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Abstract  13 

Incomplete understanding of the processes controlling senescence limits our ability to forecast 14 

how the timing of leaf senescence will change in coming decades. In this study, we use a 15 

hierarchical Bayesian model (HBM) in association with a 27+ year record of field observations for 16 

12 temperate deciduous tree species collected at Harvard Forest in central Massachusetts to 17 

examine how variability in bioclimatic controls affects the timing of leaf senescence. To test how 18 

general and extensible our results are over a broader biogeographic range, we used a multi-year 19 

record of land surface phenology derived from remote sensing encompassing all forested lands in 20 

New England. Results from the HBM showed that while air temperature is an important factor that 21 

influences the timing of leaf senescence, photoperiod uniformly exerts the strongest control across 22 

all 12 species. Species exhibiting the strongest dependence on photoperiod, particularly Acer 23 

species, showed low inter-annual variation and no long-term trends in the timing of leaf senescence. 24 

In contrast, species with greater dependence on air temperature, particularly Quercus species, 25 

showed statistically significant trends toward later senescence dates in response to long-term 26 

warming.  Results from analyses conducted at regional scale across all of New England using data 27 

derived from remote sensing corroborated results obtained at Harvard Forest. Specifically, relative 28 

to ecoregions dominated by Quercus species, the timing of leaf senescence in ecoregions 29 

dominated by Acer species exhibited lower interannual variability and lower correlation with year-30 

to-year variation in pre-senescence period mean air temperatures. These results suggest that 31 

forecasting how the timing of leaf senescence in temperate forests will change in the future requires 32 

species-specific understanding of how bioclimatic forcing controls the timing of leaf senescence. 33 

Keywords: leaf senescence, temperate deciduous forests, photoperiod, temperature sensitivity, 34 

Bayesian, hierarchical modeling 35 



1. Introduction 36 

The seasonality of vegetation activity influences a wide array of ecosystem functions (Bonan, 37 

2008). Hence, understanding how ecological and bioclimatic processes control vegetation 38 

phenology is critical to understanding how ecosystems will respond to future climate change 39 

(Buermann et al., 2018; Piao et al., 2019; Richardson et al., 2018). However, despite extensive 40 

efforts devoted to this topic, mechanistic understanding of what controls plant phenology remains 41 

incomplete (Delpierre et al., 2016; Zohner et al., 2016). In this context, a large proportion of 42 

phenological research has focused on the mechanisms that control the timing of leaf emergence, 43 

while understanding of the eco-physiological processes that control leaf senescence is less well-44 

developed (Chen et al., 2020; Vitasse et al., 2021; Zani et al., 2020).  45 

A key challenge in developing comprehensive understanding and models of fall phenology is 46 

that, unlike in spring, senescence is preceded by a growing season that typically spans several 47 

months. Hence, the mechanisms and processes that control leaf senescence are potentially more 48 

complex than those controlling spring phenology, which increases the challenges involved in 49 

understanding of how senescence will respond to ongoing climate change. For example, previous 50 

studies have suggested that both genetic factors (Friedman et al., 2011) and changes in bioclimatic 51 

variables throughout the growing season influence the timing of senescence (Bigler and Vitasse, 52 

2021; Chen et al., 2020; Wu et al., 2018; Y. Zhang et al., 2020). Variation in the timing of leaf 53 

senescence impacts seasonal-scale ecosystem productivity by regulating the length of growing 54 

season (Park et al., 2016; Zani et al., 2020) and nutrient status of individual trees and at the 55 

ecosystem-scale (Dox et al., 2020; Havé et al., 2017), and can also affect important ecological 56 

processes such as the timing of reproduction for many plant and animal species (Gallinat et al., 57 

2015; Renner and Zohner, 2018). Therefore, improved understanding of the processes that control 58 



leaf senescence is needed to understand how vegetation phenology will change in the coming 59 

decades and to improve forecasts of how ecosystem functions that are affected by leaf senescence 60 

will be impacted by these changes. 61 

The two bioclimatic factors that are most widely assumed to control the timing of leaf 62 

senescence are air temperature and day-length (i.e., photoperiod), both of which tend to decrease 63 

prior to leaf senescence in extra-tropical ecosystems (Fu et al., 2018; Gill et al., 2015; Keskitalo et 64 

al., 2005; Lang et al., 2019; Liu et al., 2020). As a result, most models use air temperature and 65 

photoperiod as the primary drivers of leaf senescence (Peano et al., 2021). In recent years, a variety 66 

of research has identified a suite of additional factors that may influence the timing of senescence 67 

including the rate and amount of photosynthesis prior to senescence onset (Zani et al., 2020), water 68 

stress (Peng et al., 2019; Xie et al., 2018), the timing of leaf emergence in spring (Keenan and 69 

Richardson, 2015; Peng et al., 2021), and plant and soil nutrient status (Estiarte and Peñuelas, 2015; 70 

Keskitalo et al., 2005). Further, several recent studies have reported that daily minimum and 71 

maximum air temperatures may have differing influence on the timing of leaf senescence (Meng 72 

et al., 2020; Wu et al., 2018). However, there is no current consensus regarding how environmental 73 

drivers control the onset of leaf senescence in temperate broadleaf forests.  74 

A key quandary from previous studies, that has been known for nearly a decade, is that results 75 

from lab- and field-based experimental studies that have been explicitly designed to identify 76 

phenological sensitivity to climate forcing differ from patterns observed in natural ecosystems 77 

arising from climate variability (Leuzinger et al., 2011; Primack et al., 2015; Vitasse et al., 2014; 78 

Wolkovich et al., 2012; but see Hänninen et al., 2019). Further, the limited spatial and temporal 79 

coverage of these studies, which are generally conducted at local scales with study areas less than 80 

10 km2 and time scales shorter than 10 years, is a significant limitation that inhibits their ability to 81 



provide general results. As a solution, process-based phenological models calibrated to both in-82 

situ and remote sensing-based observations of phenology have been widely used to make 83 

inferences and advance understanding of the ecological and environmental factors that control 84 

phenological events such as the start of senescence (Delpierre et al., 2009; Lang et al., 2019; Liu 85 

et al., 2020; Schaber and Badeck, 2003). Unfortunately, however, the models used in these studies 86 

include two fundamental limitations: (1) they prescribe functional relationships among forcing 87 

variables and phenological events based on incomplete understanding; and (2) the most widely-88 

used functional forms of these models use parameters that have been aggregated over time periods 89 

that span weeks-to-months (e.g., growing degree days) and do not capture short-term variability 90 

that is increasingly recognized to have a significant impact on phenological behavior (Clark et al., 91 

2014b; Moon et al., 2021b).  92 

To address both the knowledge gaps and limitations of models described above, and 93 

specifically focusing on how environmental drivers control the timing of leaf senescence in 94 

temperate forests, here we use a data-driven hierarchical Bayesian model (HBM) estimated using 95 

long-term field measurements of bioclimatic forcing and leaf senescence dates for 12 temperate 96 

deciduous tree species in New England. To compare our results against a state-of-the-art process-97 

based model, we also tested the model described by Caffarra et al. (2011), which incorporates the 98 

effects of photoperiod, air temperature, and anomalies in the timing of leaf unfolding. Using these 99 

models, we assessed their ability to explain species-specific differences in the sensitivity of fall 100 

phenology to climate forcing. To evaluate our results and conclusions at a broader geographic 101 

scale, we linked the site-level and species-specific patterns that we estimate using the HBM to 102 

regional-scale patterns and trends in the timing of senescence of temperate forests across all of 103 



New England using species density maps and large-scale records of land surface phenology from 104 

remote sensing. 105 

 106 

2. Methods and Data 107 

2.1. Field observations 108 

Phenological observations of woody plants have been recorded since 1990 to the present at the 109 

Harvard Forest, a long-term ecological research site located in Petersham Massachusetts (42.53° 110 

N, 72.18° W; Fig. S1) (O’Keefe, 2019). Each of the trees included in the survey is located within 111 

1.5 km of the Harvard Forest headquarters at elevations between 335 and 365 m above sea level. 112 

For fall phenology, weekly observations of percent leaf coloration and percent leaf fall are 113 

recorded from the beginning of September to the end of leaf fall each year. In this study, we used 114 

data characterizing the timing of leaf coloring for 12 species, all of which have at least 20 years of 115 

observations over the 28 year period from 1992-2019 (Acer pensylvanicum (ACPE), Acer rubrum 116 

(ACRU), Acer saccharum (ACSA), Amelanchier alnifolia (AMAF), Betula alleghaniensis 117 

(BEAL), Betula lenta (BELE), Betula papyrifera (BEPA), Fraxinus americana (FRAM), Prunus 118 

serotina (PRSE), Quercus alba (QUAL), Quercus rubra (QURU), and Quercus velutina (QUVE); 119 

Table S1). Leaf coloring date is defined as the day of year (DOY) on which 50% of the leaves 120 

have changed color on an individual tree. Typically, three to five individuals of each species are 121 

observed in each year, with different individuals observed in different years (Table S2). Our 122 

analysis also used budburst date for the same trees, which is defined as the DOY when 50% of the 123 

buds on the tree have recognizable leaves emerging from them (see Section 2.3). Sub-weekly 124 

observations would be useful to help resolve rapidly changing phenological processes (e.g., Gao 125 

et al., 2017; Keenan et al., 2014). However, numerous studies have used these data to estimate 126 



models and analyze trends in phenology at Harvard Forest (e.g., Archetti et al., 2013; Dunn et al., 127 

2021; Richardson et al., 2006), which demonstrates that these data provide a sound basis for 128 

phenological studies. Measurements of carbon fluxes and daily meteorology were obtained from 129 

the Harvard Forest Environmental Monitoring Station (EMS) eddy covariance tower (Munger and 130 

Wofsy, 2020). 131 

 132 

2.2. Modeling long-term trends in leaf senescence 133 

In the first element of our analysis, we estimated species-specific long-term trends in the timing 134 

of leaf senescence. To do this, we used the non-parametric Theil-Sen estimator to estimate the 135 

trend for each tree species (Sen, 1968), and distinguished species with statistically significant 136 

trends (p < 0.05) from those not showing trends using the Mann-Kendall test (Mann, 1945). We 137 

also estimated long-terms trends in air temperatures measured at the EMS tower using the same 138 

approach for each of annual, late summer (from August to October; i.e., directly prior to leaf 139 

senescence), and spring (from March to May) time periods. 140 

 141 

2.3. Hierarchical Bayesian model of leaf senescence 142 

To estimate the sensitivity of leaf senescence timing to bioclimatic controls, we used a 143 

hierarchical Bayesian model (HBM) estimated using the field observations described in Section 144 

2.1. The original form of this model was proposed by Clark et al. (2014b, 2014a), and Moon et al. 145 

(2021b) recently adapted it to model springtime phenology at large spatial scale using remote 146 

sensing. The HBM has two main advantages for the analysis we describe here. First, because the 147 

relative importance among bioclimatic controls that affect the timing of senescence is estimated 148 



by data itself, the HBM does not suffer from issues related to model misspecification related to 149 

prescribed functional relationships among control variables that are embedded in conventional 150 

process-based models (see Peano et al. (2021) and Section 2.4). Second, the HBM is estimated 151 

using daily data and so is able to capture the continuous response of phenological processes to 152 

both short- and long-term variation in environmental forcing (Clark et al., 2014b, 2014a; Moon et 153 

al., 2021b). 154 

The HBM uses a state-space framework that includes an unobserved latent state h to 155 

continuously track the response of phenological processes to environmental forcing at daily time 156 

step. In this framework, changes in the latent state (h) are computed as: 157 

ℎ𝑑+1 = ℎ𝑑 + 𝛿ℎ𝑑 (1) 

where ℎ𝑑 is the latent state on day d. 𝛿ℎ𝑑 is the change in h from day d to day d + 1, which is 158 

estimated as: 159 

𝛿ℎ𝑑 = {  
(𝑋𝑑𝛽)(1 − ℎ𝑑/ℎ𝑚𝑎𝑥),     𝛿ℎ𝑑 ≥ 0

0,                                               𝛿ℎ𝑑 < 0
 (2) 

where 𝑋𝑑  is a matrix of predictors that includes daily meteorological forcing variables (air 160 

temperature, photoperiod, vapor pressure deficit (VPD), and photosynthetically active radiation 161 

(PAR)), along with species-specific budburst dates and early-season gross primary productivity 162 

(GPP) derived from eddy covariance measurements at the Harvard Forest EMS tower. Here, we 163 

define early-season GPP as the accumulated daily GPP from May 1 to July 31, which nominally 164 

corresponds to the first half of the growing season. 𝛽 is a vector of estimated model coefficients 165 

(i.e., posterior distributions from the model). Note that because the input data (𝑋𝑑) are normalized 166 

(i.e., to have a mean of 0 and a standard deviation of 1 for each of the input variables) prior to 167 



model estimation, the magnitudes of each model coefficient, which reflect the dependence of 168 

senescence development on each input variable (i.e., 𝛽), are independent of the magnitude and 169 

units of each input variable (and hence can be compared). ℎ𝑚𝑎𝑥 is the final state value of h, and is 170 

prescribed to be 100.  171 

To link the continuous scale of the latent state h to a form that identifies discrete phenological 172 

events (i.e., recorded dates of leaf senescence), we use a logit transformation: 173 

𝑙𝑜𝑔𝑖𝑡(𝑃𝑑) = 𝜅 + 𝜆 × ℎ𝑑 (3) 

where 𝑃𝑑 is the probability that leaf senescence occurs on day d, and κ and λ are the intercept and 174 

slope of the transformation, respectively. Because the leaf senescence date is defined to be a 175 

discrete event, 𝑃𝑑 follows a Bernoulli distribution: 176 

𝑌𝑑  ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑃𝑑) (4) 

where 𝑌𝑑 indicates whether leaf senescence has occurred on day d (i.e., 1 or 0). 177 

 178 

2.4. Model estimation and evaluation 179 

To estimate the HBM, we used the median date of leaf senescence in each year from 180 

observations of 3 to 5 individual trees, which yielded a 28-year time series of leaf senescence dates 181 

for each species except QURU, which had a 27-year record (Table S2). Using these data, we 182 

estimated the HBM for six different sets of bioclimatic variables with two main goals: (1) to 183 

quantify the relative importance of each variable in controlling in the timing of leaf senescence; 184 

and (2) to assess whether daily minimum and maximum air temperatures have distinct roles in 185 

controlling the timing of leaf senescence relative to mean daily temperature (see Meng et al., 2020; 186 



Wu et al., 2018). To this end, we estimated six distinct HBMs using different combinations of (1) 187 

daily mean air temperature, (2) daily minimum air temperature, (3) daily maximum air temperature, 188 

(4) daily minimum and maximum air temperatures, and (5) daily mean air temperature and daily 189 

temperature range, along with photoperiod, VPD, PAR, species-specific budburst dates, and early-190 

season GPP as predictor variables (hereafter, models M1-M5, respectively). Further, to assess the 191 

role and importance of photoperiod in controlling the timing of leaf senescence, we estimated the 192 

HBM using daily mean air temperature with all other variables, excluding photoperiod (model 193 

M6). Each models’ performance was evaluated based on the root-mean-square error (RMSE), 194 

mean absolute error (MAE), and deviance information criterion (DIC). Posterior sampling was 195 

performed using the ‘R2jags’ package in R (Su and Yajima, 2015), with 10,000 iterations and 196 

3,000 burn-in periods for each model.  197 

In addition, to evaluate the HBM’s performance against a state-of-the-art of process-based leaf 198 

senescence model, we used the Harvard Forest data set to estimate the model described by Caffarra 199 

et al. (2011)  (hereafter CSM). We chose the CSM for this comparison based on recent results from 200 

Liu et al., (2020), who used multiple widely used process-based leaf senescence models in 201 

association with over 19,000 site-years of in-situ phenological records covering four temperate 202 

deciduous tree species in Europe to show that the CSM performed best among the models they 203 

used, especially in capturing interannual variation in leaf senescence dates. The CSM hypothesizes 204 

that the progression of leaf senescence, which is defined as the dormancy induction state 𝐷𝑆, is 205 

negatively related to both air temperature and photoperiod via sigmoidal relationships.   206 

Specifically, daily accumulation of 𝐷𝑆 is controlled by air temperature and photoperiod as follows: 207 



𝐷𝑆(𝑑) = ∑
1

1 + 𝑒𝑎𝐷(𝑇(𝑑)−𝑏𝐷)
×

1

1 + 𝑒𝑐𝐷(𝑃(𝑑)−𝑃𝑐𝑟𝑖𝑡)

𝑑

𝑑0

 
(5) 

where 𝑑0  is the start date of dormancy induction, which we prescribed as September 1st, and 208 

𝑎𝐷, 𝑏𝐷, and c𝐷 are model coefficients. Leaf senescence occurs when the accumulated forcing (i.e., 209 

𝐷𝑆(𝑑)) reaches a critical threshold 𝐷𝑐𝑟𝑖𝑡 , which is a function of the anomaly in springtime 210 

phenology 𝑆𝑎: 211 

𝐷𝑐𝑟𝑖𝑡 = 𝛼 + 𝛾 × 𝑆𝑎 (6) 

where 𝛼 and 𝛾 are parameters regulating the effects of changes in springtime phenology. For this 212 

study, we used the budburst dates collected at Harvard Forest as a proxy of springtime phenology. 213 

Parameters were optimized to minimize the RMSE in predicted versus observed senescence dates 214 

for each of the 12 species following the method described by Nelder and Mead (1965). 215 

Lastly, to assess how the relative dependence on photoperiod versus air temperature (i.e., the 216 

two dominant factors controlling in the timing of leaf senescence; see the Results) estimated by 217 

the HBM affect year-to-year variation in the timing of leaf senescence, we calculated the difference 218 

between the posterior distributions of photoperiod and air temperature (i.e., 𝛽P − 𝛽T) for each 219 

species (n = 12), and used standard major axis regression to assess the magnitude of covariance 220 

between 𝛽P − 𝛽T and interannual variation in leaf senescence dates.  221 

 222 

2.5. Remote Sensing Data 223 

To expand and generalize our analysis to regional scale, we used Version 1.1 of the Multi-224 

Source Land Surface Phenology product (MSLSP30NA) (Friedl, 2021). This data product 225 



provides yearly observations of phenophase transition dates at 30 m spatial resolution for North 226 

America for 2016-2020. Using time series of the two-band enhanced vegetation index (EVI2; Jiang 227 

et al., 2008) estimated from Harmonized Landsat 8 and Sentinel-2 (HLS) imagery (Claverie et al., 228 

2018), the MSLSP30NA product retrieves the timing of seven phenophase transition dates for each 229 

growing season at each 30 m pixel (Bolton et al., 2020). To identify the timing of leaf senescence 230 

we used the MSLSP30NA mid-greendown date, which corresponds to the DOY when EVI2 time 231 

series pass below 50% of the EVI2 amplitude during the greendown phase. More specifically, we 232 

used mid-greendown dates for all deciduous broadleaf or mixed forest pixels in New England 233 

according to the 2016 USGS National Land Cover Database (USGS and Rigge, 2019), which 234 

includes 40 Level IV EPA ecoregions (Fig. S1).     235 

We used the MSLSP30NA data set to perform two analyses designed to assess whether 236 

species-specific results obtained from in-situ observations at Harvard Forest generalize at regional 237 

scale. First, because the remote sensing time series is short and it is computationally infeasible to 238 

run the HBM at every pixel in New England, we examined the relationship between anomalies in 239 

the timing of senescence dates and mean air temperature in the pre-senescence period, which  we 240 

defined as DOY 231 to 270 based on results from the HBM at Harvard Forest (Fig. S2). Second, 241 

we calculated the standard deviation (SD) in the timing of senescence at each 30-m pixel across 242 

the available time series for all forested pixels in New England. Using these data, we estimated a 243 

multiple linear regression using the basal area for Acer and Quercus species in each ecoregion as 244 

independent variables (i.e., the total basal area for all three species for each of Acer and Quercus 245 

in each EPA ecoregion) and the standard deviation of senescence dates across years in each 246 

ecoregion as the dependent variable. For the species-specific basal areas, we used a gridded dataset 247 



provided by the USDA Forest Service derived from satellite imagery in conjunction with extensive 248 

field plot data providing tree species basal area (Wilson et al., 2013). 249 

 250 

3. Results 251 

Since 1992, annual mean air temperature at Harvard Forest has increased by 0.034 ºC per year 252 

(p = 0.035), resulting in a total increase of 0.95 ºC over the past 30 years (Fig. S3a). During late 253 

summer, when the impact of changes in bioclimatic variables on the timing of leaf senescence is 254 

most pronounced (Fig S2), the warming trend was even stronger (0.059 ºC per year; Fig. S3b). 255 

Inspection of long-term trends in the timing of senescence in response to this warming indicates 256 

that the response of trees was species-specific (Fig. 1). Specifically, four of the twelve species 257 

included in our analysis showed statistically significant trends towards later senescence onset dates 258 

(QUVE, QURU, PRSE, and ACPE (see Fig. 1 for full species names); p-value < 0.05), with trends 259 

that range from 0.18 days per year to 0.30 days per year, corresponding to a total shift of 5.0-8.4 260 

days towards later onset of senescence dates over the 28-year study period. Among the species 261 

showing non-significant trends, five species (ACRU, BEAL, BELE, PRSE, and QUAL) showed 262 

positive trends (i.e., later senescence), two species (ACSA and BEPA) showed negative trends, 263 

and one species (AMAF) showed no trend. These results identify species-specific responses to 264 

identical bioclimatic forcing over three decades,.  265 

 266 



 267 

Fig. 1.  Leaf coloration dates at Harvard Forest from 1992 to 2019. Solid green lines and shaded 268 

areas represent the annual mean and standard deviation in leaf coloration dates, respectively. Black 269 

dashed lines show the long-term trend (based on the Theil-Sen estimator) in days per year. APCE: 270 

Acer pensylvanicum; ACRU: Acer rubrum; ACSA: Acer saccharum; AMAF: Amelanchier 271 

alnifolia; BEAL: Betula alleghaniensis; BELE: Betula lenta BEPA: Betula papyrifera; FRAM: 272 

Fraxinus americana; PRSE: Prunus serotina; QUAL: Quercus alba; QURU: Quercus rubra; 273 

QUVE: Quercus velutina. 274 

 275 

We tested six versions of the HBM using different combinations of bioclimatic predictor 276 

variables (Table 1). Overall, RMSEs and MAEs were low (ranging from 2.84 to 5.15 days and 277 



from 2.21 to 4.14 days, on average, respectively), suggesting that the models realistically capture 278 

the eco-physiological response of deciduous trees to bioclimatic forcing during the leaf senescence 279 

phase. Among the different models, M5, which uses daily mean air temperature and daily air 280 

temperature range as predictors along with all the other variables, exhibited the best performance 281 

across all three model performance metrics. It’s worth noting that model M6, which does not 282 

include photoperiod as a predictor, showed substantially worse predictive accuracy relative to the 283 

other five models. Scatterplots showing modeled versus observed leaf senescence dates provide 284 

visual corroboration that the HBM accurately predicts the observed timing of leaf senescence 285 

across all 12 species and demonstrates that the HBM predicts interannual variation in the timing 286 

of senescence (e.g., QURU) with substantially more accuracy and realism than the CSM for all 12 287 

species (Fig. 2; Table S3). Based on these results, hereafter we use model M5 for the rest of our 288 

analyses. 289 

 290 

Table 1 Hierarchical Bayesian model performance statistics. M1-M6 refer to models using 291 

different sets of predictors: models M1-M5 use daily mean air temperature, daily minimum air 292 

temperature, daily maximum air temperature, daily minimum and maximum air temperatures, and 293 

daily mean air temperature and daily temperature range as predictor variables, along with 294 

photoperiod, vapor pressure deficit, photosynthetically active radiation, species-specific budburst 295 

dates, and early-season gross primary productivity; model M6 uses daily mean air temperature and 296 

includes all other variables except photoperiod. RMSE: root-mean-square error; MAE: mean 297 

absolute error; DIC: deviance information criterion. See Fig. 1 for definitions of species acronym. 298 

 299 



Species 
 RMSE  MAE  DIC 
 M1 M2 M3 M4 M5 M6  M1 M2 M3 M4 M5 M6  M1 M2 M3 M4 M5 M6 

ACPE  2.76 2.38 3.21 2.32 2.35 4.87  2.04 1.86 2.29 1.82 1.79 4.04  284 256 329 252 251 525 
ACRU  2.54 2.55 2.83 2.61 2.48 5.57  1.89 1.93 2.11 1.96 1.93 4.64  285 278 298 280 281 592 
ACSA  3.83 3.86 3.96 3.77 3.90 6.43  3.11 3.04 3.29 2.96 3.11 5.14  415 417 416 420 419 638 
AMAF  3.15 3.23 3.23 3.27 3.08 5.22  2.46 2.86 2.46 2.61 2.46 4.21  335 343 344 342 336 534 
BEAL  2.19 2.04 2.48 2.04 1.98 4.77  1.79 1.64 2.07 1.68 1.57 4.00  234 209 264 211 217 478 
BELE  2.10 2.35 2.35 2.21 2.08 4.40  1.57 1.61 1.96 1.61 1.54 3.57  241 249 261 246 245 476 
BEPA  4.90 4.62 5.04 4.80 4.73 6.18  3.89 3.61 4.07 3.61 3.54 4.82  502 486 519 489 493 655 
FRAM  3.52 3.51 3.71 3.52 3.45 6.32  2.96 2.93 3.04 2.86 2.75 4.75  385 365 395 389 375 622 
PRSE  2.57 2.57 2.71 2.54 2.58 5.07  2.18 2.04 2.18 2.04 2.07 3.86  278 318 293 333 275 516 
QUAL  2.66 2.92 2.76 2.72 2.66 4.85  1.93 2.18 2.14 2.04 1.93 3.89  291 306 303 293 293 494 
QURU  2.59 2.43 2.69 2.53 2.45 3.98  2.04 1.96 2.15 2.04 2.00 3.33  263 257 277 260 263 403 
QUVE  2.45 2.46 2.62 2.41 2.41 4.13  1.79 1.86 2.07 1.68 1.82 3.43  272 347 285 366 272 428 

Average  2.94 2.91 3.13 2.90 2.84 5.15  2.30 2.29 2.49 2.24 2.21 4.14  315 319 332 323 310 530 

 300 

 301 

 302 

Fig. 2. Observed versus predicted leaf senescence dates across 12 deciduous tree species from (a) 303 

the Hierarchical Bayesian Model of leaf senescence and (b) the CSM model, and (c) comparison 304 

of RMSE’s from each model. See Fig. 1 for definitions of species acronyms. 305 

 306 



Results from the HBM indicate that air temperature and photoperiod are the two most 307 

important factors that control the timing of senescence (Fig. 3). Significantly, however, and 308 

consistent with results presented above examining long term trends in the timing of senescence, 309 

HBM results also show that the relative dependence of senescence on each of these controls is 310 

species-specific. Negative dependences indicate that decreases in the forcing variable prior to leaf 311 

senescence increase the probability of senescence. Hence, stronger negative dependence on air 312 

temperature and photoperiod relative to other variables reflect the fact that seasonal variation in 313 

air temperature and photoperiod (i.e., cooling and shorter day-length, respectively) are the 314 

dominant factors that control the timing of leaf senescence. Relative to air temperature and 315 

photoperiod, the impact of the other variables included in the model (daily range of air temperature, 316 

VPD, PAR, budburst dates, and spring GPP) is modest. In this context, two key features are worth 317 

noting. First, across all 12 species, dependence on photoperiod is stronger than dependence on air 318 

temperature. Second, even though its overall effect is quite modest, the timing of leaf senescence 319 

exhibits mostly positive dependence on daily air temperature range, suggesting that larger 320 

amplitudes in daily air temperature promote earlier leaf senescence dates. 321 

 322 



 323 

Fig. 3. Dependence of leaf senescence date on (a) daily mean air temperature, (b) photoperiod, (c) 324 

daily range in air temperature, (d) daily mean vapor pressure deficit, (e) daily mean 325 

photosynthetically active radiation, (f) budburst dates, and (g) early-season gross primary 326 

productivity. Note that the magnitude of dependence in each column is different and decreases 327 

from left to right. See Fig. 1 for definitions of species acronym.  328 

 329 

Covariation between the magnitude of interannual variation in leaf senescence dates and 330 

differences in the magnitude of photoperiod (𝛽
P
) and air temperature (𝛽

T
) dependence shows 331 

strong correlation (Fig. 4). This result provides additional empirical evidence that stronger species-332 

specific dependence on photoperiod (air temperature) leads to smaller (larger) interannual 333 

variation in leaf senescence dates. For example, on average, Acer species, which show larger 334 

photoperiod dependence compared to other species, exhibit lower magnitudes of interannual 335 

variation in senescence dates, whereas Quercus species, which show the weakest dependence on 336 



photoperiod (i.e., relatively greater dependence on temperature compared to Acer species), exhibit 337 

larger magnitudes of interannual variation. 338 

 339 

Fig. 4. Relationship between interannual variation in the timing of leaf senescence and the 340 

difference between photoperiod (𝛽
P
) and air temperature (𝛽

T
) dependence estimated by the HBM. 341 

The points and horizontal bars present the median  one standard deviation, respectively, in the 342 

posterior distributions. The dashed line shows the standard major axis regression (SMA). SMA 343 

slope (𝛽
1
) and intercept (𝛽

0
) coefficients are provided with 95% confidence intervals. See Fig. 1 344 

for definitions of species acronyms.  345 

 346 

Land surface phenology data from remote sensing capture geographic patterns in the timing 347 

of leaf senescence at regional scale that are consistent with species-level patterns at Harvard Forest 348 

shown in Fig. 4 (Fig. 5). Specifically, eco-regions in New England where Acer species are more 349 

abundant show lower interannual variability in the timing of leaf senescence relative to areas 350 

dominated by Quercus species (Figs. 5a and S4a). Further, Quercus-dominant regions showed 351 



greater sensitivity to pre-senescence period mean air temperature (i.e., stronger dependence on air 352 

temperature), while Acer-dominant regions showed weaker sensitivity (Figs. 5b and S4b). 353 

Reinforcing this, results from a multiple linear regression using the basal area of Acer and Quercus 354 

species as predictors explained 63% of interannual variation in the timing of leaf senescence across 355 

the 40 EPA Level IV ecoregions in New England (Fig. 5d). 356 

 357 

Fig. 5. Geographic variation in (a) the standard deviation (SD) of mid-greendown dates derived 358 

from 30 m spatial resolution HLS imagery from 2016-2020, (b) sensitivity to pre-senescence 359 

period mean air temperature, and (c) basal area for Acer and Quercus species. Panel (d) shows 360 

results from a multiple linear regression demonstrating that 63% of geographic variation in the 361 

magnitude of ecoregion-scale interannual variation in senescence onset dates from remote sensing 362 

is explained by the basal area of Acer and Quercus species in each EPA Level IV ecoregion (n = 363 

40).  364 

 365 



4. Discussion 366 

4.1. Bioclimatic controls on leaf senescence 367 

 Consistent with previous studies, results from this work support the argument that air 368 

temperature and photoperiod are the dominant factors that control the timing of leaf senescence 369 

(Archetti et al., 2013; Fracheboud et al., 2009; Gill et al., 2015; Lang et al., 2019; Liu et al., 2020; 370 

Vitasse et al., 2021; S. Zhang et al., 2020). However, by quantifying the relative importance among 371 

a large suite of bioclimatic controls using a data-driven HBM, we demonstrate that the relative 372 

influence of photoperiod and air temperature far exceed the influence of all other bioclimatic 373 

controls, and that photoperiod was the most influential control across all 12 deciduous tree species 374 

considered in this study. Indeed, excluding photoperiod as a predictor in the HBM substantially 375 

degraded the accuracy of model predictions (models M1-M5 versus model M6 in Table 1). 376 

Moreover, given the structure of the HBM, which tracks continuous development of leaf 377 

senescence at daily time step, our results indicate that the influence of photoperiod on the timing 378 

of senescence occurs over an extended period prior to senescence onset. Stated another way, 379 

photoperiod exerts continuous forcing that acts in concert with other forcing variables (primarily 380 

temperature) and does not simply act as a trigger that initiates senescence after a species-specific 381 

threshold is reached. Recent studies using process-based models incorporating a continuous effect 382 

of photoperiod (with joint control from air temperature) have reported that these models perform 383 

better than process-based models that use photoperiod as a cue (Lang et al., 2019; Liu et al., 2020), 384 

which supports our findings.  385 

More generally, by using the HBM to test different sets of bioclimatic controls, results from 386 

this study provide useful insights to recent debates regarding the representation of thermal forcing 387 

in senescence models (e.g., the role of mean versus minimum versus maximum air temperature) 388 



(Meng et al., 2020; Wu et al., 2018). Specifically, results from the HBM show that daily mean air 389 

temperature and the daily range in air temperatures is the most effective combination of thermal 390 

forcing variables for predicting the timing of senescence (Table 1), and that larger amplitudes in 391 

daily air temperature lead to earlier leaf senescence (Fig. 3c). These results may support the 392 

argument that minimum and maximum air temperatures have distinct roles in controlling the 393 

timing of leaf senescence (specifically, that higher maximum temperatures lead to earlier leaf 394 

senescence, while higher daily minimum temperature lead to later leaf senescence; Wu et al., 2018). 395 

However, given that the overall impact of temperature range is relatively modest (as well as the 396 

high correlation between daily minimum and maximum temperature), these results should be 397 

viewed as a justification for more research rather than definitive evidence.   398 

Significantly, outside of photoperiod and air temperature, none of the forcing variables 399 

consistently exerted a substantial influence on the timing of senescence. The dependence of daily 400 

temperature range and daily mean VPD was statistically different from zero (i.e., more than 95% 401 

of the sampled model coefficients excluded zero; Fig. 3) for only three species in each case (ACPE, 402 

BEAL, BEPA and ACPE, BELA, QUVE, respectively), and daily mean PAR was not statistically 403 

different from zero for any of the twelve species. Three species (AMAF, BEAL, and PRSE) 404 

exhibited negative dependence on the timing of budburst (i.e., earlier budburst leads to earlier 405 

senescence) and five species (ACSA, AMAF, BEPA, FRAM, and QUAL) exhibited dependence 406 

on early season GPP, with the first four of these species exhibiting positive coefficients (i.e., higher 407 

early season GPP leading to earlier leaf senescence). But, for all these latter cases, the magnitude 408 

of dependence was small. Hence, outside of photoperiod and daily mean air temperature, the 409 

sensitivity of leaf senescence to other bioclimatic forcing variables was either non-significant, or 410 

very modest and species-specific. In this context, results from the HBM do not support results 411 



from recent studies reporting that early-season GPP (Zani et al., 2020), springtime phenology 412 

(Keenan and Richardson, 2015), and VPD (Peng et al., 2021) are important controls on the timing 413 

of leaf senescence. 414 

 415 

4.2. Implications for land surface models 416 

Phenology exerts first-order control on a wide array of ecological functions (e.g., 417 

photosynthesis and transpiration) and surface properties (e.g., albedo) that strongly influence water, 418 

energy, and carbon exchange in land surface models (Moon et al., 2020; Piao et al., 2019; Xu et 419 

al., 2020; Young et al., 2021). Despite this, current models include only very crude (and as a result 420 

unrealistic) representation of fall phenology (Richardson et al., 2012). Most land surface models 421 

(LSMs) use air, soil, or surface temperature as a primary driver, in conjunction with secondary 422 

variables such as day-length (i.e., photoperiod), soil moisture, precipitation, and/or carbon balance, 423 

to simulate the timing of leaf senescence (Peano et al., 2021; Richardson et al., 2012). However, 424 

results from this study indicate that photoperiod is uniformly the strongest factor controlling the 425 

timing of leaf senescence, at least in temperate deciduous forests (Figs. 3 and 4). This mis-426 

parameterization almost certainly explains why current LSMs simulate the timing of senescence 427 

so poorly. Moreover, the lower predictive power of the CSM compared to the HBM, especially in 428 

capturing interannual variation in the timing of leaf senescence (Fig. 2), implies that current 429 

process-based leaf senescence models do not realistically represent the nature and timing of leaf 430 

senescence processes. Given this, results from this work suggest that integration of data-driven 431 

phenology models, which are able to accurately represent the role of photoperiod, is a promising 432 

approach for triggering leaf senescence in the next generation of LSMs that has the potential to 433 



substantially benefit simulations of water, energy and carbon fluxes in these models (Reichstein et 434 

al., 2019).  435 

A related conclusion, which also has substantial implications for representation of phenology 436 

in LSMs, is that even though all the trees at Harvard Forest experienced the same bioclimatic 437 

forcing and changes therein (i.e., warming over the last 30 years (Fig. S3)), individual species 438 

responded differently from one another. Specifically, we showed that species-specific dependence 439 

on bioclimatic controls among the 12 species examined resulted in divergent responses to climate 440 

change over nearly three decades (Fig. 1). Further, using regional-scale land surface phenology 441 

data along with stand-level species composition maps, we demonstrated that results obtained at 442 

Harvard Forest (i.e., that interannual variation and sensitivity to temperature and photoperiod in 443 

the timing of leaf senescence are species-specific characteristics (Fig. 5)) were robust at regional 444 

scale. Given that most LSMs classify vegetation into plant functional types and then parameterize 445 

phenology sub-models according to plant functional type, our study suggests that this approach 446 

may introduce a substantial source of model error in LSM simulation results. Hence, integrating 447 

data-driven phenology sub-models and embracing species composition maps using finer spatial 448 

satellite imagery such as HLS and perhaps PlanetScope (c.f., Hemmerling et al., 2021; Moon et 449 

al., 2021a) may provide a useful basis for improving LSM representation of fall phenology, and 450 

by extension, LSM-based simulation of water, carbon and energy exchange. 451 

 452 

5. Conclusions 453 

In this study, we assessed how interannual variability in bioclimatic controls affects the timing 454 

of leaf senescence in temperate deciduous forests. To do this, we used a data-driven hierarchical 455 



Bayesian model calibrated to nearly three decades of species-specific field measurements of leaf 456 

coloration dates for 12 temperate deciduous tree species in New England. To expand and test the 457 

generality of our results, we used land surface phenology time series at 30 m spatial resolution 458 

derived from remote sensing in combination with species composition maps to show that results 459 

obtained at a single site (Harvard Forest) are consistent with the response of senescence to 460 

bioclimatic forcing at regional scale. Our results identify three important implications for 461 

understanding and modeling the timing of leaf senescence in temperate deciduous forests. First, 462 

photoperiod was uniformly more important than air temperature in controlling the timing of leaf 463 

senescence in all 12 deciduous tree species that we examined in this study. Second, the data-driven 464 

HBM outperformed the more traditional process-based CSM, especially in capturing interannual 465 

variation in the timing of leaf senescence, which reinforces the dominant role of photoperiod. Third, 466 

phenological responses to long-term trends in air temperatures were species-specific. In particular, 467 

species exhibiting stronger photoperiod dependence showed lower inter-annual variation and no 468 

trend in the timing of leaf senescence in response to the warming over the last 30 years. In contrast, 469 

species showing stronger air temperature dependence showed delayed trends in the timing of 470 

senescence that are consistent with a response to warming. Together, these results suggest that 471 

accurate forecasting of how the timing of leaf senescence will respond to future climate change 472 

requires that models account for how bioclimatic factors control the timing of leaf senescence at 473 

the species-level. Data-driven approaches such as the HBM used in this study are promising tools 474 

not only for improving models to predict the timing of leaf senescence, but more generally, for 475 

improving the representation of phenology in land surface models. 476 

 477 
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Supporting Information 493 

Table S1. Species information and acronyms. 494 

Species code Scientific name Common name Number of individual trees  
used over the study period 

ACPE Acer pensylvanicum Striped maple 4 
ACRU Acer rubrum Red maple 5 
ACSA Acer saccharum Sugar maple 4 
AMAF Amelanchier alnifolia Shadbush 3 
BEAL Betula alleghaniensis Yellow birch 3 
BELE Betula lenta Black birch 3 
BEPA Betula papyrifera Paper birch 8 
FRAM Fraxinus americana White ash 8 
PRSE Prunus serotina Black cherry 4 
QUAL Quercus alba White oak 5 
QURU Quercus rubra Red oak 4 
QUVE Quercus velutina Black oak 6 

 495 

 496 

  497 



Table S2. Number of individual observations for each species in each year. 498 

           Species  
  Year ACPE ACRU ACSA AMAF BEAL BELE BEPA FRAM PRSE QUAL QURU QUVE 

1992 3 5 1 3 3 3 1 5 2 2 - 1 
1993 4 5 3 3 3 3 4 5 3 3 4 4 
1994 4 5 3 3 3 3 4 5 3 3 4 4 
1995 4 5 3 3 3 3 4 4 3 3 4 4 
1996 4 5 3 3 3 3 4 4 3 3 4 4 
1997 4 5 3 3 3 3 4 4 3 3 4 4 
1998 4 5 3 3 3 3 4 4 3 3 4 4 
1999 4 5 3 3 3 3 4 4 3 3 4 4 
2000 4 5 3 3 3 3 4 4 3 3 4 4 
2001 4 5 3 3 3 3 4 4 3 3 4 4 
2002 4 5 3 3 3 3 4 4 3 3 4 4 
2003 4 5 3 3 3 3 4 4 3 3 4 4 
2004 4 5 3 3 3 3 4 4 3 3 4 4 
2005 4 5 3 3 3 3 4 4 3 3 4 4 
2006 4 5 3 3 3 3 4 4 3 3 4 4 
2007 4 5 2 3 3 3 4 3 3 3 4 4 
2008 4 5 3 3 3 3 4 4 3 3 4 4 
2009 4 5 3 3 3 3 4 4 3 3 4 4 
2010 4 5 3 3 3 3 4 4 3 3 4 4 
2011 4 5 3 3 3 3 4 4 3 3 4 4 
2012 4 5 3 3 3 3 3 4 3 3 4 4 
2013 4 5 3 3 3 3 4 4 3 3 4 4 
2014 4 5 3 3 3 3 4 3 3 3 4 4 
2015 4 5 3 3 3 3 4 4 3 3 4 4 
2016 4 5 3 3 3 3 3 4 3 3 4 4 
2017 4 5 3 3 3 3 3 4 3 3 4 3 
2018 4 5 3 3 3 3 4 4 3 3 4 4 
2019 4 5 3 3 3 3 4 4 3 3 4 4 

 499 

  500 



Table S3. Process-based model parameters and performance versus HBM. 501 

Species code 
 CSM Model Parameters  AIC  RMSE 
 𝑎𝐷 𝑏𝐷 𝑐𝐷 𝑃𝑐𝑟𝑖𝑡  𝛼 𝛾  HBM CSM  HBM CSM 

ACPE  1.10 20.31 9.59 12.44 18.75 0.12  73.74 88.18  2.65 3.76 
ACRU  1.58 20.65 10.08 12.80 18.16 0.06  72.34 79.45  2.62 3.22 
ACSA  0.61 19.61 10.51 12.44 18.78 0.11  94.68 94.82  3.95 4.23 
AMAF  0.99 19.95 9.86 12.82 19.06 0.06  81.14 86.20  3.32 3.63 
BEAL  0.82 19.65 9.66 12.91 19.46 0.08  62.05 63.66  1.81 2.43 
BELE  1.23 20.21 10.01 12.52 18.32 0.10  60.34 70.42  2.22 2.74 
BEPA  1.61 20.48 9.84 12.62 18.56 -0.03  106.99 108.42  5.10 5.40 
FRAM  0.98 20.05 9.90 12.95 19.34 0.01  88.72 100.64  3.58 4.70 
PRSE  0.81 20.02 9.92 12.29 19.52 0.22  70.26 78.77  2.62 3.18 
QUAL  1.19 19.97 9.86 12.44 18.77 0.22  72.77 91.06  2.85 3.96 
QURU  0.81 20.84 9.81 11.94 19.25 0.01  68.46 81.51  2.37 3.49 
QUVE  0.95 20.09 9.71 12.31 19.55 0.13  69.15 86.20  2.54 3.63 

Average  1.06 20.15 9.90 12.54 18.96 0.09  76.72 85.78  2.97 3.70 

 502 

CSM: Caffarra’s model; HBM: Hierarchical Bayesian model; 𝑃𝑐𝑟𝑖𝑡 is a threshold for day-length;  503 

𝛼 and 𝛾 are parameters regulating the effects of changes in spring leaf unfolding date on leaf 504 

senescence date; AIC: Akaike information criterion. 505 

  506 



 507 

 508 

Fig. S1.  Map of the study area showing the location of Harvard Forest. Black polygons show the 509 

Level IV EPA ecoregions and the background is land cover from the USGS National Land Cover 510 

Database (USGS and Rigge, 2019) in 2016. 511 
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 513 

Fig. S2. Solid red lines and shaded areas represent the mean and standard deviation in time series 514 

of the latent state across 28 years, respectively. The horizontal arrows identify the time period 515 

when phenological development (i.e., leaf senescence) is affected by bioclimatic forcing, which 516 

ranges from 21 to 61 days with the mean of 42 days across the species. 517 
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 519 

Fig. S3. Air temperature at Harvard Forest for (a) annual, (b) late summer (from August to 520 

October), and (c) spring (from March to May). Dotted lines show the long-term trend based on 521 

Theil-Sen. 522 
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 524 

Fig. S4. Boxplots for (a) the standard deviation (SD) of mid-greendown dates (50PCGD) derived 525 

from 30 m spatial resolution HLS imagery from 2016-2020 and (b) sensitivity to pre-senescence 526 

period mean air temperature. For each panel, ‘Acer’ represent distribution for pixels where the 527 

basal area for Acer species is greater than 20 ft2/ac and those for Quercus species is less than 10 528 

ft2/ac; while ‘Quercus’ represent distribution for pixels where the basal area for Acer species is 529 

less than 20 ft2/ac and those for Quercus species is greater than 10 ft2/ac. 530 
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