kingdon CC, Townsend PA. 2014. Spectroscopic determination of leaf 748 
morphological and biochemical traits for northern temperate and boreal tree species. Ecological 749 
Applications 24(7): 1651-1669. 750 

Seyednasrollah B, Young AM, Hufkens K, Milliman T, Friedl MA, Frolking S, Richardson AD. 2019. 751 
Tracking vegetation phenology across diverse biomes using Version 2.0 of the PhenoCam 752 
Dataset. Scientific Data 6(1): 222. 753 

Sims DA, Gamon JA. 2003. Estimation of vegetation water content and photosynthetic tissue area from 754 
spectral reflectance: a comparison of indices based on liquid water and chlorophyll absorption 755 
features. Remote Sensing of Environment 84(4): 526-537. 756 



Skelton RP, West AG, Dawson TE, Leonard JM. 2013. External heat-pulse method allows comparative 757 
sapflow measurements in diverse functional types in a Mediterranean-type shrubland in South 758 
Africa. Funct Plant Biol 40(10): 1076-1087. 759 

Slot M, Winter K. 2017. In situ temperature relationships of biochemical and stomatal controls of 760 
photosynthesis in four lowland tropical tree species. Plant, Cell & Environment 40(12): 3055-761 
3068. 762 

Soudani K, Hmimina G, Delpierre N, Pontailler JY, Aubinet M, Bonal D, Caquet B, de Grandcourt A, 763 
Burban B, Flechard C, et al. 2012. Ground-based Network of NDVI measurements for tracking 764 
temporal dynamics of canopy structure and vegetation phenology in different biomes. Remote 765 
Sensing of Environment 123: 234-245. 766 

Toomey M, Friedl MA, Frolking S, Hufkens K, Klosterman S, Sonnentag O, Baldocchi DD, Bernacchi CJ, 767 
Biraud SC, Bohrer G, et al. 2015. Greenness indices from digital cameras predict the timing and 768 
seasonal dynamics of canopy-scale photosynthesis. Ecological Applications 25(1): 99-115. 769 

Tucker CJ. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote 770 
Sensing of Environment 8(2): 127-150. 771 

Vicente-Serrano SM, McVicar TR, Miralles DG, Yang Y, Tomas-Burguera M. 2020. Unraveling the 772 
influence of atmospheric evaporative demand on drought and its response to climate change. 773 
WIREs Climate Change 11(2): e632. 774 

Way DA, Oren R, Kroner Y. 2015. The space-time continuum: the effects of elevated CO2 and 775 
temperature on trees and the importance of scaling. Plant Cell Environ 38(6): 991-1007. 776 

Whitehead D, Barbour MM, Griffin KL, Turnbull MH, Tissue DT. 2011. Effects of leaf age and tree size 777 
on stomatal and mesophyll limitations to photosynthesis in mountain beech (Nothofagus 778 
solandrii var. cliffortiodes). Tree Physiology 31(9): 985-996. 779 

Wingate L, Ogee J, Cremonese E, Filippa G, Mizunuma T, Migliavacca M, Moisy C, Wilkinson M, 780 
Moureaux C, Wohlfahrt G, et al. 2015. Interpreting canopy development and physiology using a 781 
European phenology camera network at flux sites. Biogeosciences 12(20): 5995-6015. 782 

Wood SN. 2017. Generalized additive models: an introduction with R: CRC press. 783 
Wu C, Niu Z, Tang Q, Huang W, Rivard B, Feng J. 2009. Remote estimation of gross primary production 784 

in wheat using chlorophyll-related vegetation indices. Agricultural and Forest Meteorology 785 
149(6): 1015-1021. 786 

Wu J, Albert LP, Lopes AP, Restrepo-Coupe N, Hayek M, Wiedemann KT, Guan K, Stark SC, 787 
Christoffersen B, Prohaska N, et al. 2016. Leaf development and demography explain 788 
photosynthetic seasonality in Amazon evergreen forests. Science 351(6276): 972-976. 789 

Wu J, Chavana-Bryant C, Prohaska N, Serbin SP, Guan K, Albert LP, Yang X, van Leeuwen WJD, Garnello 790 
AJ, Martins G, et al. 2017a. Convergence in relationships between leaf traits, spectra and age 791 
across diverse canopy environments and two contrasting tropical forests. New Phytologist 792 
214(3): 1033-1048. 793 

Wu J, Kobayashi H, Stark SC, Meng R, Guan K, Tran NN, Gao S, Yang W, Restrepo-Coupe N, Miura T, et 794 
al. 2018. Biological processes dominate seasonality of remotely sensed canopy greenness in an 795 
Amazon evergreen forest. New Phytologist 217(4): 1507-1520. 796 

Wu J, Serbin SP, Xu X, Albert LP, Chen M, Meng R, Saleska SR, Rogers A. 2017b. The phenology of leaf 797 
quality and its within-canopy variation is essential for accurate modeling of photosynthesis in 798 
tropical evergreen forests. Global Change Biology 23(11): 4814-4827. 799 

Yan D, Scott RL, Moore DJP, Biederman JA, Smith WK. 2019. Understanding the relationship between 800 
vegetation greenness and productivity across dryland ecosystems through the integration of 801 
PhenoCam, satellite, and eddy covariance data. Remote Sensing of Environment 223: 50-62. 802 

Yang H, Yang X, Heskel M, Sun S, Tang J. 2017. Seasonal variations of leaf and canopy properties 803 
tracked by ground-based NDVI imagery in a temperate forest. Scientific Reports 7(1): 1267. 804 



Yang X, Tang J, Mustard JF. 2014. Beyond leaf color: Comparing camera-based phenological metrics 805 
with leaf biochemical, biophysical, and spectral properties throughout the growing season of a 806 
temperate deciduous forest. Journal of Geophysical Research: Biogeosciences 119(3): 181-191. 807 

Zha T, Qian D, Jia X, Bai Y, Tian Y, Bourque CPA, Ma J, Feng W, Wu B, Peltola H. 2017. Soil moisture 808 
control of sap-flow response to biophysical factors in a desert-shrub species, Artemisia ordosica. 809 
Biogeosciences 14(19): 4533-4544. 810 

Zhang X, Friedl MA, Schaaf CB, Strahler AH, Hodges JCF, Gao F, Reed BC, Huete A. 2003. Monitoring 811 
vegetation phenology using MODIS. Remote Sensing of Environment 84(3): 471-475. 812 

Zhao JB, Zhang YP, Tan ZH, Song QH, Liang NS, Yu L, Zhao JF. 2012. Using digital cameras for 813 
comparative phenological monitoring in an evergreen broad-leaved forest and a seasonal rain 814 
forest. Ecological Informatics 10: 65-72. 815 

 816 


