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the dynamics of signaling components.
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cytometry, this work describes a platform
to map the protein expression response
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of 101 chromatin-regulating proteins. It
also provides quantitative synthetic
biology, modeling, and information theory
frameworks to understand and predict
the complex and diverse promoter-to-
protein transfer functions for a
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SUMMARY

Biological information can be encoded within the dynamics of signaling components, which has been impli-
cated in a broad range of physiological processes including stress response, oncogenesis, and stem cell dif-
ferentiation. To study the complexity of information transfer across the eukaryotic promoter, we screened
119 dynamic conditions—modulating the pulse frequency, amplitude, and pulse width of light—regulating
the binding of an epigenome editor to a fluorescent reporter. This system revealed tunable gene expression
and filtering behaviors and provided a quantification of the limit to the amount of information that can be reli-
ably transferred across a single promoter as ~1.7 bits. Using a library of over 100 orthogonal chromatin reg-
ulators, we further determined that chromatin state could be used to tune mutual information and expression
levels, as well as completely alter the input-output transfer function of the promoter. This system unlocks the
information-rich content of eukaryotic gene regulation.

INTRODUCTION

There is ample evidence that biological information can be en-
coded in the dynamics of signaling components and not just in
their biochemical identities (Behar and Hoffmann, 2010; Cai
et al.,, 2008; Dalal et al., 2014; Hansen and O’Shea, 2013;
Hao et al., 2013; Imayoshi et al., 2013; Inoue et al., 2016; Purvis
et al., 2012). Cells, with a limited number of components, utilize
dynamic signal processing to perform sophisticated functions
in response to complex environments. Transcription factors
(TFs) may be a particularly important archetype for this type
of information transmission, as they are relatively low in diver-
sity but must command many distinct and complex gene
expression programs (Lee and Young, 2013). Indeed, through
chemical and optogenetic approaches, the dynamics of TF nu-
clear-cytoplasmic translocation has been shown to control
gene expression levels and population noise (An-adirekkun
et al., 2020; Chen et al., 2020; Hansen and O’Shea, 2013; Ra-
demacher et al., 2017). There is also evidence that different
promoters can transduce dynamic TF input signals into distinct
output responses (Chen et al., 2020; Hansen and O’Shea,
2016; Harton et al., 2019). Thus, developing a quantitative un-
derstanding of how dynamic TF signals are ultimately inter-
preted and processed by individual genes and promoters is
clearly important.

A couple of compelling analogies can be drawn: (1) to informa-
tion theory, with promoters analogous to information transfer
channels and (2) to process control, with promoters acting as
unit processes with dynamic input-output transfer functions.
The nature of these channels or transfer functions might even

be tunable by parameters such as promoter sequence, chro-
matin state, or three-dimensional chromatin topology. However,
developing this type of robust quantitative framework poses
considerable challenges. Mapping the transfer function of a sin-
gle promoter seems ostensibly simple but faces the inherent
technical difficulties of controlling dynamic properties of biolog-
ical systems. The complex diversity of eukaryotic chromatin pre-
sents yet another formidable barrier. More specifically, there are
three particularly pressing challenges. First, there is a broad
range of dynamic input and output parameters that is technically
challenging to access, control, and characterize. Second, as
each individual promoter can be regulated by multiple distinct
TFs and chromatin regulators (CRs), pleiotropic effects can
confound global perturbations to nuclear TF levels or chromatin
state. Finally, there are hundreds of distinct CRs that can alter
how promoters interpret TF signals, resulting in a large experi-
mental space to explore (Kouzarides, 2007; Li et al., 2007).

To address these challenges, we engineered both dynamic
and static epigenome editors that bypass pleiotropic issues
due to their locus specificity and thereby provide insight into
the causal impacts of CRs and TFs on transcription (Bintu
et al., 2016; Keung et al., 2014; Park et al., 2019; Polstein and
Gersbach, 2015). To study the effects of TF signal dynamics
on transcription, we employed an optogenetic system that
dynamically recruited the transactivator VP16 to a genomically
integrated fluorescent reporter. By pairing the optogenetic sys-
tem with programmable Arduino-controlled LED arrays and sin-
gle-cell fluorescence measurements by flow cytometry, we were
able to capture and screen a large parameter space of dynamic
inputs.
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Figure 1. Optogenetics provides complete access to the dynamic parameter space

(A) Schematic of genetic and hardware systems. The optogenetic system was expressed in S. cerevisiae (left). ZF-CRY2-targeted operators were placed up-
stream of a minimal CYC1 promoter driving the expression of mCherry. In the presence of blue light, CIB1-VP16 binds ZF-CRY2 and disassociates without blue
light. Parameters of amplitude, frequency, and pulse width (right) were varied using a custom Arduino-controlled, individually addressable LED matrix (center).
The area under the curve (AUC) is defined as the (amplitude) x (frequency) x (pulse width) x (duration of experiment).

(B) Fold change in fluorescence for various light intensity amplitudes for a constant, 14-h light pulse. Fold changes for control strains, ZF-CRY2 and ZF-
CRY2+CIB1, are also shown. Error bars are SEM for 3 (ZF-CRY2 and CIB1-VP16) or 4 (ZF-CRY2, CIB1, and ZF-CRY2) biological replicates. Power density

measurements were calculated using equation found in Figure S1G.

Using this experimental platform, we mapped protein outputs
in response to 119 different optogenetic inputs that modulated
the amplitude, frequency, and pulse width of VP16 recruitment.
Input conditions with the same total signal but different dynamic
parameters yielded outputs with over an order of magnitude dif-
ference and, therefore, acted as a filter. A kinetic model was
developed to describe the complex transfer function captured
by the experimental data, including the light pattern-filtering
behavior. To further understand the reliability of the information
transfer, we applied information theory to the single-cell distribu-
tion data and estimated the limits to the amount of information
transmittable through each input mode —as well as with all input
modes combined—with frequency modulation carrying the
greatest amount of transmittable information and amplitude
the least. Finally, we asked if co-recruitment of CRs to the pro-
moter could alter its transfer function without any alteration to
the promoter sequence. 101 CRs were constitutively recruited
to the promoter. Many of them altered the gene expression
response to dynamic VP16 inputs, including exhibiting complex
types of transfer functions such as band-pass, low-pass, and
high-pass frequency filtering. In addition, co-recruiting CRs
with VP16 tuned the maximum possible amount of information
that was transmittable through the single promoter. This study
reveals the information-rich nature of eukaryotic gene expres-
sion even at just a single gene, implicates an interplay between
dynamics and chromatin, and also provides quantitative syn-
thetic biology, modeling, and information theory frameworks to
understand and predict complex promoter-to-protein transfer
functions.

RESULTS

Optogenetics provides complete access to the dynamic
parameter space

To probe the transfer functions across a promoter, we devel-
oped an optogenetic system to recruit epigenome editors to a
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synthetic transcriptional reporter in arbitrary dynamic patterns
(Figure 1A). A CYC1 promoter drove expression of an mCherry
reporter and was integrated into the LEU2 locus of Saccharo-
myces cerevisiae. The CYC1 promoter contained two identical
binding sites (GAGTGAGGA) recognized by an engineered zinc
finger (ZF) array “ZF43-8” and an orthogonal binding site recog-
nized by ZF array “ZF97-4” (TTATGGGAG) (Keung et al., 2014;
Khalil et al., 2012). The ZF97-4 binding site will be used later in
this work. We fused ZF43-8 to cryptochrome 2 (ZF-CRY2) and
cryptochrome-interacting basic helix-loop-helix to the transcrip-
tional activator VP16 (CIB1-VP16) and placed their expression
under ATC and IPTG control (Keung et al., 2014), respectively.
CRY2 binds CIB1 when exposed to blue light and dissociates
upon light removal (Kennedy et al., 2010; Liu et al., 2008). This
system has high temporal resolution with an association half-
life of seconds and dissociation half-life of ~5 min (Rademacher
etal., 2017). We also tested other optogenetic systems, different
N- and C- terminal fusions, and several induction drug concen-
trations (Figures S1A-S1F). The final system was chosen for its
robust activation with light and minimal activation without light.
To deliver the light signals, an Arduino Due controlled individually
addressable blue LEDs (wavelength = 455-465 nm) in a 96-well
format.

To accurately map the effects of different dynamic input light
patterns on eukaryotic gene expression, the system must oper-
ate at sub-saturation. Therefore, we first determined the dy-
namic range of the system and identified sub-saturation light
amplitudes (i.e., intensities). We exposed the cells to lights that
were constantly on for 14 h with a range of amplitudes. The resul-
tant fold change in mCherry protein was measured by flow cy-
tometry and was defined as the median fluorescence of cells
incubated with a given light pattern divided by the median
fluorescence of cells incubated without light (Figure 1B). The
output signal saturated at intensities above 6 x 10" au
(~3,100 mW/m?). Control cells expressing only ZF-CRY2 or
ZF-CRY2 with CIB1 exhibited much lower levels of activation,
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Figure 2. 119 dynamic signals provide comprehensive map of a eukaryotic transfer function
(A) Schematics illustrating frequency, amplitude, and pulse width modulation (FM, AM, and PWM) and AUC are shown along the top or left. Slope of fold change
versus frequency increases with pulse width.

(legend continued on next page)
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especially at sub-saturating levels. For further studies modu-
lating all three dynamic parameters (amplitude, frequency,
and pulse width), we chose sub-saturation amplitudes below
6x10'° au to ensure both comprehensive coverage of the dy-
namic parameter space and to minimize any activation due to
ZF-CRY2 alone.

119 dynamic signals provide comprehensive map of a
eukaryotic transfer function

Frequency, amplitude, and pulse width modulation (FM, AM, and
PWM, respectively) present a large combinatorial space, which
is challenging to capture experimentally; yet, it is crucial to do
so in order to understand the transfer functions of eukaryotic
promoters and to generate quantitative and predictive models.
With the programmable LED array paired with flow cytometry,
we delivered 119 distinct input signal patterns to yeast cultured
in 96-well format and measured mCherry reporter endpoint fluo-
rescence after 14 h (see Table S1 for a complete list of condi-
tions). These patterns included 5 sets of conditions with pulse
width held constant at 5, 120, 600, 1,800, or 3,600 s. We chose
this range of pulse widths to include timescales similar to those
found for several pulsatile TFs in S. cerevisiae (Dalal et al., 2014).
For each pulse width, four amplitudes, 6 x 10° 1.2 x 10'°,
4 x 10", and 6 x 10" au (2.5 x 102, 5.3 x 102, 2 x 10%, and
3.1 x 10® mW/m?), and 5-6 frequencies (between 2 x 107°
and 1 x 107" s, equivalent to periods between 50,000 and
10 s) were delivered to the cells. We defined the total input signal,
or area under the curve (AUC), as the product of frequency,
amplitude, pulse width, and the duration of the experiment.
The throughput of the system allowed us to measure thousands
of cells as well as four biological replicates per condition (see
Table S1 for individual replicate data).

As expected, mCherry expression increased with amplitude,
frequency, pulse width, and AUC (Figure 2A). However, whereas
frequency and pulse width had strong effects on mCherry output
(Figure 2A, left column), amplitude had much weaker effects
(middle column). To quantify the relative effect of each light
parameter on mCherry expression, we first standardized the
amplitude, frequency, pulse width, and the resulting mCherry
fold change using z-transformation. This allowed comparison
between the coefficients of each input mode within a regression
model (Schielzeth, 2010). We then fit the standardized data to a
linear regression model, given in Figure S2A (R® = 0.92,
p = 5.29e-57). This linear model confirmed that frequency had
the largest coefficient and, therefore, greatest effect on fold
change, whereas amplitude had the weakest effect.

The fact that the system did not respond equally to each mode
of modulation suggested that the system might exhibit filtering
behaviors, where input signal patterns that share identical
input AUCs but—through different weightings of amplitude, fre-
quency, and pulse width—could yield different output levels.
Indeed, this signal-filtering property was observed over a wide
range of AUCs (examples shown in Figure 2B). This indicates
that this system has inherent signal-filtering capabilities because

Cell Systems

frequency, pulse width, and amplitude do not have equally pro-
portional effects on mCherry expression. We found that filtering
was not an artifact of measuring mCherry fluorescence at
different time points after the last light pulse was delivered; the
same filtering was observed even when the timing of the last light
pulse was shifted relative to the end of the experiment (Figures
S2B-S2E).

Model captures system behavior and filtering

With this set of dynamic input data, we asked if they could inform
the development and architecture of mass-action models of eu-
karyotic gene expression, and if this model could subsequently
provide additional insights into the filtering property of the sys-
tem. We tested several previous models (Benzinger and Kham-
mash, 2018; Chen et al., 2020; Hansen and O’Shea, 2013;
Harton et al., 2019) along with some new architectures and found
that a three-promoter-state model (probability of each promoter
state is represented by Pnpounds Poounds @nd Paciive) best fit the
experimental data with R? = 0.865 (Figures 3 and S3A). A quan-
titative comparison of model structures (Figure S3B) was per-
formed by stratified K-fold cross validation (Figure S3C), which
supported a three-promoter-state model over similar models
with two or four promoter states. We also explored incorporating
various numbers of Hill functions into the model as was done in
other models of eukaryotic gene expression. We found that the
inclusion of one or two Hill functions yielded the best fit for our
system, but that inclusion of two Hill functions was not suffi-
ciently better than one to warrant the extra structural complexity.
Based on the cross validation, fit to the experimental data, and
physical understanding of our specific system, we found the
three-promoter-state model with inclusion of a single Hill func-
tion to best describe our data.

The filtering behavior observed in the experimental data was a
notable feature of our optogenetic system. Therefore, we asked
if our model of choice also captured this behavior. Indeed, our
model reflected this filtering behavior (Figure 3C). The model
suggested that filtering may arise from a combination of different
mechanisms, as a variety of distinct input patterns with the same
AUC gave rise to distinct outputs (Figures 3C and 3D). One
contributor may be that the decay of promoter occupancy is
not immediate; therefore, at high frequency there is an accumu-
lation of “extra” promoter occupancy (Figure 3E). This could also
explain why frequency has a large effect on the fold change.

Single-cell measurements capture total

population noise

Although understanding and mapping the transfer functions of a
system is important, the reliability in achieving the same output
repeatedly over time, or within a population of cells in response
to the same input signal, is equally important. This reliability can
be characterized by the noisiness of gene expression. Gene
expression noise is an important and inherently stochastic pro-
cess due to the low copy number of genes (Eldar and Elowitz,
2010; Elowitz and Leibler, 2000; Maheshri and O’Shea, 2007)

(B) All conditions are plotted together, further emphasizing the filtering behavior at constant AUCs (left). Two example AUCs are highlighted by vertical gray lines.
The fold changes highlighted are graphed versus frequency (middle, right) to illustrate filtering behavior based on frequency.

(A and B) Fold change = (median fluorescence with blue light condition-autofluorescence)/(median fluorescence without blue light-autofluorescence). Each dot is
the mean of 4-8 biological replicates. For fold change values for each replicate, see Table S1.
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and, together with cell-to-cell variability in general cellular com-
ponents, creates a distribution of single-cell outputs for each
unique input (Elowitz and Leibler, 2000; Grabowski et al., 2019;
Gregor et al., 2007; Rosenfeld et al., 2005; Tkacik et al., 2009).
As noise plays an important role in determining the reliability of
a system, we first quantified how noise in our system was
affected by FM, AM, and PWM. We calculated the robust coeffi-
cient of variation (CV) of the population for all 119 input light con-
ditions (Figure 4A).

When graphed against frequency, the CV exhibited less varia-
tion at low frequencies but a greater range of values for high fre-
quencies (Figure 4A, left column). This was especially true for
smaller pulse widths (5, 120, and 600 s). Amplitude did not have
a large effect on the CV (Figure 4A, middle column). However,
larger pulse widths generally had lower CVs (Figure 4A, left and
middle columns). The fluorescence values were normalized by
FSC-A before finding the CV in Figure 4A. We compared the CVs
from non-normalized data (Figures 4B and S4A) with non-normal-
ized data with arestricted cell size gating (Figures 4C and S4B) and
to data normalized by FSC-A (Figures 4D and S4C). The CV was
much lower and nearly constant for all AUCs and frequencies
when mCherry fluorescence was normalized by size using FSC-
Aorrestricted to similar size cells. Without normalization or size re-
striction, the CV displayed two regimes: high, nearly constant CV
for low AUCs and descending CV for high AUC (AUC greater
than 10" au). This phenomenon agrees with prior work showing
cell size as amajor contributor to noise (Bar-Even et al., 2006; New-
man et al., 2006), with removal of this noise due to size also
providing an estimation of intrinsic noise (Newman et al., 2006).

Quantifying the contribution of signaling dynamics to
maximum mutual information

Although CVs of output distributions provide some qualitative
understanding of how reliably information can be transmitted
across a gene, a more quantitative understanding would be
helpful in analyzing and comparing this and future systems.
Borrowing concepts from information theory, the limits or reli-
ability of an information transmission system can be quantified
as the maximal mutual information (MI) (Shannon, 1948). The
MI quantifies this limit by maximizing the difference in entropy
of the input signal and entropy of the input given the output
(see STAR Methods section for equation).

In previous studies, Ml was used to quantify the reliability of in-
formation transmission through biological networks (Cheong
et al., 2011; Hansen and O’Shea, 2015; Uda et al., 2013). Output
distributions derived from different inputs will overlap to different
extents. Any resulting fluorescence values within the region of
overlap cannot be perfectly attributed to a single input signal
pattern, resulting in some amount of error in the information trans-
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mitted across the promoter and expressed as protein. Systems
with low error have lower overlap in their output distributions
and have higher MI. Whereas, more overlap results in more error
and lower Ml (Figure 5A). Although an MI = 1 bit ostensibly implies
the ability to distinguish two inputs without error, especially in bio-
logical systems, it is more generally a quantification of the ability
to infer an input signal from an output signal with some error.
Thus, although many biological systems have an Ml < 1 (Cheong
etal., 2011; Uda et al., 2013; Voliotis et al., 2014), these systems
may still have functional biological relevance in resolving two or
more inputs in the presence of error (Bowsher and Swain,
2014). Recently, Hansen and O’Shea used MI to characterize
the gene expression response to Msn2p signaling using fre-
quency or amplitude modulation. They observed that a single
promoter could transmit (to protein expression) 1.58 bits using
only amplitude modulation (Hansen and O’Shea, 2015). It was un-
clear if this is the maximum possible for a single promoter and
whether more inputs and combining modes of modulation could
provide a higher estimate of information limits.

As we have mapped many input-output responses for all three
dynamic modes of modulation (FM, AM, and PWM), we asked
what the information capacity limit of our single promoter was.
To do this, we randomly selected subsets of the 119 different
input signaling patterns and calculated the MI. The same overall
dynamic range of mCherry expression was maintained for all
subsets of signal input patterns. We repeated this process for
increasing numbers of inputs per subset and found that the Ml
started around 1.45 bits and increased before plateauing near
an Ml of 1.7 bits (Figure 5B; Table S2). This indicated that the
MI was dependent on the number of inputs and required a large
screen of the parameter space to measure.

Biological signaling pathways can encode information through
the amplitude, frequency, or pulse width of a shared signaling
molecule (Batchelor et al., 2011; Hao and O’Shea, 2011; Purvis
and Lahav, 2013). However, it is unclear which method is the
most reliable. Hansen and O’Shea showed that promoters that
bind Msn2p have higher information transduction capacities us-
ing amplitude rather than frequency modulation (Hansen and
O’Shea, 2015). Here, we found that the MI for each mode of
modulation depended on the constant values of the other two
parameters (Figure 5C; Table S2). For example, the My
increased at low frequency and leveled off at a frequency depen-
dent upon the pulse width. There was only a small dependence
of Mlay on pulse width (Figure 5C, top row). There was a less
pronounced increase in Mgy, as amplitude or pulse width
increased (Figure 5C, middle row). Mlpwn showed little increase
with amplitude but a large increase with frequency (Figure 5C,
bottom row). Even when the Ml was calculated without normal-
izing the fluorescence, the same trends were observed

Figure 3. Model captures system behavior and filtering

(A) Schematic of the three-promoter-state model used to fit the experimental data. Blue parameters (k4, d4, K, and n) were fit by the model and are unique to the
blue light optogenetic system. Red parameters (dz, ks, d4, and ks) were adapted from literature and are unique to mCherry. Purple parameters (ko, do, and kg,)
were fit by the model and are unique to VP16. Pynbounds Poounds @Nd Pactive represent the probabilities of each promoter state.

(B) The resulting fold changes for the model using the best-fitting parameter set (R? = 0.865) are shown as lines. Experimental data are dots.

(C) Fold change generated by the model shows close similarity to the filtering observed in the experiment in Figure 2B.

(D) Heatmaps show total integrated occupancy of Pynpounds Pactive, total integrated mCherry, and endpoint mCherry values with the input light pattern indicated on
the left, for four different AUCs. Values were log transformed and normalized to the max value within all heatmaps.

(E) Holding amplitude and AUC constant or pulse width and AUC constant, the integrated occupancy of Petive is higher for higher frequency conditions.
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(Figure S5). This indicates that Ml measured from AM and PWM
depends on what the frequency is and that a large parameter
space is necessary to determine the limits of information trans-
mittance for each mode of modulation.

When comparing the maximum Ml for each mode of modula-
tion, AM was less reliable (1.12 bits) than PWM (1.23 bits) and FM
(1.48 bits). This agrees with our previous assessment that fre-
quency had the greatest effect on fold change. The histograms
of the outputs provide some insight into why AM had relatively
low MI (Figure 5D). For AM, the amplitudes of 1.2 x 10'°,
4 x 10" and 6 x 10" au (5.3 x 10%, 2 x 10% and 3.1 x
10® mW/m?) had a high degree of overlap and were near satura-
tion when the pulse width and frequency were at high values.
Additionally, the 6 x 10° au (2.5 x 102 mW/m?) histogram had
a very broad peak (CV = 0.57 + 0.02, SEM), which decreased
the ML. In fact, low amplitude conditions exhibited broad distri-
butions in general. In contrast, both PWM and FM outputs
were more distinguishable, even when the other parameters
were at their maximum values. They also exhibited tighter distri-
butions and, therefore, had higher Mls. The reasons our system
had higher reliability using FM over AM, which was converse to
what was found by Hansen and O’Shea (Hansen and O’Shea,
2015), could be attributed to several factors, including: (1)
different mechanisms of activation of Msn2p and VP16; (2)
different promoter sequence structure, e.g., location of binding
sites relative to transcription binding site; (3) differences in the
binding kinetics; and (4) different genomic location of the re-
porter and, therefore, different initial chromatin states of the pro-
moter. All of these factors could contribute to differences in MI.

Chromatin regulators tune maximum information
content
We were able to map the transfer function and quantify the reli-
ability of information transfer for our single synthetic promoter.
However, prior work has shown that different promoters can
exhibit varying regulatory behaviors, including distinct dynamic
ranges of expression, activation kinetics, and noise (Hansen
and O’Shea, 2013, 2015; Hao et al., 2013), with a likely explana-
tion for these differences being distinct local chromatin states.
Yet, an individual promoter can also exist in diverse chromatin
states that might alter the way it responds to input signals (Han-
sen and O’Shea, 2013; Li et al., 2007). We hypothesized that
chromatin state, defined by a complex combination of features,
including nucleosome positioning, nucleosome modifications,
three-dimensional topology, and the presence of diverse chro-
matin-regulating proteins could alter both the maximum informa-
tion transmittable by a single promoter and the nature of its
transfer function without any change to its DNA sequence.

To determine if the chromatin landscape could change the M
without altering the promoter sequence, we created a library
comprising ZF97-4 fused to each of 101 CRs chosen for a diver-

Cell Systems

sity of putative activities and membership in a variety of protein
complexes, e.g., SAGA, TFIID, and SWI/SNF (see Table S3 for
a list of CRs). These CRs were constitutively recruited to the
CYC1 promoter (Figure 6A). We have previously characterized
and confirmed the activity of CRs in this library that have histone
modifying domains at this locus via ChIP-seq (Keung et al,,
2014). VP16 was then dynamically recruited using the optoge-
netic system. Given the large number of yeast strains in this li-
brary, we focused on varying frequency while keeping amplitude
and pulse width constant, as frequency had yielded the greatest
MI when VP16 was recruited alone. However, we did additionally
map a subset of the CRs using AM and PWM (Figures S6C, S6D,
S7C, and S7D), which showed that CRs can tune Ml through all
three modes of modulation. Many CRs maintained similar overall
low (Hda3p, Chz1p, and Hir2p) or high (Rxt3p and Swc3p) Mis
across all three modes of modulation.

Four input frequencies were measured: 0O (i.e., dark), 6.7 %
104, 3.3 x 1072, and 1 x 107" s~ (periods of 0, 1,500, 30,
and 10 s). Amplitude and pulse width were held constant at
6 x 10" au (3.1 x 10° mW/m?) and 5 s, respectively. With these
experimental conditions, we obtained an Mlgy, value for the pro-
moter with each distinct CR recruited (Figure 6B). The MIgy
ranged from 0.064 + 0.02 (SEM) for Caf40p to 1.34 + 0.04 for
Arp8p. The values of MIgy, in Figure 6 are lower than those shown
in Figure 5 because only four distinct input light conditions were
tested for each CR instead of the 6-7 used in Figure 5. To provide
a means for mutual comparison, each Mlg,, was normalized to
the MIgy of the yeast strain that recruited only VP16 and no
CR. Of note, there were strains with large MIgy, variability among
the biological replicates (for example, Hir2p and Nap1p). This is
expected, because the VP16-only strain exhibited relatively large
variability when fewer inputs were used to calculate MI. As more
inputs were included, the Ml became more consistent between
replicates (Figure 5B). However, even with only four distinct in-
puts, it was apparent that CRs affected the Mgy (p = 1.18 %
107, ANOVA). Rxt3p had one of the top two Mils for all three
modes of modulation. Additionally, Hir2p, Hda3p, Chz1p, and
Cafdp consistently had low MI (less than 0.2 bits) for each
mode. This suggests that chromatin may regulate how “fine-
tunable” a gene is and how much information can be transmitted
reliably via transcription. The changes in MI and output fluores-
cence were not simply due to overexpression of the CRs but
required locus-specific targeting to the reporter (Figures S6A
and S6B).

To gain further insight, we also clustered CRs that had low
(less than 0.5) and high (above 1.15) Mgy (Figures S6E-S6G).
Through gene ontology (Cherry et al., 2012), we found significant
enrichment within the low-MIgy, cluster of CRs involved in RNA
catabolic process, mitochondrion organization, organelle
fission, peroxisome organization, and regulation of translation
(Fisher exact test with Bonferroni-Holm correction, p < 0.05).

Figure 4. Single-cell measurements capture total population noise

(A) The robust coefficient of variation (CV) calculated for all light conditions. Schematics illustrating each mode of modulation and AUC are shown along the top or
left side. Dot color, size, and shade correspond to pulse width, amplitude, and frequency, respectively. Fluorescence values are normalized by FSC-A prior to

calculating the CV.

(B-D) Three different strategies for determining the CV were explored, with the resulting CV graphed versus AUC. Gating strategies used are: (B) large radius, (C)
small radius, and (D) large radius and FSC-A normalization (see Figure S4 for details). Each dot is the mean of 4-8 biological replicates. For CV values for each

replicate, see Table S1.
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Figure 5. Quantifying the contribution of signaling dynamics to maximum mutual information
(A) Schematic showing potential signal inputs (left) for a promoter that is modeled as a noisy channel and two extreme cases of possible outcomes (right). Outputs
with low error and 4 inputs have a maximal mutual information (MI) of approximately 2 bits. The information is transmitted without error. Outputs with a large
amount of overlap, or error, and 4 inputs have an Ml of approximately 0.8 bits. There is a low amount of information transmitted.

(B) Plot of Ml for all three modes of modulation as the number of signal inputs increases. The total fold change range was constant for all combinations of inputs.
Error bars are SEM, n = 4 random sets of light conditions.
(C) Ml for the different modes of modulation as a function of the other two parameters (held constant for each dot). Each dot is the mean of 4 biological replicates.
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Figure 6. Chromatin regulators tune maximum information content

(A) Eukaryotes utilize a diverse set of protein complexes capable of editing the epigenome. 101 subunits of these complexes were each fused to a 97-4 zinc finger
(A, right). This allowed recruitment of the chromatin regulators to the same promoter (center) as the optogenetically controlled VP16 (left).

(B) Maximal mutual information for frequency modulation using frequencies 0, 6.7 x 1074,3.3 x 1072, and 1 x 10~ " s~ for the library of ZF97-4-CRs. Error bars
are SEM. Gray dots are biological replicates. n = 3-4. VP16 only strain is 48 biological replicates.

When clustered by gene ontology based on function, helicase
and nuclease activity had the highest Mlg,, values, whereas
enzyme binding and structural molecule activity had the lowest
(Figure S6G). Additionally, CRs involved in DNA recombination
and response to DNA damage had the highest Mgy, values, sug-
gesting that these CRs may be recruited in natural situations to
enhance the reliability of signals to induce DNA repair.

Chromatin regulators diversify the transfer functions
achievable by a single promoter

Previous studies have shown that different promoters can
exhibit discrete transfer functions (Hansen and O’Shea, 2013,
2016; Harton et al., 2019), not just alterations in MI. We asked
whether constitutive recruitment of CRs could alter the transfer
function of a single promoter without changes to the DNA
sequence. We asked whether CRs alter the qualitative signal-
filtering properties of the promoter. For example, can CRs allow
the promoter to respond preferentially to low- or high-fre-
quency input signals and not just shift the dynamic range of
the output response?

To address this question, we clustered all sets of biological
replicates by their pattern of fluorescence output responses to
low-, medium-, and high-frequency input signals (6.7 x 107,
3.3x1072,and 1 x 107" s7") (Figures 7 and S7). This was per-
formed in an unsupervised manner using k-means clustering,
with behaviors defined as: low pass, linear, band pass, satura-
tion, and band stop (Figure 7A, top row). This demonstrates
that the same promoter can exhibit multiple types of filtering,
tunable by CRs. Example CRs for each cluster are shown in
the bottom row of Figure 7A. A list of all CRs and their clusters
is given in Table S3. Histograms of the output for each example
is shown in Figure 7B. It should be noted that, although Hda3p
had all of its biological replicates grouped into the band-stop
cluster using FM, the histograms indicate (Figure 7B) that the
band-stop behavior of Hda3p is not very well defined (hence
we displayed these data as partially faded out). Indeed, band
stop may be a relatively rare filtering property as Hda3p was
the only CR to have all four biological replicates in the band-
stop cluster. However, with PWM and AM, Hda3p and Gcn5p
were also clustered into the band-stop cluster (Figures S7C

(D) Fluorescence histograms of single-cell distributions for different modes of modulation for the parameter set resulting in the highest Ml for the specified mode,
indicated by O, 1, or A in (C) and (D). All values of individual replicates are in Table S2. For our calculation of MI, we used the fluorescence normalized to FSC-A to
make our values more comparable with microscopic data that use the average pixel intensity per cell (Hansen and O’Shea, 2015). However, we have included the
unnormalized Ml values in Table S2; the same trends are seen with the unnormalized values (Figure S5).
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Figure 7. Chromatin regulators diversify the transfer functions achievable by a single promoter

(A) (A, top row) The strains containing ZF97-4 CRs were grouped into five clusters (A, top), using k-means clustering algorithm. Each cluster exhibited a different
type of signal filtering. (A, bottom row) Example CRs for each cluster. *p < 0.05 compared with frequency = 6.7 x 10™* s, **p < 0.05 compared with
frequency = 3.3 x 1072 s, Tukey-Kramer post-hoc. Numbers of biological replicates (n) are listed in the figure.

(B) Histograms for a single replicate of the CRs shown in (A). Note that the histograms for hda3p did not demonstrate band-stop behavior.

(C) Average Mlgy, for example, CRs shown in (A). *p < 0.05, Tukey-Kramer post-hoc.

(D) Average Migy of all strains within each cluster. *p < 0.05, Tukey-Kramer post-hoc. Error bars are SEM. Number of strains for each cluster is in Table S3.

and S7D). Additionally, band-stop transfer functions (e.g.,
Hda3p) had significantly lower Mlgy than the other clusters (Fig-
ures 7C and 7D). This is most likely due to narrower dynamic
ranges and higher noise, as this type of filtering may be harder
to achieve mechanistically. When assessing the Ml for each clus-
ter, the trend suggested that CRs may need to sacrifice Ml and
information transmission capacity to achieve signal-filtering
properties such as low-pass and band-stop filtering (Figures
7GC and 7D). We found that there were few significantly enriched
gene ontology terms for each FM cluster (Figure S7B). For the
band-pass cluster, CRs with RNA binding and oxidoreductase

activity were significantly enriched using gene ontology based
on function. Finally, as expected, the noise of each strain was
generally inversely proportional to the fold change (Figures
S7A and ST7E).

DISCUSSION

Many TFs exhibit pulsatile behavior in response to stress. We ad-
dressed the question of how an individual gene interprets this
type of dynamic input signal. Using optogenetics to induce 119
distinct dynamic input signals, we mapped the transfer function
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of anindividual promoter as well as the associated noise and reli-
ability of information transmission as a function of dynamic
parameters. A three-promoter-state kinetic model was able to
capture the transfer function and signal filtering across a broad
range of total input AUCs. We further showed that both the qual-
itative nature of the transfer function and the quantitative
maximum information content of the gene could be tuned by
constitutive recruitment of CRs to the promoter. This work
directly demonstrates the signal processing potential of a single
individual gene and develops molecular and computational tools
that can be used to harness it.

Epigenome editors, CRs fused to DNA-binding domains, are
an increasingly important tool in both biological research and
therapeutic development (Adamson et al., 2016; Keung et al.,
2014; Liu et al., 2018; Park et al., 2019; Thakore et al., 2016).
Their functions have been largely viewed as inducing static
changes in state, for example, in which the alteration of histone
modifications or recruitment of a transactivator/repressor might
lead to up or downregulation of transcription. However, it is
now clear that both the dynamic recruitment of editors them-
selves as well as their impact on the interpretation and pro-
cessing of other dynamic signals can have profound regulatory
effects, including the filtering of different types of dynamic
signals well beyond just monotonic on or off control. Such
properties have previously been shown to be tunable through
mutations in proteins or alterations of protein scaffolds (Bashor
et al., 2019; Hao et al., 2013). It is now evident that altering the
epigenome can also regulate filtering properties without chang-
ing gene or protein sequences. This could be used to confer
useful functions such as expressing therapeutic proteins only
within a specific range of input signals.

It is also clear that, although the expression strength of an
output signal can be tuned by altering the concentration of an
input epigenome editor or TF using conventional inducible sys-
tems (i.e., Lacl or TetR), this type of amplitude-based control
may not always be ideal. For example, we found frequency mod-
ulation was able to confer a similar output dynamic range as
amplitude modulation but with tighter population distributions
and therefore greater MI and reliability. Furthermore, when
combining all three dynamic parameters, Ml was further
increased, enhancing the amount of information that could reli-
ably be transmitted by the gene. By achieving more possible
output states with lower error for a limited number of inputs,
tighter control over output responses is possible and may be
particularly important in applications that are sensitive to expres-
sion levels such as regulating immune responses.

In addition to informing the design of synthetic biological
tools such as epigenome editors, this work suggests consider-
ation of how both the fidelity and inherent transfer functions of
natural signaling systems may exhibit considerable differences
between cell types and/or over time. The transfer functions and
the MI of the same individual genes may switch how they inter-
pret dynamic signals in distinct cell types or in distinct cell
states—or during the progression of cancer, aging, or normal
development. Many natural systems shown to interpret dy-
namic signals may also alter their interpretations or transfer
functions depending on time and space, including neural cell
fate decision making (Imayoshi et al., 2013; Marshall, 1995)
and cancer proliferation (Bugaj et al., 2018). Many other biolog-
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ical processes have been linked to dynamic pulsing, such as B-
cell activation (Inoue et al., 2016) and responses to radiation
(Purvis et al., 2012).

The exploration of dynamic signaling provides opportunities to
continue shifting biological engineering to quantitative frame-
works borrowed from disciplines in the physical sciences and
engineering, but it also contributes to those frameworks due to
the distinctive properties of biological systems. For example,
this work presents analogies to the concept of dynamic transfer
functions common in process control theory, which formalizes
the description and prediction of how outputs are controlled by
input signals. Yet, as we showed, a gene regulated by chromatin
is a highly complex “unit process” that can morph its transfer
function to have distinct filtering properties, without a change
in gene sequence. Changing the filtering behavior of a transfer
function in a conventional unit process such as a chemical
reactor might, in contrast to a biological system, require drastic
actions such as altering the reactor’s material properties
or shape.

Information theory also provides a theoretical basis to move
from phenomenological frameworks of dose-dependent gene
responses that assumes continuous and graded control over
gene expression levels, to thinking about true information trans-
mission more rigorously. Notably, we, as well as others (Billing
et al., 2019; Cheong et al., 2011; Dubuis et al., 2013; Grabowski
et al., 2019; Hansen and O’Shea, 2015; Harton and Batchelor,
2017; Jetka et al., 2019; Selimkhanov et al., 2014; Tkacik et al.,
2009; Tudelska et al., 2017; Uda et al., 2013), have shown that
these biological unit processes from signal transduction cas-
cades to gene expression have seemingly low information con-
tent of less than 1.5 bits. Although we found this limit can be
further expanded to ~1.7 bits, this may still seem low and
initially presents a conundrum for how biological systems can
exert such high-level functions within highly variable and com-
plex environments. However, biological systems function and
make decisions with error. In other words, cellular inferences
of an input based on an output measurement are often imper-
fect; therefore, the maximum Ml of 1.7 found in this work does
not mean eukaryotic genes can interpret only 2'7 states.
Rather many more states could be inferred, with the Ml simply
a quantification of how well one can infer the input signal from
an output given some amount of uncertainty. Furthermore,
there are several strategies that could increase the amount of
information transmitted. For example, each gene can respond
to multiple TFs and other factors including nucleosome remod-
elers and three-dimensional topology. Many promoters espe-
cially in mammalian systems can be quite large, promoting
the ability to sense additional inputs. The diversity of multiple
inputs could further increase the Ml of genes. Furthermore, link-
ing multiple components into higher order circuits can yield
overall greater information transmission as well as lend preci-
sion or robustness to input-output responses (Barkai and Lei-
bler, 1997). For all of these reasons, the Ml of biological
systems may be even higher than currently measured. As a
case in point, the simple addition of just one additional input
factor (i.e., recruiting CRs such as Arp8p or Rxt3p) was able
to increase the MI of the reporter in our system (Figure 6).
The ability to increase MI could lead to more complex biolog-
ical sensors, whereas reducing M| could provide expression
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systems that are more robust to environmental stressors (Billing
et al., 2019). Finally, it is also likely that biological systems have
evolved to respond to specific types of naturally occurring input
signal; therefore, it would also be interesting to determine how
synthetically measured Mls map to natural information trans-
mission and if experimental systems may either be limited or
augmented in information transmission capacity.

There are many avenues to expand into and explore. In our
work, we relied on endpoint measurements that could be
rapidly measured by flow cytometry. However, information
can also be stored in the dynamics of the output signal, e.g.,
the production rate, time delay of repression/activation, or
oscillatory behavior. High throughput approaches that can
track the output dynamics of thousands of cultures would un-
lock this potential space for investigation. While we also inves-
tigated a single promoter, different promoter structures would
likely confer distinct transfer functions (Hansen and O’Shea,
2016). Additional factors that could be explored include the ef-
fect of gene duplications, tuning the binding kinetics and/or
cooperativity of TFs, assessing species differences, and
exploring the contribution of multiple inputs, which would
already have nice quantitative frameworks to build upon
from process control theory (i.e., multiple input multiple output
or “MIMOQO” control). Continued advances in experimental and
computational systems that can handle the large parameter
space of dynamic signals will unlock our ability to measure,
quantify, and understand information transmission in biological
systems and reveal the underpinnings of how limited numbers
of components can give rise to the rich complexity of biolog-
ical functions.
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release/python-377/

Deposited Model Data This paper GitHub-Zenodo:10.5281/zenodo.5116822

Deposited Model Code This paper GitHub-Zenodo:10.5281/zenodo.5116822

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfiled by the Lead Contact,

Albert J. Keung (ajkeung@ncsu.edu).

Materials availability

Plasmids generated in this study have been deposited at Addgene as plasmids 174063-174070.
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Data and code availability
® Source data statement: Flow cytometry source data have been deposited at GitHub and are publicly available as of the date of
publication. DOI is listed in the key resources table.
o Code statement: All original code has been deposited at GitHub and is publicly available as of the date of publication. DOls are
listed in the key resources table.
® Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture

The background cell line for all experiments in this study was YPH500 («, ura3-52, lys2-801, ade2-101, trp1463, his34200, leu241)
(Stratagene). Cells were cultured in synthetic drop-out media or complete media made (Sunrise Scientific) with YN-B from Sigma and
2% w/v glucose. Our host strain was generated by genomically integrating an expression cassette that constitutively expresses TetR,
Lacl, and GEV (Louvion et al., 1993) (cloned into single-integrating plasmid pNH607[HO]). Constitutive expression of the repressors in
glucose-containing media ensured low basal levels of expression of ZF-CRY2 and CIB1-VP16 from the engineered GAL1 promoters,
which was relieved by the respective addition of the chemical inputs, ATC and IPTG, along with B-estradiol to the medium.

METHOD DETAILS

Cloning and plasmid construction

All plasmid constructs were created using standard molecular biology techniques and Gibson isothermal assembly. Plasmids were
grown and prepared from either NEB Turbo or Stable competent cells. The CR plasmid library was synthesized as previously
described (Keung et al., 2014). In short, primer sequences were obtained from the Saccharomyces Genome Database (SGD). These
primers (synthesized by Integrated DNA Technologies) were used to amplify full length CR ORFs from wild-type yeast (BY4742). Sbfl
and Notl flanking restriction sites were used to ligate the PCR products to the C-terminus of (3xFLAG)-(nuclear localization
sequence)-(97-4 zinc finger array)-(17 amino acid glycine-serine linker) using plasmid pJL50.

Oligonucleotides table

Oligo ID Sequence

JLp161 ggatcactagtGGTACCGAAGT
ACGGATTAGA

JLp162 gatcacgcgtCCACACAATTA
TAAGCAAAGGG

JLp46 ggactcctgcaggAAGATGGAC
AAAAAGACTATAGTTTG

JLp47 agcggccgc TCATTTGC
AACCATTT CCCA

JLp251 ggataaaatgtgataactaatcagcg
gtacAGAGTGAGGACTCGAA
AATATTAAT

JYLp4 accagtgaataattcttcacctttagacat
TTTAATATCTAGATTAGTGTG
TGTATTTGT

JYLp5 acacaaacacaaatacacacactaatct
agatattaaaATGTCTAAAGGTGA
AGAATTATTCAC

JYLp6 ctagccgceggtaccaagcttactcgag
TTACACCTGCCTTGAGGGA

JLp163 gctcgagcetgcagatgaatcgtagatac
GGAGGTTCTGGCGGTGGAAGT

JLp169 cttcggtaccactagtggatccgaattcge
CAAAGCCGAATCCACCACGG

(Continued on next page)
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Continued

Oligo ID Sequence

JLp321 ggaggtagcggtggtggcageggttCCTG
CAGGtaagcggccgcecaccgeggtgg
agctctaagcaaata

JLp322 tatttgcttagagctccaccgeggtggegge
cgcttaCCTGCAGGaaccgctgecca
ccaccgctacctcc

JLp342 ggactggtaccATAGCTTCAAAA
TGTTTCTACTC

JLp343 agatcgggcccATTAAAACTTA
GATTAGATTGCTAT

JLp46 ggactcctgcaggAAGATGGACAA
AAAGACTATAGTTTG

JLp47 agcggccgcTCATTTGCAACCA

CCCA

JYLp3 ggataaaatgtgataactaatcagc
ACTAGTcagatccgccagge

JYLp7 caaaggtagttccctcaaggcaggtgtaa
CTCGAGTAAGCTTGGTACCG

JYLp8 cttagagctccaccgecggtggecggecge
CTTCGAGCGTCCCAAAACCT

JLp1 gaattcccgggGCGAGCGCCG
AAGCTAG

JLp2 ggatcggatccTCAGTATCTACG
ATTCATCTGCAGC

Cell strain generation

Strains were constructed by sequential plasmid transformations using standard lithium acetate-based transformation techniques.
Plasmids were first linearized using Pmel or Sbfl. Following transformation, cells were grown on selective auxotrophic minimal media
(Sunrise). Strains are listed in the Yeast strains Table, while plasmids are listed in Table S4. TRP4 auxotrophic marker constructs were
integrated into AmpR of the LEU2 construct.

Yeast strains table

Marker loci
Strain ID HO URAS3 TRP4 * LEU2 HIS3 Figure
Y11 pNH607 1B,2,3,4,5,6,7
JY28 pNH607 pJL29
JY29 pNH607 pJL30 pJL29 1B
JY138 pNH607 pJL30 pJL29 pJL45 1B
JY145 pNH607 pJL30 pJL38 pJL29 pJL32 1B,2,3,4,5,6,7
CR library pNH607 pJL30 pJL50-EE pJL29 pJL32 56,7
JY30 pNH607 pJL30 pJL29 pJL32

LED matrix construction and calibration

Three LED matrices were made. Each had a LED housing unit 3D printed using black polylactic acid plastic. Each housing unit
was designed to fit a standard 96-well plate with a single, programmable LED for each well. The plans for the housing unit were
created in TinkerCad and are available upon request. Female socket pins were glued to the housing unit to connect to each
LED. 60 or 92 blue LEDs (Chanzon, 100F5T-YT-WH-BL) were connected to 220 Q resistors before being connected to 16-chan-
nel servo driver breakout boards (PCA9685, Adafruit). Three or five breakout boards were used for each 60 LED or 92 LED ma-
trix, respectively. In addition, 12 LEDs were controlled directly from the PWM pins (0-11) on the Arduino Due. Each matrix was
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controlled by an Arduino Due, using 12C. Arduino code was written using the Arduino IDE to control the pulse width, intensity,
and frequency of light pulses.

Calibration of the LEDs was done by attaching each LED matrix to a black 96-well plate with a flat, clear bottom (Corning, 3788) and
taking 59 images across each well using a microscope (Nikon Ti-Eclipse, 20x SP objective, z=4486 um) through a DAPI filter cube
(Chroma Technology, 96360) with exposure time set to 100ms. The pixel intensity was extracted using a custom Matlab code. For a
single well, pixel intensities for each image were read using the imread function. The total pixel intensities for each image were
summed and then divided by the number of images. The average intensity was also determined for a well without an LED. This value
was subtracted from all wells’ intensities to get the working LED intensity. This was done for three Arduino inputs and fit to a line for
each well. The calculated values were used as initial inputs for the intensities used for the experiments. The intensities were then
checked and adjusted before each experiment to be within 20 percent of the desired intensity.

LED intensity measurement with power meter

The LED intensities can be converted to mW/m? using Figure S1 panel G. The power meter measurements were taken using a
PM100D power meter (ThorLabs) with a S140C probe. A M134L01 fiber patch cable (0600 um core, 0.5 NA, FC/PC to SMA, 1 m
length) was connected to the probe via the FC/PC connector. For each well, the SMA connector was held against the bottom of a
clear, flat-bottom plate (Corning, 3788) connected to the LED matrix. Multiple readings were taken at various locations for each
well, and the mean was plotted and fitted to a line as shown in Figure S1 panel G.

Flow cytometry

Yeast colonies were picked from plates and cultured 24-48 h in the appropriate auxotrophic SD media. Cultures were diluted to ~0.1
OD600 with auxotrophic dropout media that contained 0.4 png/mL ATC, 10mM IPTG, 5uM of beta-estradiol, and 0.02 mg/mL adenine.
Cells were incubated at 30°C and 900 RPM, in the dark, for 8-9 h to allow for expression of ZF-CRY2 and CIB1-VP16. Cells were then
diluted 1:30 with 200 pL SD-complete media, containing the same chemicals as above, into U-bottom, black 96-well plates (Costar,
3792). Samples were prepared as much as possible in a red light environment to reduce premature binding of CIB1 and CRY2. Plates
were attached to the LED matrices and incubated at 30°C for 14 h at 500 RPM. Replicate plates were grown in the dark. The shaking
speed was reduced to prevent damage of the LED matrices.

Prior to flow cytometry, 100 pL of 0.03 mg/mL of cycloheximide was added to each sample. Samples were then incubated in the
dark at room temperature for 1 h to allow for mCherry maturation. Fluorescent measurements were taken using a MACSQuant VYB
(Miltenyi Biotec). A maximum of 20,000 events were collected per sample. Plates were stored at 4 C while waiting for other plates to
be run on flow cytometer. All samples were run within 8 h of adding cycloheximide.

QUANTIFICATION AND STATISTICAL ANALYSIS

Fold change and noise calculation

All samples were gated using SSC-A and FSC-A, using a custom MATLAB code based on methods described previously (Newman
etal., 2006). To summarize, the FSC-A and SSC-A were natural log transformed. Cells outside a circle of radius 0.7 around the median
FSC-A and SSC-A were excluded from further analyses. Any gated samples with less than 250 events were also excluded from
further analyses.

The population medians of the fluorescence distributions were calculated for the gated populations. For the most figures (except
Figures 4B and 4C), the fluorescence was normalized by the FSC-A (size) before continuing. This was done to be consistent with
microscopic measurements from a previous study that uses the mean pixel value per cell (Hansen and O’Shea, 2015). The autofluor-
escence value of S. cerevisiae YPH500 cells harboring no genomic integrations was subtracted from these values. “Fold change”
values were calculated as the ratio of fluorescence values from cells exposed to a given blue light pattern to those from cells grown
without blue light. Four isogenic strains were grown for each light condition. The “coefficient of variation”, or CV is the robust CV
calculated using the equation: 0.5 * [intensity(at 84.13 percentile) - intensity(at 15.87 percentile)] / median. Outliers were identified
using MATLAB's isoutlier function, which classifies values as an outlier if it is more than three scaled median absolute deviations
away from the median fold change or CV. Any outliers were excluded from the means graphed in Figures 2 and 3. Any samples
with less than 2000 cells were also excluded.

To minimize the variability due to the large number of plates in the CR screens (Figure 6), each plate with blue light was normalized
to the strain with VP16 only (JY145) with light always on and light intensity at 6x10"° au, which was grown in the same plate. Each plate
without blue light was normalized to VP16 only (JY145) with no light, grown in the same plate. Population medians were used to calcu-
late the fold change.

Maximal mutual information calculation

The maximal mutual information was found as previously described in (Cheong et al., 2011; Hansen and O’Shea, 2015; Shannon,
1948). For each sample, events were gated as described in the Flow Cytometry section. Then the mCherry measurements were
normalized to the FSC-A measurements. Any samples with less than 200 events were excluded. The responses were discretized
using logarithmically sized bins. The mutual information I(R;S), measured in bits, was calculated by
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I(R;S) = H(R) — H(R,S) (Equation 1)
I(R;S) = Zp(R,'7S]')IOgg (%) (Equation 2)

i
where S is the signal input and R is the observed response output. H(R) is the entropy of the response and H(R,S) is the entropy of the

response given the signal. The response given the signal, p(Ri,Sj) is the mCherry fluorescent measurements. The response distribu-
tions, given by p(R) and p(s), are unknowns. The maximal mutual information was found by solving the optimization in Equation 2.

MI(R;S) = I(R; S) for » p(Sj)=1; p(S;)=0. (Equation 3)

The above optimization was solved using the Blahut-Arimoto algorithm from code written by Piyush Singh (Singh, 2015). The Ml
was corrected for bias due to the number of bins by varying the number of bins from 5 to 50. The unbiased Ml was calculated as the
mean of Mls calculated using 21-41 bins, which is within the plateau region of Ml versus number of bins. The Ml was then corrected
for under-sampling using jackknife sampling as described previously (Cheong et al., 2011; Hansen and O’Shea, 2015; Slonim et al.,
2005). The means shown in Figures 5 and 6 are of the unbiased Mls from 3-4 isogenic strains.

Determining signal filtering clusters

Clustering was completed on individual replicates for all the epigenome editors. To discover the clusters depicted in Figure 6, strains
that had low fold change and low variability of fold change among frequencies were removed. The fold changes were then logarith-
mically transformed. The remaining strains were grouped into 5 clusters using the kmeans function in MATLAB with correlation as
the distance metric. The centroids from the resulting clusters were slightly modified to fit the behaviors in Figure 6C. The centroids
are as follows: Cluster 1: 0.756341421875678, -0.3, -0.338099818683020; Cluster 2: -0.736510820962514, 0.102405013200597,
0.65; Cluster 3: -0.351484685217366, 0.769986528990965, -0.418501843773599; Cluster 4: -0.775512363928304,
0.550835601762814,0.3; Cluster 5: 0.0178768566235528, -0.685625005390339, 0.667748148766786. The fold changes were
then reclustered using these centroids with the pdist2 function, again with correlation as the distance metric.

Statistical analyses

Details of statistical tests can be found in the figure captions. One-way and n-way ANOVA tests were performed using either the
anoval or nanova functions, respectfully. For the comparison among multiple conditions, a Tukey’s honest significant difference
criterion (T-K analysis) was used via the multcompare function in MATLAB with a 95 percent confidence interval. The analysis of
covariance (ANCOVA) was performed using the aoctool function. The Fisher-exact tests were performed using MATLAB function,
fishertest. Data distributions were directly measured by flow cytometry. For all analyses, see GitHub.

Model selection

Twenty different two-, three-, and four-promoter-state models were tested with a variety of architectures and between 3 and 9 fitted
parameters. The models were screened using two metrics: first, the residual sum of the squares on the model outputted endpoints
and experimental endpoints; and second, comparison to the expected time course curve shape based on literature (Hansen and
O’Shea, 2013; Harton et al., 2019; Benzinger and Khammash, 2018). Six models with various number of promoter states and number
and placement of Hill functions were selected for more thorough analysis (Figure S3B). These models were compared using stratified
K-fold cross validation with the scikit-learn Python module, with four folds created based on preserving the percentage of samples for
each pulse width. For each training set and each model, 1000 random kinetic parameter sets generated by latin hypercube sampling
were run and the parameter set that resulted in the highest R? value was used to run the associated testing set. The overall score for
each model was calculated as the average R? across the four testing sets (Figure S3C). The three-promoter-state, one Hill and three-
promoter-state, two Hill models had the highest cross validation scores, but given the similarity of the scores the three-promoter-
state, one Hill model was chosen to avoid unnecessary complexity in the model.

Deterministic model construction
To better understand the relationship between dynamic inputs and gene expression outputs in our system, a deterministic kinetic
model was created, which is described by the following set of ODEs:

aP, Kel(t)" .
u;l;ound = d1Pround — K,71+(I(t)"P“”b°“”d (Equation 1)

daP, kel(t)" .
bound = 41 ( ) nPunbound+d2Pactive - (d1 + kz)Pbound (Equatlon 2)

dt  Kr+i(t)
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% = k2Pbound — d2Pactive (Equation 3)
W = KsPacive — d3[MRNA] (Equation 4)
di[mcgterr%] = k4[mRNA] — (d4 + ks)[mCherry,] (Equation 5)
d[mC:terWz] = ks[MRNA] — d4[mCherry,] (Equation 6)

Here, d; and k; are the transition rates between the unbound and bound promoter states and d, and k, are the transition rates
between the bound and active promoter states. The transcription, translation, and maturation rates are ks, k4, and ks, respectively.
The mRNA and mCherry degradation rates are d; and d,4. Four parameters were experimental constants ds, k4, d4, and ks, and seven
were model fitted parameters, d4, k1, n, K, do, ks, ds, ks. The fit of the model was assessed using the coefficient of determination.
Punbounds Pbounds Pactives represent the probability of the promoter being in a given state and are each between 0 and 1 and must
sum to 1 at any point in time. A Hill function was used to describe the transition between Pynpound @nd Ppoung- The input function
is I(t), and is based on the PWM, AM, and FM of the light condition, and the input amplitudes were 6 x 10" to 6 x 10e? au rather
than 6 x 10° to 6 x 10'° au to prevent overflow error.

Parameter screen and model fitting

To fit the model to the data, sets of parameters fit by the model (d4, k1, n, K, d», ks, ds, and kz) were stochastically generated using
Latin Hypercube Sampling (LHS) using the Surrogate Modeling Toolbox in Python. The ODEs were solved numerically using odeint in
Python, and the model outputs at 14 h were compared to the experimental values using the residual sum of the squares. The fitting
was performed in two steps: initially, 1500 randomly generated sets of parameters, each sampled over an appropriate range, were
run through the model. Then, the parameter set that resulted in the highest R? value was used to “fine-tune” the LHS sampling range,
and new sets were generated and run through the model. The fine-tuning process was iterated through a total of over 5500 parameter
sets, resulting in a R? of 0.865 (Figure 3B). The model fitted parameters are shown in Figure S3C.

The experimental parameters unique to mCherry (ds, ks, ds, and ks), were treated as constants determined by literature values. The
degradation rates were found by randomly sampling within ranges provided by literature and fit to the entire dataset while all other
parameters were held constant. 3000 parameter sets were tested, with the mRNA degradation rate (d3) ranging from 1.08 x 10 —
1.12 x 10* s7" (Chen et al., 2020; Wang et al., 2002) and mCherry degradation rate (d,) ranging from 1.83e-5 - 2.56e-5 s™' (Harton
etal., 2019; Christiano et al., 2014). Both degradation rates include an additional 2.5 h to account for dilution, and the best parameters
were chosen by comparing model to experimental endpoints. For the rest of the fitting, experimental parameters were held constant
atd;=1.08x 10%s™,ds =1.85x10° s, ks = 0.25 s7',and ks = 0.000288 s™' (Hasen and O’Shea, 2013; Khemlinskii et al., 2012).
Model fitted parameters unique to the blue light optogenetic system (d4, ky, n, and K) were fit based around the literature
ranges of the dissociation and association rates of the system. d; was found by sampling within 0.003 - 0.004 s, k; between 2 x
10°-25s", K between 0.1 - 10,000 mM, and n between 0.5 - 4 (Rademacher et al., 2017; Hansen and O’Shea, 2013; Gonze and
Abou-Jaoude, 2013). The total forward ON rate for the first step was then filtered to be between 0.1 — 30 s for both I(t) = 60 au
and I(t) = 600 au, mimicking the estimated binding rate of CRY2 to CIB1 (Rademacher et al., 2017). All other model fitted parameters
were sampled between 2 x 10°-2s™". All model fitted parameters used in Figure 3, as well as the experimental constants, are shown
in Figure S3C.
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Figure S1. Related to Figure 1. Development of optogenetic system. (A-C) Schematics of
DNA constructs tested. In addition to CRY2/CIB1, improved light-induced dimer (iLID) and its
binding partner (SspB) were tested. (D) The iLID/SspB system showed no light-specific inducible
activation. (E) Fluorescent output for ZF43-8-CRY2/VP16-CIB1 showed light-inducible activation.
(F) Switching the fusion of CIB1 and VP16 produced robust light-inducible activation with minimal
activation in the dark. The light condition was a single pulse (~6e10 au) for 6.5-7 hours. IPTG
concentration was 20 mM for all plots. Error bars are 95% confidence intervals. n=2. Positive
control was ZF43-8-VP16. (G) Light intensity relationship between microscope and power meter
measurements provides a relationship between au and power. Equation on graph is a linear fit
with y=logio(Power meter measurement) and x=logio(Microscope measurement).
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Figure S2. Related to Figure 2 and Figure 4. Sampling time does not account for filtering.
(A) Fitted linear regression equation using the z-transformed parameters (za, zew, zr, Where
A=amplitude, PW=pulse width, and F=frequency). The coefficient for z is significantly higher than
the others (*p=0.05), meaning that frequency has the greatest effect on the resulting output. To
determine whether the time after the last light pulse affects the fold change, we tested two
scenarios (B-C). (B) The light pulses began at different times in order for them all to synchronously
end at the same time. CHX was added to each sample immediately after the last pulse ended.
(C) The light pulses began at the same time for all conditions, but the time after the last light
pulse—and addition of cycloheximide (CHX)—varied according to equation: 1/F-PW. (D) Results
of the scenario shown in panel B, chosen for three AUCs. (E) Results from scenario shown in
panel C. This is also shown in Figures 2B and 4D. Both scenarios exhibited linear trends of fold
change versus frequency with higher pulse widths having higher slopes. The filtering behavior
was still observed in scenario A, where distinct mCherry outputs were achieved at the same
AUCs. Noise for scenario shown in panel B.
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Figure S3. Related to Figure 3. Comparison of different models. (A) Values of fitted
parameters for the three-promoter-state, one Hill function model. (B) Model structures tested in
stratified K-fold cross validation, including a two-, four-, and multiple three-promoter-state
architectures. (C) Visualization of training and testing sets for each fold in stratified K-fold cross
validation. The percentage of samples in each pulse width are maintained across the folds. The
R? values are shown for each model and fold. The average is the average R? for the model over
each fold. The R? for the two-state model was very negative for the bounds we set for the



parameters (see Methods section). Indeed, we see that the two-state model cannot produce a
good fit (Panel D, left) for the bounds used for fitting. If k1 is much smaller, then the two-
promoter-state might have a better fit like that achieved by the three-promoter state (Panel D,
right).
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Figure S4. Related to Figure 4. Effects of size gating and normalization on noise. (A-C) Flow
cytometry gating strategy for ZF-CRY?2/CIB1-VP16 strain with blue light (amplitude=6e9 au,
frequency=0.1 sec™, and pulse width=5 sec). (A) FSC-A vs SSC-A was gated with a large radius
(0.7 with logarithmically transformed data). First, the data is gated by removing events outside of
a radius of 0.7 with logarithmically-transformed data (top). Then doublets were removed by
keeping events within  gate=median(log(FSC-H)/log(FSC-A))+.1>log(FSC-H)./log(FSC-
A)>median(log(FSC-H)/log(FSC-A)-.1 (Second row, note not many events were excluded in this
example). Resulting mCherry histogram is shown at the bottom with a CV=1.27. (B) Gating
strategy for small radius (0.3 with logarithmically transformed data) for FSC-A vs SSC-A. Doublet
gating was done the same as in A. The resulting histogram shows the reduction in noise with
CV=0.86. (C) Gating strategy with large gating radius (same as A) and fluorescence divided by
FSC-A. Histogram shows a CV between the other two gating strategies, CV=1.02. (D) Histograms
of mCherry fluorescence for the ZF-CRY2/CIB1-VP16 strain without the addition of blue light
(dark).
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Figure S5. Related to Figure 5. Ml calculated without FSC-A normalization shows same
trends. (A) Ml plots with fluorescence normalized by FSC-A (same as Figure 5). (B) Ml plots with
fluorescence NOT normalized by FSC-A. Both methods exhibit the same trends. However, the
non-normalized values are lower. Each dot is the mean of 4 biological replicates. For a list of all
values graphed, see Table S2.
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Figure S6. Related to Figure 6. Additional modes of modulation and control experiments.
(A-B) Replacing the 97-4ZF with a truncated, non-targeting 42-10ZF
(CCCCGCCACCTAAAAACCCACCTGAGA), we measured the MIgy for a subset of CRs (Panel
A). The frequencies used were the same as the main text: 6.7e-4, 3.3e-2, and 1e-1 sec™ (Periods
of 1500, 30, and 10 sec). Several (6 out 0f19) of the CRs had significantly different MIs with the
full ZF compared to the truncated ZF (* p<0.05, Welch t-test). n=2-4, except VP16 and caf40p
(truncated ZF) have 8 biological replicates. (B) Additionally, we saw similar transfer functions (fold
changes) for the truncated ZF subset and VP16, with only caf40p having significantly different
fold changes for each frequency (top). The same CRs fused to the full, targeting ZF had 9 out 19
CRs with at least one fold change significantly different from the VP16 only strain with the same
light frequency (bottom).*p<0.05, T-K analysis compared to VP16 only for each frequency
condition). This implies that the changes in MI were due to recruitment of the 43-8ZF-CR to the
locus and not global effects of over-expression of the CR. (C) MI for a subset of 97-4ZF-CRs
using amplitude modulation (0, 6e9, 1.2e10, and 6e10 au). n=4 biological replicates. (D) Ml for a
subset of 97-4ZF-CRs using pulse width modulation (0, 5, 120, and 600 sec). (E-G) Average MIgm
for each gene ontology based on process, complex, and function. Chromatin regulators for each
gene ontology were determined using the genes in the Yeast Genome Database (Cherry et al.,
2012). All MIs are normalized to the MI of VP16 for the same set of conditions. All Ml values are
given in Table S3.
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Figure S7. Related to Figure 7. Characterization of filtering behavior. (A) CV for the example
CRs shown in Figure 7. (B) Fold enrichment for gene ontology based on complex (top, from Keung
et al., 2014), function (middle), or process (bottom). *p<0.05, two-sided Fisher exact test with
Bonferroni-Holm correction. (C) Examples of CRs that fit into the filtering clusters for AM (Panel
C) and PWM (Panel D). Note that there were no CRs that fit into the band-pass cluster for AM
and PWM. n=4 biological replicates. List of clusters for all CRs is given in Table S3.
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