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SUMMARY
Biological information can be encoded within the dynamics of signaling components, which has been impli-
cated in a broad range of physiological processes including stress response, oncogenesis, and stem cell dif-
ferentiation. To study the complexity of information transfer across the eukaryotic promoter, we screened
119 dynamic conditions—modulating the pulse frequency, amplitude, and pulse width of light—regulating
the binding of an epigenome editor to a fluorescent reporter. This system revealed tunable gene expression
and filtering behaviors and provided a quantification of the limit to the amount of information that can be reli-
ably transferred across a single promoter as �1.7 bits. Using a library of over 100 orthogonal chromatin reg-
ulators, we further determined that chromatin state could be used to tune mutual information and expression
levels, as well as completely alter the input-output transfer function of the promoter. This system unlocks the
information-rich content of eukaryotic gene regulation.
INTRODUCTION

There is ample evidence that biological information can be en-

coded in the dynamics of signaling components and not just in

their biochemical identities (Behar and Hoffmann, 2010; Cai

et al., 2008; Dalal et al., 2014; Hansen and O’Shea, 2013;

Hao et al., 2013; Imayoshi et al., 2013; Inoue et al., 2016; Purvis

et al., 2012). Cells, with a limited number of components, utilize

dynamic signal processing to perform sophisticated functions

in response to complex environments. Transcription factors

(TFs) may be a particularly important archetype for this type

of information transmission, as they are relatively low in diver-

sity but must command many distinct and complex gene

expression programs (Lee and Young, 2013). Indeed, through

chemical and optogenetic approaches, the dynamics of TF nu-

clear-cytoplasmic translocation has been shown to control

gene expression levels and population noise (An-adirekkun

et al., 2020; Chen et al., 2020; Hansen and O’Shea, 2013; Ra-

demacher et al., 2017). There is also evidence that different

promoters can transduce dynamic TF input signals into distinct

output responses (Chen et al., 2020; Hansen and O’Shea,

2016; Harton et al., 2019). Thus, developing a quantitative un-

derstanding of how dynamic TF signals are ultimately inter-

preted and processed by individual genes and promoters is

clearly important.

A couple of compelling analogies can be drawn: (1) to informa-

tion theory, with promoters analogous to information transfer

channels and (2) to process control, with promoters acting as

unit processes with dynamic input-output transfer functions.

The nature of these channels or transfer functions might even
be tunable by parameters such as promoter sequence, chro-

matin state, or three-dimensional chromatin topology. However,

developing this type of robust quantitative framework poses

considerable challenges. Mapping the transfer function of a sin-

gle promoter seems ostensibly simple but faces the inherent

technical difficulties of controlling dynamic properties of biolog-

ical systems. The complex diversity of eukaryotic chromatin pre-

sents yet another formidable barrier. More specifically, there are

three particularly pressing challenges. First, there is a broad

range of dynamic input and output parameters that is technically

challenging to access, control, and characterize. Second, as

each individual promoter can be regulated by multiple distinct

TFs and chromatin regulators (CRs), pleiotropic effects can

confound global perturbations to nuclear TF levels or chromatin

state. Finally, there are hundreds of distinct CRs that can alter

how promoters interpret TF signals, resulting in a large experi-

mental space to explore (Kouzarides, 2007; Li et al., 2007).

To address these challenges, we engineered both dynamic

and static epigenome editors that bypass pleiotropic issues

due to their locus specificity and thereby provide insight into

the causal impacts of CRs and TFs on transcription (Bintu

et al., 2016; Keung et al., 2014; Park et al., 2019; Polstein and

Gersbach, 2015). To study the effects of TF signal dynamics

on transcription, we employed an optogenetic system that

dynamically recruited the transactivator VP16 to a genomically

integrated fluorescent reporter. By pairing the optogenetic sys-

tem with programmable Arduino-controlled LED arrays and sin-

gle-cell fluorescence measurements by flow cytometry, we were

able to capture and screen a large parameter space of dynamic

inputs.
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Figure 1. Optogenetics provides complete access to the dynamic parameter space

(A) Schematic of genetic and hardware systems. The optogenetic system was expressed in S. cerevisiae (left). ZF-CRY2-targeted operators were placed up-

stream of a minimal CYC1 promoter driving the expression of mCherry. In the presence of blue light, CIB1-VP16 binds ZF-CRY2 and disassociates without blue

light. Parameters of amplitude, frequency, and pulse width (right) were varied using a custom Arduino-controlled, individually addressable LED matrix (center).

The area under the curve (AUC) is defined as the (amplitude) x (frequency) x (pulse width) x (duration of experiment).

(B) Fold change in fluorescence for various light intensity amplitudes for a constant, 14-h light pulse. Fold changes for control strains, ZF-CRY2 and ZF-

CRY2+CIB1, are also shown. Error bars are SEM for 3 (ZF-CRY2 and CIB1-VP16) or 4 (ZF-CRY2, CIB1, and ZF-CRY2) biological replicates. Power density

measurements were calculated using equation found in Figure S1G.
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Using this experimental platform, we mapped protein outputs

in response to 119 different optogenetic inputs that modulated

the amplitude, frequency, and pulse width of VP16 recruitment.

Input conditions with the same total signal but different dynamic

parameters yielded outputs with over an order of magnitude dif-

ference and, therefore, acted as a filter. A kinetic model was

developed to describe the complex transfer function captured

by the experimental data, including the light pattern-filtering

behavior. To further understand the reliability of the information

transfer, we applied information theory to the single-cell distribu-

tion data and estimated the limits to the amount of information

transmittable through each input mode—as well as with all input

modes combined—with frequency modulation carrying the

greatest amount of transmittable information and amplitude

the least. Finally, we asked if co-recruitment of CRs to the pro-

moter could alter its transfer function without any alteration to

the promoter sequence. 101 CRs were constitutively recruited

to the promoter. Many of them altered the gene expression

response to dynamic VP16 inputs, including exhibiting complex

types of transfer functions such as band-pass, low-pass, and

high-pass frequency filtering. In addition, co-recruiting CRs

with VP16 tuned the maximum possible amount of information

that was transmittable through the single promoter. This study

reveals the information-rich nature of eukaryotic gene expres-

sion even at just a single gene, implicates an interplay between

dynamics and chromatin, and also provides quantitative syn-

thetic biology, modeling, and information theory frameworks to

understand and predict complex promoter-to-protein transfer

functions.

RESULTS

Optogenetics provides complete access to the dynamic
parameter space
To probe the transfer functions across a promoter, we devel-

oped an optogenetic system to recruit epigenome editors to a
2 Cell Systems 12, 1–15, November 17, 2021
synthetic transcriptional reporter in arbitrary dynamic patterns

(Figure 1A). A CYC1 promoter drove expression of an mCherry

reporter and was integrated into the LEU2 locus of Saccharo-

myces cerevisiae. The CYC1 promoter contained two identical

binding sites (GAGTGAGGA) recognized by an engineered zinc

finger (ZF) array ‘‘ZF43-8’’ and an orthogonal binding site recog-

nized by ZF array ‘‘ZF97-4’’ (TTATGGGAG) (Keung et al., 2014;

Khalil et al., 2012). The ZF97-4 binding site will be used later in

this work. We fused ZF43-8 to cryptochrome 2 (ZF-CRY2) and

cryptochrome-interacting basic helix-loop-helix to the transcrip-

tional activator VP16 (CIB1-VP16) and placed their expression

under ATC and IPTG control (Keung et al., 2014), respectively.

CRY2 binds CIB1 when exposed to blue light and dissociates

upon light removal (Kennedy et al., 2010; Liu et al., 2008). This

system has high temporal resolution with an association half-

life of seconds and dissociation half-life of �5 min (Rademacher

et al., 2017). We also tested other optogenetic systems, different

N- and C- terminal fusions, and several induction drug concen-

trations (Figures S1A–S1F). The final system was chosen for its

robust activation with light and minimal activation without light.

To deliver the light signals, an Arduino Due controlled individually

addressable blue LEDs (wavelength = 455–465 nm) in a 96-well

format.

To accurately map the effects of different dynamic input light

patterns on eukaryotic gene expression, the system must oper-

ate at sub-saturation. Therefore, we first determined the dy-

namic range of the system and identified sub-saturation light

amplitudes (i.e., intensities). We exposed the cells to lights that

were constantly on for 14 hwith a range of amplitudes. The resul-

tant fold change in mCherry protein was measured by flow cy-

tometry and was defined as the median fluorescence of cells

incubated with a given light pattern divided by the median

fluorescence of cells incubated without light (Figure 1B). The

output signal saturated at intensities above 6 3 1010 au

(�3,100 mW/m2). Control cells expressing only ZF-CRY2 or

ZF-CRY2 with CIB1 exhibited much lower levels of activation,



Figure 2. 119 dynamic signals provide comprehensive map of a eukaryotic transfer function

(A) Schematics illustrating frequency, amplitude, and pulse width modulation (FM, AM, and PWM) and AUC are shown along the top or left. Slope of fold change

versus frequency increases with pulse width.

(legend continued on next page)
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especially at sub-saturating levels. For further studies modu-

lating all three dynamic parameters (amplitude, frequency,

and pulse width), we chose sub-saturation amplitudes below

631010 au to ensure both comprehensive coverage of the dy-

namic parameter space and to minimize any activation due to

ZF-CRY2 alone.

119 dynamic signals provide comprehensive map of a
eukaryotic transfer function
Frequency, amplitude, and pulse widthmodulation (FM, AM, and

PWM, respectively) present a large combinatorial space, which

is challenging to capture experimentally; yet, it is crucial to do

so in order to understand the transfer functions of eukaryotic

promoters and to generate quantitative and predictive models.

With the programmable LED array paired with flow cytometry,

we delivered 119 distinct input signal patterns to yeast cultured

in 96-well format and measured mCherry reporter endpoint fluo-

rescence after 14 h (see Table S1 for a complete list of condi-

tions). These patterns included 5 sets of conditions with pulse

width held constant at 5, 120, 600, 1,800, or 3,600 s. We chose

this range of pulse widths to include timescales similar to those

found for several pulsatile TFs in S. cerevisiae (Dalal et al., 2014).

For each pulse width, four amplitudes, 6 3 109, 1.2 3 1010,

4 3 1010, and 6 3 1010 au (2.5 3 102, 5.3 3 102, 2 3 103, and

3.1 3 103 mW/m2), and 5–6 frequencies (between 2 3 10�5

and 1 3 10�1 s�1, equivalent to periods between 50,000 and

10 s) were delivered to the cells. We defined the total input signal,

or area under the curve (AUC), as the product of frequency,

amplitude, pulse width, and the duration of the experiment.

The throughput of the system allowed us to measure thousands

of cells as well as four biological replicates per condition (see

Table S1 for individual replicate data).

As expected, mCherry expression increased with amplitude,

frequency, pulse width, and AUC (Figure 2A). However, whereas

frequency and pulse width had strong effects on mCherry output

(Figure 2A, left column), amplitude had much weaker effects

(middle column). To quantify the relative effect of each light

parameter on mCherry expression, we first standardized the

amplitude, frequency, pulse width, and the resulting mCherry

fold change using z-transformation. This allowed comparison

between the coefficients of each input mode within a regression

model (Schielzeth, 2010). We then fit the standardized data to a

linear regression model, given in Figure S2A (R2 = 0.92,

p = 5.29e-57). This linear model confirmed that frequency had

the largest coefficient and, therefore, greatest effect on fold

change, whereas amplitude had the weakest effect.

The fact that the system did not respond equally to eachmode

of modulation suggested that the system might exhibit filtering

behaviors, where input signal patterns that share identical

input AUCs but—through different weightings of amplitude, fre-

quency, and pulse width—could yield different output levels.

Indeed, this signal-filtering property was observed over a wide

range of AUCs (examples shown in Figure 2B). This indicates

that this system has inherent signal-filtering capabilities because
(B) All conditions are plotted together, further emphasizing the filtering behavior at

The fold changes highlighted are graphed versus frequency (middle, right) to illu

(A and B) Fold change = (median fluorescence with blue light condition-autofluores

the mean of 4–8 biological replicates. For fold change values for each replicate,
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frequency, pulse width, and amplitude do not have equally pro-

portional effects on mCherry expression. We found that filtering

was not an artifact of measuring mCherry fluorescence at

different time points after the last light pulse was delivered; the

same filtering was observed even when the timing of the last light

pulse was shifted relative to the end of the experiment (Figures

S2B–S2E).

Model captures system behavior and filtering
With this set of dynamic input data, we asked if they could inform

the development and architecture of mass-action models of eu-

karyotic gene expression, and if this model could subsequently

provide additional insights into the filtering property of the sys-

tem. We tested several previous models (Benzinger and Kham-

mash, 2018; Chen et al., 2020; Hansen and O’Shea, 2013;

Harton et al., 2019) alongwith some new architectures and found

that a three-promoter-state model (probability of each promoter

state is represented by Punbound, Pbound, and Pactive) best fit the

experimental data with R2 = 0.865 (Figures 3 and S3A). A quan-

titative comparison of model structures (Figure S3B) was per-

formed by stratified K-fold cross validation (Figure S3C), which

supported a three-promoter-state model over similar models

with two or four promoter states. We also explored incorporating

various numbers of Hill functions into the model as was done in

other models of eukaryotic gene expression. We found that the

inclusion of one or two Hill functions yielded the best fit for our

system, but that inclusion of two Hill functions was not suffi-

ciently better than one to warrant the extra structural complexity.

Based on the cross validation, fit to the experimental data, and

physical understanding of our specific system, we found the

three-promoter-state model with inclusion of a single Hill func-

tion to best describe our data.

The filtering behavior observed in the experimental data was a

notable feature of our optogenetic system. Therefore, we asked

if our model of choice also captured this behavior. Indeed, our

model reflected this filtering behavior (Figure 3C). The model

suggested that filtering may arise from a combination of different

mechanisms, as a variety of distinct input patterns with the same

AUC gave rise to distinct outputs (Figures 3C and 3D). One

contributor may be that the decay of promoter occupancy is

not immediate; therefore, at high frequency there is an accumu-

lation of ‘‘extra’’ promoter occupancy (Figure 3E). This could also

explain why frequency has a large effect on the fold change.

Single-cell measurements capture total
population noise
Although understanding and mapping the transfer functions of a

system is important, the reliability in achieving the same output

repeatedly over time, or within a population of cells in response

to the same input signal, is equally important. This reliability can

be characterized by the noisiness of gene expression. Gene

expression noise is an important and inherently stochastic pro-

cess due to the low copy number of genes (Eldar and Elowitz,

2010; Elowitz and Leibler, 2000; Maheshri and O’Shea, 2007)
constant AUCs (left). Two example AUCs are highlighted by vertical gray lines.

strate filtering behavior based on frequency.

cence)/(median fluorescence without blue light-autofluorescence). Each dot is

see Table S1.
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and, together with cell-to-cell variability in general cellular com-

ponents, creates a distribution of single-cell outputs for each

unique input (Elowitz and Leibler, 2000; Grabowski et al., 2019;

Gregor et al., 2007; Rosenfeld et al., 2005; Tkacik et al., 2009).

As noise plays an important role in determining the reliability of

a system, we first quantified how noise in our system was

affected by FM, AM, and PWM. We calculated the robust coeffi-

cient of variation (CV) of the population for all 119 input light con-

ditions (Figure 4A).

When graphed against frequency, the CV exhibited less varia-

tion at low frequencies but a greater range of values for high fre-

quencies (Figure 4A, left column). This was especially true for

smaller pulse widths (5, 120, and 600 s). Amplitude did not have

a large effect on the CV (Figure 4A, middle column). However,

larger pulse widths generally had lower CVs (Figure 4A, left and

middle columns). The fluorescence values were normalized by

FSC-A before finding the CV in Figure 4A. We compared the CVs

from non-normalized data (Figures 4B and S4A) with non-normal-

izeddatawitha restrictedcell sizegating (Figures 4CandS4B) and

to data normalized by FSC-A (Figures 4D and S4C). The CV was

much lower and nearly constant for all AUCs and frequencies

when mCherry fluorescence was normalized by size using FSC-

Aor restricted to similar size cells.Without normalization or size re-

striction, the CV displayed two regimes: high, nearly constant CV

for low AUCs and descending CV for high AUC (AUC greater

than 1011 au). This phenomenon agrees with prior work showing

cell sizeasamajorcontributor tonoise (Bar-Evenetal., 2006;New-

man et al., 2006), with removal of this noise due to size also

providing an estimation of intrinsic noise (Newman et al., 2006).

Quantifying the contribution of signaling dynamics to
maximum mutual information
Although CVs of output distributions provide some qualitative

understanding of how reliably information can be transmitted

across a gene, a more quantitative understanding would be

helpful in analyzing and comparing this and future systems.

Borrowing concepts from information theory, the limits or reli-

ability of an information transmission system can be quantified

as the maximal mutual information (MI) (Shannon, 1948). The

MI quantifies this limit by maximizing the difference in entropy

of the input signal and entropy of the input given the output

(see STAR Methods section for equation).

In previous studies, MI was used to quantify the reliability of in-

formation transmission through biological networks (Cheong

et al., 2011; Hansen and O’Shea, 2015; Uda et al., 2013). Output

distributions derived from different inputs will overlap to different

extents. Any resulting fluorescence values within the region of

overlap cannot be perfectly attributed to a single input signal

pattern, resulting in someamount of error in the information trans-
Figure 3. Model captures system behavior and filtering

(A) Schematic of the three-promoter-state model used to fit the experimental data

blue light optogenetic system. Red parameters (d3, k4, d4, and k5) were adapted

were fit by the model and are unique to VP16. Punbound, Pbound, and Pactive repres

(B) The resulting fold changes for the model using the best-fitting parameter set

(C) Fold change generated by the model shows close similarity to the filtering ob

(D) Heatmaps show total integrated occupancy of Punbound, Pactive, total integrated

the left, for four different AUCs. Values were log transformed and normalized to

(E) Holding amplitude and AUC constant or pulse width and AUC constant, the i
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mitted across the promoter and expressed as protein. Systems

with low error have lower overlap in their output distributions

and have higher MI. Whereas, more overlap results in more error

and lowerMI (Figure 5A). Although anMI = 1bit ostensibly implies

theability todistinguish two inputswithout error, especially in bio-

logical systems, it is more generally a quantification of the ability

to infer an input signal from an output signal with some error.

Thus, although many biological systems have an MI < 1 (Cheong

et al., 2011; Uda et al., 2013; Voliotis et al., 2014), these systems

may still have functional biological relevance in resolving two or

more inputs in the presence of error (Bowsher and Swain,

2014). Recently, Hansen and O’Shea used MI to characterize

the gene expression response to Msn2p signaling using fre-

quency or amplitude modulation. They observed that a single

promoter could transmit (to protein expression) 1.58 bits using

only amplitudemodulation (HansenandO’Shea, 2015). Itwasun-

clear if this is the maximum possible for a single promoter and

whether more inputs and combining modes of modulation could

provide a higher estimate of information limits.

As we have mappedmany input-output responses for all three

dynamic modes of modulation (FM, AM, and PWM), we asked

what the information capacity limit of our single promoter was.

To do this, we randomly selected subsets of the 119 different

input signaling patterns and calculated the MI. The same overall

dynamic range of mCherry expression was maintained for all

subsets of signal input patterns. We repeated this process for

increasing numbers of inputs per subset and found that the MI

started around 1.45 bits and increased before plateauing near

an MI of 1.7 bits (Figure 5B; Table S2). This indicated that the

MI was dependent on the number of inputs and required a large

screen of the parameter space to measure.

Biological signaling pathways can encode information through

the amplitude, frequency, or pulse width of a shared signaling

molecule (Batchelor et al., 2011; Hao and O’Shea, 2011; Purvis

and Lahav, 2013). However, it is unclear which method is the

most reliable. Hansen and O’Shea showed that promoters that

bind Msn2p have higher information transduction capacities us-

ing amplitude rather than frequency modulation (Hansen and

O’Shea, 2015). Here, we found that the MI for each mode of

modulation depended on the constant values of the other two

parameters (Figure 5C; Table S2). For example, the MIAM
increased at low frequency and leveled off at a frequency depen-

dent upon the pulse width. There was only a small dependence

of MIAM on pulse width (Figure 5C, top row). There was a less

pronounced increase in MIFM as amplitude or pulse width

increased (Figure 5C, middle row). MIPWM showed little increase

with amplitude but a large increase with frequency (Figure 5C,

bottom row). Even when the MI was calculated without normal-

izing the fluorescence, the same trends were observed
. Blue parameters (k1, d1, K, and n) were fit by the model and are unique to the

from literature and are unique to mCherry. Purple parameters (k2, d2, and k3,)

ent the probabilities of each promoter state.

(R2 = 0.865) are shown as lines. Experimental data are dots.

served in the experiment in Figure 2B.

mCherry, and endpoint mCherry values with the input light pattern indicated on

the max value within all heatmaps.

ntegrated occupancy of Pactive is higher for higher frequency conditions.
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(Figure S5). This indicates that MI measured from AM and PWM

depends on what the frequency is and that a large parameter

space is necessary to determine the limits of information trans-

mittance for each mode of modulation.

When comparing the maximum MI for each mode of modula-

tion, AMwas less reliable (1.12 bits) than PWM (1.23 bits) and FM

(1.48 bits). This agrees with our previous assessment that fre-

quency had the greatest effect on fold change. The histograms

of the outputs provide some insight into why AM had relatively

low MI (Figure 5D). For AM, the amplitudes of 1.2 3 1010,

4 3 1010, and 6 3 1010 au (5.3 3 102, 2 3 103, and 3.1 3

103 mW/m2) had a high degree of overlap and were near satura-

tion when the pulse width and frequency were at high values.

Additionally, the 6 3 109 au (2.5 3 102 mW/m2) histogram had

a very broad peak (CV = 0.57 ± 0.02, SEM), which decreased

the MI. In fact, low amplitude conditions exhibited broad distri-

butions in general. In contrast, both PWM and FM outputs

were more distinguishable, even when the other parameters

were at their maximum values. They also exhibited tighter distri-

butions and, therefore, had higher MIs. The reasons our system

had higher reliability using FM over AM, which was converse to

what was found by Hansen and O’Shea (Hansen and O’Shea,

2015), could be attributed to several factors, including: (1)

different mechanisms of activation of Msn2p and VP16; (2)

different promoter sequence structure, e.g., location of binding

sites relative to transcription binding site; (3) differences in the

binding kinetics; and (4) different genomic location of the re-

porter and, therefore, different initial chromatin states of the pro-

moter. All of these factors could contribute to differences in MI.

Chromatin regulators tune maximum information
content
We were able to map the transfer function and quantify the reli-

ability of information transfer for our single synthetic promoter.

However, prior work has shown that different promoters can

exhibit varying regulatory behaviors, including distinct dynamic

ranges of expression, activation kinetics, and noise (Hansen

and O’Shea, 2013, 2015; Hao et al., 2013), with a likely explana-

tion for these differences being distinct local chromatin states.

Yet, an individual promoter can also exist in diverse chromatin

states that might alter the way it responds to input signals (Han-

sen and O’Shea, 2013; Li et al., 2007). We hypothesized that

chromatin state, defined by a complex combination of features,

including nucleosome positioning, nucleosome modifications,

three-dimensional topology, and the presence of diverse chro-

matin-regulating proteins could alter both themaximum informa-

tion transmittable by a single promoter and the nature of its

transfer function without any change to its DNA sequence.

To determine if the chromatin landscape could change the MI

without altering the promoter sequence, we created a library

comprising ZF97-4 fused to each of 101 CRs chosen for a diver-
Figure 4. Single-cell measurements capture total population noise

(A) The robust coefficient of variation (CV) calculated for all light conditions. Schem

left side. Dot color, size, and shade correspond to pulse width, amplitude, and fr

calculating the CV.

(B–D) Three different strategies for determining the CV were explored, with the res

small radius, and (D) large radius and FSC-A normalization (see Figure S4 for det

replicate, see Table S1.
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sity of putative activities and membership in a variety of protein

complexes, e.g., SAGA, TFIID, and SWI/SNF (see Table S3 for

a list of CRs). These CRs were constitutively recruited to the

CYC1 promoter (Figure 6A). We have previously characterized

and confirmed the activity of CRs in this library that have histone

modifying domains at this locus via ChIP-seq (Keung et al.,

2014). VP16 was then dynamically recruited using the optoge-

netic system. Given the large number of yeast strains in this li-

brary, we focused on varying frequency while keeping amplitude

and pulse width constant, as frequency had yielded the greatest

MI when VP16 was recruited alone. However, we did additionally

map a subset of the CRs using AM and PWM (Figures S6C, S6D,

S7C, and S7D), which showed that CRs can tune MI through all

three modes of modulation. Many CRsmaintained similar overall

low (Hda3p, Chz1p, and Hir2p) or high (Rxt3p and Swc3p) MIs

across all three modes of modulation.

Four input frequencies were measured: 0 (i.e., dark), 6.7 3

10-4, 3.3 3 10�2, and 1 3 10�1 s�1 (periods of 0, 1,500, 30,

and 10 s). Amplitude and pulse width were held constant at

63 1010 au (3.13 103 mW/m2) and 5 s, respectively. With these

experimental conditions, we obtained an MIFM value for the pro-

moter with each distinct CR recruited (Figure 6B). The MIFM
ranged from 0.064 ± 0.02 (SEM) for Caf40p to 1.34 ± 0.04 for

Arp8p. The values of MIFM in Figure 6 are lower than those shown

in Figure 5 because only four distinct input light conditions were

tested for eachCR instead of the 6–7 used in Figure 5. To provide

a means for mutual comparison, each MIFM was normalized to

the MIFM of the yeast strain that recruited only VP16 and no

CR. Of note, there were strains with large MIFM variability among

the biological replicates (for example, Hir2p and Nap1p). This is

expected, because the VP16-only strain exhibited relatively large

variability when fewer inputs were used to calculate MI. As more

inputs were included, the MI became more consistent between

replicates (Figure 5B). However, even with only four distinct in-

puts, it was apparent that CRs affected the MIFM (p = 1.18 3

10�7, ANOVA). Rxt3p had one of the top two MIs for all three

modes of modulation. Additionally, Hir2p, Hda3p, Chz1p, and

Caf4p consistently had low MI (less than 0.2 bits) for each

mode. This suggests that chromatin may regulate how ‘‘fine-

tunable’’ a gene is and howmuch information can be transmitted

reliably via transcription. The changes in MI and output fluores-

cence were not simply due to overexpression of the CRs but

required locus-specific targeting to the reporter (Figures S6A

and S6B).

To gain further insight, we also clustered CRs that had low

(less than 0.5) and high (above 1.15) MIFM (Figures S6E–S6G).

Through gene ontology (Cherry et al., 2012), we found significant

enrichment within the low-MIFM cluster of CRs involved in RNA

catabolic process, mitochondrion organization, organelle

fission, peroxisome organization, and regulation of translation

(Fisher exact test with Bonferroni-Holm correction, p < 0.05).
atics illustrating eachmode of modulation and AUC are shown along the top or

equency, respectively. Fluorescence values are normalized by FSC-A prior to

ulting CV graphed versus AUC. Gating strategies used are: (B) large radius, (C)

ails). Each dot is the mean of 4–8 biological replicates. For CV values for each



Figure 5. Quantifying the contribution of signaling dynamics to maximum mutual information

(A) Schematic showing potential signal inputs (left) for a promoter that is modeled as a noisy channel and two extreme cases of possible outcomes (right). Outputs

with low error and 4 inputs have a maximal mutual information (MI) of approximately 2 bits. The information is transmitted without error. Outputs with a large

amount of overlap, or error, and 4 inputs have an MI of approximately 0.8 bits. There is a low amount of information transmitted.

(B) Plot of MI for all three modes of modulation as the number of signal inputs increases. The total fold change range was constant for all combinations of inputs.

Error bars are SEM, n = 4 random sets of light conditions.

(C) MI for the different modes of modulation as a function of the other two parameters (held constant for each dot). Each dot is the mean of 4 biological replicates.

(legend continued on next page)
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Figure 6. Chromatin regulators tune maximum information content

(A) Eukaryotes utilize a diverse set of protein complexes capable of editing the epigenome. 101 subunits of these complexes were each fused to a 97–4 zinc finger

(A, right). This allowed recruitment of the chromatin regulators to the same promoter (center) as the optogenetically controlled VP16 (left).

(B) Maximal mutual information for frequency modulation using frequencies 0, 6.73 10�4, 3.33 10�2, and 13 10�1 s�1 for the library of ZF97-4-CRs. Error bars

are SEM. Gray dots are biological replicates. n = 3–4. VP16 only strain is 48 biological replicates.
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When clustered by gene ontology based on function, helicase

and nuclease activity had the highest MIFM values, whereas

enzyme binding and structural molecule activity had the lowest

(Figure S6G). Additionally, CRs involved in DNA recombination

and response to DNA damage had the highest MIFM values, sug-

gesting that these CRs may be recruited in natural situations to

enhance the reliability of signals to induce DNA repair.

Chromatin regulators diversify the transfer functions
achievable by a single promoter
Previous studies have shown that different promoters can

exhibit discrete transfer functions (Hansen and O’Shea, 2013,

2016; Harton et al., 2019), not just alterations in MI. We asked

whether constitutive recruitment of CRs could alter the transfer

function of a single promoter without changes to the DNA

sequence. We asked whether CRs alter the qualitative signal-

filtering properties of the promoter. For example, can CRs allow

the promoter to respond preferentially to low- or high-fre-

quency input signals and not just shift the dynamic range of

the output response?
(D) Fluorescence histograms of single-cell distributions for different modes of mod

indicated byO,,, orD in (C) and (D). All values of individual replicates are in Table

make our values more comparable with microscopic data that use the average pix

unnormalized MI values in Table S2; the same trends are seen with the unnorma
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To address this question, we clustered all sets of biological

replicates by their pattern of fluorescence output responses to

low-, medium-, and high-frequency input signals (6.7 3 10-4,

3.3 3 10�2, and 1 3 10�1 s�1) (Figures 7 and S7). This was per-

formed in an unsupervised manner using k-means clustering,

with behaviors defined as: low pass, linear, band pass, satura-

tion, and band stop (Figure 7A, top row). This demonstrates

that the same promoter can exhibit multiple types of filtering,

tunable by CRs. Example CRs for each cluster are shown in

the bottom row of Figure 7A. A list of all CRs and their clusters

is given in Table S3. Histograms of the output for each example

is shown in Figure 7B. It should be noted that, although Hda3p

had all of its biological replicates grouped into the band-stop

cluster using FM, the histograms indicate (Figure 7B) that the

band-stop behavior of Hda3p is not very well defined (hence

we displayed these data as partially faded out). Indeed, band

stop may be a relatively rare filtering property as Hda3p was

the only CR to have all four biological replicates in the band-

stop cluster. However, with PWM and AM, Hda3p and Gcn5p

were also clustered into the band-stop cluster (Figures S7C
ulation for the parameter set resulting in the highest MI for the specified mode,

S2. For our calculation of MI, we used the fluorescence normalized to FSC-A to

el intensity per cell (Hansen and O’Shea, 2015). However, we have included the

lized values (Figure S5).



Figure 7. Chromatin regulators diversify the transfer functions achievable by a single promoter

(A) (A, top row) The strains containing ZF97-4 CRs were grouped into five clusters (A, top), using k-means clustering algorithm. Each cluster exhibited a different

type of signal filtering. (A, bottom row) Example CRs for each cluster. *p < 0.05 compared with frequency = 6.7 3 10�4 s�1, **p < 0.05 compared with

frequency = 3.3 3 10�2 s�1, Tukey-Kramer post-hoc. Numbers of biological replicates (n) are listed in the figure.

(B) Histograms for a single replicate of the CRs shown in (A). Note that the histograms for hda3p did not demonstrate band-stop behavior.

(C) Average MIFM, for example, CRs shown in (A). *p < 0.05, Tukey-Kramer post-hoc.

(D) Average MIFM of all strains within each cluster. *p < 0.05, Tukey-Kramer post-hoc. Error bars are SEM. Number of strains for each cluster is in Table S3.
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and S7D). Additionally, band-stop transfer functions (e.g.,

Hda3p) had significantly lower MIFM than the other clusters (Fig-

ures 7C and 7D). This is most likely due to narrower dynamic

ranges and higher noise, as this type of filtering may be harder

to achievemechanistically.When assessing theMI for each clus-

ter, the trend suggested that CRs may need to sacrifice MI and

information transmission capacity to achieve signal-filtering

properties such as low-pass and band-stop filtering (Figures

7C and 7D). We found that there were few significantly enriched

gene ontology terms for each FM cluster (Figure S7B). For the

band-pass cluster, CRs with RNA binding and oxidoreductase
activity were significantly enriched using gene ontology based

on function. Finally, as expected, the noise of each strain was

generally inversely proportional to the fold change (Figures

S7A and S7E).

DISCUSSION

Many TFs exhibit pulsatile behavior in response to stress.We ad-

dressed the question of how an individual gene interprets this

type of dynamic input signal. Using optogenetics to induce 119

distinct dynamic input signals, we mapped the transfer function
Cell Systems 12, 1–15, November 17, 2021 11
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of an individual promoter as well as the associated noise and reli-

ability of information transmission as a function of dynamic

parameters. A three-promoter-state kinetic model was able to

capture the transfer function and signal filtering across a broad

range of total input AUCs. We further showed that both the qual-

itative nature of the transfer function and the quantitative

maximum information content of the gene could be tuned by

constitutive recruitment of CRs to the promoter. This work

directly demonstrates the signal processing potential of a single

individual gene and develops molecular and computational tools

that can be used to harness it.

Epigenome editors, CRs fused to DNA-binding domains, are

an increasingly important tool in both biological research and

therapeutic development (Adamson et al., 2016; Keung et al.,

2014; Liu et al., 2018; Park et al., 2019; Thakore et al., 2016).

Their functions have been largely viewed as inducing static

changes in state, for example, in which the alteration of histone

modifications or recruitment of a transactivator/repressor might

lead to up or downregulation of transcription. However, it is

now clear that both the dynamic recruitment of editors them-

selves as well as their impact on the interpretation and pro-

cessing of other dynamic signals can have profound regulatory

effects, including the filtering of different types of dynamic

signals well beyond just monotonic on or off control. Such

properties have previously been shown to be tunable through

mutations in proteins or alterations of protein scaffolds (Bashor

et al., 2019; Hao et al., 2013). It is now evident that altering the

epigenome can also regulate filtering properties without chang-

ing gene or protein sequences. This could be used to confer

useful functions such as expressing therapeutic proteins only

within a specific range of input signals.

It is also clear that, although the expression strength of an

output signal can be tuned by altering the concentration of an

input epigenome editor or TF using conventional inducible sys-

tems (i.e., LacI or TetR), this type of amplitude-based control

may not always be ideal. For example, we found frequencymod-

ulation was able to confer a similar output dynamic range as

amplitude modulation but with tighter population distributions

and therefore greater MI and reliability. Furthermore, when

combining all three dynamic parameters, MI was further

increased, enhancing the amount of information that could reli-

ably be transmitted by the gene. By achieving more possible

output states with lower error for a limited number of inputs,

tighter control over output responses is possible and may be

particularly important in applications that are sensitive to expres-

sion levels such as regulating immune responses.

In addition to informing the design of synthetic biological

tools such as epigenome editors, this work suggests consider-

ation of how both the fidelity and inherent transfer functions of

natural signaling systems may exhibit considerable differences

between cell types and/or over time. The transfer functions and

the MI of the same individual genes may switch how they inter-

pret dynamic signals in distinct cell types or in distinct cell

states—or during the progression of cancer, aging, or normal

development. Many natural systems shown to interpret dy-

namic signals may also alter their interpretations or transfer

functions depending on time and space, including neural cell

fate decision making (Imayoshi et al., 2013; Marshall, 1995)

and cancer proliferation (Bugaj et al., 2018). Many other biolog-
12 Cell Systems 12, 1–15, November 17, 2021
ical processes have been linked to dynamic pulsing, such as B-

cell activation (Inoue et al., 2016) and responses to radiation

(Purvis et al., 2012).

The exploration of dynamic signaling provides opportunities to

continue shifting biological engineering to quantitative frame-

works borrowed from disciplines in the physical sciences and

engineering, but it also contributes to those frameworks due to

the distinctive properties of biological systems. For example,

this work presents analogies to the concept of dynamic transfer

functions common in process control theory, which formalizes

the description and prediction of how outputs are controlled by

input signals. Yet, as we showed, a gene regulated by chromatin

is a highly complex ‘‘unit process’’ that can morph its transfer

function to have distinct filtering properties, without a change

in gene sequence. Changing the filtering behavior of a transfer

function in a conventional unit process such as a chemical

reactor might, in contrast to a biological system, require drastic

actions such as altering the reactor’s material properties

or shape.

Information theory also provides a theoretical basis to move

from phenomenological frameworks of dose-dependent gene

responses that assumes continuous and graded control over

gene expression levels, to thinking about true information trans-

mission more rigorously. Notably, we, as well as others (Billing

et al., 2019; Cheong et al., 2011; Dubuis et al., 2013; Grabowski

et al., 2019; Hansen and O’Shea, 2015; Harton and Batchelor,

2017; Jetka et al., 2019; Selimkhanov et al., 2014; Tkacik et al.,

2009; Tudelska et al., 2017; Uda et al., 2013), have shown that

these biological unit processes from signal transduction cas-

cades to gene expression have seemingly low information con-

tent of less than 1.5 bits. Although we found this limit can be

further expanded to �1.7 bits, this may still seem low and

initially presents a conundrum for how biological systems can

exert such high-level functions within highly variable and com-

plex environments. However, biological systems function and

make decisions with error. In other words, cellular inferences

of an input based on an output measurement are often imper-

fect; therefore, the maximum MI of 1.7 found in this work does

not mean eukaryotic genes can interpret only 21.7 states.

Rather many more states could be inferred, with the MI simply

a quantification of how well one can infer the input signal from

an output given some amount of uncertainty. Furthermore,

there are several strategies that could increase the amount of

information transmitted. For example, each gene can respond

to multiple TFs and other factors including nucleosome remod-

elers and three-dimensional topology. Many promoters espe-

cially in mammalian systems can be quite large, promoting

the ability to sense additional inputs. The diversity of multiple

inputs could further increase the MI of genes. Furthermore, link-

ing multiple components into higher order circuits can yield

overall greater information transmission as well as lend preci-

sion or robustness to input-output responses (Barkai and Lei-

bler, 1997). For all of these reasons, the MI of biological

systems may be even higher than currently measured. As a

case in point, the simple addition of just one additional input

factor (i.e., recruiting CRs such as Arp8p or Rxt3p) was able

to increase the MI of the reporter in our system (Figure 6).

The ability to increase MI could lead to more complex biolog-

ical sensors, whereas reducing MI could provide expression
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systems that are more robust to environmental stressors (Billing

et al., 2019). Finally, it is also likely that biological systems have

evolved to respond to specific types of naturally occurring input

signal; therefore, it would also be interesting to determine how

synthetically measured MIs map to natural information trans-

mission and if experimental systems may either be limited or

augmented in information transmission capacity.

There are many avenues to expand into and explore. In our

work, we relied on endpoint measurements that could be

rapidly measured by flow cytometry. However, information

can also be stored in the dynamics of the output signal, e.g.,

the production rate, time delay of repression/activation, or

oscillatory behavior. High throughput approaches that can

track the output dynamics of thousands of cultures would un-

lock this potential space for investigation. While we also inves-

tigated a single promoter, different promoter structures would

likely confer distinct transfer functions (Hansen and O’Shea,

2016). Additional factors that could be explored include the ef-

fect of gene duplications, tuning the binding kinetics and/or

cooperativity of TFs, assessing species differences, and

exploring the contribution of multiple inputs, which would

already have nice quantitative frameworks to build upon

from process control theory (i.e., multiple input multiple output

or ‘‘MIMO’’ control). Continued advances in experimental and

computational systems that can handle the large parameter

space of dynamic signals will unlock our ability to measure,

quantify, and understand information transmission in biological

systems and reveal the underpinnings of how limited numbers

of components can give rise to the rich complexity of biolog-

ical functions.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

NEB Turbo Competent E. coli NEB C2984I

NEB Stable Competent E. coli NEB C3040I

Chemicals, Peptides, and Recombinant Proteins

Anhydrotetracycline Fisher Scientific Cat# 50-595-757

IPTG Fisher Scientific Cat# BP175510

Beta-estradiol Fisher Scientific Cat#AAL0380103

Cycloheximide Fisher Scientific Cat#AAJ6690103

YNB+nitrogen Sigma Cat# Y0626

CSM Sunrise Scientific Cat#1001-100

CSM-LEU Sunrise Scientific Cat#1005-010

CSM-LEU-URA Sunrise Scientific Cat#1038-010

CSM-LEU-HIS Sunrise Scientific Cat#1011-010

CSM-LEU-HIS-URA Sunrise Scientific Cat#1015-010

CSM-LEU-HIS-URA-TRP Sunrise Scientific Cat#1002-010

Adenine hemisulfate Sunrise Scientific Cat#1905-010

Deposited Data

Flow cytometry data This paper GitHub-Zenodo:10.5281/zenodo.5116822

Experimental Models: Organisms/Strains

Saccharomyces cerevisiae Stratagene YPH500

Oligonucleotides

See Method details (Oligonucleotides table) N/A N/A

Recombinant DNA

See Table S4 (Plasmids Table) N/A N/A

Software and Algorithms

MATLAB 2018b MathWorks https://www.mathworks.com/downloads/

Arduino IDE Arduino https://www.arduino.cc/en/Main/Software

TinkerCAD Autodesk https://www.tinkercad.com/

Dynamic-Transfer-Functions This paper GitHub-Zenodo:10.5281/zenodo.5116822

MATLAB 2020b MathWorks https://www.mathworks.com/downloads/

Jupyter Notebook (anaconda3) 6.1.4 Jupyter https://jupyter.org/install

Python 3.7.7 Python https://www.python.org/downloads/

release/python-377/

Deposited Model Data This paper GitHub-Zenodo:10.5281/zenodo.5116822

Deposited Model Code This paper GitHub-Zenodo:10.5281/zenodo.5116822
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Data and code availability
d Source data statement: Flow cytometry source data have been deposited at GitHub and are publicly available as of the date of

publication. DOI is listed in the key resources table.

d Code statement: All original code has been deposited at GitHub and is publicly available as of the date of publication. DOIs are

listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture
The background cell line for all experiments in this study was YPH500 (a, ura3-52, lys2-801, ade2-101, trp1D63, his3D200, leu2D1)

(Stratagene). Cells were cultured in synthetic drop-out media or complete mediamade (Sunrise Scientific) with YN-B from Sigma and

2%w/v glucose. Our host strain was generated by genomically integrating an expression cassette that constitutively expresses TetR,

LacI, andGEV (Louvion et al., 1993) (cloned into single-integrating plasmid pNH607[HO]). Constitutive expression of the repressors in

glucose-containing media ensured low basal levels of expression of ZF-CRY2 and CIB1-VP16 from the engineeredGAL1 promoters,

which was relieved by the respective addition of the chemical inputs, ATC and IPTG, along with b-estradiol to the medium.

METHOD DETAILS

Cloning and plasmid construction
All plasmid constructs were created using standard molecular biology techniques and Gibson isothermal assembly. Plasmids were

grown and prepared from either NEB Turbo or Stable competent cells. The CR plasmid library was synthesized as previously

described (Keung et al., 2014). In short, primer sequences were obtained from the Saccharomyces Genome Database (SGD). These

primers (synthesized by Integrated DNA Technologies) were used to amplify full length CR ORFs from wild-type yeast (BY4742). SbfI

and NotI flanking restriction sites were used to ligate the PCR products to the C-terminus of (3xFLAG)-(nuclear localization

sequence)-(97-4 zinc finger array)-(17 amino acid glycine-serine linker) using plasmid pJL50.

Oligonucleotides table
Oligo ID Sequence

JLp161 ggatcactagtGGTACCGAAGT

ACGGATTAGA

JLp162 gatcacgcgtCCACACAATTA

TAAGCAAAGGG

JLp46 ggactcctgcaggAAGATGGAC

AAAAAGACTATAGTTTG

JLp47 agcggccgcTCATTTGC

AACCATTTTTTCCCA

JLp251 ggataaaatgtgataactaatcagcg

gtacAGAGTGAGGACTCGAA

AATATTAAT

JYLp4 accagtgaataattcttcacctttagacat

TTTAATATCTAGATTAGTGTG

TGTATTTGT

JYLp5 acacaaacacaaatacacacactaatct

agatattaaaATGTCTAAAGGTGA

AGAATTATTCAC

JYLp6 ctagccgcggtaccaagcttactcgag

TTACACCTGCCTTGAGGGA

JLp163 gctcgagctgcagatgaatcgtagatac

GGAGGTTCTGGCGGTGGAAGT

JLp169 cttcggtaccactagtggatccgaattcgc

CAAAGCCGAATCCACCACGG

(Continued on next page)
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Oligo ID Sequence

JLp321 ggaggtagcggtggtggcagcggttCCTG

CAGGtaagcggccgccaccgcggtgg

agctctaagcaaata

JLp322 tatttgcttagagctccaccgcggtggcggc

cgcttaCCTGCAGGaaccgctgcca

ccaccgctacctcc

JLp342 ggactggtaccATAGCTTCAAAA

TGTTTCTACTC

JLp343 agatcgggcccATTAAAACTTA

GATTAGATTGCTAT

JLp46 ggactcctgcaggAAGATGGACAA

AAAGACTATAGTTTG

JLp47 agcggccgcTCATTTGCAACCA

TTTTTTCCCA

JYLp3 ggataaaatgtgataactaatcagc

ACTAGTcagatccgccaggc

JYLp7 caaaggtagttccctcaaggcaggtgtaa

CTCGAGTAAGCTTGGTACCG

JYLp8 cttagagctccaccgcggtggcggccgc

CTTCGAGCGTCCCAAAACCT

JLp1 gaattcccgggGCGAGCGCCG

AAGCTAG

JLp2 ggatcggatccTCAGTATCTACG

ATTCATCTGCAGC
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Cell strain generation
Strains were constructed by sequential plasmid transformations using standard lithium acetate-based transformation techniques.

Plasmids were first linearized using PmeI or SbfI. Following transformation, cells were grown on selective auxotrophic minimal media

(Sunrise). Strains are listed in the Yeast strains Table, while plasmids are listed in Table S4. TRP4 auxotrophicmarker constructs were

integrated into AmpR of the LEU2 construct.

Yeast strains table
Marker loci

Strain ID HO URA3 TRP4 * LEU2 HIS3 Figure

Y11 pNH607 1B, 2, 3,4, 5, 6, 7

JY28 pNH607 pJL29

JY29 pNH607 pJL30 pJL29 1B

JY138 pNH607 pJL30 pJL29 pJL45 1B

JY145 pNH607 pJL30 pJL38 pJL29 pJL32 1B, 2, 3,4, 5, 6, 7

CR library pNH607 pJL30 pJL50-EE pJL29 pJL32 5, 6, 7

JY30 pNH607 pJL30 pJL29 pJL32
LED matrix construction and calibration
Three LED matrices were made. Each had a LED housing unit 3D printed using black polylactic acid plastic. Each housing unit

was designed to fit a standard 96-well plate with a single, programmable LED for each well. The plans for the housing unit were

created in TinkerCad and are available upon request. Female socket pins were glued to the housing unit to connect to each

LED. 60 or 92 blue LEDs (Chanzon, 100F5T-YT-WH-BL) were connected to 220 U resistors before being connected to 16-chan-

nel servo driver breakout boards (PCA9685, Adafruit). Three or five breakout boards were used for each 60 LED or 92 LED ma-

trix, respectively. In addition, 12 LEDs were controlled directly from the PWM pins (0-11) on the Arduino Due. Each matrix was
e3 Cell Systems 12, 1–15.e1–e6, November 17, 2021
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controlled by an Arduino Due, using I2C. Arduino code was written using the Arduino IDE to control the pulse width, intensity,

and frequency of light pulses.

Calibration of the LEDswas done by attaching each LEDmatrix to a black 96-well plate with a flat, clear bottom (Corning, 3788) and

taking 59 images across each well using a microscope (Nikon Ti-Eclipse, 20x SP objective, z=4486 mm) through a DAPI filter cube

(Chroma Technology, 96360) with exposure time set to 100ms. The pixel intensity was extracted using a customMatlab code. For a

single well, pixel intensities for each image were read using the imread function. The total pixel intensities for each image were

summed and then divided by the number of images. The average intensity was also determined for a well without an LED. This value

was subtracted from all wells’ intensities to get the working LED intensity. This was done for three Arduino inputs and fit to a line for

each well. The calculated values were used as initial inputs for the intensities used for the experiments. The intensities were then

checked and adjusted before each experiment to be within 20 percent of the desired intensity.

LED intensity measurement with power meter
The LED intensities can be converted to mW/m2 using Figure S1 panel G. The power meter measurements were taken using a

PM100D power meter (ThorLabs) with a S140C probe. A M134L01 fiber patch cable (0600 mm core, 0.5 NA, FC/PC to SMA, 1 m

length) was connected to the probe via the FC/PC connector. For each well, the SMA connector was held against the bottom of a

clear, flat-bottom plate (Corning, 3788) connected to the LED matrix. Multiple readings were taken at various locations for each

well, and the mean was plotted and fitted to a line as shown in Figure S1 panel G.

Flow cytometry
Yeast colonies were picked from plates and cultured 24-48 h in the appropriate auxotrophic SDmedia. Cultures were diluted to�0.1

OD600with auxotrophic dropoutmedia that contained 0.4 mg/mL ATC, 10mM IPTG, 5mMof beta-estradiol, and 0.02mg/mL adenine.

Cells were incubated at 30
�
C and 900 RPM, in the dark, for 8-9 h to allow for expression of ZF-CRY2 and CIB1-VP16. Cells were then

diluted 1:30 with 200 mL SD-complete media, containing the same chemicals as above, into U-bottom, black 96-well plates (Costar,

3792). Samples were prepared asmuch as possible in a red light environment to reduce premature binding of CIB1 and CRY2. Plates

were attached to the LEDmatrices and incubated at 30
�
C for 14 h at 500 RPM. Replicate plates were grown in the dark. The shaking

speed was reduced to prevent damage of the LED matrices.

Prior to flow cytometry, 100 mL of 0.03 mg/mL of cycloheximide was added to each sample. Samples were then incubated in the

dark at room temperature for 1 h to allow for mCherry maturation. Fluorescent measurements were taken using a MACSQuant VYB

(Miltenyi Biotec). A maximum of 20,000 events were collected per sample. Plates were stored at 4
�
C while waiting for other plates to

be run on flow cytometer. All samples were run within 8 h of adding cycloheximide.

QUANTIFICATION AND STATISTICAL ANALYSIS

Fold change and noise calculation
All samples were gated using SSC-A and FSC-A, using a custom MATLAB code based on methods described previously (Newman

et al., 2006). To summarize, the FSC-A andSSC-Awere natural log transformed. Cells outside a circle of radius 0.7 around themedian

FSC-A and SSC-A were excluded from further analyses. Any gated samples with less than 250 events were also excluded from

further analyses.

The population medians of the fluorescence distributions were calculated for the gated populations. For the most figures (except

Figures 4B and 4C), the fluorescence was normalized by the FSC-A (size) before continuing. This was done to be consistent with

microscopic measurements from a previous study that uses the mean pixel value per cell (Hansen and O’Shea, 2015). The autofluor-

escence value of S. cerevisiae YPH500 cells harboring no genomic integrations was subtracted from these values. ‘‘Fold change’’

values were calculated as the ratio of fluorescence values from cells exposed to a given blue light pattern to those from cells grown

without blue light. Four isogenic strains were grown for each light condition. The ‘‘coefficient of variation’’, or CV is the robust CV

calculated using the equation: 0.5 * [intensity(at 84.13 percentile) - intensity(at 15.87 percentile)] / median. Outliers were identified

using MATLAB’s isoutlier function, which classifies values as an outlier if it is more than three scaled median absolute deviations

away from the median fold change or CV. Any outliers were excluded from the means graphed in Figures 2 and 3. Any samples

with less than 2000 cells were also excluded.

To minimize the variability due to the large number of plates in the CR screens (Figure 6), each plate with blue light was normalized

to the strain with VP16 only (JY145) with light always on and light intensity at 6x1010 au, whichwas grown in the same plate. Each plate

without blue light was normalized to VP16 only (JY145) with no light, grown in the same plate. Populationmedians were used to calcu-

late the fold change.

Maximal mutual information calculation
The maximal mutual information was found as previously described in (Cheong et al., 2011; Hansen and O’Shea, 2015; Shannon,

1948). For each sample, events were gated as described in the Flow Cytometry section. Then the mCherry measurements were

normalized to the FSC-A measurements. Any samples with less than 200 events were excluded. The responses were discretized

using logarithmically sized bins. The mutual information I(R;S), measured in bits, was calculated by
Cell Systems 12, 1–15.e1–e6, November 17, 2021 e4
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IðR;SÞ = HðRÞ � HðR;SÞ (Equation 1)
IðR;SÞ =
X
i;j

p

�
Ri;Sj

�
log2

�
pðRi;SjÞ
pðRiÞpðsjÞ

�
(Equation 2)

where S is the signal input and R is the observed response output. H(R) is the entropy of the response and H(R,S) is the entropy of the

response given the signal. The response given the signal, p(Ri,Sj) is the mCherry fluorescent measurements. The response distribu-

tions, given by p(R) and p(s), are unknowns. The maximal mutual information was found by solving the optimization in Equation 2.

MIðR;SÞ = IðR;SÞ for
X
i

pðSiÞ= 1; pðSiÞR0: (Equation 3)

The above optimization was solved using the Blahut-Arimoto algorithm from code written by Piyush Singh (Singh, 2015). The MI

was corrected for bias due to the number of bins by varying the number of bins from 5 to 50. The unbiased MI was calculated as the

mean of MIs calculated using 21-41 bins, which is within the plateau region of MI versus number of bins. The MI was then corrected

for under-sampling using jackknife sampling as described previously (Cheong et al., 2011; Hansen and O’Shea, 2015; Slonim et al.,

2005). The means shown in Figures 5 and 6 are of the unbiased MIs from 3-4 isogenic strains.

Determining signal filtering clusters
Clustering was completed on individual replicates for all the epigenome editors. To discover the clusters depicted in Figure 6, strains

that had low fold change and low variability of fold change among frequencies were removed. The fold changes were then logarith-

mically transformed. The remaining strains were grouped into 5 clusters using the kmeans function in MATLAB with correlation as

the distance metric. The centroids from the resulting clusters were slightly modified to fit the behaviors in Figure 6C. The centroids

are as follows: Cluster 1: 0.756341421875678, -0.3, -0.338099818683020; Cluster 2: -0.736510820962514, 0.102405013200597,

0.65; Cluster 3: -0.351484685217366, 0.769986528990965, -0.418501843773599; Cluster 4: -0.775512363928304,

0.550835601762814,0.3; Cluster 5: 0.0178768566235528, -0.685625005390339, 0.667748148766786. The fold changes were

then reclustered using these centroids with the pdist2 function, again with correlation as the distance metric.

Statistical analyses
Details of statistical tests can be found in the figure captions. One-way and n-way ANOVA tests were performed using either the

anova1 or nanova functions, respectfully. For the comparison among multiple conditions, a Tukey’s honest significant difference

criterion (T-K analysis) was used via the multcompare function in MATLAB with a 95 percent confidence interval. The analysis of

covariance (ANCOVA) was performed using the aoctool function. The Fisher-exact tests were performed using MATLAB function,

fishertest. Data distributions were directly measured by flow cytometry. For all analyses, see GitHub.

Model selection
Twenty different two-, three-, and four-promoter-state models were tested with a variety of architectures and between 3 and 9 fitted

parameters. The models were screened using two metrics: first, the residual sum of the squares on the model outputted endpoints

and experimental endpoints; and second, comparison to the expected time course curve shape based on literature (Hansen and

O’Shea, 2013; Harton et al., 2019; Benzinger and Khammash, 2018). Six models with various number of promoter states and number

and placement of Hill functions were selected for more thorough analysis (Figure S3B). Thesemodels were compared using stratified

K-fold cross validationwith the scikit-learn Pythonmodule, with four folds created based on preserving the percentage of samples for

each pulse width. For each training set and each model, 1000 random kinetic parameter sets generated by latin hypercube sampling

were run and the parameter set that resulted in the highest R2 value was used to run the associated testing set. The overall score for

each model was calculated as the average R2 across the four testing sets (Figure S3C). The three-promoter-state, one Hill and three-

promoter-state, two Hill models had the highest cross validation scores, but given the similarity of the scores the three-promoter-

state, one Hill model was chosen to avoid unnecessary complexity in the model.

Deterministic model construction
To better understand the relationship between dynamic inputs and gene expression outputs in our system, a deterministic kinetic

model was created, which is described by the following set of ODEs:

dPunbound

dt
= d1Pbound � k1IðtÞn

Kn + IðtÞnPunbound (Equation 1)
dPbound

dt
=

k1IðtÞn
Kn + IðtÞnPunbound +d2Pactive � ðd1 + k2ÞPbound (Equation 2)
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dPactive

dt
= k2Pbound � d2Pactive (Equation 3)
d½mRNA�
dt

= k3Pactive � d3½mRNA� (Equation 4)
d½mCherry1�
dt

= k4½mRNA� � ðd4 + k5Þ½mCherry1� (Equation 5)
d½mCherry2�
dt

= k5½mRNA� � d4½mCherry2� (Equation 6)

Here, d1 and k1 are the transition rates between the unbound and bound promoter states and d2 and k2 are the transition rates

between the bound and active promoter states. The transcription, translation, and maturation rates are k3, k4, and k5, respectively.

ThemRNA andmCherry degradation rates are d3 and d4. Four parameters were experimental constants d3, k4, d4, and k5, and seven

were model fitted parameters, d1, k1, n, K, d2, k2, d3, k3. The fit of the model was assessed using the coefficient of determination.

Punbound, Pbound, Pactive, represent the probability of the promoter being in a given state and are each between 0 and 1 and must

sum to 1 at any point in time. A Hill function was used to describe the transition between Punbound and Pbound. The input function

is I(t), and is based on the PWM, AM, and FM of the light condition, and the input amplitudes were 6 x 101 to 6 x 10e2 au rather

than 6 x 109 to 6 x 1010 au to prevent overflow error.

Parameter screen and model fitting
To fit the model to the data, sets of parameters fit by the model (d1, k1, n, K, d2, k2, d3, and k3) were stochastically generated using

Latin Hypercube Sampling (LHS) using the Surrogate Modeling Toolbox in Python. The ODEs were solved numerically using odeint in

Python, and the model outputs at 14 h were compared to the experimental values using the residual sum of the squares. The fitting

was performed in two steps: initially, 1500 randomly generated sets of parameters, each sampled over an appropriate range, were

run through themodel. Then, the parameter set that resulted in the highest R2 value was used to ‘‘fine-tune’’ the LHS sampling range,

and new sets were generated and run through themodel. The fine-tuning process was iterated through a total of over 5500 parameter

sets, resulting in a R2 of 0.865 (Figure 3B). The model fitted parameters are shown in Figure S3C.

The experimental parameters unique tomCherry (d3, k4, d4, and k5), were treated as constants determined by literature values. The

degradation rates were found by randomly sampling within ranges provided by literature and fit to the entire dataset while all other

parameters were held constant. 3000 parameter sets were tested, with the mRNA degradation rate (d3) ranging from 1.08 x 10-4 –

1.12 x 10-4 s-1 (Chen et al., 2020; Wang et al., 2002) and mCherry degradation rate (d4) ranging from 1.83e-5 – 2.56e-5 s-1 (Harton

et al., 2019; Christiano et al., 2014). Both degradation rates include an additional 2.5 h to account for dilution, and the best parameters

were chosen by comparing model to experimental endpoints. For the rest of the fitting, experimental parameters were held constant

at d3 = 1.08 x 10-4 s-1, d4 = 1.85 x 10-5 s-1, k4 = 0.25 s-1,and k5 = 0.000288 s-1 (Hasen and O’Shea, 2013; Khemlinskii et al., 2012).

Model fitted parameters unique to the blue light optogenetic system (d1, k1, n, and K) were fit based around the literature

ranges of the dissociation and association rates of the system. d1 was found by sampling within 0.003 - 0.004 s-1, k1 between 2 x

10-5 – 2 s-1, K between 0.1 – 10,000 mM, and n between 0.5 – 4 (Rademacher et al., 2017; Hansen and O’Shea, 2013; Gonze and

Abou-Jaoude, 2013). The total forward ON rate for the first step was then filtered to be between 0.1 – 30 s for both I(t) = 60 au

and I(t) = 600 au, mimicking the estimated binding rate of CRY2 to CIB1 (Rademacher et al., 2017). All other model fitted parameters

were sampled between 2 x 10-5 – 2 s-1. All model fitted parameters used in Figure 3, as well as the experimental constants, are shown

in Figure S3C.
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Figure S1. Related to Figure 1. Development of optogenetic system. (A-C) Schematics of 
DNA constructs tested. In addition to CRY2/CIB1, improved light-induced dimer (iLID) and its 
binding partner (SspB) were tested. (D) The iLID/SspB system showed no light-specific inducible 
activation. (E) Fluorescent output for ZF43-8-CRY2/VP16-CIB1 showed light-inducible activation. 
(F) Switching the fusion of CIB1 and VP16 produced robust light-inducible activation with minimal 
activation in the dark. The light condition was a single pulse (~6e10 au) for 6.5-7 hours. IPTG 
concentration was 20 mM for all plots. Error bars are 95% confidence intervals. n=2. Positive 
control was ZF43-8-VP16. (G) Light intensity relationship between microscope and power meter 
measurements provides a relationship between au and power. Equation on graph is a linear fit 
with y=log10(Power meter measurement) and x=log10(Microscope measurement). 
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Figure S2. Related to Figure 2 and Figure 4. Sampling time does not account for filtering. 
(A) Fitted linear regression equation using the z-transformed parameters (zA, zPW, zF, where 
A=amplitude, PW=pulse width, and F=frequency). The coefficient for zF is significantly higher than 
the others (*p=0.05), meaning that frequency has the greatest effect on the resulting output. To 
determine whether the time after the last light pulse affects the fold change, we tested two 
scenarios (B-C). (B) The light pulses began at different times in order for them all to synchronously 
end at the same time. CHX was added to each sample immediately after the last pulse ended. 
(C) The light pulses began at the same time for all conditions, but the time after the last light 
pulse—and addition of cycloheximide (CHX)—varied according to equation: 1/F-PW. (D) Results 
of the scenario shown in panel B, chosen for three AUCs. (E) Results from scenario shown in 
panel C. This is also shown in Figures 2B and 4D. Both scenarios exhibited linear trends of fold 
change versus frequency with higher pulse widths having higher slopes. The filtering behavior 
was still observed in scenario A, where distinct mCherry outputs were achieved at the same 
AUCs. Noise for scenario shown in panel B.  
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Figure S3. Related to Figure 3. Comparison of different models. (A) Values of fitted 
parameters for the three-promoter-state, one Hill function model. (B) Model structures tested in 
stratified K-fold cross validation, including a two-, four-, and multiple three-promoter-state 
architectures. (C) Visualization of training and testing sets for each fold in stratified K-fold cross 
validation. The percentage of samples in each pulse width are maintained across the folds. The 
R2 values are shown for each model and fold. The average is the average R2 for the model over 
each fold. The R2 for the two-state model was very negative for the bounds we set for the 
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parameters (see Methods section). Indeed, we see that the two-state model cannot produce a 
good fit (Panel D, left) for the bounds used for fitting. If k1 is much smaller, then the two-
promoter-state might have a better fit like that achieved by the three-promoter state (Panel D, 
right). 
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Figure S4. Related to Figure 4. Effects of size gating and normalization on noise. (A-C) Flow 
cytometry gating strategy for ZF-CRY2/CIB1-VP16 strain with blue light (amplitude=6e9 au, 
frequency=0.1 sec-1, and pulse width=5 sec). (A) FSC-A vs SSC-A was gated with a large radius 
(0.7 with logarithmically transformed data). First, the data is gated by removing events outside of 
a radius of 0.7 with logarithmically-transformed data (top). Then doublets were removed by 
keeping events within gate=median(log(FSC-H)/log(FSC-A))+.1>log(FSC-H)./log(FSC-
A)>median(log(FSC-H)/log(FSC-A)-.1 (Second row, note not many events were excluded in this 
example). Resulting mCherry histogram is shown at the bottom with a CV=1.27. (B) Gating 
strategy for small radius (0.3 with logarithmically transformed data) for FSC-A vs SSC-A. Doublet 
gating was done the same as in A.  The resulting histogram shows the reduction in noise with 
CV=0.86. (C) Gating strategy with large gating radius (same as A) and fluorescence divided by 
FSC-A. Histogram shows a CV between the other two gating strategies, CV=1.02. (D) Histograms 
of mCherry fluorescence for the ZF-CRY2/CIB1-VP16 strain without the addition of blue light 
(dark). 
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Figure S5. Related to Figure 5. MI calculated without FSC-A normalization shows same 
trends. (A) MI plots with fluorescence normalized by FSC-A (same as Figure 5). (B) MI plots with 
fluorescence NOT normalized by FSC-A. Both methods exhibit the same trends. However, the 
non-normalized values are lower. Each dot is the mean of 4 biological replicates. For a list of all 
values graphed, see Table S2. 
 
  



 

7 
 

 



 

8 
 

Figure S6. Related to Figure 6. Additional modes of modulation and control experiments. 
(A-B) Replacing the 97-4ZF with a truncated, non-targeting 42-10ZF 
(CCCCGCCACCTAAAAACCCACCTGAGA), we measured the MIFM for a subset of CRs (Panel 
A). The frequencies used were the same as the main text: 6.7e-4, 3.3e-2, and 1e-1 sec-1 (Periods 
of 1500, 30, and 10 sec). Several (6 out of19) of the CRs had significantly different MIs with the 
full ZF compared to the truncated ZF (* p<0.05, Welch t-test). n=2-4, except VP16 and caf40p 
(truncated ZF) have 8 biological replicates. (B) Additionally, we saw similar transfer functions (fold 
changes) for the truncated ZF subset and VP16, with only caf40p having significantly different 
fold changes for each frequency (top). The same CRs fused to the full, targeting ZF had 9 out 19 
CRs with at least one fold change significantly different from the VP16 only strain with the same 
light frequency (bottom).*p<0.05, T-K analysis compared to VP16 only for each frequency 
condition). This implies that the changes in MI were due to recruitment of the 43-8ZF-CR to the 
locus and not global effects of over-expression of the CR. (C) MI for a subset of 97-4ZF-CRs 
using amplitude modulation (0, 6e9, 1.2e10, and 6e10 au). n=4 biological replicates. (D) MI for a 
subset of 97-4ZF-CRs using pulse width modulation (0, 5, 120, and 600 sec). (E-G) Average MIFM 
for each gene ontology based on process, complex, and function. Chromatin regulators for each 
gene ontology were determined using the genes in the Yeast Genome Database (Cherry et al., 
2012). All MIs are normalized to the MI of VP16 for the same set of conditions. All MI values are 
given in Table S3. 
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Figure S7. Related to Figure 7. Characterization of filtering behavior. (A) CV for the example 
CRs shown in Figure 7. (B) Fold enrichment for gene ontology based on complex (top, from Keung 
et al., 2014), function (middle), or process (bottom). *p<0.05, two-sided Fisher exact test with 
Bonferroni-Holm correction. (C) Examples of CRs that fit into the filtering clusters for AM (Panel 
C) and PWM (Panel D). Note that there were no CRs that fit into the band-pass cluster for AM 
and PWM. n=4 biological replicates. List of clusters for all CRs is given in Table S3.  
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