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Abstract

Incomplete understanding of the processes controlling senescence limits our ability to forecast
how the timing of leaf senescence will change in coming decades. In this study, we use a
hierarchical Bayesian model (HBM) in association with a 27+ year record of field observations for
12 temperate deciduous tree species collected at Harvard Forest in central Massachusetts to
examine how variability in bioclimatic controls affects the timing of leaf senescence. To test how
general and extensible our results are over a broader biogeographic range, we used a multi-year
record of land surface phenology derived from remote sensing encompassing all forested lands in
New England. Results from the HBM showed that while air temperature is an important factor that
influences the timing of leaf senescence, photoperiod uniformly exerts the strongest control across
all 12 species. Species exhibiting the strongest dependence on photoperiod, particularly Acer
species, showed low inter-annual variation and no long-term trends in the timing of leaf senescence.
In contrast, species with greater dependence on air temperature, particularly Quercus species,
showed statistically significant trends toward later senescence dates in response to long-term
warming. Results from analyses conducted at regional scale across all of New England using data
derived from remote sensing corroborated results obtained at Harvard Forest. Specifically, relative
to ecoregions dominated by Quercus species, the timing of leaf senescence in ecoregions
dominated by Acer species exhibited lower interannual variability and lower correlation with year-
to-year variation in pre-senescence period mean air temperatures. These results suggest that
forecasting how the timing of leaf senescence in temperate forests will change in the future requires

species-specific understanding of how bioclimatic forcing controls the timing of leaf senescence.

Keywords: leaf senescence, temperate deciduous forests, photoperiod, temperature sensitivity,

Bayesian, hierarchical modeling
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1. Introduction

The seasonality of vegetation activity influences a wide array of ecosystem functions (Bonan,
2008). Hence, understanding how ecological and bioclimatic processes control vegetation
phenology is critical to understanding how ecosystems will respond to future climate change
(Buermann et al., 2018; Piao et al., 2019; Richardson et al., 2018). However, despite extensive
efforts devoted to this topic, mechanistic understanding of what controls plant phenology remains
incomplete (Delpierre et al., 2016; Zohner et al., 2016). In this context, a large proportion of
phenological research has focused on the mechanisms that control the timing of leaf emergence,
while understanding of the eco-physiological processes that control leaf senescence is less well-

developed (Chen et al., 2020; Vitasse et al., 2021; Zani et al., 2020).

A key challenge in developing comprehensive understanding and models of fall phenology is
that, unlike in spring, senescence is preceded by a growing season that typically spans several
months. Hence, the mechanisms and processes that control leaf senescence are potentially more
complex than those controlling spring phenology, which increases the challenges involved in
understanding of how senescence will respond to ongoing climate change. For example, previous
studies have suggested that both genetic factors (Friedman et al., 2011) and changes in bioclimatic
variables throughout the growing season influence the timing of senescence (Bigler and Vitasse,
2021; Chen et al., 2020; Wu et al., 2018; Y. Zhang et al., 2020). Variation in the timing of leaf
senescence impacts seasonal-scale ecosystem productivity by regulating the length of growing
season (Park et al., 2016; Zani et al., 2020) and nutrient status of individual trees and at the
ecosystem-scale (Dox et al., 2020; Havé et al., 2017), and can also affect important ecological
processes such as the timing of reproduction for many plant and animal species (Gallinat et al.,

2015; Renner and Zohner, 2018). Therefore, improved understanding of the processes that control
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leaf senescence is needed to understand how vegetation phenology will change in the coming
decades and to improve forecasts of how ecosystem functions that are affected by leaf senescence

will be impacted by these changes.

The two bioclimatic factors that are most widely assumed to control the timing of leaf
senescence are air temperature and day-length (i.e., photoperiod), both of which tend to decrease
prior to leaf senescence in extra-tropical ecosystems (Fu et al., 2018; Gill et al., 2015; Keskitalo et
al., 2005; Lang et al., 2019; Liu et al., 2020). As a result, most models use air temperature and
photoperiod as the primary drivers of leaf senescence (Peano et al., 2021). In recent years, a variety
of research has identified a suite of additional factors that may influence the timing of senescence
including the rate and amount of photosynthesis prior to senescence onset (Zani et al., 2020), water
stress (Peng et al., 2019; Xie et al., 2018), the timing of leaf emergence in spring (Keenan and
Richardson, 2015; Peng et al., 2021), and plant and soil nutrient status (Estiarte and Pefiuelas, 2015;
Keskitalo et al., 2005). Further, several recent studies have reported that daily minimum and
maximum air temperatures may have differing influence on the timing of leaf senescence (Meng
etal., 2020; Wu et al., 2018). However, there is no current consensus regarding how environmental

drivers control the onset of leaf senescence in temperate broadleaf forests.

A key quandary from previous studies, that has been known for nearly a decade, is that results
from lab- and field-based experimental studies that have been explicitly designed to identify
phenological sensitivity to climate forcing differ from patterns observed in natural ecosystems
arising from climate variability (Leuzinger et al., 2011; Primack et al., 2015; Vitasse et al., 2014;
Wolkovich et al., 2012; but see Hanninen et al., 2019). Further, the limited spatial and temporal
coverage of these studies, which are generally conducted at local scales with study areas less than

10 km? and time scales shorter than 10 years, is a significant limitation that inhibits their ability to
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provide general results. As a solution, process-based phenological models calibrated to both in-
situ and remote sensing-based observations of phenology have been widely used to make
inferences and advance understanding of the ecological and environmental factors that control
phenological events such as the start of senescence (Delpierre et al., 2009; Lang et al., 2019; Liu
et al., 2020; Schaber and Badeck, 2003). Unfortunately, however, the models used in these studies
include two fundamental limitations: (1) they prescribe functional relationships among forcing
variables and phenological events based on incomplete understanding; and (2) the most widely-
used functional forms of these models use parameters that have been aggregated over time periods
that span weeks-to-months (e.g., growing degree days) and do not capture short-term variability
that is increasingly recognized to have a significant impact on phenological behavior (Clark et al.,

2014b; Moon et al., 2021b).

To address both the knowledge gaps and limitations of models described above, and
specifically focusing on how environmental drivers control the timing of leaf senescence in
temperate forests, here we use a data-driven hierarchical Bayesian model (HBM) estimated using
long-term field measurements of bioclimatic forcing and leaf senescence dates for 12 temperate
deciduous tree species in New England. To compare our results against a state-of-the-art process-
based model, we also tested the model described by Caffarra et al. (2011), which incorporates the
effects of photoperiod, air temperature, and anomalies in the timing of leaf unfolding. Using these
models, we assessed their ability to explain species-specific differences in the sensitivity of fall
phenology to climate forcing. To evaluate our results and conclusions at a broader geographic
scale, we linked the site-level and species-specific patterns that we estimate using the HBM to

regional-scale patterns and trends in the timing of senescence of temperate forests across all of
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New England using species density maps and large-scale records of land surface phenology from

remote sensing.

2. Methods and Data

2.1. Field observations

Phenological observations of woody plants have been recorded since 1990 to the present at the
Harvard Forest, a long-term ecological research site located in Petersham Massachusetts (42.53°
N, 72.18° W; Fig. S1) (O’Keefe, 2019). Each of the trees included in the survey is located within
1.5 km of the Harvard Forest headquarters at elevations between 335 and 365 m above sea level.
For fall phenology, weekly observations of percent leaf coloration and percent leaf fall are
recorded from the beginning of September to the end of leaf fall each year. In this study, we used
data characterizing the timing of leaf coloring for 12 species, all of which have at least 20 years of
observations over the 28 year period from 1992-2019 (Acer pensylvanicum (ACPE), Acer rubrum
(ACRU), Acer saccharum (ACSA), Amelanchier alnifolia (AMAF), Betula alleghaniensis
(BEAL), Betula lenta (BELE), Betula papyrifera (BEPA), Fraxinus americana (FRAM), Prunus
serotina (PRSE), Quercus alba (QUAL), Quercus rubra (QURU), and Quercus velutina (QUVE);
Table S1). Leaf coloring date is defined as the day of year (DOY) on which 50% of the leaves
have changed color on an individual tree. Typically, three to five individuals of each species are
observed in each year, with different individuals observed in different years (Table S2). Our
analysis also used budburst date for the same trees, which is defined as the DOY when 50% of the
buds on the tree have recognizable leaves emerging from them (see Section 2.3). Sub-weekly
observations would be useful to help resolve rapidly changing phenological processes (e.g., Gao

et al., 2017; Keenan et al., 2014). However, numerous studies have used these data to estimate
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models and analyze trends in phenology at Harvard Forest (e.g., Archetti et al., 2013; Dunn et al.,
2021; Richardson et al., 2006), which demonstrates that these data provide a sound basis for
phenological studies. Measurements of carbon fluxes and daily meteorology were obtained from
the Harvard Forest Environmental Monitoring Station (EMS) eddy covariance tower (Munger and

Wofsy, 2020).

2.2. Modeling long-term trends in leaf senescence

In the first element of our analysis, we estimated species-specific long-term trends in the timing
of leaf senescence. To do this, we used the non-parametric Theil-Sen estimator to estimate the
trend for each tree species (Sen, 1968), and distinguished species with statistically significant
trends (p < 0.05) from those not showing trends using the Mann-Kendall test (Mann, 1945). We
also estimated long-terms trends in air temperatures measured at the EMS tower using the same
approach for each of annual, late summer (from August to October; i.e., directly prior to leaf

senescence), and spring (from March to May) time periods.

2.3. Hierarchical Bayesian model of leaf senescence

To estimate the sensitivity of leaf senescence timing to bioclimatic controls, we used a
hierarchical Bayesian model (HBM) estimated using the field observations described in Section
2.1. The original form of this model was proposed by Clark et al. (2014b, 2014a), and Moon et al.
(2021b) recently adapted it to model springtime phenology at large spatial scale using remote
sensing. The HBM has two main advantages for the analysis we describe here. First, because the

relative importance among bioclimatic controls that affect the timing of senescence is estimated
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by data itself, the HBM does not suffer from issues related to model misspecification related to
prescribed functional relationships among control variables that are embedded in conventional
process-based models (see Peano et al. (2021) and Section 2.4). Second, the HBM is estimated
using daily data and so is able to capture the continuous response of phenological processes to
both short- and long-term variation in environmental forcing (Clark et al., 2014b, 2014a; Moon et

al., 2021b).

The HBM uses a state-space framework that includes an unobserved latent state 4 to
continuously track the response of phenological processes to environmental forcing at daily time

step. In this framework, changes in the latent state (%) are computed as:

hd+1 = hd + (Shd (1)
where h is the latent state on day d. §hy is the change in 4 from day d to day d + 1, which is
estimated as:

_{ (XaB)(A —hg/hmax), Shg =0
Oha _{ 0, ‘ Sh, < 0 )

where X, is a matrix of predictors that includes daily meteorological forcing variables (air
temperature, photoperiod, vapor pressure deficit (VPD), and photosynthetically active radiation
(PAR)), along with species-specific budburst dates and early-season gross primary productivity
(GPP) derived from eddy covariance measurements at the Harvard Forest EMS tower. Here, we
define early-season GPP as the accumulated daily GPP from May 1 to July 31, which nominally
corresponds to the first half of the growing season. £ is a vector of estimated model coefficients
(i.e., posterior distributions from the model). Note that because the input data (X;) are normalized

(i.e., to have a mean of 0 and a standard deviation of 1 for each of the input variables) prior to
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model estimation, the magnitudes of each model coefficient, which reflect the dependence of
senescence development on each input variable (i.e., ), are independent of the magnitude and
units of each input variable (and hence can be compared). h,,,, is the final state value of /4, and is

prescribed to be 100.

To link the continuous scale of the latent state / to a form that identifies discrete phenological

events (i.e., recorded dates of leaf senescence), we use a logit transformation:

logit(Py) = k + A X hy 3)
where P is the probability that leaf senescence occurs on day d, and x and /4 are the intercept and
slope of the transformation, respectively. Because the leaf senescence date is defined to be a

discrete event, P; follows a Bernoulli distribution:

Y, ~ Bernoulli(P;) 4)

where Y; indicates whether leaf senescence has occurred on day d (i.e., 1 or 0).

2.4. Model estimation and evaluation

To estimate the HBM, we used the median date of leaf senescence in each year from
observations of 3 to 5 individual trees, which yielded a 28-year time series of leaf senescence dates
for each species except QURU, which had a 27-year record (Table S2). Using these data, we
estimated the HBM for six different sets of bioclimatic variables with two main goals: (1) to
quantify the relative importance of each variable in controlling in the timing of leaf senescence;
and (2) to assess whether daily minimum and maximum air temperatures have distinct roles in

controlling the timing of leaf senescence relative to mean daily temperature (see Meng et al., 2020;
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Wu et al., 2018). To this end, we estimated six distinct HBMs using different combinations of (1)
daily mean air temperature, (2) daily minimum air temperature, (3) daily maximum air temperature,
(4) daily minimum and maximum air temperatures, and (5) daily mean air temperature and daily
temperature range, along with photoperiod, VPD, PAR, species-specific budburst dates, and early-
season GPP as predictor variables (hereafter, models M1-M5, respectively). Further, to assess the
role and importance of photoperiod in controlling the timing of leaf senescence, we estimated the
HBM using daily mean air temperature with all other variables, excluding photoperiod (model
M6). Each models’ performance was evaluated based on the root-mean-square error (RMSE),
mean absolute error (MAE), and deviance information criterion (DIC). Posterior sampling was
performed using the ‘R2jags’ package in R (Su and Yajima, 2015), with 10,000 iterations and

3,000 burn-in periods for each model.

In addition, to evaluate the HBM’s performance against a state-of-the-art of process-based leaf
senescence model, we used the Harvard Forest data set to estimate the model described by Caffarra
etal. (2011) (hereafter CSM). We chose the CSM for this comparison based on recent results from
Liu et al., (2020), who used multiple widely used process-based leaf senescence models in
association with over 19,000 site-years of in-situ phenological records covering four temperate
deciduous tree species in Europe to show that the CSM performed best among the models they
used, especially in capturing interannual variation in leaf senescence dates. The CSM hypothesizes
that the progression of leaf senescence, which is defined as the dormancy induction state DS, is
negatively related to both air temperature and photoperiod via sigmoidal relationships.

Specifically, daily accumulation of DS is controlled by air temperature and photoperiod as follows:
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d . " (%)
DS(d) = Z 1+ eaD(T(d)—bD) X 1+ eCD(P(d)_PCTit)
d

0

where d is the start date of dormancy induction, which we prescribed as September 1%, and
aD, bD, and cD are model coefficients. Leaf senescence occurs when the accumulated forcing (i.e.,
DS(d)) reaches a critical threshold D,;;, which is a function of the anomaly in springtime

phenology S,:

Deyir = a+y X Sq (6)

where a and y are parameters regulating the effects of changes in springtime phenology. For this
study, we used the budburst dates collected at Harvard Forest as a proxy of springtime phenology.
Parameters were optimized to minimize the RMSE in predicted versus observed senescence dates

for each of the 12 species following the method described by Nelder and Mead (1965).

Lastly, to assess how the relative dependence on photoperiod versus air temperature (i.e., the
two dominant factors controlling in the timing of leaf senescence; see the Results) estimated by
the HBM affect year-to-year variation in the timing of leaf senescence, we calculated the difference
between the posterior distributions of photoperiod and air temperature (i.e., fp — Br) for each
species (n = 12), and used standard major axis regression to assess the magnitude of covariance

between fp — S and interannual variation in leaf senescence dates.

2.5. Remote Sensing Data
To expand and generalize our analysis to regional scale, we used Version 1.1 of the Multi-

Source Land Surface Phenology product (MSLSP30NA) (Friedl, 2021). This data product
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provides yearly observations of phenophase transition dates at 30 m spatial resolution for North
America for 2016-2020. Using time series of the two-band enhanced vegetation index (EVI12; Jiang
et al., 2008) estimated from Harmonized Landsat 8 and Sentinel-2 (HLS) imagery (Claverie et al.,
2018), the MSLSP30NA product retrieves the timing of seven phenophase transition dates for each
growing season at each 30 m pixel (Bolton et al., 2020). To identify the timing of leaf senescence
we used the MSLSP30NA mid-greendown date, which corresponds to the DOY when EVI2 time
series pass below 50% of the EVI2 amplitude during the greendown phase. More specifically, we
used mid-greendown dates for all deciduous broadleaf or mixed forest pixels in New England
according to the 2016 USGS National Land Cover Database (USGS and Rigge, 2019), which

includes 40 Level IV EPA ecoregions (Fig. S1).

We used the MSLSP30NA data set to perform two analyses designed to assess whether
species-specific results obtained from in-situ observations at Harvard Forest generalize at regional
scale. First, because the remote sensing time series is short and it is computationally infeasible to
run the HBM at every pixel in New England, we examined the relationship between anomalies in
the timing of senescence dates and mean air temperature in the pre-senescence period, which we
defined as DOY 231 to 270 based on results from the HBM at Harvard Forest (Fig. S2). Second,
we calculated the standard deviation (SD) in the timing of senescence at each 30-m pixel across
the available time series for all forested pixels in New England. Using these data, we estimated a
multiple linear regression using the basal area for Acer and Quercus species in each ecoregion as
independent variables (i.e., the total basal area for all three species for each of Acer and Quercus
in each EPA ecoregion) and the standard deviation of senescence dates across years in each

ecoregion as the dependent variable. For the species-specific basal areas, we used a gridded dataset
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provided by the USDA Forest Service derived from satellite imagery in conjunction with extensive

field plot data providing tree species basal area (Wilson et al., 2013).

3. Results

Since 1992, annual mean air temperature at Harvard Forest has increased by 0.034 °C per year
(p = 0.035), resulting in a total increase of 0.95 °C over the past 30 years (Fig. S3a). During late
summer, when the impact of changes in bioclimatic variables on the timing of leaf senescence is
most pronounced (Fig S2), the warming trend was even stronger (0.059 °C per year; Fig. S3b).
Inspection of long-term trends in the timing of senescence in response to this warming indicates
that the response of trees was species-specific (Fig. 1). Specifically, four of the twelve species
included in our analysis showed statistically significant trends towards later senescence onset dates
(QUVE, QURU, PRSE, and ACPE (see Fig. 1 for full species names); p-value < 0.05), with trends
that range from 0.18 days per year to 0.30 days per year, corresponding to a total shift of 5.0-8.4
days towards later onset of senescence dates over the 28-year study period. Among the species
showing non-significant trends, five species (ACRU, BEAL, BELE, PRSE, and QUAL) showed
positive trends (i.e., later senescence), two species (ACSA and BEPA) showed negative trends,
and one species (AMAF) showed no trend. These results identify species-specific responses to

identical bioclimatic forcing over three decades,.
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Fig. 1. Leaf coloration dates at Harvard Forest from 1992 to 2019. Solid green lines and shaded
areas represent the annual mean and standard deviation in leaf coloration dates, respectively. Black
dashed lines show the long-term trend (based on the Theil-Sen estimator) in days per year. APCE:
Acer pensylvanicum; ACRU: Acer rubrum; ACSA: Acer saccharum; AMAF: Amelanchier
alnifolia; BEAL: Betula alleghaniensis; BELE: Betula lenta BEPA: Betula papyrifera; FRAM:
Fraxinus americana; PRSE: Prunus serotina; QUAL: Quercus alba; QURU: Quercus rubra;

QUVE: Quercus velutina.

We tested six versions of the HBM using different combinations of bioclimatic predictor

variables (Table 1). Overall, RMSEs and MAEs were low (ranging from 2.84 to 5.15 days and
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from 2.21 to 4.14 days, on average, respectively), suggesting that the models realistically capture
the eco-physiological response of deciduous trees to bioclimatic forcing during the leaf senescence
phase. Among the different models, M5, which uses daily mean air temperature and daily air
temperature range as predictors along with all the other variables, exhibited the best performance
across all three model performance metrics. It’s worth noting that model M6, which does not
include photoperiod as a predictor, showed substantially worse predictive accuracy relative to the
other five models. Scatterplots showing modeled versus observed leaf senescence dates provide
visual corroboration that the HBM accurately predicts the observed timing of leaf senescence
across all 12 species and demonstrates that the HBM predicts interannual variation in the timing
of senescence (e.g., QURU) with substantially more accuracy and realism than the CSM for all 12
species (Fig. 2; Table S3). Based on these results, hereafter we use model M5 for the rest of our

analyses.

Table 1 Hierarchical Bayesian model performance statistics. M1-M6 refer to models using
different sets of predictors: models M1-M5 use daily mean air temperature, daily minimum air
temperature, daily maximum air temperature, daily minimum and maximum air temperatures, and
daily mean air temperature and daily temperature range as predictor variables, along with
photoperiod, vapor pressure deficit, photosynthetically active radiation, species-specific budburst
dates, and early-season gross primary productivity; model M6 uses daily mean air temperature and
includes all other variables except photoperiod. RMSE: root-mean-square error; MAE: mean

absolute error; DIC: deviance information criterion. See Fig. 1 for definitions of species acronym.
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Results from the HBM indicate that air temperature and photoperiod are the two most
important factors that control the timing of senescence (Fig. 3). Significantly, however, and
consistent with results presented above examining long term trends in the timing of senescence,
HBM results also show that the relative dependence of senescence on each of these controls is
species-specific. Negative dependences indicate that decreases in the forcing variable prior to leaf
senescence increase the probability of senescence. Hence, stronger negative dependence on air
temperature and photoperiod relative to other variables reflect the fact that seasonal variation in
air temperature and photoperiod (i.e., cooling and shorter day-length, respectively) are the
dominant factors that control the timing of leaf senescence. Relative to air temperature and
photoperiod, the impact of the other variables included in the model (daily range of air temperature,
VPD, PAR, budburst dates, and spring GPP) is modest. In this context, two key features are worth
noting. First, across all 12 species, dependence on photoperiod is stronger than dependence on air
temperature. Second, even though its overall effect is quite modest, the timing of leaf senescence
exhibits mostly positive dependence on daily air temperature range, suggesting that larger

amplitudes in daily air temperature promote earlier leaf senescence dates.
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Fig. 3. Dependence of leaf senescence date on (a) daily mean air temperature, (b) photoperiod, (c)
daily range in air temperature, (d) daily mean vapor pressure deficit, (e) daily mean
photosynthetically active radiation, (f) budburst dates, and (g) early-season gross primary
productivity. Note that the magnitude of dependence in each column is different and decreases

from left to right. See Fig. 1 for definitions of species acronym.

Covariation between the magnitude of interannual variation in leaf senescence dates and
differences in the magnitude of photoperiod (8;) and air temperature () dependence shows
strong correlation (Fig. 4). This result provides additional empirical evidence that stronger species-
specific dependence on photoperiod (air temperature) leads to smaller (larger) interannual
variation in leaf senescence dates. For example, on average, Acer species, which show larger
photoperiod dependence compared to other species, exhibit lower magnitudes of interannual

variation in senescence dates, whereas Quercus species, which show the weakest dependence on
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photoperiod (i.e., relatively greater dependence on temperature compared to Acer species), exhibit

larger magnitudes of interannual variation.
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Fig. 4. Relationship between interannual variation in the timing of leaf senescence and the

difference between photoperiod (f,) and air temperature (8..) dependence estimated by the HBM.

The points and horizontal bars present the median + one standard deviation, respectively, in the
posterior distributions. The dashed line shows the standard major axis regression (SMA). SMA
slope (B,) and intercept (B)) coefficients are provided with 95% confidence intervals. See Fig. 1

for definitions of species acronyms.

Land surface phenology data from remote sensing capture geographic patterns in the timing
of leaf senescence at regional scale that are consistent with species-level patterns at Harvard Forest
shown in Fig. 4 (Fig. 5). Specifically, eco-regions in New England where Acer species are more
abundant show lower interannual variability in the timing of leaf senescence relative to areas

dominated by Quercus species (Figs. 5a and S4a). Further, Quercus-dominant regions showed
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greater sensitivity to pre-senescence period mean air temperature (i.e., stronger dependence on air
temperature), while Acer-dominant regions showed weaker sensitivity (Figs. 5b and S4b).
Reinforcing this, results from a multiple linear regression using the basal area of Acer and Quercus
species as predictors explained 63% of interannual variation in the timing of leaf senescence across

the 40 EPA Level IV ecoregions in New England (Fig. 5d).

)'l'o ot

ST o
15 : = -
i P
~ PRV o S
~ ~ 3 Loy e
~ \ £
IR ) :
FENRS A g vall :
U i e po
Q O =

O >4
o
a 2 (d)
7 & 3
8 R
= 2
O = =
=] =N 2 b
w ‘% T i~ @ té_:_.
5 2 A 0." <}
o, f o
< ~ ~
"] 0 =l S a 208
a u'w:‘? A 5@
g RGN 2
; L | )
% ST . S
B ° 0

0 70 20 30 40 50
Acer spp. (It/ac)

Fig. 5. Geographic variation in (a) the standard deviation (SD) of mid-greendown dates derived
from 30 m spatial resolution HLS imagery from 2016-2020, (b) sensitivity to pre-senescence
period mean air temperature, and (c) basal area for Acer and Quercus species. Panel (d) shows
results from a multiple linear regression demonstrating that 63% of geographic variation in the
magnitude of ecoregion-scale interannual variation in senescence onset dates from remote sensing
is explained by the basal area of Acer and Quercus species in each EPA Level IV ecoregion (n =

40).



366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

4. Discussion

4.1. Bioclimatic controls on leaf senescence

Consistent with previous studies, results from this work support the argument that air
temperature and photoperiod are the dominant factors that control the timing of leaf senescence
(Archetti et al., 2013; Fracheboud et al., 2009; Gill et al., 2015; Lang et al., 2019; Liu et al., 2020;
Vitasse et al., 2021; S. Zhang et al., 2020). However, by quantifying the relative importance among
a large suite of bioclimatic controls using a data-driven HBM, we demonstrate that the relative
influence of photoperiod and air temperature far exceed the influence of all other bioclimatic
controls, and that photoperiod was the most influential control across all 12 deciduous tree species
considered in this study. Indeed, excluding photoperiod as a predictor in the HBM substantially
degraded the accuracy of model predictions (models M1-M5 versus model M6 in Table 1).
Moreover, given the structure of the HBM, which tracks continuous development of leaf
senescence at daily time step, our results indicate that the influence of photoperiod on the timing
of senescence occurs over an extended period prior to senescence onset. Stated another way,
photoperiod exerts continuous forcing that acts in concert with other forcing variables (primarily
temperature) and does not simply act as a trigger that initiates senescence after a species-specific
threshold is reached. Recent studies using process-based models incorporating a continuous effect
of photoperiod (with joint control from air temperature) have reported that these models perform
better than process-based models that use photoperiod as a cue (Lang et al., 2019; Liu et al., 2020),

which supports our findings.

More generally, by using the HBM to test different sets of bioclimatic controls, results from
this study provide useful insights to recent debates regarding the representation of thermal forcing

in senescence models (e.g., the role of mean versus minimum versus maximum air temperature)
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(Meng et al., 2020; Wu et al., 2018). Specifically, results from the HBM show that daily mean air
temperature and the daily range in air temperatures is the most effective combination of thermal
forcing variables for predicting the timing of senescence (Table 1), and that larger amplitudes in
daily air temperature lead to earlier leaf senescence (Fig. 3c). These results may support the
argument that minimum and maximum air temperatures have distinct roles in controlling the
timing of leaf senescence (specifically, that higher maximum temperatures lead to earlier leaf
senescence, while higher daily minimum temperature lead to later leaf senescence; Wu et al., 2018).
However, given that the overall impact of temperature range is relatively modest (as well as the
high correlation between daily minimum and maximum temperature), these results should be

viewed as a justification for more research rather than definitive evidence.

Significantly, outside of photoperiod and air temperature, none of the forcing variables
consistently exerted a substantial influence on the timing of senescence. The dependence of daily
temperature range and daily mean VPD was statistically different from zero (i.e., more than 95%
of the sampled model coefficients excluded zero; Fig. 3) for only three species in each case (ACPE,
BEAL, BEPA and ACPE, BELA, QUVE, respectively), and daily mean PAR was not statistically
different from zero for any of the twelve species. Three species (AMAF, BEAL, and PRSE)
exhibited negative dependence on the timing of budburst (i.e., earlier budburst leads to earlier
senescence) and five species (ACSA, AMAF, BEPA, FRAM, and QUAL) exhibited dependence
on early season GPP, with the first four of these species exhibiting positive coefficients (i.e., higher
early season GPP leading to earlier leaf senescence). But, for all these latter cases, the magnitude
of dependence was small. Hence, outside of photoperiod and daily mean air temperature, the
sensitivity of leaf senescence to other bioclimatic forcing variables was either non-significant, or

very modest and species-specific. In this context, results from the HBM do not support results
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from recent studies reporting that early-season GPP (Zani et al., 2020), springtime phenology
(Keenan and Richardson, 2015), and VPD (Peng et al., 2021) are important controls on the timing

of leaf senescence.

4.2. Implications for land surface models

Phenology exerts first-order control on a wide array of ecological functions (e.g.,
photosynthesis and transpiration) and surface properties (e.g., albedo) that strongly influence water,
energy, and carbon exchange in land surface models (Moon et al., 2020; Piao et al., 2019; Xu et
al., 2020; Young et al., 2021). Despite this, current models include only very crude (and as a result
unrealistic) representation of fall phenology (Richardson et al., 2012). Most land surface models
(LSMs) use air, soil, or surface temperature as a primary driver, in conjunction with secondary
variables such as day-length (i.e., photoperiod), soil moisture, precipitation, and/or carbon balance,
to simulate the timing of leaf senescence (Peano et al., 2021; Richardson et al., 2012). However,
results from this study indicate that photoperiod is uniformly the strongest factor controlling the
timing of leaf senescence, at least in temperate deciduous forests (Figs. 3 and 4). This mis-
parameterization almost certainly explains why current LSMs simulate the timing of senescence
so poorly. Moreover, the lower predictive power of the CSM compared to the HBM, especially in
capturing interannual variation in the timing of leaf senescence (Fig. 2), implies that current
process-based leaf senescence models do not realistically represent the nature and timing of leaf
senescence processes. Given this, results from this work suggest that integration of data-driven
phenology models, which are able to accurately represent the role of photoperiod, is a promising

approach for triggering leaf senescence in the next generation of LSMs that has the potential to
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substantially benefit simulations of water, energy and carbon fluxes in these models (Reichstein et

al., 2019).

A related conclusion, which also has substantial implications for representation of phenology
in LSMs, is that even though all the trees at Harvard Forest experienced the same bioclimatic
forcing and changes therein (i.e., warming over the last 30 years (Fig. S3)), individual species
responded differently from one another. Specifically, we showed that species-specific dependence
on bioclimatic controls among the 12 species examined resulted in divergent responses to climate
change over nearly three decades (Fig. 1). Further, using regional-scale land surface phenology
data along with stand-level species composition maps, we demonstrated that results obtained at
Harvard Forest (i.e., that interannual variation and sensitivity to temperature and photoperiod in
the timing of leaf senescence are species-specific characteristics (Fig. 5)) were robust at regional
scale. Given that most LSMs classify vegetation into plant functional types and then parameterize
phenology sub-models according to plant functional type, our study suggests that this approach
may introduce a substantial source of model error in LSM simulation results. Hence, integrating
data-driven phenology sub-models and embracing species composition maps using finer spatial
satellite imagery such as HLS and perhaps PlanetScope (c.f,, Hemmerling et al., 2021; Moon et
al., 2021a) may provide a useful basis for improving LSM representation of fall phenology, and

by extension, LSM-based simulation of water, carbon and energy exchange.

5. Conclusions

In this study, we assessed how interannual variability in bioclimatic controls affects the timing

of leaf senescence in temperate deciduous forests. To do this, we used a data-driven hierarchical
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Bayesian model calibrated to nearly three decades of species-specific field measurements of leaf
coloration dates for 12 temperate deciduous tree species in New England. To expand and test the
generality of our results, we used land surface phenology time series at 30 m spatial resolution
derived from remote sensing in combination with species composition maps to show that results
obtained at a single site (Harvard Forest) are consistent with the response of senescence to
bioclimatic forcing at regional scale. Our results identify three important implications for
understanding and modeling the timing of leaf senescence in temperate deciduous forests. First,
photoperiod was uniformly more important than air temperature in controlling the timing of leaf
senescence in all 12 deciduous tree species that we examined in this study. Second, the data-driven
HBM outperformed the more traditional process-based CSM, especially in capturing interannual
variation in the timing of leaf senescence, which reinforces the dominant role of photoperiod. Third,
phenological responses to long-term trends in air temperatures were species-specific. In particular,
species exhibiting stronger photoperiod dependence showed lower inter-annual variation and no
trend in the timing of leaf senescence in response to the warming over the last 30 years. In contrast,
species showing stronger air temperature dependence showed delayed trends in the timing of
senescence that are consistent with a response to warming. Together, these results suggest that
accurate forecasting of how the timing of leaf senescence will respond to future climate change
requires that models account for how bioclimatic factors control the timing of leaf senescence at
the species-level. Data-driven approaches such as the HBM used in this study are promising tools
not only for improving models to predict the timing of leaf senescence, but more generally, for

improving the representation of phenology in land surface models.
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Supporting Information

Table S1. Species information and acronyms.

Species code

Scientific name

Common name

Number of individual trees
used over the study period

ACPE
ACRU
ACSA
AMAF
BEAL
BELE
BEPA
FRAM
PRSE
QUAL
QURU
QUVE

Acer pensylvanicum
Acer rubrum

Acer saccharum
Amelanchier alnifolia
Betula alleghaniensis
Betula lenta

Betula papyrifera
Fraxinus americana
Prunus serotina
Quercus alba
Quercus rubra
Quercus velutina

Striped maple
Red maple
Sugar maple
Shadbush
Yellow birch
Black birch
Paper birch
White ash
Black cherry
White oak
Red oak
Black oak

4

NP NP OO WWWEAW




Table S2. Number of individual observations for each species in each year.
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501  Table S3. Process-based model parameters and performance versus HBM.

. CSM Model Parameters AIC RMSE
Species code

ap bp Cp Pit a y HBM CSM HBM CSM

ACPE 1.10 20.31 9.59 12.44  18.75 0.12 73.74 88.18 2.65 3.76
ACRU 1.58 20.65 10.08 12.80  18.16 0.06 72.34 79.45 2.62 3.22
ACSA 0.61 19.61 10.51 12.44  18.78 0.11 94.68 94.82 3.95 4.23
AMAF 0.99 19.95 9.86 12.82 19.06 0.06 81.14 86.20 3.32 3.63
BEAL 0.82 19.65 9.66 12.91 19.46 0.08 62.05 63.66 1.81 243
BELE 1.23 20.21 10.01 12.52 18.32 0.10 60.34 70.42 2.22 2.74
BEPA 1.61 20.48 9.84 12.62 18.56 -0.03 106.99 108.42 5.10 5.40
FRAM 0.98 20.05 9.90 12.95 19.34 0.01 88.72 100.64 3.58 4.70
PRSE 0.81 20.02 9.92 12.29 19.52 0.22 70.26 78.77 2.62 3.18
QUAL 1.19 19.97 9.86 12.44  18.77 0.22 72.77 91.06 2.85 3.96
QURU 0.81 20.84 9.81 11.94 19.25 0.01 68.46 81.51 2.37 3.49
QUVE 0.95 20.09 9.71 12.31 19.55 0.13 69.15 86.20 2.54 3.63
Average 1.06 20.15 9.90 12.54  18.96 0.09 76.72 85.78 2.97 3.70

502
503  CSM: Caffarra’s model; HBM: Hierarchical Bayesian model; P.,;; is a threshold for day-length;
504 «a and y are parameters regulating the effects of changes in spring leaf unfolding date on leaf

505  senescence date; AIC: Akaike information criterion.

506
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509  Fig. S1. Map of the study area showing the location of Harvard Forest. Black polygons show the
510  Level IV EPA ecoregions and the background is land cover from the USGS National Land Cover

511  Database (USGS and Rigge, 2019) in 2016.
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Fig. S2. Solid red lines and shaded areas represent the mean and standard deviation in time series
of the latent state across 28 years, respectively. The horizontal arrows identify the time period
when phenological development (i.e., leaf senescence) is affected by bioclimatic forcing, which

ranges from 21 to 61 days with the mean of 42 days across the species.
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520  Fig. S3. Air temperature at Harvard Forest for (a) annual, (b) late summer (from August to
521  October), and (c) spring (from March to May). Dotted lines show the long-term trend based on
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Fig. S4. Boxplots for (a) the standard deviation (SD) of mid-greendown dates (SOPCGD) derived
from 30 m spatial resolution HLS imagery from 2016-2020 and (b) sensitivity to pre-senescence
period mean air temperature. For each panel, ‘Acer’ represent distribution for pixels where the
basal area for Acer species is greater than 20 ft?/ac and those for Quercus species is less than 10
ft>/ac; while ‘Quercus’ represent distribution for pixels where the basal area for Acer species is

less than 20 ft?/ac and those for Quercus species is greater than 10 ft*/ac.
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