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Abstract

Surface roughness — a key control on aerodynamic resistance and thereby land-atmosphere
exchanges of heat and momentum — differs between dormant and growing seasons and
accompanies changes in canopy greenness and leaf area. However, how surface roughness shifts
seasonally at fine time scales (e.g., days) in response to seasonality in canopy conditions is not
well understood. This study: (1) explores how and where aerodynamic resistance changes
seasonally; (2) what drives these seasonal shifts in aerodynamic resistance, including the role of
vegetation phenology; and (3) quantifies the importance of including seasonal changes of
aerodynamic resistance in “big leaf” models of sensible heat flux (H). We evaluated
aerodynamic resistance and surface roughness lengths for momentum (zy,;) and heat (zox) using
the kB! parameter (In(zom/zon)), derived from Monin-Obukhov Similarity Theory. We used
AmeriFlux data to obtain surface-roughness estimates, and PhenoCam greenness data for
phenology. This analysis spanned a continental-scale precipitation and temperature gradient,
including 23 sites and ~190 site years from deciduous broadleaf, evergreen needleleaf, woody
savanna, cropland, grassland, and shrubland plant-functional types (PFT). Results indicated clear
seasonal patterns in aerodynamic resistance to sensible heat transfer (Ran). This seasonality
tracked PhenoCam-derived start-of-season green-up transitions in PFTs displaying the most
significant seasonal changes in canopy leaf area, with Ran decreasing near the green-up transition.
Conversely, in woody savanna sites and evergreen needleleaf forests, there were strong seasonal
patterns in R, at some sites, but these patterns were not linked to vegetation green-up. Our
findings highlight that decreases in kB! are an important control over Ran, explaining > 50% of
seasonal variation in Ra across most sites. Decreases in kB! during green-up are likely caused

by increasing zo; in response to higher leaf area index and not to seasonal changes in zpm.
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Accounting for seasonal variation in kB! is also key for predicting H as well; assuming kB! to
be constant at each site resulted in significant biases that also exhibited strong seasonal patterns
between estimated and measured H (i.e., H/H). Overall, we found that in ecosystems with strong
seasonality in leaf area, surface roughness can be sensitive to phenology, and this linkage is

therefore critical for understanding land-atmosphere interactions at seasonal time scales.
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1. Introduction

The horizontal and vertical structure of vegetation creates an aerodynamically rough surface,
generating mechanical turbulence that exerts significant control over aerodynamic resistance to
heat transfer from the surface to the atmosphere (Brutsaert, 1982; Garratt and Hicks, 1973;
Pitman, 2003; Verma, 1989). Surface roughness varies with wind speed (Thom 1972), land cover
type (Lee et al., 2011), leaf area (Dolman, 1986; Raupach, 1994; Shaw and Pereira, 1982), and
canopy height (Chu et al., 2018; Sonnentag et al., 2011), such that changes in vegetation
structure lead to significant changes in aerodynamic resistance. Vegetation phenology triggers
significant and rapid changes in the structure of the canopy (Richardson et al., 2013), altering
surface roughness during green-up and senescence. Such phenology-driven impacts can
influence the land-surface energy balance by changing aerodynamic resistance and hence
sensible heat flux (H), in addition to other key biophysical processes such as evapotranspiration
(Fitzjarrald et al., 2001; Moon et al., 2020; Schwartz, 1992). Capturing dynamics between
phenology and aerodynamic resistance is therefore critical for accurately parameterizing the role
of phenology in land-surface models (e.g., Richardson et al., 2012). More broadly, phenology
driven changes in aerodynamic resistance can impact on the atmospheric boundary-layer,
including temperature profile development, boundary-layer height and cloud formation, and
near-surface micro-climate (Baldocchi and Ma, 2013; Betts, 2004; Novick and Katul, 2020).

The magnitude of H is controlled by the difference between surface and air temperatures and
the aerodynamic resistance to sensible heat transfer. Modeling and predicting aerodynamic
resistance requires information on two key surface-roughness parameters: roughness lengths for
momentum and heat (Verhoef et al., 1997). The roughness length for momentum (zo.) defines

the height above the surface that wind speed extrapolates to zero, and the roughness length for
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heat (zo») is the effective source height in the vertical temperature profile for sensible heat. In
ecosystems with taller roughness obstacles (e.g., forests), an additional parameter is commonly
needed: the zero-plane displacement height (). Under such conditions, wind speed extrapolates
to zero at height d + zon. Differences between zy, and zo, result in an “excess resistance” to heat
transfer relative to momentum transfer. Specifically, heat transfer from zo» — zom 1s dominated
by molecular diffusion, while heat transfer above zgy is controlled by more efficient processes
associated with eddy diffusion (Bonan, 2016; Thom, 1972). In land-surface modeling, the
parameter kB! (In(zom/zon)) is used to quantify this excess resistance between zg, and zos
(Brutsaert, 1982; Owen and Thomson, 1963; Thom, 1972). Further details on the derivation of
excess resistance and kB! are found in Section 2.1.

The kB! parameter varies significantly with land-cover type, leaf area, and other
environmental variables (Brutsaert, 1982; Rigden et al., 2018). For example, a deciduous
broadleaf forest acts as a permeable-rough surface, defined as having densely packed, porous
elements and exhibiting relatively low kB! values (kB! generally ranges from 0-4). Conversely,
in arid ecosystems, the canopy is characterized by uneven and sparse roughness elements (i.e., a
bluff-rough surface), and kB! generally exhibits higher values (kB! ranges from 2-10) (Rigden et
al., 2018). For bare soil, kB! has low values (ranging from 0-1), and negative kB! values have
also been estimated (Yang et al., 2008). This variability in kB! among differing land cover is
also clearly illustrated by the bifurcation of kB-! among land-cover types, with higher values
occurring in bluff-rough surfaces compared to permeable-rough surfaces (Garratt and Hicks,
1973; Rigden et al., 2018), implying differences in the physical arrangement and structure of
surface-roughness elements strongly governs behavior of kB-!. While this bifurcation is well

documented among varying land-cover, little work exists exploring seasonal changes in kB!,
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which may in part be driven by changes in canopy structure, including the amount and
distribution of leaf area.

kB! displays strong temporal variability in response to multiple different environmental
factors. At a diurnal scale for sparse canopies, solar radiation penetrates below the canopy,
warming the soil, and causing zo; to be effectively the height of the soil surface, thereby
increasing kB!. Meanwhile, zg is constant at daily time scales (Brutsaert and Sugita, 1996;
Kustas et al., 1989; Verhoef et al., 1997). At a seasonal time scale, some evidence suggests that
changing leaf area over time causes a distinct negative relationship between leaf area index and
kB! (Qualls and Brutsaert, 1996). These patterns can also be generalized at different time scales.
Conceptually (Fig. 1), daily kB! peaks at midday as the diurnal cycle in solar radiation causes
the magnitude of the temperature gradient at the top of the canopy to increase, ultimately altering
zon. Similarly, the impact of vegetation green-up can also cause kB! to vary at seasonal time
scales. For example, changes in zg, may effectively track changes in zon, leading to a constant
kB! for the entire season. Conversely, zg, may increase faster relative to zom, leading to decreases

in kB! during green-up transitions (Fig. 1).
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Figure 1. Hypothesized behavior of kB! at multiple time scales. The left column of panels displays idealized diurnal
behavior for short-statured vegetation at DOY 180 and how solar radiation may cause shifts in zo» and kB!, Panels
on the right-hand side depict behavior of kB! at a seasonal time scale. At seasonal time scales, the behavior of zom
and zo; relative to each other will determine kB!. Two different potential behaviors are depicted above. The dashed
curve (zon,1) represents a potential scenario where zgx proportionally tracks zon resulting in a constant kB! for the
entire year. Alternatively, the dotted curve (zon2) represents a scenario where zos increases faster relative to zom in

response to green-up, resulting in a decrease in kB!, The faded green line represents canopy greenness while the
vertical line indicates a theoretical green-up date.
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Determining whether changes in zon or zs are the primary driver of seasonal variation in kB!
is critical for identifying the biophysical drivers of aerodynamic resistance. A simple — and
common — approach is to equate zp,, as a fraction of mean canopy height (%) (e.g., zom = 0.1k;
Bonan, 2016). d is similarly estimated as d = 0.7h.. However, while this is a common method for
estimating these roughness parameters, this approach has several important limitations. First, this
approach cannot produce time series of changes in zg, unless continuous measurements of /. are
recorded. Second, seasonal signals in zo, are complex and may not effectively track canopy
height. For example, as the canopy fills in after leaf emergence, zo» may display non-monotonic
variation with leaf area, increasing in length before decreasing (Shaw and Pereira, 1982).
Additionally, as leaf area increases, the coefficients mapping /4. to zo» and d (e.g., zom/he = 0.1
and d/h. = 0.7) are not constant and can decrease and increase, respectively (Sakai, 2000).
Measurements of wind speed and turbulence from flux towers offer an alternative method for
estimating zg,. For example, if wind speed is available at multiple heights above the canopy, a
vertical wind-speed profile can result, allowing for extrapolation of d and zp, (Monteith and
Unsworth, 2008), and a similar approach may be used for zg, using air temperature profiles. At
towers where measurements are available at only one height, an effective or “aerodynamic”
canopy height can be estimated using Monin-Obukhov similarity theory, and thereby allow for
inference into changes in of d and zsp,, (Chu et al., 2018; Pennypacker and Baldocchi, 2016).
However, this approach requires explicit assumptions regarding d/h. and zon/h.. More details
regarding Monin-Obukhov similarity theory and estimating zo» and d can be found in sections
2.1 and 2.6.

Common approaches to parameterizing kB! in predictions of H include simple assumptions.

One such assumption is zom = zox (i.€., kB! = 0) (Campbell and Norman, 1998). While assuming
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kB! = 0 simplifies calculations of H, it can cause significant bias (Yang et al., 2008), and is
therefore not commonly used. Another approach is to assume kB! is a non-zero constant. For
example, kB! = 2 is a common assumption, and shows good performance during the growing
season for agricultural and forested land-cover types (Garratt and Francey, 1978; Zhao et al.,
2016).

Despite extensive literature focused on kB!, few studies have explored how aerodynamic
resistance changes seasonally, what drives these changes, and what the consequences are of such
variation in aerodynamic resistance for predicting seasonal patterns in H (e.g., Moon et al., 2020;
Sugita and Kubota, 1994). Furthermore, estimates of H from vegetated surfaces in land-surface
models directly rely on model assumptions linking surface roughness to changes in leaf area and
canopy height, further motivating the need for clearer understanding of how phenology may
influence surface roughness (Lawrence et al., 2018; Zeng and Wang, 2007). Here, we address the
following questions: (1) how does aerodynamic resistance change at seasonal time scales across
a range of plant functional types and climate regimes, (2) what are the mechanisms that lead to
changes in aerodynamic resistance, including the role of plant phenology, and (3) how does
assuming kB! to be constant influence estimates of H at seasonal time scales? To address these
questions, we analyzed data from 23 sites that are part of both the AmeriFlux and PhenoCam
networks, covering deciduous broadleaf, evergreen needleleaf, cropland, grassland, woody
savanna, and shrubland land-cover types, and spanning a broad climatological gradient across

North America.
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2. Materials and methods

2.1 Basic theory

Whole ecosystem H is commonly modeled using a “big leaf” approach, which considers that
ecosystems behave as a single layer, and therefore does not account for vertical differences from
the soil through the canopy (Knauer et al., 2018; Raupach and Finnigan, 1988). Under this “big
leaf” approach, H is a function of the difference between the aerodynamic surface temperature
(T4ero) and air temperature at tower height (75), as well as aerodynamic resistance to heat transfer
(Ran):

pcp(Taero—Ta)
H = 2T (M

where p is air density (kg m™) and ¢, is a constant for the specific heat of dry air (1004.834
J K- kg!). The total aerodynamic resistance to heat transfer (Ran; s m™') is the sum of the
resistance to momentum transfer (Ram) and an excess resistance term (Rpn) representing
differences between roughness lengths for momentum (zo.) and heat (zox),

R = Ram + Runy (2)

To calculate Ran, Ram, and Ryh, we used the methods described by Verma (1989) and published in
the ‘bigleaf’ R package (Knauer et al., 2018). Specifically, we estimated Ram using the definition:
Ram = u/u? 3)

where u and u, are tower-measured horizontal wind speed (m s™) and friction velocity (m s),

respectively. The excess resistance, Ron, is defined as:

Ron = o [1n (22) = ¥ + o “)

ku, L \zon
Here, k is the unitless von Karman constant (0.41), and ,,, and ¢, are stability functions for

momentum and heat exchange using formulations from Dyer (1970) and Businger et al. (1971).
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Following Rigden et al. (2018) and Verma (1989), we used the common, simplified definition of

Run ignoring stability effects over the short distance zom — zon:

Rpn = —In (Z()_m) )

ku, Zoh
We tested the impact of not including stability effects when estimating Rpn using Eqn. 5 and
found that this only had minor impacts on our results (Fig. S1). The kB! parameter characterizes

differences between z, and zg, and is defined as:

kB! =In (ﬂ) (6)

Zoh

Substituting Eqns. 5 and 6 yields:

1
ku,

Rpp = —kB™! (7)

kB! has been well studied across a broad range of ecosystems but cannot be measured directly.
Multiple methods have been proposed to model and estimate kB-!. These methods range from
simple functions of u, or the roughness Reynolds number (Re,) (Brutsaert, 1982; Rigden et al.,
2018; Thom, 1972; Verhoef et al., 1997), to more complex models that account for variation in
the vertical and horizontal distribution of vegetation (Massman, 1999; Yang and Friedl, 2003).
Here, our goal was to better understand the seasonality of kB!, and therefore we did not develop
new prognostic models for kB-!. Instead, we focused on estimating kB! by optimizing the value
that best predicted tower-measured H at relatively fine time scales (i.e., 3-days). Further details

can be found in Section 2.4.

2.2 Tower data

We used eddy covariance measurements from 23 AmeriFlux sites that also had PhenoCams.
These sites were selected because they spanned a broad gradient in climate and vegetation

structure across North America, while also having a minimum of two years of overlap between

12
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AmeriFlux and PhenoCam data records. Mean annual temperatures ranged from 1.5 to 17.6 °C
and mean annual precipitation ranged from 275 to 2452 mm. Growing season canopy heights
ranged from 0.3 m in the US southwest to 60 m in the US northwest and leaf area index (LAIL, m?
m2) ranged from 0.3 to 8.7 (Table 1). While we required a two-year minimum overlap between
AmeriFlux and PhenoCam, we used a longer time series of tower measurements based on data
availability and continuity. For each site, we used measurements of precipitation, net radiation
(Rn), Ty, H, and u,. We used radiometric surface temperature (75) as a proxy for Tuero (Eqn. 1). T
was computed using separate measurements of upwelling (R;,,) and downwelling (R;;)

longwave radiation,

TS — 4 ’Rlu_ (:;S)Rld (8)

Here, ¢is emissivity and ois the Stefan-Boltzmann constant (5.67x10% W m2 K4). Emissivity
values for each vegetation type were obtained from Tao et al. (2013). Hour or half-hour tower
data were filtered for mid-day only (10:00-14:00 local time) with R, > 50 W m2, H > 50 W m?,
and u, > 0.2 m s’!. Days with lower R, were excluded to remove measurements with
proportionally higher uncertainty (i.e., R, < 50 W m2) (Hollinger and Richardson, 2005). We
included a filter for H (i.e., H < 50 W m) to remove anomalously high values of kB! obtained
through our optimization approach when H is near zero. We excluded low u, values to remove
observations having insufficient turbulence (Papale et al., 2006). Finally, we excluded days
where any precipitation was recorded between 20:00 hr the previous day to 14:00 hr of the
current day. All tower data were downloaded from the AmeriFlux server

(https://ameriflux.lbl.gov), and dataset version numbers and download dates are provided in

Table S1.

13



PTIOPCI/ANV/O6TLI0T 10T “'[e 30 UOME A ON/ON 009 L8 Sy 88 T8SY  S6'ITI- ANA IoALIpUIM SIM-SN
CII9VCI/ANV/06TLT 0T 010 “'Te 30 noos SOX/SOX €0 80 0¥€ 9G¢1  PLIE 16601~ VIO [repusy  SYM-SN
CTI9VCI/ANV/06TLT 01 S10T “Te 9 109§ SOA/SOA $0 S0 0z¢ 9Ll PLIE SOOLI- HSO S[yAYon  sym-SN
[TI9VCI/ANV/06TLT 0T £00C Te 39 00D SOX/SOX et v's L8L oy  I8St  80°06- d4da JUIOMO[IM  IDM-SN]
P86SHCI/ANV/06TLT 01 LO0T “Te 10 e ON/ON €0 $'¢ 6SS 8GCl I¥8E S6°0TI- VIO BIIRA TeA-SN
LOTOVCI/ANV/06ILI0T €102 “'[e 3 ysnon ON/ON 0'€C 8¢ €08 8C 9SSy ILP8- d4da [ed13ojorquorun  gNN-SN
6V IOVCI/ANV/O6TLT 0T L10T “Te 30 emeyIO ON/ON 80 0°¢ K42 96l TI8E SYITI- o4 BJ[EJ[e[[PYOMM)  EM-S()
[L6SYCI/ANV/06TLT 0T 910C “T& 10 eI SOX/SOX 001 L0 6SS 8Cl €8¢  L6°0TI- VSM 1Zuo} uol-sn
9019V CI/ANV/06TLT 0T S00T “Te 30 1esog SOX/SOX 8T 0t 98 8¢ VIO 8E68- d4qa RIUBA[AS AKS-SN
STIOVCI/ANV/06TLT 01 S10T “Te 9 9Ldd ON/ON 90 €0 SLT L€l PEVE  SL90T- HSO qIYSEIR[IAdS $9S-SN
LOS6TI/INV/06TLT 0T 610T ‘PUBPIBN ON/ON Sl 0°¢ 6L8 9 89V  LOE6" ViID sidujunowasox $0¥-SN
8809FCI/IINV/06TLT 0T S10T “Ie 30 sung SO /ON A L€ 008 S'1 €0°0F  SS'S0I- ANA glomIu AIN-SN
T10T 60 oy
9809VCI/AINV/06ILI 0T BUIDA pue JoyAng SOX/SOX LT @y ¥8L o1 SI'ly  +¥'96- o4 gpeawt €9N-SN
T10T 01 (oS
SR09FCI/ANV/06TLI 0T ‘BULOA puE JOjANg SOX/SOX 0¢ (¢ 68L 0T 9U'ly  L¥'96- o4 Cpeawt 73N-SN
PROOFTI/ANV/O6TLI 0T ‘BULOA pue sm%m SOX/SOX 0¢ (¢ 06L 01 LUy 8¥'96" o4 [peawt [3N-SN
“re 19
CCIOVCI/ANV/06TLT 01 esxsm.%mswi ON/ON LT 'l G8¢ S0l vPveE  +T90I- VSM (dwsn [dN-sn
1809V I/ANV/06TLT 0T 910T “Te 10 nH ON/ON Ty 6'¢ 986 'l vL'8E  0T'T6- d4da Syrezoumosstu - ZON-SN
0809FCI/ANV/O6TLT0T  S10T “Te 39 uewoy SOA/SOA 0'LT 9t €01 601  TE6E  I¥98- Jga soruowuedIow  SIN-SN
8CIOVCI/ANV/06TLT 01 #10T “Te 30 Iyony SOX/ON $9 €1 4% 9L TEVY 19°1CI- ANA dAUu03210  9IN-SN
9LO9YCI/ANV/O6TLT 0T 600T “Te 30 sewoy], SOX/ON $91 0¢ €CS 09 Shvvr 95 ITI- ANA dINuo3a10  ZIN-SN
$00¢ “1e8ul[joH
1909YC [/ANV/06TLT 0T pue uospIeyory ON/ON 00T LS 0L01 €S 0TSy PL'89- ANA [pug[moy [OH-SN
LTEOSYI/ANV/O6TLT 0T 610T e 19 SoWdH ON/ON 80 0¢ 8€¢ 091 0I'S€ 0S'1TI- odd BJ[eJ[euIp[noq 11d-SnN
CI09%CI/ANV/06TLT 01 010T T 30 [yd12d mﬁozowﬁ 07T 08 9€01 08 LTy S€08- ANA peyuarutodAny  pd1-vO
nLm
ieyep (w) (G w) (wuw) (o)
10d 19sereq NUIIRYIY dyoad Y IVl dVIN. LVIN e ‘uo LAd we)oudyd NS

(soy1s JermynouiSe Jo spue[doid = QYD pue ‘euueALS Apoom

14

=VSM ‘spuejqnuys uado = SO ‘PUB[SSLIS = VYD) IS910] JE[9[padu uISI0Ad = JNH IS210] Jea[peolq snonprodp = Jg( :59pod [ 4d) (?7) smmyerodwd) Ire 10 (1)
paads puim 10j eyep a[goid sopraoid 931s ayy 1oyjaym pue ‘(°y) 3oy Adoued uedw {(Ty']) XOpUI BAIE JBI[ U0Seds Fuimoid ueaw pue ‘(JvVIN) uonedioard pue (1L VIN)
aInjerodwio) [BNUUE UBIW ‘UONBAIJ[S ‘SjeuIpIood oyder3oa3 ‘(1.1d) 2d4) euonouny juerd Arewd Surpnjour ‘Apnjs SIy) Ul pasn s9)IS WeHouyJ pue Xn[JLUoWyY T d[qeL

245



246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

2.3 PhenoCam data

To capture vegetation phenology, we used the V2.0 PhenoCam public data release (Milliman
et al., 2019; Seyednasrollah et al., 2019a; Seyednasrollah et al., 2019b). Here, we only provide a
brief overview of PhenoCam data; a full description is presented in Richardson et al. (2018) and
Seyednasrollah et al. (2019b). The PhenoCam network uses high-frequency imagery from digital
cameras to track vegetation phenology. Following a standard protocol, cameras are mounted
overlooking the vegetation of interest, and three-channel RGB images were recorded multiple
times per day (typically every 30 minutes). For each site, a region-of-interest (ROI) in the image
field-of-view is delineated to focus on the canopy. Using all pixels in this ROI, statistics
summarizing RGB digital numbers (DN) are generated to quantify relative changes in canopy
color over time. This canopy color information can be used to accurately identify phenological
time series and transition dates (e.g., spring leaf emergence and fall senescence; Keenan et al.,
2014). However, canopy color from PhenoCam does not explicitly measure the physical
structure of the canopy (e.g., LAI or roughness). In our analysis, we used time series of the

green-chromatic coordinate (Gcc) to measure canopy greenness and extract transition dates,

GCC = G.+N (9)

Gpn+Rpn+BpN
Daily values of Gcc were calculated from all daytime images under a 1- or 3-day moving-
window (Sonnentag et al., 2012). The V2.0 data release provides four Gc¢c statistics for each
moving window: mean, median, 75" percentile, and 90" percentile. In this analysis, we used the
statistic that minimizes the root mean squared error (RMSE) between daily Gcc values and a
locally weighted regression smoother (loess) at each site. The smoothing span for the loess was
determined by minimizing a Bayesian Information Criterion (BIC) (Richardson et al., 2018), and

the smoothed loess values are further used to identify phenological transition dates. In our
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analysis, we used the 3-day moving window substantial to visualize seasonal patterns in
greenness and the 1-day product to estimate transition dates. This was necessary as transition
dates could not be identified in some of the dryland sites using the 3-day product. For this study,
we used the start-of-season green-up date (i.e., “green-up”) as our primary measure of spring
phenology, as it characterizes the date of leaf emergence and acts as a clear separator between
dormant and growing seasons. Specifically, this green-up date was equated to the day when 10%
of the total seasonal amplitude in Gcc was reached. For evergreen needleleaf sites, changes in
Gcc are caused by changes in foliage pigments on seasonal time scales, and are not related to
changes in leaf area (Bowling et al., 2018; Seyednasrollah et al., 2021). The V2.0 release has
been screened to remove low-quality imagery and image masks have been adjusted to account
for camera field-of-view shifts. Only cameras set to fixed white balance were included, to
remove negative impacts from auto-white balancing under default camera settings
(Seyednasrollah et al., 2019b). Finally, we also conducted a brief supplementary comparison
between Ge. time series and flux-tower derived estimates of broadband NDVI (e.g., Jenkins et
al., 2007). We found strong similarities between these time series, indicating that PhenoCam G,
can capture seasonal changes in vegetation that are also captured by radiometric measurements
that are conducted at some sites. Details on these comparisons are provided in Appendix S1 and
Fig. S2. Additional metadata information for each PhenoCam site, as well as example imagery

and maps of vegetation cover, can be found in Table S1 and Fig. S3.

2.4 Estimating seasonal variation in aerodynamic resistance
We quantified Ran, as well as the underlying components Ram, Roh, and kB!, at a 3-day timestep
to effectively visualize and identify potential seasonal patterns in these aerodynamic resistance

terms among different ecosystems. First, we calculated Ram at a half-hour timescale using Eqn. 3.
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Second, we used Eqns. 1 and 2 and our predictions of Ram to estimate a single value of kB! that
minimized prediction error of H across all half-hour values every three days. This value of kB!
at a 3-day timestep allowed Ryh to be calculated using Eqn. 7. Finally, we smoothed the time
series for each variable using a loess curve. The span for the loess curve for each variable and
site was optimized by minimizing the BIC, and this was the same method used for smoothing
PhenoCam greenness data (see Section 2.3). By smoothing over a time series of non-overlapping
3-day estimates, our approach captures shifts occurring during phenological transitions, even
under a short time duration. We chose a 3-day time scale for this averaging and subsequent
smoothing because it was consistent with the time scale used with PhenoCam. We note that our
method of estimating Ryn as a residual of Ran and Ram will result in errors in H will be
propagating into estimates of Ruy and kB!, Errors in H could be derived from multiple sources,
but are not likely a major concern. For example, it is possible that lack of energy balance closure
could influence our results, especially if there is strong seasonality in the amount of closure
occurring in concert with seasonal changes in the Bowen ratio. However, at the handful of sites
where we examined this in detail, we found no evidence of strong seasonality in mid-day energy
balance closure, and no emerging patterns that would allow us to link poor energy balance
closure to strong seasonal variation in Ry,. Furthermore, while random or systematic
measurement errors in / data could influence estimates of Ry, our filtering approach was
designed to minimize the impact of systematic errors (see section 2.2) and by averaging mid-day
fluxes over three days, the magnitude of random errors is also greatly reduced (e.g., Hagen et al.,
2006; Hollinger and Richardson, 2005).

Any variable exhibiting strong seasonal variability will inherently have cyclical peaks and

valleys. Here, we identified the timing of peaks and valleys for both R.n and kB! (hereafter
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referred to as periods characterized by either “maximum” or “minimum” values, respectively).
These maximum and minimum periods were then related to green-up. To do this, we first
computed the 25" or 75 percentiles of the whole time series for each variable at each site. We
then identified the days-of-year where each variable occurred above or below these 75" and 25®
percentiles, equating these days to the timing of seasonal maximum and minimum values,
respectively. The start-, middle-, and end-point for each maximum and minimum time period
was identified by the 10%, 50, and 90™ percentiles across these day-of-year values. To calculate
these relative day-of-year statistics, we used directional statistics using the ‘circular’ package in
R (Agostinelli and Lund, 2017). To visualize and compare the timing of seasonal transitions in
Ran and kB!, we plotted the transition dates for each of these variables against each other, as well
as green-up date. The transition dates for Ran and kB! used for this visualization were the “end”
points (i.e., 90" percentile) of the distribution for timing maximum Ran and kB! values (e.g., see
Figs. 3 and 5). We used these values as transition dates since they are representative of the
timing of when Ran or kB! begins to decrease.

kB! is also frequently modeled as a response to the Reynolds roughness number (Re,)

(Rigden et al., 2018), where Re, is defined as:

Re, = Zm%- (10)

v
Here, vis the kinematic viscosity (Massman, 1999). Thus, we plotted kB! against Re, for each
season (dormant and growing) to visualize and compare our results more easily to past studies.

For this simple visualization, we identified the growing season as those dates between the 50%

green-up threshold and 50% green-down threshold (Richardson et al., 2018). The dormant

season was identified as the period prior to green-up.
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2.5 Attribution analysis

We can attribute variability in Ran to either Ram or Rph (i.€., Ran = Ram + Roh; Eqn. 2), and
understanding which of these factors has a stronger correspondence would provide key
information to infer the primary drivers of Ran. To conduct an attribution analysis, we used
statistical properties defining the variance of the sum of two random variables (Rice, 2007),

Var(X +Y) =Var(X) + Var(Y) + 2Cov(X,Y) (11)
Here, Var and Cov are the variance and covariance functions, respectively. We used Eqn. 11 in
combination with the relationship in Eqn. 2 to attribute the relative contribution of total variance
of Ran or the covarying relationship between Ram and Ry,

Var(Ryn) = Var(Rgm + Rpn)

Var(Ra) = Var(Rey) + Var(Ryy) + 2Cov(Rym, Rpn) (12)
Calculations assumed N-1 degrees of freedom, with N being the number of independent 3-day

periods. This analysis was done separately for each site using the unsmoothed time series.

2.6 Quantifying seasonal changes in roughness parameters

Seasonal shifts in kB! must be in response to either zgn or zos. To help diagnose whether
changes in kB! are responding to zon or zos, we quantified zp. by estimating aerodynamic canopy
height (4.) at a 3-day timestep. For example, if kB! decreases even while zg, increases, we can
infer that changes in zo; are likely having a stronger influence on kB! (e.g., Fig. 1). zom is most
commonly prescribed as simple functions of mean canopy height (k) (e.g., zom = 0.1A.), with
measured canopy heights reported by site PIs. However, zo, has been shown to vary significantly
with leaf area (Yang and Friedl, 2003), indicating physical 4. measurements may be limited at

capturing seasonal changes in zp». Aerodynamic canopy height (4,) offers an alternative to using
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359  observed .. Specifically, aerodynamic canopy height can be estimated using the

360  Monin-Obukhov similarity theory definition of the log-wind profile,

Uy z—d
361 u(z) == [1n (E) - ¢m] (13)
362  Here, u(z) is wind speed at height z, d is the zero-plane displacement height, and v, is a stability

363  function for momentum (Dyer and Hicks, 1970). Under near-neutral atmospheric stability

364  (i.e., wm = 0), Eqn. 13 can be re-arranged to determine a single value of 4, that best predicts flux-

ku(z)

365 tower measurements of using the assumptions that d = 0.7h, and zp, = 0.1k,

*

366

ku(z) —In (z—0.7ha) (14)

U, 0.1h,

367  While d/zg, = 7 is a common assumption (Bonan, 2016), this ratio has been demonstrated to
368  change with land-cover type, LAI, and stand density (Nakai et al., 2008). However, we

369  maintained this assumption for our analysis, as we were primarily interested in simply

370  understanding how /4, (and hence zo»,) changes seasonally; thus, the absolute accuracy of our /4,
371  estimates was not critical.

372 To quantify seasonal variability in 4., we first split up the time series at each site into non-

373 overlapping 3-day windows. Within each window, a single value of /4, was optimized to

374  minimize the mean absolute error between all observed and predicted half-hour values of kulzy),

*

375  This gave us one estimate of /4, every three days. For this optimization, we used a different data
376 filtering approach than in Section 2.2. Here, we closely followed Pennypacker and Baldocchi
377  (2016) and Chu et al. (2018). Additionally, we filtered for atmospheric neutrality, and this was
378  the only part of our analysis to include this filter. In estimating 4., we applied a roughness

379  sublayer correction at forest sites (Chu et al., 2018). If the reference height (z,) was less than
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1.5k (hc equal to PI reported canopy height), we included a roughness-sublayer correction factor

(Ars), optimizing using the following instead of Eqn. 14:

ku(z) —0.7h,
=2 =In (Zollha )+ln(/1rs) (15)

From Chu et al. (2018), 45 = 1.25. We did not include a roughness sublayer correction in any
other part of our analysis, and we believe this would not meaningfully impact our results as Hu et
al. (2020) found that including a roughness-sublayer correction did not improve predictions of
turbulent fluxes. Seasonal summaries for 4, for each site are provided in Fig. S4.

In addition to calculating 4., we also used wind-profile data from sites recording wind speed
at multiple heights to individually estimate d and zon, independent of assumptions related to
canopy height such as zp» = 0.1k, (sites with profile data availability are listed in Table 1).
Specifically, we chose three sites for this analysis: US-MMS, US-Syv, and US-Nel. We chose
sites for this analysis based on whether d was likely to have significant influence and on the
availability of relatively complete and suitable time series of wind speed at two heights. To
conduct this analysis, we used the difference between wind speeds at two different heights under
near-neutral stability to find a single value of d that best predicts the left-hand side of Eqn. 13

(Monteith and Unsworth, 2008):

k(ui—uz) _ log (ﬂ) (16)

Uy Zy —-d
Here, subscripts refer to two different measurement heights, with z; > z,. Using this estimate of

d, we were able to invert Eqn. 10 to obtain an estimate of zpu:

ku(z)} (17)
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2.7 Seasonal sensitivity to estimating H

While initial results indicated there was significant seasonality in both Ran and kB! (Figs. 2
3, 6), it is also common to assume kB! = 0 or kB! is equal to a constant value (i.e., kB! = ¢)
when predicting H. To understand the implications of using either of these assumption for
predicting seasonal patterns in H, we calculated the relative difference between estimated (H)
and measured values of H (i.e., H/H). The constant value ¢ for each PFT was obtained from
Rigden et al. (2018), and is representative of mean growing season kB-!. The impacts of each
assumption were evaluated by visualizing time series of the relative difference between

measured and estimated H at a 3-day timestep.

3
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3. Results

3.1 Seasonal variability in aerodynamic resistance

There were significant seasonal patterns in Ran at most of our study sites, which spanned a
continental-scale precipitation gradient (Fig. 2). In general, PFTs that exhibited the largest
seasonal changes in leaf area (i.e., deciduous broadleaf, grassland, croplands) consistently
produced strong seasonal signals in Ra (Fig. 2). For example, at the wettest grassland site, a
restored prairie landscape in the upper Midwest (US-Ro4, MAP = 879 mm; Markland, 2019), Ran
ranged from 44 s m! in the dormant season to 21 s m™! in the growing season (Fig. 2). Likewise,
at our driest grassland site, Kendall grassland in the Walnut Gulch Experimental Watershed of
southern Arizona (US-Wkg, MAP = 340 mm; Scott et al., 2010), Ran ranged from 75 s m™! to 55 s
m! (Fig. 2).

We further evaluated seasonal patterns by identifying the periods of the year when R.;, values
were characteristically lower (i.e., at a “minimum”) or higher (i.e., at a “maximum’”). Through
quantifying these timing, we found that in many cases maximum and minimum R.; values
occurred in distinct and non-overlapping periods, indicating distinct seasonality (Fig. 3).
Specifically, we found that maximum Ran occurred prior to or during green-up, while minimum
Ran occurred after green-up at most deciduous broadleaf forests, grasslands, shrublands, and
agricultural sites (Figs. 2, 3, and S6). For example, at a set of three agricultural sites at the
University of Nebraska Agricultural Research and Development Center (US-Nel, US-Ne2, and
US-Ne3; Suyker and Verma, 2010; Suyker and Verma, 2012), we found that maximum Ran
occurred from 120 days prior to green-up through 13 days after green-up for corn (Zea mays L.),

while minimum Ra, ranged from 66 to 141 days after green-up. Similarly, for soybean (Glycine
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max [L.] Merr.), maximum R, ranged from 197 days prior to green-up through 8 days after
green-up (Fig. S5).

We also observed seasonality in Ran among some, but not all, evergreen-needleleaf and
woody savanna sites. Wetter evergreen and savanna sites, as measured by mean annual
precipitation (Table 1), displayed little seasonal variability in Ran, while drier evergreen and
savanna sites with lower stand density had some of the strongest seasonal patterns in Ran. For
example, US-Hol (MAP = 1070 mm), a sub-boreal, closed canopy site in Maine with little
annual needle turnover (Hollinger et al., 1999), exhibited little seasonal variation in Ran, Ram, OF
Run (Fig. 2), and Ran had a seasonal amplitude of only 4 s m™!. In comparison, at the lower stand
density Metolius young burn site in central Oregon (US-Me6, MAP = 494 mm; Ruehr et al.,
2014) or the Pinyon-Juniper woody savanna site in central New Mexico (US-Mpj, MAP = 385
mm; Anderson-Teixeira et al., 2011), we observed some of the largest seasonal changes in Ran
among all study sites, with seasonal amplitudes of 33 and 16 s m™!, respectively (Fig. 2).
Furthermore, the timing of minimum and maximum R, values at these drier evergreen
needleleaf and savanna sites was opposite to the patterns found at deciduous broadleaf forests,
with maximum Ran occurring during the growing season and minimum values more prevalent

during the dormant season prior to green-up (Figs. 2, 3, and S6).

24



448
449

450
451
452

40
US-MMS US-MOz US-UMB
30 (1030 mm) J (990 mm) (800 mm)
L
m
o
}#0 'L,.-....“‘ ‘t'O---...‘ "».‘..----.
60
US-Ho1 US-NR1
(1070 mm) (800 mm)
40
L
4
1]

ROLLET P mm)

., o, 08
0 LTI MRt ALLELL N

<_ 100 US-Ton 1
£ (560 mm) ‘
() |
~ oy )
8 (@)
g S
7] =
0
[}
X o
100 US-Ro4
(880 mm)
50 N
0 - ”-....-”‘l US-Var (560 fnm) US-Wkg (410)mm) o
100 Corn Soybean
(790 mm)

(790 mm)

-100 0 100 -100 0 100

DOY relative to green-up

Figure 2. Seasonal changes in Rah, Ram, and Ren from example sites for each PFT. For each site, the median is
calculated for each DOY across all years, and these statistics are then smoothed using a loess smoother. Confidence
bounds represent the interquartile range across all years as well (25%-75" percentiles). Mean annual precipitation is
in parentheses. The plotted points are the unsmoothed data for Ran. Plots for additional sites can be found in Fig. S4.
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Figure 3. Timing of seasonal maximum and minimum values for aerodynamic resistance to heat transfer (Ra.n). Red
and blue histograms display the empirical distribution of the seasonal maximum or minimum timing, respectively.
Specifically, the histograms are for day of year values (relative to green-up) for all days that were either above the
75th percentile (i.e. maximum) or below the 25th percentile (minimum). Day O (at the top of each plot) represents
green-up. These empirical distributions of maximum or minimum timings are summarized by the 10th, 50th, and
90th percentiles of these relative day-of-year values as the beginning, middle, and end points, respectively (i.e., the
red and blue “slices”). The green “slices” represent the green-up phenological transition period, bounded by dates
when the Gce curve reaches 10% and 90% of the total seasonal amplitude of Gcc. Plots for additional sites can be
found in Fig. S6.
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3.2 Inferred drivers of R.n seasonality and linkages to spring phenology

Our findings suggested that seasonal variability in R.n was primarily attributable to changes
in Roh, not Ram, at most of our study sites. In general, there was strong correlation in the seasonal
patterns of Ran and Rpn, but much lower correspondence between Ran and Ram (Fig. 2). For
example, at US-MMS, a 90-100 year old deciduous broadleaf forest in southern Indiana
(Dragoni et al., 2011), there was a well-defined decrease in Ra, near green-up, shifting from 23 s
m! to 15 s m! (Fig. 2). This shift in Ran directly tracked Ryn, which shifted from 15 s m™to 7 s
m™!. Conversely, Ran was anti-correlated with Ram (Fig. 2). These patterns and linkages between
Ran and Rpn were reinforced by results from our attribution analysis where the total variance in
Ran was partitioned between Ram, Ron, and the covariance between Ram and Ry (Fig. 4). We found
clear evidence among non-agricultural PFTs that the total variance in Ran was primarily
explained by Ryh, not Ram (Fig. 4). For example, across all deciduous broadleaf sites, variance in
Run explained 48-92% of the total variance in Ran compared to Ram (2-36%) (Fig. 3). There were
only two non-agricultural sites where we found evidence for R.m having higher explanatory

power than Ryn: CA-TP4 and US-NRI1 (e.g., 65% vs 38% for CA-TP4) (Fig. 4).
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Seasonal variation in Ry is attributable to seasonal shifts in kB-!. We found distinct and
corresponding seasonal cycles between Rph and kB! occurring at many sites (Figs. 2, 5, and 6);
kB! generally reached its highest values immediately prior to or during green-up, followed by
decreases during the transition to the growing season at deciduous broadleaf, grassland,
shrubland, and agricultural sites (Figs. 5 and 6). At drier evergreen needleleaf sites, such as US-
Me6, we found the opposite pattern, with kB! lower during the dormant season and increasing
during the growing season (Figs. 5 and 6), with strong similarity to the signal in Ra, found at
these same sites (Figs. 2 and 3). When comparing Figs. 3 and 5, we observe that a deciduous
broadleaf site (US-MMS) the timing of maximum Ran and kB! overlapped considerably. Similar
patterns can be found at the other end of the precipitation gradient; at a shrubland site in southern
Arizona (US-Whs), the median day-of-year of peak Ran and kB! were almost identical: 43 and 45
days prior to start-of-season green-up (Figs. 3 and 5). When comparing all sites, we found a
strong positive linear relationship between the transition dates for R and kB!, with the
transition dates for Ran and kB! occurring within 30 days of each at 60% of all sites (Fig. 7a).

The timing of seasonal shifts in Ray and kB! appeared to track green-up transition dates for
some, but not all, sites (Fig. 7b,c). Linkages between green-up dates and shifts from higher to
lower Ran and kB! were notable at most deciduous broadleaf, grassland, and at least one
shrubland site. For example, there were distinct decreases in kB! at two deciduous forest sites
(US-MMS and US-MOz) immediately after spring green-up occurred, and this response was
consistent even when green-up occurred approximately 30-days earlier than normal in 2012 (Fig.
6). This strong association between transition dates is visualized in Fig. 7b, c; transition dates
between kB! and G occurred within 30 days of each other for 80% of deciduous broadleaf, two

out of three of grassland, and one of two of shrubland sites. By comparison, for most evergreen

29



505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

needleleaf forests and woody savanna ecosystems, kB! transition dates generally occurred more
than 120 days from green-up, if at all. In general, these patterns between kB! and greenness were
comparable to the patterns we found for Ran.

Finally, to help understand which surface roughness parameter (zon or zo) is driving kB!
changes, we estimated d and zy,, through aerodynamic canopy height (4,) and wind-profile data.
In general, we found that /4, increases during the growing season, implying zo. is also increasing
(Fig. S4). We found a similar pattern for a cropland site with corn (US-Nel), where there was a
distinct increase in both d and zy,, during the growing season (Fig. 8). While this pattern occurred
at most sites, we also found examples where zj,, decreased during the growing season, indicating
that the canopy became smoother. Specifically, at US-MMS and US-Syv, zg, decreased by
approximately 1.5 m during the transition from spring to summer (Figs. 9 and S4).

3.3 Ran seasonality in croplands

There were relatively unique patterns at several of the cropland sites in our analysis,
compared to other sites. Specifically, a significant proportion of the variation in Ran was
attributable to Ram, contrasting with results at most other sites (Fig. 4). Ram exhibited significant
influence at the Nebraska corn and soybean agricultural sites (US-Nel, US-Ne2, and US-Ne3).
Our attribution analysis indicated R.m explained a significant part of the total variance in Ran,
with Ram explaining 40% and 51% of the variability in Ran for corn and soybean, respectively,
compared to Ryn which explained 53% and 49%. This similarity can be visualized in Fig. 2, as
both Ran and Ram closely tracked each other immediately after green-up in both corn and soybean
sites. Seasonal patterns in Rpn and kB! also differed notably compared to deciduous forest and
grassland sites; Ryn and kB! increased immediately after green-up, followed by a sudden

decrease after canopy greenness reached its seasonal maximum (Figs. 2 and 6).
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Strong seasonal patterns in Ran were also observed at weekly timescales at the alfalfa
(Medicago sativa L.) sites in the Sacramento—San Joaquin River Delta in central California (US-
Bil and US-Tw3), with R, and kB! decreasing as zo» and canopy greenness increased (Figs. 9
and S7). Alfalfa harvesting takes place 5-7 times per year during the spring and summer (Hemes
et al., 2019). At these two sites, we observed distinct seasonal patterns in Ra, responding to
changes in aerodynamic canopy height (%,), canopy greenness, and kB! (Fig. 6 and S6). At US-
Bil, changes in zy, ranged from 0.02 to 0.06 m, closely tracking canopy greenness, and Ran and
kB! inversely tracked these changes in 4, and greenness. Similar patterns were found at US-Tw3
(Fig. S7). The data at these sites highlight three key patterns. First, kB! was the main driver of
Ran. Second, maximum values in Ran and kB! occurred when canopy greenness and zg, were at a
minimum, shortly after a harvesting event. Finally, there was little-to-no change in Ram
accompanying these patterns in Ran. These results were comparable to the patterns observed in
deciduous broadleaf, grassland, and shrubland sites; maximum and minimum values of Ran and

kB! occurred during dormant and growing periods, respectively.
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3.4 Implications for understanding seasonal changes in aerodynamic resistance

At many sites, we found evidence that kB! differs between the non-growing season and
growing season, indicated by the clear bifurcation in kB! with higher values occurring during the
non-growing season and lower values occurring during the growing season (Fig. 10). To
understand how this seasonal variation in kB! may influence predictions of H when compared to
the assumption of static kB! (i.e., kB! = 0 or kB! = ¢), we estimated the full annual pattern of
relative differences between estimated and measured H (i.e., H/H) at a 3-day timestep. We found
that estimates of H were quite sensitive to kB! = 0 or kB! = ¢; at many sites, we found that the
highest relative differences generally occurred during the nongrowing season and under the
assumption kB! = 0 (Fig. 11). For example, at US-MMS, H/H was approximately 300% right
before green-up, indicating that assuming kB! = 0 will produced large biases (Fig. 11). At the
arid US-Ses shrubland site, the highest values of H/H (> 400%) occurred immediately prior to
green-up (Fig. 11). We found similar seasonal patterns of H/H by assuming kB! is constant for
each PFT (i.e., kB"'= ¢), although the magnitude of H/H was considerably reduced relative to
kB! =0 (Fig. 11). Furthermore, the seasonal patterns in H/H observed at many sites were similar
to the seasonal patterns in Ra, (Fig. 2). In summary, these results indicated that accounting for
seasonal changes in kB! is critical for significantly reducing biases and errors when predicting H

using a “big leaf” approach.
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4. Discussion

Using 190 site years of data from the AmeriFlux and PhenoCam networks, our findings
highlight how aerodynamic resistance to heat transfer (Ran) exhibits distinct seasonal patterns
among multiple plant-functional types (PFTs) and climate regimes, and how vegetation
phenology may play a role governing this seasonality in certain PFTs. Specifically, PFTs that
exhibit the strongest seasonal changes in canopy structure also consistently displayed strong
seasonality in Ran, and the timing of the seasonal patterns in Ran closely track phenological start-
of-season green-up at most of these sites. Incorporating these seasonal patterns of Ran, as well as
potential linkages to spring phenology, is important for improving model-based predictions of
sensible heat fluxes, and thus our understanding of how seasonal changes in the land surface
more broadly impact atmospheric dynamics such as boundary layer height, vertical temperature

profiles, and near-surface micro-climate.

4.1 How does aerodynamic resistance change seasonally?

The aerodynamic resistance to heat transfer (Ran) comprises two additive resistance terms
(Ranh = Ram + Ruh, Eqn. 2), and our findings provide evidence that for most sites excess resistance
to heat transfer (Ryn) is a significantly stronger control over seasonal patterns of Ran, relative to
the resistance to momentum transfer (Ram) (Figs. 2-5). Recall that excess resistance (Rph)
accounts for differences between the roughness lengths for momentum (zg») and heat (zos)
through the kB! parameter (i.e. k - Ron - U, = In(zom/zon) = kB, Eqn. 7). In this study, we found
that the seasonality (Figs. 2, 3, 5, 7a) and total variance (Fig. 4) in Ran is best explained by Rpn
and kB-!. Taken together, these multiple relationships linking kB! to Ran through Ry imply
changes in surface roughness (i.e., through zy,, or zg,) are a key factor determining seasonal

patterns in Ran.
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At most deciduous broadleaf, grassland, and shrubland sites, kB! decreases during start-of-
season phenological transitions, implying the potential for a direct causal linkage between
phenology and seasonal changes in kB! (Figs. 6, 7 and 10). Decreasing kB! in response to
increasing LAI has been identified in other studies. For example, kB! is commonly modeled as a
function of LAI (Brutsaert, 1979; Hu et al., 2020; Kubota and Sugita, 1994; Yang and Friedl,
2003). This modeling captures decreases of kB! in response to increasing LAI and provides
accurate estimates of H as well (Qualls and Brutsaert, 1996). Decreasing kB! after green-up must
be related to either zopn or zox (Eqn. 6). Here, we conclude zy; is more influential than zg,, in most
cases. Specifically, we posit shifts to higher zo, (lower kB™!) during start-of-season green-up are
due to decreases in the fractional coverage of understory and bare soil. Landscapes dominated by
bare soil or sparse vegetation exhibit zp, heights effectively at the soil surface, especially during
warm and dry meteorological conditions where the soil is acting the primary source of heat
(Verhoef et al., 1997; Yang et al., 2008). A theoretical addition of taller un-foliated roughness
elements to a landscape would increase zom, while zg, would remain unchanged due to surface
temperature of the understory exceeding that of the canopy temperature (Brutsaert and Sugita,
1996). During phenological transitions, such as leaf emergence in temperate deciduous forests,
the canopy fills in, the coverage of bare soil and understory decreases, and transpiration increases
cooling of the surface (Verhoef et al., 1997), together leading to increases in zp; and lowering
kB'. Similar behavior of kB! is found between PFTs that have dense and sparse canopies.
Permeable-rough surfaces (e.g., deciduous broadleaf or agriculture sties) have kB! values lower
than bluff-rough surfaces (e.g. shrubland sites) (Brutsaert, 1982; Rigden et al., 2018). These
bluff-rough surfaces, generally occurring at more arid sites, have higher proportions of land

cover dominated by bare soil (Fig. S3).
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While changes in zgm, as well as zps, may also play a role in altering kB!, our results imply
that observed changes in zg, are not driving seasonal decreases in kB!, Specifically, we found
that zo, generally increases during the growing season, indicated by increasing aerodynamic
canopy height (h.; Fig. S4) or wind-profile data (Fig. 8). All other factors being equal, increasing
zom by itself would lead to higher kB!; however, we found that kB! decreases after green-up
(Figs. 5, 6, and 9). Therefore, we infer that increases in zg;, offset increasing zom, thereby leading
to decreases in kB! (e.g., Fig. 1) and implying zo is the more important control over kB!,
Patterns observed at an alfalfa agricultural site (US-Bil, Fig. 8) capture this dynamic. Significant
decreases in zo, after a harvesting event by itself should lead to decreasing kB-!. However, we
found kB! increases after harvesting events, likely due to significant decrease in zoy relative to
zom. Increases in zo, after green-up, while common, are not ubiquitous. Decreases in zp, can also
occur. Specifically, functions relating zy,, to the plant area index (i.e. PAI) exhibit non-monotonic
relationship and higher leaf area and foliage density at the top of the canopy can act as a smooth
surface (Blanken and Black, 2004; Shaw and Pereira, 1982). While we see such decreases in zg
at US-MMS, US-Syv, and US-NR1 (Figs. 8 and S4), this likely does not outweigh the
importance of zyp; given its strong influence at other sites.

While zp» may have more control over seasonal changes in Ran relative to zom, this is partially
due to zp» simply not changing as much relative to zy; between the non-growing and growing
seasons, as the physical structure of the canopy generally remains in place even if it is defoliated
(Nakai et al., 2008). Using the corn and soybean sites, we can investigate and better understand
the influence of zop» in a system where the landscape transforms from bare soil to a full canopy
within a season. Here, we found patterns in Ram closely tracking Ran (Fig. 2), and Ram explains

significantly more of the observed variance in Ran compared to other sites (Fig. 4). This increased
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importance in Ram is due to significant increases in zo, as the crops increase in height (Figs. 2 and
8) and the subsequent effect on the log-wind profile (Eqn. 10).

Phenology does not have the same level of control over Ran in evergreen-needleleaf sites
(Figs. 2, 3 and 5). This is not surprising, given that our evergreen-needleleaf sites exhibit only
minor leaf turnover each season. Where we did observe seasonal changes in Ran (e.g., US-Me6),
these changes are also associated with changes in Ryy and kB!, comparable to other PFTs.
Therefore, changes in Ran in evergreen-needleleaf sites are not driven by changing leaf area and
the fractional cover of the forest canopy, but likely by two other interacting factors. First,
increasing solar radiation and surface heating during the course of the growing season alters the
temperature source height (zo»), thereby altering Ran through kB!, comparable to diurnal changes
in kB! tracking solar radiation (Fig. 1) (Lhomme et al., 1997; Yang et al., 2008). Second, these
impacts of seasonal changes in solar radiation on kB! only occur at more arid sites with taller
vegetation, compared to shrublands or grasslands, and that likely have lower stand density (i.e.,
US-Me2, US-Me6, and US-Mpyj; Figs. 2 and S2). The higher exposure of the understory or bare
soil, compared to the more closed canopy sites (i.e., CA-TP4, US-Hol, US-NR1), exacerbates
the effects these changing environmental conditions have on kB!, Finally, it should be noted that
phenology may still play an important role in controlling seasonal patterns of kB! at lower
density evergreen-needleleaf sites through the phenology of understory vegetation. However, the
greenness index from PhenoCam for these sites is only derived for the canopy and does not
capture the understory phenology.

In this analysis, we highlight phenology may be a key driver over observed seasonal shifts
in kB! in some ecosystems, which subsequently impacts Ran and predictions of H. However, the

full seasonal trajectory of kB! is not explained by phenology alone; across the sites we
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considered, significant variations in Ryn and kB! occurred well before and after phenological
transitions (Figs. 2 and 6). For example, at a semi-arid grassland site in southern Arizona (US-
Wkg), we observed distinct increases in kB! beginning in January of each year, which continued
throughout the dormant season prior to green-up (Fig. 6). These shifts in kB! occurred well after
senescence and before spring green-up, and such shifts are likely influenced by other
environmental or meteorological factors, including evapotranspiration, net radiation, wind speed,
and surface temperature (e.g., Blyth and Dolman, 1995). As a brief supplementary analysis, we
conducted a multiple linear regression at US-Wkg that related kB! to a list of meteorological
factors: R,, surface temperature (75), latent heat flux, soil water content, wind speed, and
cumulative 10-day precipitation. We found that 75 emerged as the most important among these
variables at seasonal time scales (p < 0.001, Table S2), having a strong positive relationship

with kB! (Fig. S8). This influence of 7y is likely due to progressively warmer soil conditions that
occur from January-June under increasing R,, with the soil thereby acting as the primary source
of heat exchange, relative to the canopy, and resulting in zy; to be at the height of the soil surface.
As monsoonal precipitation begins in late-June or July and green-up occurs, the soil cools and is
less sensitive to continued increases in R, (Table S2). While this analysis is admittedly brief, it
does indicate that other factors are key for considering seasonal drivers of kB™!. In general,
quantifying the influence of these factors on kB! — as well as how they interact with each other

and phenology — is crucial for developing accurate models of kB!

4.2 How does changing aerodynamic resistance influence predictions of H?
Substantial differences between estimated () and measured H occurred when kB! is
assumed constant or equal to 0 (Fig. 11). These results have important implications for modeling

of the land-surface energy balance using “big leaf” energy balance equations (e.g., Eqn. 1). First,
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simplified assumptions of a static kB! (i.e., kB! = 0 or kB! is constant) are insufficient to
accurately model the complete seasonal trajectory of H. Assuming zom = zon (i.€., kB! = 0)
appears to be invalid for vegetated surfaces, a result agreeing well with the literature (Yang et al.,
2008). Similarly, assuming a constant value for each PFT, while helping to reduce biases (i.e.,
H/H) relative to the assumption kB! = 0, still resulted in significant seasonal deviations from
measured H at many sites. These results highlight that including a time-varying estimate of kB!
that accounts for changes can eliminate seasonal patterns in H/H compared to assuming kB™' = 0
or kB! = ¢, implying that anticipating how and why surface roughness changes is important for
understanding seasonal dynamics in land-atmosphere interactions (Blythe and Dolman, 1994,
Kustas et al., 1989).
4.3 Implications and directions for future work

The sensitivity of H to seasonal variations in kB! is unexpected when compared to inferences
from past studies. Increasing zg, under land-cover shifts from grasslands to aerodynamically
rougher forests leads to increased turbulence and decreasing resistance, subsequently impacting
surface temperature (Burakowski et al., 2018; Lee et al., 2011). Such mechanisms have been
suggested to occur during phenological transitions; increases in zop, during green-up could
decrease aerodynamic resistance to momentum transfer (Pefiuelas et al., 2009). Conversely,
phenology may only play a minor role controlling acrodynamic resistance. For example, in
deciduous broadleaf forests, observed increases in Ran during phenological transitions have been
attributed to decreasing synoptic-scale wind speed, and not zp,» (Moon et al., 2020). Overall, our
findings provide important new insight into the role of seasonally changing roughness, which in
many cases appears to be associated with phenology, as a control on H. Perhaps more

consequentially, the significant seasonal biases observed under the assumption of constant kB!
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implies the behavior for both zy, and zg, represents a key source of uncertainty for modeling
land-atmosphere interactions.

Resolving uncertainty in the behavior of zy, and zo, at seasonal time scales is not only
important for model improvement, it is critical for understanding how seasonal changes in H
may impact the atmospheric dynamics, such as boundary layer height, temperature profiles, and
micro-climate (Helbig et al., 2020). For example, due to the exponential nature of kB! (Eqn. 6),
small increases in zg, would reduce Ran, leading to increased H and potentially decreasing
aerodynamic surface temperature and near-surface air temperature (Novick and Katul, 2020).
Understanding such dynamics will likely be important for anticipating ecosystem impacts as
phenology responds to a changing climate (Richardson et al., 2013). To reduce this uncertainty,
developing prognostic models of kB! as a function of different environmental factors — including
phenology — is a key next step. Other studies have modeled differences in AB™! among different
PFTs, for example as a function of u, or Re, (e.g., Rigden et al., 2018). Expanding on such
models to capture the seasonal shifts and bifurcation of kB! would lead to a stronger
understanding of how the horizontal and vertical structure of surface roughness elements impacts
H (Garratt and Hicks, 1973; Maurer et al., 2013). Finally, while more complex land-surface
models such as CLM or a multi-layer approach do not rely on kB!, our work motivates the need
for investigations into how seasonal changes in land-surface properties might impact predictions
from these systems-based models.

Conclusions

Through a continental-scale synthesis integrating AmeriFlux and PhenoCam data and
applying Monin-Obukhov similarity theory, we find that seasonal variability in aerodynamic

resistance to heat transfer is pervasive across a range of ecosystems. We found evidence that the
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mechanisms underlying this variation in aerodynamic resistance are likely linked to vegetation
phenology in deciduous broadleaf, grassland, agricultural, and shrublands. Specifically, shifts to
a larger leaf area led to zgs increases during green-up, leading to decreases in kB! and in the
overall total aerodynamic resistance to heat transfer. By comparison, the role of changing surface
roughness to momentum transfer (zo») appeared to be minimal compared to zos. The total impact
of seasonal variation in kB! on model-based estimates of sensible-heat flux is important; large
biases in (H/H) occurred when assuming kB! is constant. Predicting the full seasonal trajectory
of sensible heat flux using simple one-layer land-surface energy balance models requires
prognostic models and parametrizations that account for seasonal changes in kB! in response to
phenology and other environmental and meteorological factors. In conclusion, we found
evidence vegetation phenology can influence surface-roughness at relatively fine temporal
scales, directly impacting seasonal variability in aerodynamic resistance to heat transfer across a
range of North American ecosystems. Because this variation in aerodynamic resistance also
influences the land-surface energy balance, our findings provide insight into how

land-atmosphere interactions operate at seasonal time scales.

47



766

767

768

769

770

771

772

773

774

Acknowledgments

This research was supported by an NSF Macrosystems Biology award (DEB-1702697). We
thank AmeriFlux site PIs John Baker, Ken Bible, Christopher Gough, Beverly Law, and Sonia
Wharton for making their data publicly available. In addition, funding for AmeriFlux data
resources was provided by the U.S. Department of Energy’s Office of Science. Additional
support was provided by the NASA Ecostress project to D. Baldocchi. We also thank our many
PhenoCam site collaborators. Additional site-specific acknowledgments can be found in Table
S1. All data and code used to conduct this research is publicly available on the Mendeley Data

Repository (DOI: XXXXX).

48



775
776
777
778

779
780
781
782

783
784
785
786

787
788
789

790
791
792

793
794

795
796

797
798
799

800
801
802

803
804

805
806
807

808
809
810

References

Agostinelli, C. and Lund, U., 2017. R package 'circular': Circular Statistics (version 0.4-93).
https://r-forge.r-project.org/projects/circular/

Anderson-Teixeira, K.J., Delong, J.P., Fox, A.M., Brese, D.A. and Litvak, M.E., 2011.
Differential responses of production and respiration to temperature and moisture drive the

carbon balance across a climatic gradient in New Mexico. Global Change Biol., 17(1):
410-424. https://doi.org/10.1111/3.1365-2486.2010.02269.x

Baldocchi, D. and Ma, S.Y., 2013. How will land use affect air temperature in the surface
boundary layer? Lessons learned from a comparative study on the energy balance of an
oak savanna and annual grassland in California, USA. Tellus Series B-Chemical and
Physical Meteorology, 65. https://doi.org/10.3402/tellusb.v65i0.19994

Betts, A.K., 2004. Understanding hydrometeorology using global models. Bulletin of the
American Meteorological Society, 85(11): 1673-+. https://doi.org/10.1175/Bams-85-11-
1673

Blanken, P.D. and Black, T.A., 2004. The canopy conductance of a boreal aspen forest, Prince
Albert National Park, Canada. Hydrological Processes, 18(9): 1561-1578.
https://doi.org/10.1002/hyp.1406

Blyth, E.M. and Dolman, A.J., 1995. The roughness length for heat of sparse vegetation. Journal
of Applied Meteorology, 34(2): 583-585. https://doi.org/10.1175/1520-0450-34.2.583

Bonan, G., 2016. Ecological Climatology: Concepts and Applications. Cambridge University
Press, New York, 679 pp.

Bowling, D.R. et al., 2018. Limitations to winter and spring photosynthesis of a Rocky Mountain
subalpine forest. Agr. Forest Meteorol., 252: 241-255.
https://doi.org/10.1016/j.agrformet.2018.01.025

Brutsaert, W., 1979. Heat and mass-transfer to and from surfaces with dense vegetation or
similar permeable roughness. Boundary-Layer Meteorology, 16(3): 365-388.
https://doi.org/10.1007/Bf02220492

Brutsaert, W., 1982. Evaporation into the atmosphere: theory, history, and applications. Springer
Netherlands, Netherlands, 299 pp.

Brutsaert, W. and Sugita, M., 1996. Sensible heat transfer parameterization for surfaces with
anisothermal dense vegetation. Journal of the Atmospheric Sciences, 53(2): 209-216.
https://doi.org/10.1175/1520-0469(1996)053<0209:Shtpfs>2.0.Co;2

Burakowski, E. et al., 2018. The role of surface roughness, albedo, and Bowen ratio on
ecosystem energy balance in the Eastern United States. Agr. Forest Meteorol., 249: 367-
376. https://doi.org/10.1016/j.agrformet.2017.11.030

49



811
812
813
814

815
816
817

818
819

820
821
822

823
824
825

826
827
828
829

830
831
832

833
834
835

836
837
838

839
840
841

842
843
844

845
846
847

Burns, S.P., Blanken, P.D., Turnipseed, A.A., Hu, J. and Monson, R.K., 2015. The influence of
warm-season precipitation on the diel cycle of the surface energy balance and carbon
dioxide at a Colorado subalpine forest site. Biogeosciences, 12(23): 7349-7377.
https://doi.org/10.5194/bg-12-7349-2015

Businger, J.A., Wyngaard, J.C., [zumi, Y. and Bradley, E.F., 1971. Flux-profile relationships in
the atmospheric surface layer. Journal of the Atmospheric Sciences, 28(2): 181-189.
https://doi.org/10.1175/1520-0469(1971)028%3C0181:FPRITA%3E2.0.CO:2

Campbell, G.S. and Norman, J.M., 1998. An Introduction to Environmental Biophysics.
Springer, New York, 286 pp.

Chu, H.S. et al., 2018. Temporal dynamics of aerodynamic canopy height derived from eddy
covariance momentum flux data across North American flux networks. Geophys. Res.
Lett., 45(17): 9275-9287. https://doi.org/10.1029/2018g1079306

Cook, B.D. et al., 2004. Carbon exchange and venting anomalies in an upland deciduous forest
in northern Wisconsin, USA. Agr. Forest Meteorol., 126(3-4): 271-295.
https://doi.org/10.1016/j.agrformet.2004.06.008

Desai, A.R., Bolstad, P.V., Cook, B.D., Davis, K.J. and Carey, E.V., 2005. Comparing net
ecosystem exchange of carbon dioxide between an old-growth and mature forest in the
upper Midwest, USA. Agr. Forest Meteorol., 128(1-2): 33-55.
https://doi.org/10.1016/j.agrformet.2004.09.005

Dolman, A.J., 1986. Estimates of roughness length and zero plane displacement for a foliated
and non-foliated oak canopy. Agr. Forest Meteorol., 36(3): 241-248.
https://doi.org/10.1016/0168-1923(86)90038-9

Dragoni, D. et al., 2011. Evidence of increased net ecosystem productivity associated with a
longer vegetated season in a deciduous forest in south-central Indiana, USA. Global
Change Biol., 17(2): 886-897. https://doi.org/10.1111/1.1365-2486.2010.02281.x

Dyer, A.J. and Hicks, B.B., 1970. Flux-gradient relationships in constant flux layer. Quarterly
Journal of the Royal Meteorological Society, 96(410): 715-+.
https://doi.org/10.1002/9j.49709641012

Fitzjarrald, D.R., Acevedo, O.C. and Moore, K.E., 2001. Climatic consequences of leaf presence
in the eastern United States. J. Clim., 14(4): 598-614. https://doi.org/10.1175/1520-
0442(2001)014<0598:Ccolpi>2.0.Co;2

Garratt, J.R. and Francey, R.J., 1978. Bulk characteristics of heat transfer in the unstable,
baroclinic atmospheric boundary layer. Boundary-Layer Meteorology, 15(4): 399-421.
https://doi.org/10.1007/BF00120603

Garratt, J.R. and Hicks, B.B., 1973. Momentum, heat and water-vapor transfer to and from
natural and artificial surfaces. Quarterly Journal of the Royal Meteorological Society,
99(422): 680-687. https://doi.org/10.1256/smsqj.42208

50



848
849

850
851
852
853

854
855
856

857
858
859
860
861

862
863
864

865
866
867

868
869
870

871
872
873

874
875
876

877
878
879

880
881
882

883
884

Gough, C.M. et al., 2013. Sustained carbon uptake and storage following moderate disturbance
in a Great Lakes forest. Ecol. Appl., 23(5): 1202-1215. https://doi.org/10.1890/12-1554.1

Gu, L.H. et al., 2016. Testing a land model in ecosystem functional space via a comparison of
observed and modeled ecosystem flux responses to precipitation regimes and associated
stresses in a Central US forest. Journal of Geophysical Research-Biogeosciences, 121(7):
1884-1902. https://doi.org/10.1002/2015;g003302

Hagen, S.C. et al., 2006. Statistical uncertainty of eddy flux-based estimates of gross ecosystem
carbon exchange at Howland Forest, Maine. Journal of Geophysical Research-
Atmospheres, 111(DS8). https://doi.org/10.1029/2005jd006154

Helbig, M. et al., 2020. Understanding land-atmosphere interactions through tower-based flux
and continuous atmospheric boundary layer measurements [ White paper].
https://ameriflux.1bl.gov/community/highlight/whitepaper-understanding-land-
atmosphere-interactions-through-tower-based-flux-and-continuous-atmospheric-
boundary-layer-measurements/

Hemes, K.S. et al., 2019. Assessing the carbon and climate benefit of restoring degraded
agricultural peat soils to managed wetlands. Agr. Forest Meteorol., 268: 202-214.
https://doi.org/10.1016/j.agrformet.2019.01.017

Hollinger, D.Y. et al., 1999. Seasonal patterns and environmental control of carbon dioxide and
water vapour exchange in an ecotonal boreal forest. Global Change Biol., 5(8): 891-902.
https://doi.org/10.1046/].1365-2486.1999.00281.x

Hollinger, D.Y. and Richardson, A.D., 2005. Uncertainty in eddy covariance measurements and
its application to physiological models. Tree Physiology, 25(7): 873-885.
https://doi.org/10.1093/treephys/25.7.873

Hu, X, Shi, L., Lin, L. and Magliulo, V., 2020. Improving surface roughness lengths estimation
using machine learning algorithms. Agr. Forest Meteorol., 287: 107956.
https://doi.org/10.1016/j.agrformet.2020.107956

Jenkins, J.P. et al., 2007. Refining light-use efficiency calculations for a deciduous forest canopy
using simultaneous tower-based carbon flux and radiometric measurements. Agr. Forest
Meteorol., 143(1-2): 64-79. https://doi.org/10.1016/j.agrformet.2006.11.008

Keenan, T.F. et al., 2014. Tracking forest phenology and seasonal physiology using digital repeat
photography: a critical assessment. Ecol. Appl., 24(6): 1478-1489.
https://doi.org/10.1890/13-0652.1

Knauer, J., El-Madany, T.S., Zaehle, S. and Migliavacca, M., 2018. Bigleaf-An R package for
the calculation of physical and physiological ecosystem properties from eddy covariance
data. Plos One, 13(8). https://doi.org/10.1371/journal.pone.0201114

Kubota, A. and Sugita, M., 1994. Radiometrically determined skin temperature and scalar
roughness to estimate surface heat-flux. Part I: Parameterization of radiometric scalar

51



885
886

887
888
889

890
891

892
893

894
895
896
897

898
899
900

901
902
903

904
905
906

907
908
909

910
911
912

913
914
915

916
917

918
919
920

roughness. Boundary-Layer Meteorology, 69(4): 397-416.
https://doi.org/10.1007/Bf00718127

Kustas, W.P. et al., 1989. Determination of sensible heat-flux over sparse canopy using thermal
infrared data. Agr. Forest Meteorol., 44(3-4): 197-216. https://doi.org/10.1016/0168-
1923(89)90017-8

Lawrence, D. et al., 2018. Technical Description of version 5.0 of the Community Land Model
(CLM).

Lee, X. et al., 2011. Observed increase in local cooling effect of deforestation at higher latitudes.
Nature, 479(7373): 384-387. https://doi.org/10.1038/nature10588

Lhomme, J.P., Troufleau, D., Monteny, B., Chehbouni, A. and Bauduin, S., 1997. Sensible heat
flux and radiometric surface temperature over sparse Sahelian vegetation II. A model for
the kB-1 parameter. Journal of Hydrology, 188(1-4): 839-854.
https://doi.org/10.1016/S0022-1694(96)03173-3

Ma, S., Baldocchi, D., Wolf, S. and Vertaillie, J., 2016. Slow ecosystem responses conditionally
regulate annual carbon balance over 15 years in Californian oak-grass savanna. Agr.
Forest Meteorol., 228: 252-264. https://doi.org/10.1016/j.agrformet.2016.07.016

Ma, S.Y., Baldocchi, D.D., Xu, L.K. and Hehn, T., 2007. Inter-annual variability in carbon
dioxide exchange of an oak/grass savanna and open grassland in California. Agr. Forest
Meteorol., 147(3-4): 157-171. https://doi.org/10.1016/j.agrformet.2007.07.008

Markland, T.C., 2019. Carbon balance and evapotranspiration rates of a restored prairie and a
conventional corn/soybean rotation (M.S. Thesis). University of Minnesota - Twin Cities,
Minneapolis, MN.

Massman, W.J., 1999. A model study of kB(H)(-1) for vegetated surfaces using 'localized near-
field' Lagrangian theory. Journal of Hydrology, 223(1-2): 27-43.
https://doi.org/10.1016/S0022-1694(99)00104-3

Maurer, K.D., Hardiman, B.S., Vogel, C.S. and Bohrer, G., 2013. Canopy-structure effects on
surface roughness parameters: Observations in a Great Lakes mixed-deciduous forest.
Agr. Forest Meteorol., 177: 24-34. https://doi.org/10.1016/j.agrformet.2013.04.002

Milliman, T. et al., 2019. PhenoCam Dataset v2.0: Digital camera imagery from the PhenoCam
Network, 2000-2018. ORNL DAAC, Oak Ridge, Tennessee, USA.
https://doi.org/10.3334/ORNLDAAC/1689

Monteith, J.L. and Unsworth, M.H., 2008. Principles of Environmental Physics. Academic Press,
Amsterdam, 440 pp.

Moon, M., Li, D., Rigden, A.J. and Friedl, M.A., 2020. Modification of surface energy balance
during springtime: The relative importance of biophysical and meteorological changes.
Agr. Forest Meteorol., 284: 107905. https://doi.org/10.1016/j.agrformet.2020.107905

52



921
922
923

924
925
926

927
928
929
930

931
932

933
934
935

936
937
938

939
940
941

942
943

944
945
946

947
948
949

950
951
952

953
954
955

Nakai, T. et al., 2008. Parameterisation of aerodynamic roughness over boreal, cool- and warm-
temperate forests. Agr. Forest Meteorol., 148(12): 1916-1925.
https://doi.org/10.1016/j.agrformet.2008.03.009

Novick, K.A. and Katul, G.G., 2020. The duality of reforestation impacts on surface and air
temperature. Journal of Geophysical Research-Biogeosciences, 125(4).
https://doi.org/10.1029/2019j2005543

Oikawa, P.Y. et al., 2017. Revisiting the partitioning of net ecosystem exchange of CO2 into
photosynthesis and respiration with simultaneous flux measurements of (CO2)-C-13 and
CO02, soil respiration and a biophysical model, CANVEG. Agr. Forest Meteorol., 234:
149-163. https://doi.org/10.1016/j.agrformet.2016.12.016

Owen, P.R. and Thomson, W.R., 1963. Heat transfer across rough surfaces. Journal of Fluid
Mechanics, 15(3): 321-334. https://doi.org/10.1017/S0022112063000288

Papale, D. et al., 2006. Towards a standardized processing of Net Ecosystem Exchange measured
with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences,
3(4): 571-583. https://doi.org/10.5194/bg-3-571-2006

Peichl, M., Arain, M.A. and Brodeur, J.J., 2010. Age effects on carbon fluxes in temperate pine
forests. Agr. Forest Meteorol., 150(7-8): 1090-1101.
https://doi.org/10.1016/j.agrformet.2010.04.008

Pennypacker, S. and Baldocchi, D., 2016. Seeing the fields and forests: Application of surface-
layer theory and flux-tower data to calculating vegetation canopy height. Boundary-Layer
Meteorology, 158(2): 165-182. https://doi.org/10.1007/s10546-015-0090-0

Penuelas, J., Rutishauser, T. and Filella, 1., 2009. Phenology Feedbacks on Climate Change.
Science, 324(5929): 887-888. https://doi.org/10.1126/science.1173004

Petrie, M.D., Collins, S.L., Swann, A.M., Ford, P.L. and Litvak, M.E., 2015. Grassland to
shrubland state transitions enhance carbon sequestration in the northern Chihuahuan
Desert. Global Change Biol., 21(3): 1226-1235. https://doi.org/10.1111/gcb.12743

Pitman, A.J., 2003. The evolution of, and revolution in, land surface schemes designed for
climate models. International Journal of Climatology, 23(5): 479-510.
https://doi.org/10.1002/j0c.893

Qualls, R.J. and Brutsaert, W., 1996. Effect of vegetation density on the parameterization of
scalar roughness to estimate spatially distributed sensible heat fluxes. Water Resources
Research, 32(3): 645-652. https://doi.org/10.1029/95wr03097

Raupach, M.R., 1994. Simplified expressions for vegetation roughness length and zero-plane
displacement as functions of canopy height and area index. Boundary-Layer
Meteorology, 71(1-2): 211-216. https://doi.org/10.1007/Bf00709229

53



956
957
958

959
960

961
962
963

964
965
966
967

968
969
970

971
972
973

974
975
976

977
978
979

980
981
982
983

984
985
986

987
988
989

990
991

Raupach, M.R. and Finnigan, J.J., 1988. Single-layer models of evaporation from plant canopies
are incorrect but useful, whereas multilayer models are correct but useless: Discuss. Aust.
J. Plant Physiol., 15: 705-716. https://doi.org/10.1071/PP9880705

Rice, J.A., 2007. Mathematical statistics and data analysis. Duxbury advanced series.
Thomson/Brooks/Cole, Belmont, CA.

Richardson, A.D. et al., 2012. Terrestrial biosphere models need better representation of
vegetation phenology: results from the North American Carbon Program Site Synthesis.
Global Change Biol., 18(2): 566-584. https://doi.org/10.1111/1.1365-2486.2011.02562.x

Richardson, A.D. and Hollinger, D.Y., 2005. Statistical modeling of ecosystem respiration using
eddy covariance data: Maximum likelihood parameter estimation, and Monte Carlo
simulation of model and parameter uncertainty, applied to three simple models. Agr.
Forest Meteorol., 131(3-4): 191-208. https://doi.org/10.1016/j.agrformet.2005.05.008

Richardson, A.D. et al., 2018. Tracking vegetation phenology across diverse North American
biomes using PhenoCam imagery. Sci. Data, 5: 180028.
https://doi.org/10.1038/sdata.2018.28

Richardson, A.D. et al., 2013. Climate change, phenology, and phenological control of
vegetation feedbacks to the climate system. Agr. Forest Meteorol., 169: 156-173.
https://doi.org/10.1016/j.agrformet.2012.09.012

Rigden, A., Li, D. and Salvucci, G., 2018. Dependence of thermal roughness length on friction
velocity across land cover types: A synthesis analysis using AmeriFlux data. Agr. Forest
Meteorol., 249: 512-519. https://doi.org/10.1016/j.agrformet.2017.06.003

Roman, D.T. et al., 2015. The role of isohydric and anisohydric species in determining
ecosystem-scale response to severe drought. Oecologia, 179(3): 641-654.
https://doi.org/10.1007/s00442-015-3380-9

Ruehr, N.K., Law, B.E., Quandt, D. and Williams, M., 2014. Effects of heat and drought on
carbon and water dynamics in a regenerating semi-arid pine forest: a combined
experimental and modeling approach. Biogeosciences, 11(15): 4139-4156.
https://doi.org/10.5194/bg-11-4139-2014

Sakai, R.K., 2000. Observational study of turbulent exchange between the surface and canopy
layer over several forest types (Ph.D. Thesis). State University of New York at Albany,
Albany, NY, 4780 pp.

Schwartz, M.D., 1992. Phenology and springtime surface-layer change. Monthly Weather
Review, 120(11): 2570-2578. https://doi.org/10.1175/1520-
0493(1992)120<2570:Passlc>2.0.Co;2

Scott, R.L., Biederman, J.A., Hamerlynck, E.P. and Barron-Gafford, G.A., 2015. The carbon
balance pivot point of southwestern US semiarid ecosystems: Insights from the 21st

54



992 century drought. Journal of Geophysical Research-Biogeosciences, 120(12): 2612-2624.

993 https://doi.org/10.1002/2015j2g003181
994  Scott, R.L., Hamerlynck, E.P., Jenerette, G.D., Moran, M.S. and Barron-Gafford, G.A., 2010.
995 Carbon dioxide exchange in a semidesert grassland through drought-induced vegetation
996 change. Journal of Geophysical Research-Biogeosciences, 115.
997 https://doi.org/10.1029/2010jg001348
998  Seyednasrollah, B. et al., 2019a. PhenoCam Dataset v2.0: Vegetation phenology from Digital
999 Camera Imagery, 2000-2018. ORNL DAAC, Oak Ridge, Tennessee, USA.
1000 https://doi.org/10.3334/ORNLDAAC/1674
1001  Seyednasrollah, B. et al., 2021. Seasonal variation in the canopy color of temperate evergreen
1002 conifer forests. New Phytol., 229(5): 2586-2600. https://doi.org/10.1111/nph.17046
1003  Seyednasrollah, B. et al., 2019b. Tracking vegetation phenology across diverse biomes using
1004 Version 2.0 of the PhenoCam Dataset. Sci. Data, 6. https://doi.org/10.1038/s41597-019-
1005 0270-8
1006  Shaw, R.H. and Pereira, A.R., 1982. Aerodynamic roughness of a plant canopy - a numerical
1007 experiment. Agricultural Meteorology, 26(1): 51-65. https://doi.org/10.1016/0002-
1008 1571(82)90057-7
1009  Sonnentag, O. et al., 2011. Tracking the structural and functional development of a perennial
1010 pepperweed (Lepidium latifolium L.) infestation using a multi-year archive of webcam
1011 imagery and eddy covariance measurements. Agr. Forest Meteorol., 151(7): 916-926.
1012 https://doi.org/10.1016/j.agrformet.2011.02.011
1013  Sonnentag, O. et al., 2012. Digital repeat photography for phenological research in forest
1014 ecosystems. Agr. Forest Meteorol., 152: 159-177.
1015 https://doi.org/10.1016/j.agrformet.2011.09.009
1016  Sugita, M. and Kubota, A., 1994. Radiometrically determined skin temperature and scalar
1017 roughness to estimate surface heat-flux. Part II: Performance of parameterized scalar
1018 roughness for the determination of sensible heat. Boundary-Layer Meteorology, 70(1-2):
1019 1-12. https://doi.org/10.1007/Bf00712520
1020 Suyker, A.E. and Verma, S.B., 2010. Coupling of carbon dioxide and water vapor exchanges of
1021 irrigated and rainfed maize-soybean cropping systems and water productivity. Agr. Forest
1022 Meteorol., 150(4): 553-563. https://doi.org/10.1016/j.agrformet.2010.01.020
1023 Suyker, A.E. and Verma, S.B., 2012. Gross primary production and ecosystem respiration of
1024 irrigated and rainfed maize-soybean cropping systems over 8 years. Agr. Forest
1025 Meteorol., 165: 12-24. https://doi.org/10.1016/j.agrformet.2012.05.021
1026  Tao, Z. et al., 2013. Effect of land cover on atmospheric processes and air quality over the
1027 continental United States - a NASA Unified WRF (NU-WRF) model study. Atmospheric
1028 Chemistry and Physics, 13(13): 6207-6226. https://doi.org/10.5194/acp-13-6207-2013

55



1029
1030

1031
1032
1033
1034

1035
1036
1037

1038
1039
1040
1041

1042
1043
1044
1045

1046
1047
1048

1049
1050
1051

1052
1053
1054

1055
1056
1057
1058
1059

Thom, A.S., 1972. Momentum, mass and heat-exchange of vegetation. Quarterly Journal of the
Royal Meteorological Society, 98(415): 124-&. https://doi.org/10.1256/smsqj.41509

Thomas, C.K. et al., 2009. Seasonal hydrology explains interannual and seasonal variation in
carbon and water exchange in a semiarid mature ponderosa pine forest in central Oregon.
Journal of Geophysical Research-Biogeosciences, 114.
https://doi.org/10.1029/2009jg001010

Verhoef, A., DeBruin, H.A.R. and VandenHurk, B.J.J.M., 1997. Some practical notes on the
parameter kB(-1) for sparse vegetation. Journal of Applied Meteorology, 36(5): 560-572.
https://doi.org/10.1175/1520-0450(1997)036<0560:Spnotp>2.0.Co;2

Verma, S., 1989. Aerodynamic resistances to transfers of heat, mass and momentum. In: T.
Black, D. Spittlehouse, M. Novak and D. Price (Editors), Estimation of Areal
Evapotranspiration. International Association of Hydrological Sciences, Vancouver,
B.C., pp. 13-20.

Wharton, S., Falk, M., Bible, K., Schroeder, M. and Paw, K.T., 2012. Old-growth CO2 flux
measurements reveal high sensitivity to climate anomalies across seasonal, annual and
decadal time scales. Agr. Forest Meteorol., 161: 1-14.
https://doi.org/10.1016/j.agrformet.2012.03.007

Yang, K. et al., 2008. Turbulent flux transfer over bare-soil surfaces: Characteristics and
parameterization. Journal of Applied Meteorology and Climatology, 47(1): 276-290.
https://doi.org/10.1175/2007jamc1547.1

Yang, R.Q. and Friedl, M.A., 2003. Determination of roughness lengths for heat and momentum
over boreal forests. Boundary-Layer Meteorology, 107(3): 581-603.
https://doi.org/10.1023/A:1022880530523

Zeng, X.B. and Wang, A.H., 2007. Consistent parameterization of roughness length and
displacement height for sparse and dense canopies in land models. Journal of
Hydrometeorology, 8(4): 730-737. https://doi.org/10.1175/Jhm607.1

Zhao, L., Lee, X.H., Suyker, A.E. and Wen, X.F., 2016. Influence of leaf area index on the
radiometric resistance to heat transfer. Boundary-Layer Meteorology, 158(1): 105-123.
https://doi.org/10.1007/s10546-015-0070-4

56



1060

1061
1062

1063
1064
1065
1066
1067
1068
1069
1070
1071
1072

Supplementary Information

Appendix S1 — Comparing PhenoCam G.. to Braodband NDVI

Table S1 — Additional metadata for study sites

Table S2 — Multiple linear regression results for model predicting kB!

Figure S1 — Comparing kB! values estimated with and without stability effects
Figure S2 — Figure comparing of PhenoCam G.. to Broadband NDVI

Figure S3 — Landcover and example PhenoCam imagery for each site

Figure S4 — Aerodynamic canopy height results for each site

Figure S5 — Seasonal patterns in Ran, Ram, and Ryn for sites not in Figure 1.

Figure S6 — Timing of seasonal peak and minimum Ran for sites not in Figure 2.

Figure S7 — Aerodynamic resistance results for US-Tw3
Figure S8 — Added variable plots for regression results

57



1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

Appendix S1

We compared PhenoCam G.. time series with broadband NDVI calculated using the approach of
Jenkins et al. (2007). We first summed the reflected and incident fluxes (both PPFD and SW)
measured data over the day, and then calculated the reflected/incident ratio to determine the flux-
weighted daily average “PAR albedo” (or VIS reflectance) and “SW albedo”. From these we
used Jenkins’ formula, to estimate NIR reflectance (NIR reflectance = 2x(SW albedo) — (VIS
reflectance)). Then we calculated broadband NDVI (at the daily time step) as:

(NIR reflectance)- (VIS reflectance)
(NIR reflectance) + (VIS reflectance)

The results are shown in Fig. S2, We note that in general the agreement between G¢c and
broadband NDVI is very strong. In many cases, there is also strong seasonality evident in one or
more of the broadband reflectances (i.e., total SW albedo, NIR reflectance, or VIS reflectance),
but the periods of vegetation activity are not as easily discerned as with either GCC or broadband

NDVL
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Table S2. Summary results from multiple linear regression predicting kB! at US-Wkg as function of the following
variables: net radiation (Rx), latent heat flux (LE), surface temperature (7%), soil water content (SWC), wind speed
(u), and cumulative 10-day precipitation (P10). This regression model was conducted to investigate the influence of
different meteorological factors on kB!, The entire time series of US-Wkg was used, and there were no interactions
included in this regression model. Individual observations in the model were non-overlapping 3-day values for each

variable. Significance levels: * = 0.05, ** =0.01, and *** = 0.001.

Estimate SE t-value p-value
Intercept -0.7548 0.4015 -1.88 0.061
Rn 0.0017 0.0010 1.80 0.072
LE -0.0043 0.0018 -2.36 0.018*
T 0.1472 0.0115 12.84 <0.001%***
SWC -0.0372 0.0169 -2.20 0.028*
u -0.0707 0.0383 -1.84 0.066
Po 0.0053 0.0064 0.84 0.403

Number of observations: 706, Error degrees of freedom: 699
Root Mean Squared Error: 1.95

R>=0.442

F-statistic vs. constant model: 94.1, p-value < 0.001
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Figure. S1. Comparison between kB-1 estimated when including stability effects vs. no stability effects (Eqns. 4 vs.
5 in main text) for select sites.

61



1098
1099
1100
1101
1102
1103
1104
1105
1106
1107

o
] Vaira Ranch = GCC o Broadband NDVI ™| vaira Ranch o VIS <o NIR <o Total SW (albedo)
k] o
S 0.40- o8 4 N
@
o ] 3
£ 0.6 2 2
g 0.35+ %8 g g
% a k7]
H \ g
S 0.304 g ©
) 02 =
c
]
& 0.25 T T T T T 0.0 T T T T T
2014.5 2015.0 2015.5 2016.0 2016.5 2017.0 2017.5 2014 5 2015.0 2015.5 2016.0 2016.5 2017.0 2017.5
Year Year

2 0. 1.0 0.5 -
2 Tonzi Ranch Tonzi Ranch
] . 108 m 0.4
: A : ;
o 2 o
o ° R . . _ 0.6 c 0.3
£ N g g g
g f S
\ i e d £ o2
S g o
o - <
: wai ™ Vemewf 1, 2 01y
& 0.25 T T T T T 1-0.0 0.0¢ T T T T T
2014.0 2014.5 2015.0 2015.5 2016.0 2016.5 2017.0 2014 0 2014.5 2015.0 2015.5 2016.0 2016.5 2017.0
Year Year
£ o0.50 0.
£
T
8 0.45 9 » "
Q S 3
o 2 o
L s £ 0.3
T 0.40- 8 £
g = 2 0.2
] =] o
G 035 < 0.1
H
& 0.30 T T T .0 0.0 1
2014.0 2014.5 2015.0 2015.5 2016.0 2014.0 2014.5 2015.0 2015.5 2016.0
Year Year
£ 0.50: 1.0 0.
_E Bouldin Alfalfa Boul% pfa "
g 2 o -8 @ 0.4 So ?
] 3 R £ s ] ,
o ] 3 J
g & g °-3"~
w o
©
£ 2 2 02.4 v.: R
2 z T €
§ 2 «
— e s AN AN
c
8 e N ’\’\e&?\a&
(‘5 0.30 T T T 0.0 0.0 T T T 1
2017.0 2017.5 2018.0 2018.5 2019.0 2017.0 2017.5 2018.0 2018.5 2019.0
Year Year

Figure S2. Time series of PhenoCam-derived green chromatic coordinate (GCC) and radiometrically-derived
Broadband NDVI (left), and total SW albedo, NIR reflectance, and VIS reflectance (right). For the GCC time
series, the primary vegetation type is shown as green symbols. For Tonzi Ranch, a Mediterranean woody
savanna, the green symbols indicate the seasonal patterns of GCC for the understory grasses, while the gray
line indicates the seasonal patterns of GCC for the overstory deciduous oak trees, Quercus douglasii. For each
site, three years of data were arbitrarily chosen from the period of overlap between phenocam and radiometric
measurements, except for the Twitchell and Bouldin Alfalfa sites for which only 2 y of data are shown due to
facilitate visualization of the dynamic harvesting/regrowth patterns.

62



1108
1109

1110
1111
1112
1113
1114
1115
1116

Lucky Hills e GCC o Broadband NDVI

0.40-

0.3

0.30

Green Chromatic Coordinate

0.25 T T T T T T T -0
2015.0 2015.5 2016.0 2016.5 2017.0 2017.5 2018.0
Year

2 0.45 1.0

g Kendall

k<]

o

o

o

L

k]

£

e

=

o

c

]

& 0.25 T T T T T 0.0
2014.0 2014.5 2015.0 2015.5 2016.0 2016.5 2017.0

Year

Green Chromatic Coordinate

0"“‘] 1 ] 1 I° 1 -
20140 20145 20150 20155 20160 20165  2017.0

Year

0.

Green Chromatic Coordinate

-30- T T T T T 1-0.0
2016.0 2016.5 2017.0 2017.5 2018.0 2018.5 2019.0

£ 045+ - 1.0

2 Turkey Point

E 0.8

§ 0.40-

© .6

g 0.35:

s .4

= &

G 0.30

° 2

H

(‘5 0.25 1 T T T T T 1 -0
20150  2015.5 20160 20165  2017.0  2017.5  2018.0

Year

IAQGN pueqpeoig IAQGN Pueqpeoig IAGN puegpeoig IAGN Pueqpeoig

IAQGN pueqgpeosg

Reflectancee

Reflectancee

Reflectancee

Reflectancee

Reflectancee

Lucky Hills e VIS <o NIR <o Total SW (albedo)

0.0 T T T T T
2015.0 2015.5 2016.0 2016.5 2017.0 2017.5 2018.0

Year

)
Kendall H

T T T T T 1
4.0 2014.5 2015.0 2015.5 2016.0 2016.5 2017.0
Year

Missouri Ozarks

0.0¢ T T T T T 1
2014.0 2014.5 2015.0 2015.5 2016.0 2016.5 2017.0

Year

[NivotiRidge
H N

0.0 T T T T T 1
2016.0 2016.5 2017.0 2017.5 2018.0 2018.5 2019.0

Year

T Turkey Point

07T T T T T T 1
2015.0 2015.5 2016.0 2016.5 2017.0 2017.5 2018.0

Year

Figure S2 (continued). Time series of PhenoCam-derived green chromatic coordinate (GCC) and radiometrically-
derived Broadband NDVI (left), and total SW albedo, NIR reflectance, and VIS reflectance (right). For the GCC
time series, the primary vegetation type is shown as green symbols. For Kendall, an arid grassland with some shrub
cover, the green symbols indicate the seasonal patterns of GCC for the grass, while the gray line indicates the
seasonal patterns of GCC for the shrubs. For Missouri Ozarks, a temperate mixed forest with an evergreen conifer
component, the green symbols indicate the seasonal patterns of GCC for the deciduous trees, while the gray line
indicates the seasonal patterns of GCC for the evergreen trees. For each site, three years of data were arbitrarily
chosen from the period of overlap between phenocam and radiometric measurements.
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Figure S3. Land-cover and example imagery from PhenoCam for each study site. MODIS data are from the
MCD12Q1 product. Codes for the land-cover classes are: ENF = evergreen needleleaf forest, DBF = deciduous

broadleaf forest, MX = mixed forest, CSH = close shrublands, OSH = open shrublands, WSA = woody savanna, SA

= savanna, GR = grasslands, CRO = agricultural, CVM = crop-natural vegetation mosaic.
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Figure S4. Seasonal changes in aerodynamic canopy height (%) for each non-agricultural site. mean annual
precipitation (in parentheses next to each site name). For each site, the median and interquartile values (25" and 75"
percentiles) are calculated for each DOY across all years, these statistics are then smoothed using a loess smoother.
Green lines represent mean PhenoCam GCC across all site years, and the GCC scale is the same across all panels.
Horizontal red lines represented PI reported canopy height. The bottom three sites (CA-TP4, US-Me6, and US-Mpj)
were plotted as time series due to observed trends in changing /..
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interquartile values (25th and 75th percentiles) are calculated for each DOY across all years, and these statistics are
then smoothed using a loess smoother.
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Figure S6. Timing of seasonal maximum and minimum values for aerodynamic resistance to heat transfer (Ran) for
additional sites. Red and blue histograms display the empirical distribution of the seasonal maximum or minimum
timing, respectively. Day 0 (at the top of each plot) represents start-of-season green-up. These empirical
distributions of maximum or minimum timings are summarized by the 10th, 50th, and 90th percentiles of these
relative day-of-year values. The green “slices” represent the green-up phenological transition period, bounded by
dates when the GCC curve reaches 10% and 90% of the total seasonal amplitude of GCC.
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Figure S7. Growing season patterns in roughness length for momentum (zon), GCC, Ram, Roh, Ran, and kB! for an
agricultural site (US-Tw3) for 2014. Images are from the PhenoCam site twitchellalfalfa at midday. Due to the short
time period, these data are daily (individual points) and smoothed using a loess. Solid and dashed lines represent the
smoothed values for the left and right y axes, respectively.

71

GCC



1157
1158

1159
1160
1161

Ts (°C)

-2
Jan 2014 Jul 2014  Jan 2015

Jul2015 Jan 2016 Jul2016 Jan2017 Jul2017 Jan -2018

12 s
(b) N () L (d)
10} ;. : L o
@ 8 "
Q
£ 6l
e
= 4
g,
o L
2 .
10 20 30 40 50 0 100 200 0 10 20 30
T | others LE | others SWC | others

Figure S8. Time series of kB!, surface temperature (75), and PhenoCam greenness at US-Wkg (a). Added-variable

plots depicting partial relationships between kB! and the three explanatory variable to emerge as significant at the

a = 0.05 significance level in our regression analysis (Table S2): 7 (b), LE (c), and soil water content (d). Vertical

lines indicate PhenoCam green-up dates.
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