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 Abstract 37 

Surface roughness – a key control on aerodynamic resistance and thereby land-atmosphere 38 

exchanges of heat and momentum – differs between dormant and growing seasons and 39 

accompanies changes in canopy greenness and leaf area. However, how surface roughness shifts 40 

seasonally at fine time scales (e.g., days) in response to seasonality in canopy conditions is not 41 

well understood. This study: (1) explores how and where aerodynamic resistance changes 42 

seasonally; (2) what drives these seasonal shifts in aerodynamic resistance, including the role of 43 

vegetation phenology; and (3) quantifies the importance of including seasonal changes of 44 

aerodynamic resistance in “big leaf” models of sensible heat flux (H). We evaluated 45 

aerodynamic resistance and surface roughness lengths for momentum (z0m) and heat (z0h) using 46 

the kB-1 parameter (ln(z0m/z0h)), derived from Monin-Obukhov Similarity Theory. We used 47 

AmeriFlux data to obtain surface-roughness estimates, and PhenoCam greenness data for 48 

phenology. This analysis spanned a continental-scale precipitation and temperature gradient, 49 

including 23 sites and ~190 site years from deciduous broadleaf, evergreen needleleaf, woody 50 

savanna, cropland, grassland, and shrubland plant-functional types (PFT). Results indicated clear 51 

seasonal patterns in aerodynamic resistance to sensible heat transfer (Rah). This seasonality 52 

tracked PhenoCam-derived start-of-season green-up transitions in PFTs displaying the most 53 

significant seasonal changes in canopy leaf area, with Rah decreasing near the green-up transition. 54 

Conversely, in woody savanna sites and evergreen needleleaf forests, there were strong seasonal 55 

patterns in Rah at some sites, but these patterns were not linked to vegetation green-up. Our 56 

findings highlight that decreases in kB-1 are an important control over Rah, explaining > 50% of 57 

seasonal variation in Rah across most sites. Decreases in kB-1 during green-up are likely caused 58 

by increasing z0h in response to higher leaf area index and not to seasonal changes in z0m. 59 
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Accounting for seasonal variation in kB-1 is also key for predicting H as well; assuming kB-1 to 60 

be constant at each site resulted in significant biases that also exhibited strong seasonal patterns 61 

between estimated and measured H (i.e., Ĥ/H). Overall, we found that in ecosystems with strong 62 

seasonality in leaf area, surface roughness can be sensitive to phenology, and this linkage is 63 

therefore critical for understanding land-atmosphere interactions at seasonal time scales. 64 

65 
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1. Introduction 66 

The horizontal and vertical structure of vegetation creates an aerodynamically rough surface, 67 

generating mechanical turbulence that exerts significant control over aerodynamic resistance to 68 

heat transfer from the surface to the atmosphere (Brutsaert, 1982; Garratt and Hicks, 1973; 69 

Pitman, 2003; Verma, 1989). Surface roughness varies with wind speed (Thom 1972), land cover 70 

type (Lee et al., 2011), leaf area (Dolman, 1986; Raupach, 1994; Shaw and Pereira, 1982), and 71 

canopy height (Chu et al., 2018; Sonnentag et al., 2011), such that changes in vegetation 72 

structure lead to significant changes in aerodynamic resistance. Vegetation phenology triggers 73 

significant and rapid changes in the structure of the canopy (Richardson et al., 2013), altering 74 

surface roughness during green-up and senescence. Such phenology-driven impacts can 75 

influence the land-surface energy balance by changing aerodynamic resistance and hence 76 

sensible heat flux (H), in addition to other key biophysical processes such as evapotranspiration 77 

(Fitzjarrald et al., 2001; Moon et al., 2020; Schwartz, 1992). Capturing dynamics between 78 

phenology and aerodynamic resistance is therefore critical for accurately parameterizing the role 79 

of phenology in land-surface models (e.g., Richardson et al., 2012). More broadly, phenology 80 

driven changes in aerodynamic resistance can impact on the atmospheric boundary-layer, 81 

including temperature profile development, boundary-layer height and cloud formation, and 82 

near-surface micro-climate (Baldocchi and Ma, 2013; Betts, 2004; Novick and Katul, 2020). 83 

The magnitude of H is controlled by the difference between surface and air temperatures and 84 

the aerodynamic resistance to sensible heat transfer. Modeling and predicting aerodynamic 85 

resistance requires information on two key surface-roughness parameters: roughness lengths for 86 

momentum and heat (Verhoef et al., 1997). The roughness length for momentum (z0m) defines 87 

the height above the surface that wind speed extrapolates to zero, and the roughness length for 88 
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heat (z0h) is the effective source height in the vertical temperature profile for sensible heat. In 89 

ecosystems with taller roughness obstacles (e.g., forests), an additional parameter is commonly 90 

needed: the zero-plane displacement height (d). Under such conditions, wind speed extrapolates 91 

to zero at height d + z0m. Differences between z0m and z0h result in an “excess resistance” to heat 92 

transfer relative to momentum transfer. Specifically, heat transfer from z0h ® z0m is dominated 93 

by molecular diffusion, while heat transfer above z0m is controlled by more efficient processes 94 

associated with eddy diffusion (Bonan, 2016; Thom, 1972). In land-surface modeling, the 95 

parameter kB-1 (ln(z0m/z0h)) is used to quantify this excess resistance between z0m and z0h 96 

(Brutsaert, 1982; Owen and Thomson, 1963; Thom, 1972). Further details on the derivation of 97 

excess resistance and kB-1 are found in Section 2.1. 98 

The kB-1 parameter varies significantly with land-cover type, leaf area, and other 99 

environmental variables (Brutsaert, 1982; Rigden et al., 2018). For example, a deciduous 100 

broadleaf forest acts as a permeable-rough surface, defined as having densely packed, porous 101 

elements and exhibiting relatively low kB-1 values (kB-1 generally ranges from 0-4). Conversely, 102 

in arid ecosystems, the canopy is characterized by uneven and sparse roughness elements (i.e., a 103 

bluff-rough surface), and kB-1 generally exhibits higher values (kB-1 ranges from 2-10) (Rigden et 104 

al., 2018). For bare soil, kB-1 has low values (ranging from 0-1), and negative kB-1 values have 105 

also been estimated (Yang et al., 2008). This variability in kB-1 among differing land cover is 106 

also clearly illustrated by the bifurcation of kB-1 among land-cover types, with higher values 107 

occurring in bluff-rough surfaces compared to permeable-rough surfaces (Garratt and Hicks, 108 

1973; Rigden et al., 2018), implying differences in the physical arrangement and structure of 109 

surface-roughness elements strongly governs behavior of kB-1. While this bifurcation is well 110 

documented among varying land-cover, little work exists exploring seasonal changes in kB-1, 111 
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which may in part be driven by changes in canopy structure, including the amount and 112 

distribution of leaf area. 113 

kB-1 displays strong temporal variability in response to multiple different environmental 114 

factors. At a diurnal scale for sparse canopies, solar radiation penetrates below the canopy, 115 

warming the soil, and causing z0h to be effectively the height of the soil surface, thereby 116 

increasing kB-1. Meanwhile, z0m is constant at daily time scales (Brutsaert and Sugita, 1996; 117 

Kustas et al., 1989; Verhoef et al., 1997). At a seasonal time scale, some evidence suggests that 118 

changing leaf area over time causes a distinct negative relationship between leaf area index and 119 

kB-1 (Qualls and Brutsaert, 1996). These patterns can also be generalized at different time scales. 120 

Conceptually (Fig. 1), daily kB-1 peaks at midday as the diurnal cycle in solar radiation causes 121 

the magnitude of the temperature gradient at the top of the canopy to increase, ultimately altering 122 

z0h. Similarly, the impact of vegetation green-up can also cause kB-1 to vary at seasonal time 123 

scales. For example, changes in z0h may effectively track changes in z0m, leading to a constant 124 

kB-1 for the entire season. Conversely, z0h may increase faster relative to z0m, leading to decreases 125 

in kB-1 during green-up transitions (Fig. 1). 126 
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 127 

Figure 1. Hypothesized behavior of kB-1 at multiple time scales. The left column of panels displays idealized diurnal 128 
behavior for short-statured vegetation at DOY 180 and how solar radiation may cause shifts in z0h and kB-1. Panels 129 
on the right-hand side depict behavior of kB-1 at a seasonal time scale. At seasonal time scales, the behavior of z0m 130 
and z0h relative to each other will determine kB-1. Two different potential behaviors are depicted above. The dashed 131 
curve (z0h,1) represents a potential scenario where z0h proportionally tracks z0m resulting in a constant kB-1 for the 132 
entire year. Alternatively, the dotted curve (z0h,2) represents a scenario where z0h increases faster relative to z0m in 133 
response to green-up, resulting in a decrease in kB-1. The faded green line represents canopy greenness while the 134 
vertical line indicates a theoretical green-up date.  135 
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Determining whether changes in z0m or z0h are the primary driver of seasonal variation in kB-1 136 

is critical for identifying the biophysical drivers of aerodynamic resistance. A simple – and 137 

common – approach is to equate z0m as a fraction of mean canopy height (hc) (e.g., z0m = 0.1h; 138 

Bonan, 2016). d is similarly estimated as d = 0.7hc. However, while this is a common method for 139 

estimating these roughness parameters, this approach has several important limitations. First, this 140 

approach cannot produce time series of changes in z0m unless continuous measurements of hc are 141 

recorded. Second, seasonal signals in z0m are complex and may not effectively track canopy 142 

height. For example, as the canopy fills in after leaf emergence, z0m may display non-monotonic 143 

variation with leaf area, increasing in length before decreasing (Shaw and Pereira, 1982). 144 

Additionally, as leaf area increases, the coefficients mapping hc to z0m and d (e.g., z0m/hc = 0.1 145 

and d/hc = 0.7) are not constant and can decrease and increase, respectively (Sakai, 2000). 146 

Measurements of wind speed and turbulence from flux towers offer an alternative method for 147 

estimating z0m. For example, if wind speed is available at multiple heights above the canopy, a 148 

vertical wind-speed profile can result, allowing for extrapolation of d and z0m (Monteith and 149 

Unsworth, 2008), and a similar approach may be used for z0h using air temperature profiles. At 150 

towers where measurements are available at only one height, an effective or “aerodynamic” 151 

canopy height can be estimated using Monin-Obukhov similarity theory, and thereby allow for 152 

inference into changes in of d and z0m (Chu et al., 2018; Pennypacker and Baldocchi, 2016). 153 

However, this approach requires explicit assumptions regarding d/hc and z0m/hc. More details 154 

regarding Monin-Obukhov similarity theory and estimating z0m and d can be found in sections 155 

2.1 and 2.6. 156 

Common approaches to parameterizing kB-1 in predictions of H include simple assumptions. 157 

One such assumption is z0m = z0h (i.e., kB-1 = 0) (Campbell and Norman, 1998). While assuming 158 
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kB-1 = 0 simplifies calculations of H, it can cause significant bias (Yang et al., 2008), and is 159 

therefore not commonly used. Another approach is to assume kB-1 is a non-zero constant. For 160 

example, kB-1 ≈ 2 is a common assumption, and shows good performance during the growing 161 

season for agricultural and forested land-cover types (Garratt and Francey, 1978; Zhao et al., 162 

2016). 163 

Despite extensive literature focused on kB-1, few studies have explored how aerodynamic 164 

resistance changes seasonally, what drives these changes, and what the consequences are of such 165 

variation in aerodynamic resistance for predicting seasonal patterns in H (e.g., Moon et al., 2020; 166 

Sugita and Kubota, 1994). Furthermore, estimates of H from vegetated surfaces in land-surface 167 

models directly rely on model assumptions linking surface roughness to changes in leaf area and 168 

canopy height, further motivating the need for clearer understanding of how phenology may 169 

influence surface roughness (Lawrence et al., 2018; Zeng and Wang, 2007). Here, we address the 170 

following questions: (1) how does aerodynamic resistance change at seasonal time scales across 171 

a range of plant functional types and climate regimes, (2) what are the mechanisms that lead to 172 

changes in aerodynamic resistance, including the role of plant phenology, and (3) how does 173 

assuming kB-1 to be constant influence estimates of H at seasonal time scales? To address these 174 

questions, we analyzed data from 23 sites that are part of both the AmeriFlux and PhenoCam 175 

networks, covering deciduous broadleaf, evergreen needleleaf, cropland, grassland, woody 176 

savanna, and shrubland land-cover types, and spanning a broad climatological gradient across 177 

North America.  178 
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2. Materials and methods 179 

2.1 Basic theory 180 

Whole ecosystem H is commonly modeled using a “big leaf” approach, which considers that 181 

ecosystems behave as a single layer, and therefore does not account for vertical differences from 182 

the soil through the canopy (Knauer et al., 2018; Raupach and Finnigan, 1988). Under this “big 183 

leaf” approach, H is a function of the difference between the aerodynamic surface temperature 184 

(Taero) and air temperature at tower height (Ta), as well as aerodynamic resistance to heat transfer 185 

(Rah): 186 

𝐻 =	 !"!
($"#$%%$")

'&'
          (1) 187 

where r is air density (kg m-3) and cp is a constant for the specific heat of dry air (1004.834 188 

J K-1 kg-1). The total aerodynamic resistance to heat transfer (Rah; s m-1) is the sum of the 189 

resistance to momentum transfer (Ram) and an excess resistance term (Rbh) representing 190 

differences between roughness lengths for momentum (z0m) and heat (z0h), 191 

𝑅() = 𝑅(* + 𝑅+)          (2)  192 

To calculate Rah, Ram, and Rbh, we used the methods described by Verma (1989) and published in 193 

the ‘bigleaf’ R package (Knauer et al., 2018). Specifically, we estimated Ram using the definition: 194 

𝑅(* = 𝑢 𝑢∗-⁄           (3) 195 

where u and 𝑢∗ are tower-measured horizontal wind speed (m s-1) and friction velocity (m s-1), 196 

respectively. The excess resistance, Rbh, is defined as: 197 

𝑅+) =
.
/0∗

(ln +1)*
1)+
, − 𝜓2 + 𝜓3/         (4) 198 

Here, k is the unitless von Kármán constant (0.41), and 𝜓3 and 𝜓2 are stability functions for 199 

momentum and heat exchange using formulations from Dyer (1970) and Businger et al. (1971). 200 
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Following Rigden et al. (2018) and Verma (1989), we used the common, simplified definition of 201 

Rbh ignoring stability effects over the short distance z0m ® z0h:  202 

𝑅+) =
.
/0∗

ln +1)*
1)+
,         (5) 203 

We tested the impact of not including stability effects when estimating Rbh using Eqn. 5 and 204 

found that this only had minor impacts on our results (Fig. S1). The kB-1 parameter characterizes 205 

differences between z0m and z0h, and is defined as: 206 

𝑘𝐵%. = ln +1)*
1)+
,           (6) 207 

Substituting Eqns. 5 and 6 yields: 208 

𝑅+) =
.
/0∗

𝑘𝐵%.          (7) 209 

kB-1 has been well studied across a broad range of ecosystems but cannot be measured directly. 210 

Multiple methods have been proposed to model and estimate kB-1. These methods range from 211 

simple functions of 𝑢∗ or the roughness Reynolds number (𝑅𝑒∗) (Brutsaert, 1982; Rigden et al., 212 

2018; Thom, 1972; Verhoef et al., 1997), to more complex models that account for variation in 213 

the vertical and horizontal distribution of vegetation (Massman, 1999; Yang and Friedl, 2003). 214 

Here, our goal was to better understand the seasonality of kB-1, and therefore we did not develop 215 

new prognostic models for kB-1. Instead, we focused on estimating kB-1 by optimizing the value 216 

that best predicted tower-measured H at relatively fine time scales (i.e., 3-days). Further details 217 

can be found in Section 2.4. 218 

2.2 Tower data  219 

We used eddy covariance measurements from 23 AmeriFlux sites that also had PhenoCams. 220 

These sites were selected because they spanned a broad gradient in climate and vegetation 221 

structure across North America, while also having a minimum of two years of overlap between 222 
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AmeriFlux and PhenoCam data records. Mean annual temperatures ranged from 1.5 to 17.6 °C 223 

and mean annual precipitation ranged from 275 to 2452 mm. Growing season canopy heights 224 

ranged from 0.3 m in the US southwest to 60 m in the US northwest and leaf area index (LAI, m2 225 

m-2) ranged from 0.3 to 8.7 (Table 1). While we required a two-year minimum overlap between 226 

AmeriFlux and PhenoCam, we used a longer time series of tower measurements based on data 227 

availability and continuity. For each site, we used measurements of precipitation, net radiation 228 

(Rn), Ta, H, and 𝑢∗. We used radiometric surface temperature (Ts) as a proxy for Taero (Eqn. 1). Ts 229 

was computed using separate measurements of upwelling (𝑅40) and downwelling (𝑅45) 230 

longwave radiation, 231 

𝑇6 = 6',-%	(.%8)',.
89

/
         (8) 232 

Here, e is emissivity and s is the Stefan-Boltzmann constant (5.67×10-8 W m-2 K-4). Emissivity 233 

values for each vegetation type were obtained from Tao et al. (2013). Hour or half-hour tower 234 

data were filtered for mid-day only (10:00-14:00 local time) with Rn > 50 W m-2, H > 50 W m-2, 235 

and 𝑢∗ > 0.2 m s-1. Days with lower Rn were excluded to remove measurements with 236 

proportionally higher uncertainty (i.e., Rn < 50 W m-2) (Hollinger and Richardson, 2005). We 237 

included a filter for H (i.e., H < 50 W m-2) to remove anomalously high values of kB-1 obtained 238 

through our optimization approach when H is near zero. We excluded low 𝑢∗ values to remove 239 

observations having insufficient turbulence (Papale et al., 2006). Finally, we excluded days 240 

where any precipitation was recorded between 20:00 hr the previous day to 14:00 hr of the 241 

current day. All tower data were downloaded from the AmeriFlux server 242 

(https://ameriflux.lbl.gov), and dataset version numbers and download dates are provided in 243 

Table S1. 244 
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2.3 PhenoCam data 246 

To capture vegetation phenology, we used the V2.0 PhenoCam public data release (Milliman 247 

et al., 2019; Seyednasrollah et al., 2019a; Seyednasrollah et al., 2019b). Here, we only provide a 248 

brief overview of PhenoCam data; a full description is presented in Richardson et al. (2018) and 249 

Seyednasrollah et al. (2019b). The PhenoCam network uses high-frequency imagery from digital 250 

cameras to track vegetation phenology. Following a standard protocol, cameras are mounted 251 

overlooking the vegetation of interest, and three-channel RGB images were recorded multiple 252 

times per day (typically every 30 minutes). For each site, a region-of-interest (ROI) in the image 253 

field-of-view is delineated to focus on the canopy. Using all pixels in this ROI, statistics 254 

summarizing RGB digital numbers (DN) are generated to quantify relative changes in canopy 255 

color over time. This canopy color information can be used to accurately identify phenological 256 

time series and transition dates (e.g., spring leaf emergence and fall senescence; Keenan et al., 257 

2014). However, canopy color from PhenoCam does not explicitly measure the physical 258 

structure of the canopy (e.g., LAI or roughness). In our analysis, we used time series of the 259 

green-chromatic coordinate (GCC) to measure canopy greenness and extract transition dates, 260 

 𝐺:: =
;01

;01<'01<=01
         (9) 261 

Daily values of GCC were calculated from all daytime images under a 1- or 3-day moving-262 

window (Sonnentag et al., 2012). The V2.0 data release provides four GCC statistics for each 263 

moving window: mean, median, 75th percentile, and 90th percentile. In this analysis, we used the 264 

statistic that minimizes the root mean squared error (RMSE) between daily GCC values and a 265 

locally weighted regression smoother (loess) at each site. The smoothing span for the loess was 266 

determined by minimizing a Bayesian Information Criterion (BIC) (Richardson et al., 2018), and 267 

the smoothed loess values are further used to identify phenological transition dates. In our 268 
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analysis, we used the 3-day moving window substantial to visualize seasonal patterns in 269 

greenness and the 1-day product to estimate transition dates. This was necessary as transition 270 

dates could not be identified in some of the dryland sites using the 3-day product. For this study, 271 

we used the start-of-season green-up date (i.e., “green-up”) as our primary measure of spring 272 

phenology, as it characterizes the date of leaf emergence and acts as a clear separator between 273 

dormant and growing seasons. Specifically, this green-up date was equated to the day when 10% 274 

of the total seasonal amplitude in GCC was reached. For evergreen needleleaf sites, changes in 275 

GCC are caused by changes in foliage pigments on seasonal time scales, and are not related to 276 

changes in leaf area (Bowling et al., 2018; Seyednasrollah et al., 2021). The V2.0 release has 277 

been screened to remove low-quality imagery and image masks have been adjusted to account 278 

for camera field-of-view shifts. Only cameras set to fixed white balance were included, to 279 

remove negative impacts from auto-white balancing under default camera settings 280 

(Seyednasrollah et al., 2019b). Finally, we also conducted a brief supplementary comparison 281 

between Gcc time series and flux-tower derived estimates of broadband NDVI (e.g., Jenkins et 282 

al., 2007). We found strong similarities between these time series, indicating that PhenoCam Gcc 283 

can capture seasonal changes in vegetation that are also captured by radiometric measurements 284 

that are conducted at some sites. Details on these comparisons are provided in Appendix S1 and 285 

Fig. S2. Additional metadata information for each PhenoCam site, as well as example imagery 286 

and maps of vegetation cover, can be found in Table S1 and Fig. S3. 287 

2.4 Estimating seasonal variation in aerodynamic resistance 288 

We quantified Rah, as well as the underlying components Ram, Rbh, and kB-1, at a 3-day timestep 289 

to effectively visualize and identify potential seasonal patterns in these aerodynamic resistance 290 

terms among different ecosystems. First, we calculated Ram at a half-hour timescale using Eqn. 3. 291 
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Second, we used Eqns. 1 and 2 and our predictions of Ram to estimate a single value of kB-1 that 292 

minimized prediction error of H across all half-hour values every three days. This value of kB-1 293 

at a 3-day timestep allowed Rbh to be calculated using Eqn. 7. Finally, we smoothed the time 294 

series for each variable using a loess curve. The span for the loess curve for each variable and 295 

site was optimized by minimizing the BIC, and this was the same method used for smoothing 296 

PhenoCam greenness data (see Section 2.3). By smoothing over a time series of non-overlapping 297 

3-day estimates, our approach captures shifts occurring during phenological transitions, even 298 

under a short time duration. We chose a 3-day time scale for this averaging and subsequent 299 

smoothing because it was consistent with the time scale used with PhenoCam. We note that our 300 

method of estimating Rbh as a residual of Rah and Ram will result in errors in H will be 301 

propagating into estimates of Rbh and kB-1. Errors in H could be derived from multiple sources, 302 

but are not likely a major concern. For example, it is possible that lack of energy balance closure 303 

could influence our results, especially if there is strong seasonality in the amount of closure 304 

occurring in concert with seasonal changes in the Bowen ratio. However, at the handful of sites 305 

where we examined this in detail, we found no evidence of strong seasonality in mid-day energy 306 

balance closure, and no emerging patterns that would allow us to link poor energy balance 307 

closure to strong seasonal variation in Rbh. Furthermore, while random or systematic 308 

measurement errors in H data could influence estimates of Rbh, our filtering approach was 309 

designed to minimize the impact of systematic errors (see section 2.2) and by averaging mid-day 310 

fluxes over three days, the magnitude of random errors is also greatly reduced (e.g., Hagen et al., 311 

2006; Hollinger and Richardson, 2005). 312 

Any variable exhibiting strong seasonal variability will inherently have cyclical peaks and 313 

valleys. Here, we identified the timing of peaks and valleys for both Rah and kB-1 (hereafter 314 
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referred to as periods characterized by either “maximum” or “minimum” values, respectively). 315 

These maximum and minimum periods were then related to green-up. To do this, we first 316 

computed the 25th or 75th percentiles of the whole time series for each variable at each site. We 317 

then identified the days-of-year where each variable occurred above or below these 75th and 25th 318 

percentiles, equating these days to the timing of seasonal maximum and minimum values, 319 

respectively. The start-, middle-, and end-point for each maximum and minimum time period 320 

was identified by the 10th, 50th, and 90th percentiles across these day-of-year values. To calculate 321 

these relative day-of-year statistics, we used directional statistics using the ‘circular’ package in 322 

R (Agostinelli and Lund, 2017). To visualize and compare the timing of seasonal transitions in 323 

Rah and kB-1, we plotted the transition dates for each of these variables against each other, as well 324 

as green-up date. The transition dates for Rah and kB-1 used for this visualization were the “end” 325 

points (i.e., 90th percentile) of the distribution for timing maximum Rah and kB-1 values (e.g., see 326 

Figs. 3 and 5). We used these values as transition dates since they are representative of the 327 

timing of when Rah or kB-1 begins to decrease. 328 

kB-1 is also frequently modeled as a response to the Reynolds roughness number (𝑅𝑒∗) 329 

(Rigden et al., 2018), where 𝑅𝑒∗ is defined as: 330 

𝑅𝑒∗ =	
1)*0∗
>
           (10) 331 

Here, n is the kinematic viscosity (Massman, 1999).  Thus, we plotted kB-1 against 𝑅𝑒∗ for each 332 

season (dormant and growing) to visualize and compare our results more easily to past studies. 333 

For this simple visualization, we identified the growing season as those dates between the 50% 334 

green-up threshold and 50% green-down threshold (Richardson et al., 2018). The dormant 335 

season was identified as the period prior to green-up. 336 
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2.5 Attribution analysis 337 

We can attribute variability in Rah to either Ram or Rbh (i.e., Rah = Ram + Rbh; Eqn. 2), and 338 

understanding which of these factors has a stronger correspondence would provide key 339 

information to infer the primary drivers of Rah. To conduct an attribution analysis, we used 340 

statistical properties defining the variance of the sum of two random variables (Rice, 2007), 341 

𝑉𝑎𝑟(𝑋 + 𝑌) = 𝑉𝑎𝑟(𝑋) + 𝑉𝑎𝑟(𝑌) + 2𝐶𝑜𝑣(𝑋, 𝑌)     (11) 342 

Here, Var and Cov are the variance and covariance functions, respectively. We used Eqn. 11 in 343 

combination with the relationship in Eqn. 2 to attribute the relative contribution of total variance 344 

of Rah or the covarying relationship between Ram and Rbh,  345 

𝑉𝑎𝑟(𝑅?2) = 𝑉𝑎𝑟(𝑅?3 +	𝑅@2)     346 

𝑉𝑎𝑟(𝑅?2) = 𝑉𝑎𝑟(𝑅?3) + 𝑉𝑎𝑟(𝑅@2) + 2𝐶𝑜𝑣(𝑅?3, 𝑅@2)    (12) 347 

Calculations assumed N-1 degrees of freedom, with N being the number of independent 3-day 348 

periods. This analysis was done separately for each site using the unsmoothed time series.  349 

2.6 Quantifying seasonal changes in roughness parameters 350 

Seasonal shifts in kB-1 must be in response to either z0m or z0h. To help diagnose whether 351 

changes in kB-1 are responding to z0m or z0h, we quantified z0m by estimating aerodynamic canopy 352 

height (ha) at a 3-day timestep. For example, if kB-1 decreases even while z0m increases, we can 353 

infer that changes in z0h are likely having a stronger influence on kB-1 (e.g., Fig. 1). z0m is most 354 

commonly prescribed as simple functions of mean canopy height (hc) (e.g., z0m = 0.1hc), with 355 

measured canopy heights reported by site PIs. However, z0m has been shown to vary significantly 356 

with leaf area (Yang and Friedl, 2003), indicating physical hc measurements may be limited at 357 

capturing seasonal changes in z0m. Aerodynamic canopy height (ha) offers an alternative to using 358 



 20 

observed hc. Specifically, aerodynamic canopy height can be estimated using the 359 

Monin-Obukhov similarity theory definition of the log-wind profile,  360 

𝑢(𝑧) = 0∗
/
(ln +1%5

1)*
, − 𝜓3/        (13) 361 

Here, u(z) is wind speed at height z, d is the zero-plane displacement height, and 𝜓3 is a stability 362 

function for momentum (Dyer and Hicks, 1970). Under near-neutral atmospheric stability 363 

(i.e., ym » 0), Eqn. 13 can be re-arranged to determine a single value of ha that best predicts flux-364 

tower measurements of  /0(1)
0∗
 using the assumptions that d = 0.7ha and z0m = 0.1ha,  365 

!"($)
"∗

= ln $$&'.)*"
'.+*"

%         (14) 366 

While d/z0m = 7 is a common assumption (Bonan, 2016), this ratio has been demonstrated to 367 

change with land-cover type, LAI, and stand density (Nakai et al., 2008). However, we 368 

maintained this assumption for our analysis, as we were primarily interested in simply 369 

understanding how ha (and hence z0m) changes seasonally; thus, the absolute accuracy of our ha 370 

estimates was not critical. 371 

To quantify seasonal variability in ha, we first split up the time series at each site into non-372 

overlapping 3-day windows. Within each window, a single value of ha was optimized to 373 

minimize the mean absolute error between all observed and predicted half-hour values of  /0(1$)
0∗
. 374 

This gave us one estimate of ha every three days. For this optimization, we used a different data 375 

filtering approach than in Section 2.2. Here, we closely followed Pennypacker and Baldocchi 376 

(2016) and Chu et al. (2018). Additionally, we filtered for atmospheric neutrality, and this was 377 

the only part of our analysis to include this filter. In estimating ha, we applied a roughness 378 

sublayer correction at forest sites (Chu et al., 2018). If the reference height (zr) was less than 379 
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1.5hc (hc equal to PI reported canopy height), we included a roughness-sublayer correction factor 380 

(lrs), optimizing using the following instead of Eqn. 14: 381 

#$(&)
$∗

= ln $&().+,"
).-,"

% + ln(𝜆./)        (15) 382 

From Chu et al. (2018), lrs = 1.25. We did not include a roughness sublayer correction in any 383 

other part of our analysis, and we believe this would not meaningfully impact our results as Hu et 384 

al. (2020) found that including a roughness-sublayer correction did not improve predictions of 385 

turbulent fluxes. Seasonal summaries for ha for each site are provided in Fig. S4.  386 

In addition to calculating ha, we also used wind-profile data from sites recording wind speed 387 

at multiple heights to individually estimate d and z0m, independent of assumptions related to 388 

canopy height such as z0m = 0.1hc (sites with profile data availability are listed in Table 1). 389 

Specifically, we chose three sites for this analysis: US-MMS, US-Syv, and US-Ne1. We chose 390 

sites for this analysis based on whether d was likely to have significant influence and on the 391 

availability of relatively complete and suitable time series of wind speed at two heights. To 392 

conduct this analysis, we used the difference between wind speeds at two different heights under 393 

near-neutral stability to find a single value of d that best predicts the left-hand side of Eqn. 13 394 

(Monteith and Unsworth, 2008): 395 

/(02%03)
0∗

= log +12%5
13%5

,         (16) 396 

Here, subscripts refer to two different measurement heights, with z1 > z2. Using this estimate of 397 

d, we were able to invert Eqn. 10 to obtain an estimate of z0m: 398 

𝑧A3 = 1%5	

BCDE4-(6)-∗
F
          (17) 399 
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2.7 Seasonal sensitivity to estimating H 400 

While initial results indicated there was significant seasonality in both Rah and kB-1 (Figs. 2, 401 

3, 6), it is also common to assume kB-1 = 0 or kB-1 is equal to a constant value (i.e., kB-1 = c) 402 

when predicting H. To understand the implications of using either of these assumption for 403 

predicting seasonal patterns in H, we calculated the relative difference between estimated (Ĥ) 404 

and measured values of H (i.e., Ĥ/H). The constant value c for each PFT was obtained from 405 

Rigden et al. (2018), and is representative of mean growing season kB-1. The impacts of each 406 

assumption were evaluated by visualizing time series of the relative difference between 407 

measured and estimated H at a 3-day timestep.  408 
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3. Results 409 

3.1 Seasonal variability in aerodynamic resistance 410 

There were significant seasonal patterns in Rah at most of our study sites, which spanned a 411 

continental-scale precipitation gradient (Fig. 2). In general, PFTs that exhibited the largest 412 

seasonal changes in leaf area (i.e., deciduous broadleaf, grassland, croplands) consistently 413 

produced strong seasonal signals in Rah (Fig. 2). For example, at the wettest grassland site, a 414 

restored prairie landscape in the upper Midwest (US-Ro4, MAP = 879 mm; Markland, 2019), Rah 415 

ranged from 44 s m-1 in the dormant season to 21 s m-1 in the growing season (Fig. 2). Likewise, 416 

at our driest grassland site, Kendall grassland in the Walnut Gulch Experimental Watershed of 417 

southern Arizona (US-Wkg, MAP = 340 mm; Scott et al., 2010), Rah ranged from 75 s m-1 to 55 s 418 

m-1 (Fig. 2). 419 

We further evaluated seasonal patterns by identifying the periods of the year when Rah values 420 

were characteristically lower (i.e., at a “minimum”) or higher (i.e., at a “maximum”). Through 421 

quantifying these timing, we found that in many cases maximum and minimum Rah values 422 

occurred in distinct and non-overlapping periods, indicating distinct seasonality (Fig. 3). 423 

Specifically, we found that maximum Rah occurred prior to or during green-up, while minimum 424 

Rah occurred after green-up at most deciduous broadleaf forests, grasslands, shrublands, and 425 

agricultural sites (Figs. 2, 3, and S6). For example, at a set of three agricultural sites at the 426 

University of Nebraska Agricultural Research and Development Center (US-Ne1, US-Ne2, and 427 

US-Ne3; Suyker and Verma, 2010; Suyker and Verma, 2012), we found that maximum Rah 428 

occurred from 120 days prior to green-up through 13 days after green-up for corn (Zea mays L.), 429 

while minimum Rah ranged from 66 to 141 days after green-up. Similarly, for soybean (Glycine 430 
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max [L.] Merr.), maximum Rah ranged from 197 days prior to green-up through 8 days after 431 

green-up (Fig. S5). 432 

We also observed seasonality in Rah among some, but not all, evergreen-needleleaf and 433 

woody savanna sites. Wetter evergreen and savanna sites, as measured by mean annual 434 

precipitation (Table 1), displayed little seasonal variability in Rah, while drier evergreen and 435 

savanna sites with lower stand density had some of the strongest seasonal patterns in Rah. For 436 

example, US-Ho1 (MAP = 1070 mm), a sub-boreal, closed canopy site in Maine with little 437 

annual needle turnover (Hollinger et al., 1999), exhibited little seasonal variation in Rah, Ram, or 438 

Rbh (Fig. 2), and Rah had a seasonal amplitude of only 4 s m-1. In comparison, at the lower stand 439 

density Metolius young burn site in central Oregon (US-Me6, MAP = 494 mm; Ruehr et al., 440 

2014) or the Pinyon-Juniper woody savanna site in central New Mexico (US-Mpj, MAP = 385 441 

mm; Anderson-Teixeira et al., 2011), we observed some of the largest seasonal changes in Rah 442 

among all study sites, with seasonal amplitudes of 33 and 16 s m-1, respectively (Fig. 2). 443 

Furthermore, the timing of minimum and maximum Rah values at these drier evergreen 444 

needleleaf and savanna sites was opposite to the patterns found at deciduous broadleaf forests, 445 

with maximum Rah occurring during the growing season and minimum values more prevalent 446 

during the dormant season prior to green-up (Figs. 2, 3, and S6).  447 
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 448 
Figure 2. Seasonal changes in Rah, Ram, and Rbh from example sites for each PFT. For each site, the median is 449 
calculated for each DOY across all years, and these statistics are then smoothed using a loess smoother. Confidence 450 
bounds represent the interquartile range across all years as well (25th-75th percentiles). Mean annual precipitation is 451 
in parentheses. The plotted points are the unsmoothed data for Rah. Plots for additional sites can be found in Fig. S4.  452 
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 453 
 454 
Figure 3.  Timing of seasonal maximum and minimum values for aerodynamic resistance to heat transfer (Rah). Red 455 
and blue histograms display the empirical distribution of the seasonal maximum or minimum timing, respectively. 456 
Specifically, the histograms are for day of year values (relative to green-up) for all days that were either above the 457 
75th percentile (i.e. maximum) or below the 25th percentile (minimum). Day 0 (at the top of each plot) represents 458 
green-up. These empirical distributions of maximum or minimum timings are summarized by the 10th, 50th, and 459 
90th percentiles of these relative day-of-year values as the beginning, middle, and end points, respectively (i.e., the 460 
red and blue “slices”). The green “slices” represent the green-up phenological transition period, bounded by dates 461 
when the GCC curve reaches 10% and 90% of the total seasonal amplitude of GCC. Plots for additional sites can be 462 
found in Fig. S6.  463 
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3.2 Inferred drivers of Rah seasonality and linkages to spring phenology  464 

Our findings suggested that seasonal variability in Rah was primarily attributable to changes 465 

in Rbh, not Ram, at most of our study sites. In general, there was strong correlation in the seasonal 466 

patterns of Rah and Rbh, but much lower correspondence between Rah and Ram (Fig. 2). For 467 

example, at US-MMS, a 90-100 year old deciduous broadleaf forest in southern Indiana 468 

(Dragoni et al., 2011), there was a well-defined decrease in Rah near green-up, shifting from 23 s 469 

m-1 to 15 s m-1 (Fig. 2). This shift in Rah directly tracked Rbh, which shifted from 15 s m-1 to 7 s 470 

m-1. Conversely, Rah was anti-correlated with Ram (Fig. 2). These patterns and linkages between 471 

Rah and Rbh were reinforced by results from our attribution analysis where the total variance in 472 

Rah was partitioned between Ram, Rbh, and the covariance between Ram and Rbh (Fig. 4). We found 473 

clear evidence among non-agricultural PFTs that the total variance in Rah was primarily 474 

explained by Rbh, not Ram (Fig. 4). For example, across all deciduous broadleaf sites, variance in 475 

Rbh explained 48-92% of the total variance in Rah compared to Ram (2-36%) (Fig. 3). There were 476 

only two non-agricultural sites where we found evidence for Ram having higher explanatory 477 

power than Rbh: CA-TP4 and US-NR1 (e.g., 65% vs 38% for CA-TP4) (Fig. 4).  478 
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 479 
Figure 4. Attribution of the total seasonal variance in Rah to either Ram, Rbh, or 2Cov (Ram, Rbh). Corn and soybean 480 
data are obtained from US-Ne1, US-Ne2, and US-Ne3.  481 
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Seasonal variation in Rbh is attributable to seasonal shifts in kB-1. We found distinct and 482 

corresponding seasonal cycles between Rbh and kB-1 occurring at many sites (Figs. 2, 5, and 6); 483 

kB-1 generally reached its highest values immediately prior to or during green-up, followed by 484 

decreases during the transition to the growing season at deciduous broadleaf, grassland, 485 

shrubland, and agricultural sites (Figs. 5 and 6). At drier evergreen needleleaf sites, such as US-486 

Me6, we found the opposite pattern, with kB-1 lower during the dormant season and increasing 487 

during the growing season (Figs. 5 and 6), with strong similarity to the signal in Rah found at 488 

these same sites (Figs. 2 and 3). When comparing Figs. 3 and 5, we observe that a deciduous 489 

broadleaf site (US-MMS) the timing of maximum Rah and kB-1 overlapped considerably. Similar 490 

patterns can be found at the other end of the precipitation gradient; at a shrubland site in southern 491 

Arizona (US-Whs), the median day-of-year of peak Rah and kB-1 were almost identical: 43 and 45 492 

days prior to start-of-season green-up (Figs. 3 and 5). When comparing all sites, we found a 493 

strong positive linear relationship between the transition dates for Rah and kB-1, with the 494 

transition dates for Rah and kB-1 occurring within 30 days of each at 60% of all sites (Fig. 7a). 495 

The timing of seasonal shifts in Rah and kB-1 appeared to track green-up transition dates for 496 

some, but not all, sites (Fig. 7b,c). Linkages between green-up dates and shifts from higher to 497 

lower Rah and kB-1 were notable at most deciduous broadleaf, grassland, and at least one 498 

shrubland site. For example, there were distinct decreases in kB-1 at two deciduous forest sites 499 

(US-MMS and US-MOz) immediately after spring green-up occurred, and this response was 500 

consistent even when green-up occurred approximately 30-days earlier than normal in 2012 (Fig. 501 

6). This strong association between transition dates is visualized in Fig. 7b, c; transition dates 502 

between kB-1 and Gcc occurred within 30 days of each other for 80% of deciduous broadleaf, two 503 

out of three of grassland, and one of two of shrubland sites. By comparison, for most evergreen 504 
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needleleaf forests and woody savanna ecosystems, kB-1 transition dates generally occurred more 505 

than 120 days from green-up, if at all. In general, these patterns between kB-1 and greenness were 506 

comparable to the patterns we found for Rah. 507 

Finally, to help understand which surface roughness parameter (z0m or z0h) is driving kB-1 508 

changes, we estimated d and z0m through aerodynamic canopy height (ha) and wind-profile data. 509 

In general, we found that ha increases during the growing season, implying z0m is also increasing 510 

(Fig. S4). We found a similar pattern for a cropland site with corn (US-Ne1), where there was a 511 

distinct increase in both d and z0m during the growing season (Fig. 8). While this pattern occurred 512 

at most sites, we also found examples where z0m decreased during the growing season, indicating 513 

that the canopy became smoother. Specifically, at US-MMS and US-Syv, z0m decreased by 514 

approximately 1.5 m during the transition from spring to summer (Figs. 9 and S4). 515 

3.3 Rah seasonality in croplands 516 

There were relatively unique patterns at several of the cropland sites in our analysis, 517 

compared to other sites. Specifically, a significant proportion of the variation in Rah was 518 

attributable to Ram, contrasting with results at most other sites (Fig. 4). Ram exhibited significant 519 

influence at the Nebraska corn and soybean agricultural sites (US-Ne1, US-Ne2, and US-Ne3). 520 

Our attribution analysis indicated Ram explained a significant part of the total variance in Rah, 521 

with Ram explaining 40% and 51% of the variability in Rah for corn and soybean, respectively, 522 

compared to Rbh which explained 53% and 49%. This similarity can be visualized in Fig. 2, as 523 

both Rah and Ram closely tracked each other immediately after green-up in both corn and soybean 524 

sites. Seasonal patterns in Rbh and kB-1 also differed notably compared to deciduous forest and 525 

grassland sites; Rbh and kB-1 increased immediately after green-up, followed by a sudden 526 

decrease after canopy greenness reached its seasonal maximum (Figs. 2 and 6). 527 
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Strong seasonal patterns in Rah were also observed at weekly timescales at the alfalfa 528 

(Medicago sativa L.) sites in the Sacramento–San Joaquin River Delta in central California (US-529 

Bi1 and US-Tw3), with Rah and kB-1 decreasing as z0m and canopy greenness increased (Figs. 9 530 

and S7). Alfalfa harvesting takes place 5-7 times per year during the spring and summer (Hemes 531 

et al., 2019). At these two sites, we observed distinct seasonal patterns in Rah responding to 532 

changes in aerodynamic canopy height (ha), canopy greenness, and kB-1 (Fig. 6 and S6). At US-533 

Bi1, changes in z0m ranged from 0.02 to 0.06 m, closely tracking canopy greenness, and Rah and 534 

kB-1 inversely tracked these changes in ha and greenness. Similar patterns were found at US-Tw3 535 

(Fig. S7). The data at these sites highlight three key patterns. First, kB-1 was the main driver of 536 

Rah. Second, maximum values in Rah and kB-1 occurred when canopy greenness and z0m were at a 537 

minimum, shortly after a harvesting event. Finally, there was little-to-no change in Ram 538 

accompanying these patterns in Rah. These results were comparable to the patterns observed in 539 

deciduous broadleaf, grassland, and shrubland sites; maximum and minimum values of Rah and 540 

kB-1 occurred during dormant and growing periods, respectively.  541 
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 542 
 543 
Figure. 5. Same as Fig. 3 but for kB-1.  544 
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545 
Figure 6. Time series for kB-1 and Gcc for a range of different PFTs. Each panel covers a time period of three years. 546 
Three-day optimized kB-1 values are represented as the grey points, while the black line indicates the smoothed time 547 
series described in Section 2.5. Solid green curves indicate PhenoCam-derived Gcc and the vertical dashed lines 548 
indicate PhenoCam transition dates for green-up. The numbers printed next to each green-up line indicates the day-549 
of-year.550 
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551 
Figure 7. Comparison of transition dates for Rah, kB-1, and green-up. Plot symbols and colors indicate different 552 
PFTs, while the size of the plot points is inversely proportional to the distance from the 1:1 line. Transition dates for 553 
Rah and kB-1 are equated to the end points for the empirical distribution of the timing of maximum values for each 554 
variable (e.g., see Figs. 3 and 5).  555 
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 556 
Figure 8. Changes in d and z0m estimated from wind-profile data. Circles indicate estimates of d while crosses 557 
indicate estimates of z0m. 558 
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559 
Figure 9. Growing season patterns in z0m (i.e., 0.1ha), GCC, Ram, Rbh, Rah, and kB-1 for an agricultural site (US-Bi1) 560 
for 2017. Images are from the PhenoCam site bouldinalfalfa at midday. Due to the short time period, these data are 561 
daily (individual points) and smoothed using a loess. Solid and dashed lines represent the smoothed values for the 562 
left and right y axes, respectively.  563 
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3.4 Implications for understanding seasonal changes in aerodynamic resistance  564 

At many sites, we found evidence that kB-1 differs between the non-growing season and 565 

growing season, indicated by the clear bifurcation in kB-1 with higher values occurring during the 566 

non-growing season and lower values occurring during the growing season (Fig. 10). To 567 

understand how this seasonal variation in kB-1 may influence predictions of H when compared to 568 

the assumption of static kB-1 (i.e., kB-1 = 0 or kB-1 = c), we estimated the full annual pattern of 569 

relative differences between estimated and measured H (i.e., Ĥ/H) at a 3-day timestep. We found 570 

that estimates of H were quite sensitive to kB-1 = 0 or kB-1 = c; at many sites, we found that the 571 

highest relative differences generally occurred during the nongrowing season and under the 572 

assumption kB-1 = 0 (Fig. 11). For example, at US-MMS, Ĥ/H was approximately 300% right 573 

before green-up, indicating that assuming kB-1 = 0 will produced large biases (Fig. 11). At the 574 

arid US-Ses shrubland site, the highest values of Ĥ/H (> 400%) occurred immediately prior to 575 

green-up (Fig. 11). We found similar seasonal patterns of Ĥ/H by assuming kB-1 is constant for 576 

each PFT (i.e., kB-1= c), although the magnitude of Ĥ/H was considerably reduced relative to 577 

kB-1 = 0 (Fig. 11). Furthermore, the seasonal patterns in Ĥ/H observed at many sites were similar 578 

to the seasonal patterns in Rah (Fig. 2). In summary, these results indicated that accounting for 579 

seasonal changes in kB-1 is critical for significantly reducing biases and errors when predicting H 580 

using a “big leaf” approach.  581 
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 582 
Figure 10. Relationships between kB-1 and the Reynolds roughness number (𝑅𝑒∗) for different phenology phases 583 
(non-growing and growing season) at six example sites. The darker plot points and confidence bounds represent the 584 
median and inter-quartile range of the distributions along each axis.  585 
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 586 
Figure 11. Seasonal signals in relative differences between measured and estimated sensible heat flux (Ĥ/H) for 587 
different sites depending on whether kB-1 is assumed equal to 0 or a constant (i.e., kB-1 = 0 or kB-1 = c). Lines and 588 
confidence bounds are the median and interquartile range across all years.   589 
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4. Discussion 590 

Using 190 site years of data from the AmeriFlux and PhenoCam networks, our findings 591 

highlight how aerodynamic resistance to heat transfer (Rah) exhibits distinct seasonal patterns 592 

among multiple plant-functional types (PFTs) and climate regimes, and how vegetation 593 

phenology may play a role governing this seasonality in certain PFTs. Specifically, PFTs that 594 

exhibit the strongest seasonal changes in canopy structure also consistently displayed strong 595 

seasonality in Rah, and the timing of the seasonal patterns in Rah closely track phenological start-596 

of-season green-up at most of these sites. Incorporating these seasonal patterns of Rah, as well as 597 

potential linkages to spring phenology, is important for improving model-based predictions of 598 

sensible heat fluxes, and thus our understanding of how seasonal changes in the land surface 599 

more broadly impact atmospheric dynamics such as boundary layer height, vertical temperature 600 

profiles, and near-surface micro-climate. 601 

4.1 How does aerodynamic resistance change seasonally?  602 

The aerodynamic resistance to heat transfer (Rah) comprises two additive resistance terms 603 

(Rah = Ram + Rbh, Eqn. 2), and our findings provide evidence that for most sites excess resistance 604 

to heat transfer (Rbh) is a significantly stronger control over seasonal patterns of Rah, relative to 605 

the resistance to momentum transfer (Ram) (Figs. 2-5). Recall that excess resistance (Rbh) 606 

accounts for differences between the roughness lengths for momentum (z0m) and heat (z0h) 607 

through the kB-1 parameter (i.e. k × Rbh × 𝑢∗ = ln(z0m/z0h) = kB-1, Eqn. 7). In this study, we found 608 

that the seasonality (Figs. 2, 3, 5, 7a) and total variance (Fig. 4) in Rah is best explained by Rbh 609 

and kB-1. Taken together, these multiple relationships linking kB-1 to Rah through Rbh imply 610 

changes in surface roughness (i.e., through z0m or z0h) are a key factor determining seasonal 611 

patterns in Rah. 612 
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At most deciduous broadleaf, grassland, and shrubland sites, kB-1 decreases during start-of-613 

season phenological transitions, implying the potential for a direct causal linkage between 614 

phenology and seasonal changes in kB-1 (Figs. 6, 7 and 10). Decreasing kB-1 in response to 615 

increasing LAI has been identified in other studies. For example, kB-1 is commonly modeled as a 616 

function of LAI (Brutsaert, 1979; Hu et al., 2020; Kubota and Sugita, 1994; Yang and Friedl, 617 

2003). This modeling captures decreases of kB-1 in response to increasing LAI and provides 618 

accurate estimates of H as well (Qualls and Brutsaert, 1996). Decreasing kB-1 after green-up must 619 

be related to either z0m or z0h (Eqn. 6). Here, we conclude z0h is more influential than z0m in most 620 

cases. Specifically, we posit shifts to higher z0h (lower kB-1) during start-of-season green-up are 621 

due to decreases in the fractional coverage of understory and bare soil. Landscapes dominated by 622 

bare soil or sparse vegetation exhibit z0h heights effectively at the soil surface, especially during 623 

warm and dry meteorological conditions where the soil is acting the primary source of heat 624 

(Verhoef et al., 1997; Yang et al., 2008). A theoretical addition of taller un-foliated roughness 625 

elements to a landscape would increase z0m, while z0h would remain unchanged due to surface 626 

temperature of the understory exceeding that of the canopy temperature (Brutsaert and Sugita, 627 

1996). During phenological transitions, such as leaf emergence in temperate deciduous forests, 628 

the canopy fills in, the coverage of bare soil and understory decreases, and transpiration increases 629 

cooling of the surface (Verhoef et al., 1997), together leading to increases in z0h and lowering 630 

kB-1. Similar behavior of kB-1 is found between PFTs that have dense and sparse canopies. 631 

Permeable-rough surfaces (e.g., deciduous broadleaf or agriculture sties) have kB-1 values lower 632 

than bluff-rough surfaces (e.g. shrubland sites) (Brutsaert, 1982; Rigden et al., 2018). These 633 

bluff-rough surfaces, generally occurring at more arid sites, have higher proportions of land 634 

cover dominated by bare soil (Fig. S3). 635 
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While changes in z0m, as well as z0h, may also play a role in altering kB-1, our results imply 636 

that observed changes in z0m are not driving seasonal decreases in kB-1. Specifically, we found 637 

that z0m generally increases during the growing season, indicated by increasing aerodynamic 638 

canopy height (ha; Fig. S4) or wind-profile data (Fig. 8). All other factors being equal, increasing 639 

z0m by itself would lead to higher kB-1; however, we found that kB1 decreases after green-up 640 

(Figs. 5, 6, and 9). Therefore, we infer that increases in z0h offset increasing z0m, thereby leading 641 

to decreases in kB-1 (e.g., Fig. 1) and implying z0h is the more important control over kB-1. 642 

Patterns observed at an alfalfa agricultural site (US-Bi1, Fig. 8) capture this dynamic. Significant 643 

decreases in z0m after a harvesting event by itself should lead to decreasing kB-1. However, we 644 

found kB-1 increases after harvesting events, likely due to significant decrease in z0h relative to 645 

z0m. Increases in z0m after green-up, while common, are not ubiquitous. Decreases in z0m can also 646 

occur. Specifically, functions relating z0m to the plant area index (i.e. PAI) exhibit non-monotonic 647 

relationship and higher leaf area and foliage density at the top of the canopy can act as a smooth 648 

surface (Blanken and Black, 2004; Shaw and Pereira, 1982). While we see such decreases in z0m 649 

at US-MMS, US-Syv, and US-NR1 (Figs. 8 and S4), this likely does not outweigh the 650 

importance of z0h given its strong influence at other sites. 651 

While z0h may have more control over seasonal changes in Rah relative to z0m, this is partially 652 

due to z0m simply not changing as much relative to z0h between the non-growing and growing 653 

seasons, as the physical structure of the canopy generally remains in place even if it is defoliated 654 

(Nakai et al., 2008). Using the corn and soybean sites, we can investigate and better understand 655 

the influence of z0m in a system where the landscape transforms from bare soil to a full canopy 656 

within a season. Here, we found patterns in Ram closely tracking Rah (Fig. 2), and Ram explains 657 

significantly more of the observed variance in Rah compared to other sites (Fig. 4). This increased 658 
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importance in Ram is due to significant increases in z0m as the crops increase in height (Figs. 2 and 659 

8) and the subsequent effect on the log-wind profile (Eqn. 10).  660 

Phenology does not have the same level of control over Rah in evergreen-needleleaf sites 661 

(Figs. 2, 3 and 5). This is not surprising, given that our evergreen-needleleaf sites exhibit only 662 

minor leaf turnover each season. Where we did observe seasonal changes in Rah (e.g., US-Me6), 663 

these changes are also associated with changes in Rbh and kB-1, comparable to other PFTs. 664 

Therefore, changes in Rah in evergreen-needleleaf sites are not driven by changing leaf area and 665 

the fractional cover of the forest canopy, but likely by two other interacting factors. First, 666 

increasing solar radiation and surface heating during the course of the growing season alters the 667 

temperature source height (z0h), thereby altering Rah through kB-1, comparable to diurnal changes 668 

in kB-1 tracking solar radiation (Fig. 1) (Lhomme et al., 1997; Yang et al., 2008). Second, these 669 

impacts of seasonal changes in solar radiation on kB-1 only occur at more arid sites with taller 670 

vegetation, compared to shrublands or grasslands, and that likely have lower stand density (i.e., 671 

US-Me2, US-Me6, and US-Mpj; Figs. 2 and S2). The higher exposure of the understory or bare 672 

soil, compared to the more closed canopy sites (i.e., CA-TP4, US-Ho1, US-NR1), exacerbates 673 

the effects these changing environmental conditions have on kB-1. Finally, it should be noted that 674 

phenology may still play an important role in controlling seasonal patterns of kB-1 at lower 675 

density evergreen-needleleaf sites through the phenology of understory vegetation. However, the 676 

greenness index from PhenoCam for these sites is only derived for the canopy and does not 677 

capture the understory phenology. 678 

In this analysis, we highlight phenology may be a key driver over observed seasonal shifts 679 

in kB-1 in some ecosystems, which subsequently impacts Rah and predictions of H. However, the 680 

full seasonal trajectory of kB-1 is not explained by phenology alone; across the sites we 681 
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considered, significant variations in Rbh and kB-1 occurred well before and after phenological 682 

transitions (Figs. 2 and 6). For example, at a semi-arid grassland site in southern Arizona (US-683 

Wkg), we observed distinct increases in kB-1 beginning in January of each year, which continued 684 

throughout the dormant season prior to green-up (Fig. 6). These shifts in kB-1 occurred well after 685 

senescence and before spring green-up, and such shifts are likely influenced by other 686 

environmental or meteorological factors, including evapotranspiration, net radiation, wind speed, 687 

and surface temperature (e.g., Blyth and Dolman, 1995). As a brief supplementary analysis, we 688 

conducted a multiple linear regression at US-Wkg that related kB-1 to a list of meteorological 689 

factors: Rn, surface temperature (Ts), latent heat flux, soil water content, wind speed, and 690 

cumulative 10-day precipitation. We found that Ts emerged as the most important among these 691 

variables at seasonal time scales (p < 0.001, Table S2), having a strong positive relationship 692 

with kB-1 (Fig. S8). This influence of Ts is likely due to progressively warmer soil conditions that 693 

occur from January-June under increasing Rn, with the soil thereby acting as the primary source 694 

of heat exchange, relative to the canopy, and resulting in z0h to be at the height of the soil surface. 695 

As monsoonal precipitation begins in late-June or July and green-up occurs, the soil cools and is 696 

less sensitive to continued increases in Rn (Table S2). While this analysis is admittedly brief, it 697 

does indicate that other factors are key for considering seasonal drivers of kB-1. In general, 698 

quantifying the influence of these factors on kB-1 – as well as how they interact with each other 699 

and phenology – is crucial for developing accurate models of kB-1. 700 

4.2 How does changing aerodynamic resistance influence predictions of H? 701 

Substantial differences between estimated (Ĥ) and measured H occurred when kB-1 is 702 

assumed constant or equal to 0 (Fig. 11). These results have important implications for modeling 703 

of the land-surface energy balance using “big leaf” energy balance equations (e.g., Eqn. 1). First, 704 
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simplified assumptions of a static kB-1 (i.e., kB-1 = 0 or kB-1 is constant) are insufficient to 705 

accurately model the complete seasonal trajectory of H. Assuming z0m = z0h (i.e., kB-1 = 0) 706 

appears to be invalid for vegetated surfaces, a result agreeing well with the literature (Yang et al., 707 

2008). Similarly, assuming a constant value for each PFT, while helping to reduce biases (i.e., 708 

Ĥ/H) relative to the assumption kB-1 = 0, still resulted in significant seasonal deviations from 709 

measured H at many sites. These results highlight that including a time-varying estimate of kB-1 710 

that accounts for changes can eliminate seasonal patterns in Ĥ/H compared to assuming kB-1 = 0 711 

or kB-1 = c, implying that anticipating how and why surface roughness changes is important for 712 

understanding seasonal dynamics in land-atmosphere interactions (Blythe and Dolman, 1994, 713 

Kustas et al., 1989). 714 

4.3 Implications and directions for future work 715 

The sensitivity of H to seasonal variations in kB-1 is unexpected when compared to inferences 716 

from past studies. Increasing z0m under land-cover shifts from grasslands to aerodynamically 717 

rougher forests leads to increased turbulence and decreasing resistance, subsequently impacting 718 

surface temperature (Burakowski et al., 2018; Lee et al., 2011). Such mechanisms have been 719 

suggested to occur during phenological transitions; increases in z0m during green-up could 720 

decrease aerodynamic resistance to momentum transfer (Peñuelas et al., 2009). Conversely, 721 

phenology may only play a minor role controlling aerodynamic resistance. For example, in 722 

deciduous broadleaf forests, observed increases in Rah during phenological transitions have been 723 

attributed to decreasing synoptic-scale wind speed, and not z0m (Moon et al., 2020). Overall, our 724 

findings provide important new insight into the role of seasonally changing roughness, which in 725 

many cases appears to be associated with phenology, as a control on H. Perhaps more 726 

consequentially, the significant seasonal biases observed under the assumption of constant kB-1 727 
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implies the behavior for both z0m and z0h represents a key source of uncertainty for modeling 728 

land-atmosphere interactions.  729 

Resolving uncertainty in the behavior of z0m and z0h at seasonal time scales is not only 730 

important for model improvement, it is critical for understanding how seasonal changes in H 731 

may impact the atmospheric dynamics, such as boundary layer height, temperature profiles, and 732 

micro-climate (Helbig et al., 2020). For example, due to the exponential nature of kB-1 (Eqn. 6), 733 

small increases in z0h would reduce Rah, leading to increased H and potentially decreasing 734 

aerodynamic surface temperature and near-surface air temperature (Novick and Katul, 2020). 735 

Understanding such dynamics will likely be important for anticipating ecosystem impacts as 736 

phenology responds to a changing climate (Richardson et al., 2013). To reduce this uncertainty, 737 

developing prognostic models of kB-1 as a function of different environmental factors – including 738 

phenology – is a key next step. Other studies have modeled differences in kB-1 among different 739 

PFTs, for example as a function of 𝑢∗ or 𝑅𝑒∗ (e.g., Rigden et al., 2018). Expanding on such 740 

models to capture the seasonal shifts and bifurcation of kB-1 would lead to a stronger 741 

understanding of how the horizontal and vertical structure of surface roughness elements impacts 742 

H (Garratt and Hicks, 1973; Maurer et al., 2013). Finally, while more complex land-surface 743 

models such as CLM or a multi-layer approach do not rely on kB-1, our work motivates the need 744 

for investigations into how seasonal changes in land-surface properties might impact predictions 745 

from these systems-based models. 746 

Conclusions 747 

Through a continental-scale synthesis integrating AmeriFlux and PhenoCam data and 748 

applying Monin-Obukhov similarity theory, we find that seasonal variability in aerodynamic 749 

resistance to heat transfer is pervasive across a range of ecosystems. We found evidence that the 750 
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mechanisms underlying this variation in aerodynamic resistance are likely linked to vegetation 751 

phenology in deciduous broadleaf, grassland, agricultural, and shrublands. Specifically, shifts to 752 

a larger leaf area led to z0h increases during green-up, leading to decreases in kB-1 and in the 753 

overall total aerodynamic resistance to heat transfer. By comparison, the role of changing surface 754 

roughness to momentum transfer (z0m) appeared to be minimal compared to z0h. The total impact 755 

of seasonal variation in kB-1 on model-based estimates of sensible-heat flux is important; large 756 

biases in (Ĥ/H) occurred when assuming kB-1 is constant. Predicting the full seasonal trajectory 757 

of sensible heat flux using simple one-layer land-surface energy balance models requires 758 

prognostic models and parametrizations that account for seasonal changes in kB-1 in response to 759 

phenology and other environmental and meteorological factors. In conclusion, we found 760 

evidence vegetation phenology can influence surface-roughness at relatively fine temporal 761 

scales, directly impacting seasonal variability in aerodynamic resistance to heat transfer across a 762 

range of North American ecosystems. Because this variation in aerodynamic resistance also 763 

influences the land-surface energy balance, our findings provide insight into how 764 

land-atmosphere interactions operate at seasonal time scales.  765 
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Appendix S1  1073 

We compared PhenoCam Gcc time series with broadband NDVI calculated using the approach of 1074 

Jenkins et al. (2007). We first summed the reflected and incident fluxes (both PPFD and SW) 1075 

measured data over the day, and then calculated the reflected/incident ratio to determine the flux-1076 

weighted daily average “PAR albedo” (or VIS reflectance) and “SW albedo”. From these we 1077 

used Jenkins’ formula, to estimate NIR reflectance (NIR reflectance = 2×(SW albedo) – (VIS 1078 

reflectance)). Then we calculated broadband NDVI (at the daily time step) as:  1079 

(𝑁𝐼𝑅	𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒)– (𝑉𝐼𝑆	𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒)	
(𝑁𝐼𝑅	𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒) + (𝑉𝐼𝑆	𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒) 1080 

The results are shown in Fig. S2, We note that in general the agreement between GCC and 1081 

broadband NDVI is very strong. In many cases, there is also strong seasonality evident in one or 1082 

more of the broadband reflectances (i.e., total SW albedo, NIR reflectance, or VIS reflectance), 1083 

but the periods of vegetation activity are not as easily discerned as with either GCC or broadband 1084 

NDVI.  1085 

  1086 
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Table S2. Summary results from multiple linear regression predicting kB-1 at US-Wkg as function of the following 1088 
variables: net radiation (Rn), latent heat flux (LE), surface temperature (Ts), soil water content (SWC), wind speed 1089 
(u), and cumulative 10-day precipitation (P10). This regression model was conducted to investigate the influence of 1090 
different meteorological factors on kB-1. The entire time series of US-Wkg was used, and there were no interactions 1091 
included in this regression model. Individual observations in the model were non-overlapping 3-day values for each 1092 
variable. Significance levels: * = 0.05, ** = 0.01, and *** = 0.001. 1093 
  1094 

 Estimate SE t-value p-value 

Intercept -0.7548 0.4015 -1.88 0.061 
Rn 0.0017 0.0010 1.80 0.072 
LE -0.0043 0.0018 -2.36 0.018* 
Ts 0.1472 0.0115 12.84 <0.001*** 
SWC -0.0372 0.0169 -2.20 0.028* 
u -0.0707 0.0383 -1.84 0.066 
P10 0.0053 0.0064 0.84 0.403 
 

Number of observations: 706, Error degrees of freedom: 699 
Root Mean Squared Error: 1.95  
R2 = 0.442 
F-statistic vs. constant model: 94.1, p-value < 0.001 
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 1095 
Figure. S1. Comparison between kB-1 estimated when including stability effects vs. no stability effects (Eqns. 4 vs. 1096 
5 in main text) for select sites.  1097 



R#

!][V
!][[

��������������������������������������������������������������������������������������������������������!!]]
�����������������������������������������������������������������������������������������������������������!!]!
������������������������������������������������������������������������������������������������������!!]#
������������������������������������������������������������������������������������������������������������!!]@
���������������������������������������������������������������������������������������������������������������!!]F
��������������������������������������������������������������������������������������������������������������!!]M
�������������������������������������������������������������������������������������������������������������!!]R
���������������������������������������������������������������������!!]U

2014.5 2015.0 2015.5 2016.0 2016.5 2017.0 2017.5
0.25

0.30

0.35

0.40

0.45

0.0

0.2

0.4

0.6

0.8

1.0

Year

G
re

en
 C

hr
om

at
ic

 C
oo

rd
in

at
e

Vaira Ranch

B
roadband N

D
V

I

Broadband NDVIGCC

2014.0 2014.5 2015.0 2015.5 2016.0 2016.5 2017.0
0.25

0.30

0.35

0.40

0.45

0.0

0.2

0.4

0.6

0.8

1.0

Year

G
re

en
 C

hr
om

at
ic

 C
oo

rd
in

at
e

Tonzi Ranch

B
roadband N

D
V

I

2014.0 2014.5 2015.0 2015.5 2016.0
0.30

0.35

0.40

0.45

0.50

0.0

0.2

0.4

0.6

0.8

1.0

Year

G
re

en
 C

hr
om

at
ic

 C
oo

rd
in

at
e

Twitchell

B
roadband N

D
V

I

2017.0 2017.5 2018.0 2018.5 2019.0
0.30

0.35

0.40

0.45

0.50

0.0

0.2

0.4

0.6

0.8

1.0

Year

G
re

en
 C

hr
om

at
ic

 C
oo

rd
in

at
e

Bouldin Alfalfa

B
roadband N

D
V

I

2014.5 2015.0 2015.5 2016.0 2016.5 2017.0 2017.5
0.0

0.1

0.2

0.3

0.4

0.5

Year

R
ef

le
ct

an
ce

e

Vaira Ranch NIR Total SW (albedo)VIS

2014.0 2014.5 2015.0 2015.5 2016.0 2016.5 2017.0
0.0

0.1

0.2

0.3

0.4

0.5

Year

R
ef

le
ct

an
ce

e

Tonzi Ranch

2014.0 2014.5 2015.0 2015.5 2016.0
0.0

0.1

0.2

0.3

0.4

0.5

Year

R
ef

le
ct

an
ce

e

Twitchell

2017.0 2017.5 2018.0 2018.5 2019.0
0.0

0.1

0.2

0.3

0.4

0.5

Year

R
ef

le
ct

an
ce

e

Bouldin Alfalfa



R@

!!]V
!"#$%&'.E'9A32/"2$&=:6!7*2(!)(0*()!%1!B'(8%J.29,(0*/(,!:0((8!5'0%2.&*5!5%%0,*8.&(!ESJJF!.8,!0.,*%2(&0*5.44#9!!][
,(0*/(,!O0%.,-.8,!R;`M!E4(1&FD!.8,!&%&.4!UV!.4-(,%D!RMT!0(14(5&.85(D!.8,!`MU!0(14(5&.85(!E0*:'&F6!H%0!&'(!SJJ!!!!]
&*2(!)(0*()D!&'(!$0*2.0#!/(:(&.&*%8!&#$(!*)!)'%A8!.)!:0((8!)#2-%4)6!H%0!h(8,.44D!.8!.0*,!:0.))4.8,!A*&'!)%2(!)'03-!!!!!
5%/(0D!&'(!:0((8!)#2-%4)!*8,*5.&(!&'(!)(.)%8.4!$.&&(08)!%1!SJJ!1%0!&'(!:0.))D!A'*4(!&'(!:0.#!4*8(!*8,*5.&()!&'(!!!!#
)(.)%8.4!$.&&(08)!%1!SJJ!1%0!&'(!)'03-)6!!H%0!K*))%30*!<+.0G)D!.!&(2$(0.&(!2*I(,!1%0()&!A*&'!.8!(/(0:0((8!5%8*1(0!!!@
5%2$%8(8&D!&'(!:0((8!)#2-%4)!*8,*5.&(!&'(!)(.)%8.4!$.&&(08)!%1!SJJ!1%0!&'(!,(5*,3%3)!&0(()D!A'*4(!&'(!:0.#!4*8(!!!!F
*8,*5.&()!&'(!)(.)%8.4!$.&&(08)!%1!SJJ!1%0!&'(!(/(0:0((8!&0(()6!!H%0!(.5'!)*&(D!&'0((!#(.0)!%1!,.&.!A(0(!.0-*&0.0*4#!!!!M
5'%)(8!10%2!&'(!$(0*%,!%1!%/(04.$!-(&A((8!$'(8%5.2!.8,!0.,*%2(&0*5!2(.)30(2(8&)6!!!R

2015.0 2015.5 2016.0 2016.5 2017.0 2017.5 2018.0
0.25

0.30

0.35

0.40

0.45

0.0

0.2

0.4

0.6

0.8

1.0

Year

G
re

en
 C

hr
om

at
ic

 C
oo

rd
in

at
e

Lucky Hills

B
roadband N

D
VI

GCC Broadband NDVI

2014.0 2014.5 2015.0 2015.5 2016.0 2016.5 2017.0
0.25

0.30

0.35

0.40

0.45

0.0

0.2

0.4

0.6

0.8

1.0

Year

G
re

en
 C

hr
om

at
ic

 C
oo

rd
in

at
e

Kendall

B
roadband N

D
VI

2014.0 2014.5 2015.0 2015.5 2016.0 2016.5 2017.0
0.30

0.35

0.40

0.45

0.50

0.0

0.2

0.4

0.6

0.8

1.0

Year

G
re

en
 C

hr
om

at
ic

 C
oo

rd
in

at
e

Missouri Ozarks

B
roadband N

D
VI

2016.0 2016.5 2017.0 2017.5 2018.0 2018.5 2019.0
0.30

0.35

0.40

0.45

0.50

0.0

0.2

0.4

0.6

0.8

1.0

Year

G
re

en
 C

hr
om

at
ic

 C
oo

rd
in

at
e

Niwot Ridge

B
roadband N

D
VI

2015.0 2015.5 2016.0 2016.5 2017.0 2017.5 2018.0
0.25

0.30

0.35

0.40

0.45

0.0

0.2

0.4

0.6

0.8

1.0

Year

G
re

en
 C

hr
om

at
ic

 C
oo

rd
in

at
e

Turkey Point

B
roadband N

D
VI

2015.0 2015.5 2016.0 2016.5 2017.0 2017.5 2018.0
0.0

0.1

0.2

0.3

0.4

0.5

Year

R
ef

le
ct

an
ce

e

Lucky Hills NIR Total SW (albedo)VIS

2014.0 2014.5 2015.0 2015.5 2016.0 2016.5 2017.0
0.0

0.1

0.2

0.3

0.4

0.5

Year

R
ef

le
ct

an
ce

e

Kendall

2014.0 2014.5 2015.0 2015.5 2016.0 2016.5 2017.0
0.0

0.1

0.2

0.3

0.4

0.5

Year

R
ef

le
ct

an
ce

e

Missouri Ozarks

2016.0 2016.5 2017.0 2017.5 2018.0 2018.5 2019.0
0.0

0.1

0.2

0.3

0.4

0.5

Year

R
ef

le
ct

an
ce

e

Niwot Ridge

2015.0 2015.5 2016.0 2016.5 2017.0 2017.5 2018.0
0.0

0.1

0.2

0.3

0.4

0.5

Year

R
ef

le
ct

an
ce

e

Turkey Point



 64 

 1117 
Figure S3. Land-cover and example imagery from PhenoCam for each study site. MODIS data are from the 1118 
MCD12Q1 product. Codes for the land-cover classes are: ENF = evergreen needleleaf forest, DBF = deciduous 1119 
broadleaf forest, MX = mixed forest, CSH = close shrublands, OSH = open shrublands, WSA = woody savanna, SA 1120 
= savanna, GR = grasslands, CRO = agricultural, CVM = crop-natural vegetation mosaic.  1121 
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 1122 

 1123 
Figure S3 Continued.  1124 
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1125 
  1126 
Figure S3 Continued.   1127 
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 1128 
Figure S3 Continued.  1129 
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 1131 
 1132 
Figure S4. Seasonal changes in aerodynamic canopy height (ha) for each non-agricultural site. mean annual 1133 
precipitation (in parentheses next to each site name). For each site, the median and interquartile values (25th and 75th 1134 
percentiles) are calculated for each DOY across all years, these statistics are then smoothed using a loess smoother. 1135 
Green lines represent mean PhenoCam GCC across all site years, and the GCC scale is the same across all panels. 1136 
Horizontal red lines represented PI reported canopy height. The bottom three sites (CA-TP4, US-Me6, and US-Mpj) 1137 
were plotted as time series due to observed trends in changing ha.  1138 
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 1139 
Figure S5. Seasonal changes in Rah, Ram and Rbh for remaining sites not in Fig. 2. For each site, the median and 1140 
interquartile values (25th and 75th percentiles) are calculated for each DOY across all years, and these statistics are 1141 
then smoothed using a loess smoother. 1142 

 1143 
1144 
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 1145 
Figure S6. Timing of seasonal maximum and minimum values for aerodynamic resistance to heat transfer (Rah) for 1146 
additional sites. Red and blue histograms display the empirical distribution of the seasonal maximum or minimum 1147 
timing, respectively. Day 0 (at the top of each plot) represents start-of-season green-up. These empirical 1148 
distributions of maximum or minimum timings are summarized by the 10th, 50th, and 90th percentiles of these 1149 
relative day-of-year values. The green “slices” represent the green-up phenological transition period, bounded by 1150 
dates when the GCC curve reaches 10% and 90% of the total seasonal amplitude of GCC. 1151 



 71 

 1152 
Figure S7. Growing season patterns in roughness length for momentum (z0m), GCC, Ram, Rbh, Rah, and kB-1 for an 1153 
agricultural site (US-Tw3) for 2014. Images are from the PhenoCam site twitchellalfalfa at midday. Due to the short 1154 
time period, these data are daily (individual points) and smoothed using a loess. Solid and dashed lines represent the 1155 
smoothed values for the left and right y axes, respectively. 1156 
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 1157 
Figure S8. Time series of kB-1, surface temperature (Ts), and PhenoCam greenness at US-Wkg (a). Added-variable 1158 
plots depicting partial relationships between kB-1 and the three explanatory variable to emerge as significant at the 1159 
α = 0.05 significance level in our regression analysis (Table S2): Ts (b), LE (c), and soil water content (d). Vertical 1160 
lines indicate PhenoCam green-up dates.  1161 




