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Abstract

We analyze the passage from discrete (i.e., point) charges and the corresponding
discrete electrostatic energies to a continuum charge density and the correspond-
ing continuum electrostatic energy in the limit of a large number of point charges.
Given a continuous function on a bounded region that represents a continuum charge
density, we construct a sequence of point charges and prove that the corresponding
discrete electrostatic energies converge to the continuum counterpart. In a more
general setting, we consider a given, compactly supported, signed Radon measure in
the three-dimensional space representing the distribution of charges. We construct a
sequence of point charges that converge to the given signed Radon measure and show
that the corresponding discrete energies converge to the continuum one defined by
the signed Radon measure. Conversely, for any sequence of point charges that satisfy
certain reasonable assumptions on local geometry and excluded volumes, we prove
that there exists a subsequence converging to a signed Radon measure and that the
corresponding discrete energies converge to the continuum one defined by the limit-
ing signed Radon measure. Tools used in our analysis include the explicit construc-
tions of point charges from a given signed Radon measure as well as approximation
properties of signed Radon measures. Finally, we apply our discrete-to-continuum
analysis to the minimization of electrostatic energy related to the classical balayage
problem in the potential theory. Such minimization can be potentially applied to
the modeling of charged molecular systems with heterogeneously distributed charges
embedded in a continuum solvent.
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1 Introduction

The continuum electrostatic energy is defined to be [15,19,21,25]∫
R3

1

2
ρψ dx,

where the dielectric coefficient is taken to be unity in certain units. Here, ρ : R3 → R is a
given function representing a continuum charge density and ψ : R3 → R is the electrostatic
potential determined uniquely by Poisson’s equation together with boundary conditions

∆ψ = −ρ in R3 and φ(∞) = 0.

With some assumptions, the potential ψ can be expressed as (cf. p.23 in [12] and Section 1.7
in [21])

ψ(x) =
1

4π

∫
R3

ρ(y)

|x− y|
dy ∀x ∈ R3,

and the corresponding electrostatic energy can be expressed as∫
R3

1

2
ρψ dx =

1

8π

∫∫
R3×R3

ρ(x)ρ(y)

|x− y|
dxdy. (1.1)

In contrast, given a set of point charges Qi ∈ R3 located at xi ∈ R3 (i = 1, . . . , N), which
determine a discrete charge density

µ =
N∑
i=1

Qiδxi ,

where δa is the Dirac measure concentrated at a ∈ R3, the discrete electrostatic energy,
the Coulomb energy, is given by [15,19,21,25]

1

8π

∑
1≤i,j≤N,i 6=j

QiQj

|xi − xj|
. (1.2)

Both the continuum and discrete descriptions of electric charges and electrostatic en-
ergies are widely used in many areas of science and engineering, such as molecular biology,
colloidal science, and chemical engineering. The discrete description of electrostatics is
a main part of an interaction potential (i.e., forcefield) for a macromolecular system in
molecular dynamics and Monte Carlo simulations that have been extensively developed in
recent decades [10,17,20,22,23,31,35]. In implicit-solvent models for biological molecules,
both discrete and continuum descriptions of charge densities are used [8, 34,36,39,40].

Intuitively, the passage from the discrete to continuum description is clear: if the
number of point charges is large enough, then the discrete charge density and the discrete
electrostatic energy should be close to the continuum charge density and the continuum
electrostatic energy, respectively. This is indeed true, as we justify here such a statement
in several settings.

Our main results are as follows:
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(1) Assume Ω is a bounded region in R3 and ρ ∈ C(Ω). We can decompose the region
Ω into the union of many small regions ωi and define charges Qi = ρ(xi)|ωi| with
xi and |ωi| a point in ωi and the volume of ωi, respectively. Then as the number
of charges increases to infinity and the volume of each small region decreases to
zero, the discrete electrostatic energies (cf. (1.2)) converge to the continuum one (cf.
(1.1)); cf. Theorem 2.1;

(2) Given a compactly supported signed Radon measure µ on R3, we construct a se-
quence of point charges

µn =
1

Nn

Nn∑
i=1

Qi
nδxin (1.3)

that converge in a weak sense to the signed Radon measure µ and that the corre-
sponding discrete energies converge to the energy defined by the given signed Radon
measure; cf. Theorem 3.1; and

(3) Conversely, given a sequence of point charges as in (1.3) such that their locations
are nearly evenly distributed in a bounded region in R3 and that their values are
uniformly bounded (i.e., supn,i |Qi

n| <∞), we show that there exists a subsequence
that converges to a limiting signed Radon measure, and the corresponding discrete
energies converge to the continuum one; cf. Theorem 4.1. We also give an example
to show the nonuniqueness of such a subsequence.

In addition, we apply our analysis to an electrostatic energy minimization problem related
to the classical balayage problem in the potential theory; cf. Theorem 5.1. Such an
application can potentially be developed into a model for the charged molecules embedded
in a continuum solvent, where the charge distributions are often heterogeneous [7,8,39,41].

Let us make several remarks on our results. First, our result on the discrete-to-
continuum passage with a given continuous and bounded function representing a charge
density (cf. Part (1) above) is a special case with a given signed Radon measure (cf. Part
(2) above), as any continuous and bounded function defines uniquely such a measure.
However, with a continuous function, the construction of discrete charges is explicit, and
the proof of the discrete-to-continuum passage is also more intuitive, allowing us to better
understand such a passage. Second, our results are not complete and there are still some
open questions. One of them is whether or not the results in Part (3) above can be gener-
alized to the case where the sequence of discrete charges are not quite evenly distributed
in the entire region but are rather concentrated only on a measurable subset that may be
very irregular. Another related question is to identify conditions under which the density
of a limiting measure is continuous or even differentiable. Third and finally, we only prove
the discrete-to-continuum convergence of charge densities and electrostatic energies, but
provide no quantitative convergence rates. In particular, since we do not consider effects
of charge sizes, correlations, and fluctuations, our analysis does not justify the use of
continuum electrostatics in certain circumstances where the discreteness is strong.

The mathematical analysis of the discrete-to-continuum passage is a common task in
understanding an underlying physical system. Often, one begins with a pairwise inter-
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action potential, augmented by some external potential, defined on lattices, and derives
a continuum energy in the limit of vanishing lattice size. For instance, in recent stud-
ies on problems arising from solid mechanics and materials, the interaction potential can
be the Lennard-Jones potential or some potential modeling material defects (e.g., dislo-
cations), and the techniques of analysis include homogenization and Γ-convergence; cf.
e.g., [1–3,5, 18,30].

Relevant to our work are the studies presented in [6,11,32,37,38] (cf. also the references
therein). In [6], the authors considered the discrete electrostatic energy of the interaction of
N (−1)-charges and between these “electrons” and M positively charged “atomic nuclei”
with a hard core and a total charge Z. They show the Γ-convergence as N,Z →∞ with
M fixed and N/Z asymptotically equal to a constant λ of these discrete energy functionals
to a continuum energy functional I defined on all the Radon measures µ on R3 given by

I(µ) =
1

2

∫∫
(R3\Ω)×(R3\Ω)

dµ(x)dµ(y)

|x− y|
+

∫
R3\Ω

V (x) dµ(x),

if the total mass of µ is bounded above by λ and I(µ) = +∞ otherwise, where V de-
scribes the Coulomb interaction between the nuclei and electrons through their limiting
distributions and where Ω is the hardcore region of all the nuclei. The large-N analysis
further shows charge screening. Some parts of the analysis in [32, 37, 38] (cf. also the
references therein) obtain a similar Γ-convergence for a sequence of discrete energies as
the number of charges tends to infinity. Each energy results from the interaction among
finitely many (+1)-charges together with an external potential on each of these charges.
A growth assumption on the external potential is made to show that the infimum of the
Γ-limit is finite and the convergence of the discrete minimizers and minimum values to
their continuum counterparts.

In contrast, we consider charges of different signs and different values (partial charges)
confined in an arbitrary bounded region (with some regularities), and our results are for
any sequence of discrete charge configurations not necessary energy-minimizing ones. We
also consider a general question on the construction of discrete quantities from a given
continuum one and obtain the discrete-to-continuum passage, not just inequalities as in
the Γ-convergence analysis. In addition, our renewed result on the classical balayage
problem (cf. section 5) may possibly be applied to the study of charged macromolecules
that often have heterogenous charge distributions.

Our analysis relies on several techniques. One of them is the construction of point
charges from a given signed Radon measure. Such constructions have been initially devel-
oped in [6]; cf. also [37]. The other is to construct a family of diffeomorphisms to “flow”
the charges on the boundary of an underlying bounded open set into the interior of such
an open set so that various smoothing and approximating methods can be used to define
the point charges that are supported inside the open set. This technique may be used
to smooth out surface charges. In studying the continuum limit of a sequence of discrete
charges, we identify geometrical conditions that imply the existence of an L∞-density.

The rest of the paper is organized as follows. In section 2, we are given a continuous
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function on a bounded region and define discrete charges from such a function. We then
prove the convergence of the corresponding discrete energies to the continuum one. In
section 3, we consider the general case in which a compactly supported signed Radon
measure is given to represent a distribution of charges. We construct discrete charges
and show that they converge to the signed Radon measure and that the corresponding
discrete energies converge to the continuum one defined by the signed Radon measure.
In section 4, we prove the converse: given a sequence of point charges satisfying certain
geometrical conditions, there exists a subsequence of such charges that converges to a
signed Radon measure. Moreover, the corresponding energies also converge to the one de-
fined by the limiting signed Radon measure. Finally, in section 5, we prove the existence
and uniqueness of the minimizer of the electrostatic energy functional defined on signed
Radon measures with an external field, and also prove that the minimizer can be approx-
imated by point charges that are supported in a small neighborhood of the boundary of
the underlying bounded region.

2 Convergence of Discrete Energies with a Given Con-

tinuous Function of Charge Density

In this section, we construct a sequence of discrete charges from a given continuum charge
density. We prove that the corresponding sequence of discrete energies converge to the
continuum energy defined by the given charge density.

Let Ω be a nonempty, bounded, open subset of R3 with a Lipschitz-continuous bound-
ary ∂Ω. Let ρ ∈ C(Ω) represent a charge density. The corresponding (continuum) elec-
trostatic energy is given by [21]

1

8π

∫∫
Ω×Ω

ρ(x)ρ(y)

|x− y|
dxdy, (2.1)

where the dielectric coefficient is taken to be unity in certain units.
We now define a sequence of discrete charges from the density ρ. We call a class of

finitely many subsets of Ω a partition of Ω, if each of these subsets is a domain in R3 with
a Lipschitz-continuous boundary, these subsets are pairwise disjoint, and the union of the
closures of these subsets is Ω. We call these subsets cells of the partition. A sequence of
partitions, {Pn}∞n=1, of Ω is admissible if there exist natural numbers Nn ↗ +∞ and real
numbers rn ↘ 0 such that each Pn consists of two parts: ωin (i = 1, . . . , Nn) (called regular
cells) and the remaining cells, if any (called irregular cells), that satisfy the following two
conditions:
• The uniform size condition: There exists a constant γ ∈ (0, 1), and for each n ≥ 1

and each i (1 ≤ i ≤ Nn), there exists xin ∈ ωin (a point of charge) such that

B(xin, rn) ⊆ ωin ⊆ B

(
xin,

rn
γ

)
; (2.2)
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• The almost covering condition:

lim
n→∞

∣∣∣∣∣Ω \
(
Nn⋃
i=1

ωin

)∣∣∣∣∣ = 0. (2.3)

Here and below, we denote by |A| the Lebesgue measure of a Lebesgue-measurable set A.
Since rn ↘ 0, the uniform size condition implies that

‖Pn‖reg := max
1≤i≤Nn

diam (ωin) ≤ 2rn
γ
→ 0 as n→∞. (2.4)

A typical example of an admissible sequence of partitions Pn (n = 1, 2, . . . ) of Ω is as
follows: all the regular cells of Pn consist of all the cubes that are subsets of Ω and that
have their sides 2−n and faces on coordinate planes with values j + k2−n, where j and k
are integers and 0 ≤ k ≤ 2n− 1. We have rn = 2−n−1. The points xin are the centers of the
regular cells. The uniform size condition is satisfied with γ = 2/

√
3. Since the boundary

∂Ω is Lipschitz-continuous,

lim
η→0
|{x ∈ Ω : dist (x, ∂Ω) ≤ η}| = 0;

cf. e.g., [27]. Therefore, the almost covering condition (2.3) is satisfied.
Given an admissible sequence of partitions {Pn}∞n=1 of Ω as above, we define the

sequence of discrete charges {Qi
nδxin}

Nn
i=1 (n = 1, 2, . . . ) (i.e., we place the charge Qi

n at
point xin) corresponding to the given charge density ρ by

Qi
n = ρ(xin)|ωin|, i = 1, . . . , Nn; n = 1, 2, . . . (2.5)

This means that the discrete charge density for each n is

µn =
Nn∑
i=1

Qi
nδxin =

1

Nn

Nn∑
i=1

Q̂i
nδxin ,

where Q̂i
n = NnQ

i
n. By (2.2) and (2.3), we see that Q̂i

n and ρ(xin) are of the same order, i.e.,
the ratio Q̂i

n/ρ(xin) (if ρ(xin) 6= 0) is bounded above and below by two positive constants
that are independent of i and n, if n is large enough. Note in particular that the total
charge in the limit of large number of charges is

lim
n→∞

Nn∑
i=1

Qi
n =

∫
Ω

ρ(x) dx.

By Coulomb’s law [21], the corresponding discrete electrostatic energy for each n is given
by

1

8π

Nn∑
i,j=1,i 6=j

Qi
nQ

j
n∣∣xin − xjn∣∣ . (2.6)
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The main result of this section is Theorem 2.1 below. It states that the discrete
electrostatic energies converge to the continuum one given by (2.1). This is a special case
of Lemma 3.2 in terms of the discrete-to-continuum passage. But the construction of
nearly evenly distributed discrete charges here is natural and explicit, and is a stronger
result.

Theorem 2.1. Let Ω ⊂ R3 be nonempty, bounded, and open with a Lipschitz-continuous
boundary ∂Ω. Let ρ ∈ C(Ω). Let {Pn}∞n=1 be a sequence of admissible partitions of Ω with
regular cells ωin and charges Qi

n at points xin ∈ ωin (i = 1, . . . , Nn;n = 1, 2, . . . ), all as
defined above. We have

lim
n→∞

Nn∑
i,j=1,i 6=j

Qi
nQ

j
n∣∣xin − xjn∣∣ =

∫∫
Ω×Ω

ρ(x)ρ(y)

|x− y|
dxdy. (2.7)

We need the following lemma to prove the theorem: (This lemma will also be used in
proving Lemma 3.2.)

Lemma 2.1. If x0, y0 ∈ R3 and R, S > 0 satisfy B(x0, R) ∩ B(y0, S) = ∅, then

1

|x0 − y0|
=

1

|B(x0, R)| |B(y0, S)|

∫
B(x0,R)

∫
B(y0,S)

1

|x− y|
dydx

Proof. Note that 1/|z| is a harmonic function for z ∈ R3\{0}. Note also that x 6∈ B(y0, S)
if x ∈ B(x0, R). Thus it follows from the (volumetric) mean-value theorem for a harmonic
function that

1

|x0 − y0|
=

1

|B(x0, R)|

∫
B(x0,R)

1

|x− y0|
dx

=
1

|B(x0, R)|

∫
B(x0,R)

[
1

|B(y0, S)|

∫
B(y0,S)

1

|x− y|
dy

]
dx

=
1

|B(x0, R)| |B(y0, S)|

∫
B(x0,R)

∫
B(y0,S)

1

|x− y|
dydx,

The proof is complete.

Proof of Theorem 2.1. We denote

f(x, y) =
ρ(x)ρ(y)

|x− y|
∀x, y ∈ Ω.

Clearly, f ∈ L1(Ω× Ω). We also denote

E =

∫∫
Ω×Ω

f(x, y) dxdy and En =
Nn∑

i,j=1,i 6=j

Qi
nQ

j
n∣∣xin − xjn∣∣ .
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We need to prove limn→∞En = E, and we divide our proof into three steps.
Step 1. Treatment of irregular cells. For each n ≥ 1, let us denote by Rn and In the

class of all regular cells and irregular cells of the partition Pn, and by ∪Rn and ∪In their
unions, respectively. Since f(x, y) = f(y, x), for each n we have by (2.1) that

E =

∫∫
Ω×Ω

f(x, y) dxdy

=

(∫
∪Rn

+

∫
∪In

)[(∫
∪Rn

+

∫
∪In

)
f(x, y) dx

]
dy

=

∫
∪Rn

∫
∪Rn

f(x, y) dxdy +

∫
∪In

∫
∪In

f(x, y) dxdy + 2

∫
∪In

∫
∪Rn

f(x, y) dxdy

=

∫∫
(∪Rn)×(∪Rn)

f(x, y) dxdy +

∫∫
(∪In)×(∪In)

f(x, y) dxdy + 2

∫∫
(∪In)×(∪Rn)

f(x, y) dxdy.

It then follows from the almost covering condition (2.3) that limn→∞ | ∪ In| = 0, which
implies that limn→∞ |(∪In)× (∪In)| = 0 and limn→∞ |(∪In)× (∪Rn)| = 0. Hence,

E = lim
n→∞

∫∫
(∪Rn)×(∪Rn)

f(x, y) dxdy.

It therefore suffices to show that, for any ε > 0, there exists a natural number N such
that ∣∣∣∣∫∫

(∪Rn)×(∪Rn)

f(x, y) dxdy − En
∣∣∣∣ < ε ∀n ≥ N. (2.8)

Step 2. Treatment of pairs of regular cells in a small neighborhood of the diagonal
region D := {(x, y) ∈ Ω×Ω : x = y}. By the integrability of f(x, y) and that of 1/|x− y|
on Ω× Ω, there exists δ > 0 such that for any measurable subset A ⊆ Ω× Ω∫∫

A

|f(x, y)| dxdy < ε

3
and

∫∫
A

dxdy

|x− y|
<

εγ6

3(‖ρ‖2
∞ + 1)

if |A| < δ, (2.9)

where γ is the same as in (2.2). Denote

Dα = {(x, y) ∈ Ω× Ω : dist ((x, y), D) < α}

for any α > 0. Since Ω is bounded, |Dα| → 0 as α→ 0. Thus, there exists η > 0 such that

|D2η| < δ. (2.10)

For each n ≥ 1, let us denote

Tn,η = {ωin × ωjn : 1 ≤ i, j ≤ n, (ωin × ωjn) ∩Dη 6= ∅},
Sn,η = {ωin × ωjn : 1 ≤ i, j ≤ n, (ωin × ωjn) ∩Dη = ∅}.
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Note that Sn,η and Tn,η are disjoint. Moreover,

(∪Rn)× (∪Rn) = (∪Sn,η) ∪ (∪Tn,η). (2.11)

By (2.4), there exists Ñ such that

∪Tn,η ⊆ D2η if n ≥ Ñ . (2.12)

This, together with (2.10) and (2.9), implies that∫∫
∪Tn,η

|f(x, y)| dxdy < ε

3
and

∫∫
∪Tn,η

dxdy

|x− y|
<

εγ6

3(‖ρ‖2
∞ + 1)

if n ≥ Ñ . (2.13)

Now, let ωin × ωjn ∈ Tn,η with i 6= j. It follows from the definition of Qi
n and Qj

n (cf.
(2.5)), Lemma 2.1, and the uniform size condition (cf. (2.2)) that

|Qi
nQ

j
n|

|xin − x
j
n|
≤ ‖ρ‖

2
∞|ωin| |ωjn|
|xin − x

j
n|

=
‖ρ‖2

∞|ωin| |ωjn|
|B(xin, rn)| |B(xjn, rn)|

∫∫
B(xin,rn)×B(xjn,rn)

dxdy

|x− y|

≤ ‖ρ‖
2
∞

γ6

∫∫
ωin×ω

j
n

dxdy

|x− y|
if n ≥ Ñ .

This and (2.13) then imply that∣∣∣∣∣∣
∑

ωin×ω
j
n∈Tn,η ,i 6=j

Qi
nQ

j
n

|xin − x
j
n|

∣∣∣∣∣∣ ≤ ‖ρ‖
2
∞

γ6

∫
∪Tn,η

dxdy

|x− y|
<
ε

3
if n ≥ Ñ . (2.14)

Step 3. Treatment of pairs of regular cells away from the diagonal region D. The
uniform continuity of f on Ω× Ω \Dη implies the existence of σ > 0 such that

|f(x, y)− f(x′, y′)| < ε

3|Ω× Ω|
if |(x, y)− (x′, y′)| < σ. (2.15)

By (2.4), there exists a natural number N̂ such that ‖Pn‖reg < σ if n ≥ N̂ . Note that if
ωin × ωjn ∈ Sn,η, then we must have i 6= j. Therefore, it follows from (2.5) and (2.15) that∣∣∣∣∣∣

∫∫
∪Sn,η

f(x, y) dxdy −
∑

ωin×ω
j
n∈Sn,η

Qi
nQ

j
n

|xin − x
j
n|

∣∣∣∣∣∣
≤

∑
ωin×ω

j
n∈Sn,η

∫∫
ωin×ω

j
n

∣∣f(x, y)− f(xin, x
j
n)
∣∣ dxdy
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<
ε

3
if n ≥ N̂ . (2.16)

Finally, let N = max{Ñ , N̂}. We have by (2.11), (2.13), (2.14), and (2.16) that∣∣∣∣∫∫
(∪Rn)×(∪Rn)

f(x, y) dxdy − En
∣∣∣∣

≤
∫∫
∪Tn,η

|f(x, y)| dxdy +

∣∣∣∣∣∣
∑

ωin×ω
j
n∈Tn,η ,i 6=j

Qi
nQ

j
n

|xin − x
j
n|

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫∫
∪Sn,η

f(x, y) dxdy −
∑

ωin×ω
j
n∈Sn,η

Qi
nQ

j
n

|xin − x
j
n|

∣∣∣∣∣∣
< ε if n ≥ N,

leading to (2.8).

3 Convergence of Discrete Energies with a Given Signed

Radon Measure of Charge Density

In this section, we consider a given charge density represented by a compactly supported
signed Radon measure on R3. We construct a sequence of discrete charges such that they
converge to the given signed Radon measure and that the corresponding discrete energies
converge to the continuum energy defined by the given signed Radon measure.

We first recall some definition and notation. For any nonnegative Radon measures α
and β on R3, we set

E[α, β] :=

∫∫
R3×R3

d(α× β)(x, y)

|x− y|
=

∫
R3

∫
R3

dα(x)dβ(y)

|x− y|
=

∫
R3

∫
R3

dβ(y)dα(x)

|x− y|
.

The second and third equalities follow from the Fubini–Tonelli Theorem. In general
E[α, β] ∈ [0,∞]. For any signed Radon measure µ on R3, let µ = µ+ − µ− be the
unique Jordan decomposition of µ into nonnegative Radon measures µ+ and µ− on R3,
respectively. If E[µ+, µ−] <∞, then we define

E[µ] = E[µ+, µ+] + E[µ−, µ−]− 2E[µ+, µ−].

If µ is a positive Radon measure on R3, then E[µ] = E[µ, µ].
For any nonempty, bounded, open set Ω ⊆ R3, we denote

M(Ω) = {all signed Radon measures µ on R3 such that supp (µ) ⊆ Ω}. (3.1)
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If µ ∈M(Ω) then the total variation of µ is ‖µ‖ = |µ|(R3) = |µ|(Ω) <∞. We also denote

A(Ω) =

{
1

N

N∑
i=1

Qiδxi : Qi ∈ R, xi ∈ Ω, and xi 6= xj if i 6= j,N = 1, 2, . . .

}
. (3.2)

For any λ > 0, we denote

Mλ(Ω) = {µ ∈M(Ω) : ‖µ‖ ≤ λ}, (3.3)

Aλ(Ω) =

{
1

N

N∑
i=1

Qiδxi : |Qi| ≤ λ, xi ∈ Ω, and xi 6= xj if i 6= j,N = 1, 2, . . .

}
, (3.4)

We define the discrete energy

Ed[µ] =
1

N2

∑
1≤i,j≤N,i 6=j

QiQj

|xi − xj|
if µ =

1

N

N∑
i=1

Qiδxi , (3.5)

where Qi ∈ R and xi ∈ R3 with xi 6= xj if i 6= j. Since δa× δb = δ(a,b) for any a, b ∈ R3 we
have

Ed[µ] =

∫∫
{(x,y)∈R3×R3:x6=y}

d(µ× µ)(x, y)

|x− y|
. (3.6)

Note that we drop the factor 1/2 in our definition of E[α, β], E[µ], and Ed[µ].
For any signed Radon measure µ on R3 and any g ∈ C0(R3), we denote

〈µ, g〉 =

∫
R3

g dµ.

When no confusion arises, we also use 〈·, ·〉 to denote the L2(R3)-inner product. If µn, µ
(n = 1, 2, . . . ) are all signed Radon measures on R3, then the vague convergence (i.e., the

weak-∗ convergence) of µn to µ, denoted µn
∗
⇀ µ, is defined by 〈µn, g〉 → 〈µ, g〉 for any

g ∈ C0(R3).
Our main result of this section is the following:

Theorem 3.1. Let Ω ⊂ R3 be a nonempty, bounded, open subset with a C2 boundary. Let
λ > 0. Assume µ ∈Mλ(Ω) with E[|µ|] <∞. Then there exist µn ∈ Aλ(Ω) (n = 1, 2, . . . )
such that

µn
∗
⇀ µ and Ed[µn]→ E[µ] as n→∞.

Moreover, if supp (µ) ⊆ ∂Ω and ε > 0, then the measures µn can be constructed so that

supp (µn) ⊆ {x ∈ Ω : dist (x, ∂Ω) < ε} (n = 1, 2, . . . ).

To prove the theorem, we need two lemmas. The first lemma states that the charge
distribution represented by a signed Radon measure that is compactly supported in Ω
can be approximated by those with C∞-densities (with respect to the Lebesgue measure)
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that are compactly supported inside Ω. The approximation is carried out by a family
of diffeomorphisms that “flow” the support of the given measure into the interior of Ω,
providing space for smoothing. Such diffeomorphisms are vector fields (cf. Chapter 9
of [9]), and are determined here locally by the gradient of signed distance to the boundary
∂Ω.

Lemma 3.1. Let Ω, λ, and µ be the same as in Theorem 3.1. There exist νn ∈ Mλ(Ω)
(n = 1, 2 . . . ) that satisfy the following:

(1) For each n, νn is absolutely continuous with respect to the Lebesgue measure with a
C∞-density, and supp (νn) ⊂ Ω. Moreover, if supp (µ) ⊆ ∂Ω and ε > 0, then the
measures νn can be constructed so that

supp (νn) ⊆ {x ∈ Ω : dist (x, ∂Ω) < ε} (n = 1, 2, . . . );

(2) νn
∗
⇀ µ and E[νn]→ E[µ] as n→∞.

Proof. We divide our proof into four steps. In Step 1, we use the gradient of the signed
distance function (with the distance to the boundary ∂Ω) to construct a family of diffeo-
morphisms that can flow the points on the boundary ∂Ω into the interior of Ω. In Step 2,
we use the diffeomorphisms to construct the corresponding push-forward measures that
are compactly supported inside Ω and prove the desired convergence properties. In Step
3, we mollify those push-forward measures to construct signed Radon measures supported
inside Ω with C∞-densities. Finally, in Step 4, we construct the desired sequence of signed
Radon measures {νn}∞n=1 and prove the related convergence properties.

Step 1. Construction of a family of diffeomorphisms. We define the signed distance
function

d(x) =

{
dist(x, ∂Ω) if x ∈ Ω,

− dist(x, ∂Ω) if x ∈ R3 \ Ω,
(3.7)

For r > 0, set Tr := {x ∈ R3 : |d(x)| < r}. Since ∂Ω is C2, there exists δ > 0 such that

d ∈ C2(Tδ) and |∇d| = 1 in Tδ. (3.8)

Moreover, for every x ∈ Tδ there exists a unique x′ ∈ ∂Ω such that |x− x′| = dist(x, ∂Ω)
(cf. Theorem 3 in [24]). Since ∂Ω = {x ∈ R3 : d(x) = 0}, at each point on ∂Ω, ∇d is the
unit normal to ∂Ω, and is oriented toward the interior of Ω. Let ξ ∈ C∞c (R3) be such that
ξ = 1 on Tδ/2 and supp (ξ) ⊂ Tδ. Define

d̃(x) = d(x)ξ(x) ∀x ∈ R3. (3.9)

Note that d̃ ∈ C2
c (R3), supp (d̃) ⊂ Tδ, and d̃ = d on Tδ/2. The vector field ∇d̃ : R3 → R3

is Lipschitz-continuous with the Lipschitz constant

L = sup
x,y∈R3,x6=y

|∇d̃(x)−∇d̃(y)|
|x− y|

<∞. (3.10)
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The global Lipschitz continuity of ∇d̃ ensures the existence of a unique family of diffeo-
morphisims Φt : R3 → R3 defined by

d

dt
Φt(x) = ∇d̃(Φt(x)) and Φ0(x) = x. (3.11)

We have the following properties:
• The family of transformations {Φt}t∈R form a group of diffeomorphisms with Φt ◦

Φs = Φt+s for any t, s ∈ R, and in particular, Φt◦Φ−t = Φ0 = id, where id : R3 → R3

is the identity map. These follow from the definition (3.11);
• Since d̃ ∈ C2

c (R3) and Ω is bounded, there exists R > 0 such that

Ω ⊆ B(0, R) and Φt(x) = x ∀x ∈ R3 \B(0, R) and ∀t ∈ R; (3.12)

• We have

e−L|t||x− y| ≤ |Φt(x)− Φt(y)| ≤ eL|t||x− y| ∀x, y ∈ R3 and ∀t ∈ R. (3.13)

To show (3.13), let us first consider t ≥ 0. By (3.11) and (3.10), we have

|Φt(x)− Φt(y)| =
∣∣∣∣x− y +

∫ t

0

[
∇d̃(Φs(x))−∇d̃(Φs(y))

]
ds

∣∣∣∣
≤ |x− y|+

∫ t

0

∣∣∣∇d̃(Φs(x))−∇d̃(Φs(y))
∣∣∣ ds

≤ |x− y|+
∫ t

0

L |Φs(x)− Φs(y)| ds.

Gronwall’s inequality then leads to the second inequality in (3.13) for t ≥ 0. Similarly,

|Φ−t(x)− Φ−t(y)| ≤ eLt|x− y|.

Note that Φ−t(Φt(x)) = x for any t and x. So, replacing x and y above by Φt(x) and
Φt(y), respectively, we obtain

|x− y| ≤ eLt|Φt(x)− Φt(y)|,

which leads to the first inequality in (3.13) for t ≥ 0. If t < 0, then we can replace x and y
in (3.13) for t > 0 by Φ−t(x) and Φ−t(y), respectively, to obtain the inequalities in (3.13)
for t < 0. We have thus proved (3.13).

Step 2. Construction of signed Radon measures supported inside Ω with the desired
convergence properties. For the given µ ∈Mλ(Ω) in the lemma, we consider the family of
push-forward measures {µ ◦ Φ−1

t }t∈R, where (µ ◦ Φ−1
t )(A) = µ(Φ−1

t (A)) for any Borel set
A ⊆ R3. We claim:
(2.1) For any t ∈ R, µ ◦Φ−1

t is a signed Radon measure on R3 with ‖µ ◦Φ−1
t ‖ = ‖µ‖ and

supp (µ ◦ Φ−1
t ) ⊆ Φt(supp (µ)) ⊆ Φt(Ω) ⊆ B(0, R),

where R is the same as in (3.12);

13



(2.2) As t→ 0, µ ◦ Φ−1
t

∗
⇀ µ and E[µ ◦ Φ−1

t ]→ E[µ]; and
(2.3) If t > 0, then supp (µ◦Φ−1

t ) ⊂ Ω and µ◦Φ−1
t ∈Mλ(Ω). Moreover, if supp (µ) ⊆ ∂Ω

and ε > 0 then there exists tε > 0 such that

supp (µ ◦ Φ−1
t ) ⊂ {x ∈ Ω : dist (x, ∂Ω) < ε/2}, provided that 0 < t ≤ tε.

Proof of Claim (2.1). Fix t ∈ R. Since Φt : R3 → R3 is a homeomorphism, R3 = P ∪N
is a Hahn decomposition for µ (i.e., P and N are disjoint Borel subsets of R3, and they
are positive and negative sets for µ, respectively) if and only if R3 = Φt(P ) ∪ Φt(N) is a
Hahn decomposition for µ ◦ Φ−1

t . Consequently,∥∥µ ◦ Φ−1
t

∥∥ =
∣∣µ ◦ Φ−1

t

∣∣ (R3) =
(
µ ◦ Φ−1

t

)
(Φt(P ))−

(
µ ◦ Φ−1

t

)
(Φt(N))

= µ(P )− µ(N) = |µ|(R3) = ‖µ‖.

Thus, µ ◦ Φ−1
t is a signed Radon measure on R3 with ‖µ ◦ Φ−1

t ‖ = ‖µ‖ ≤ λ. Let A be
a Borel subset of R3. If A ∩ Φt(supp (µ)) = ∅, then Φ−1

t (A) ∩ supp(µ) = ∅ and hence
(µ ◦ Φ−1

t )(A) = µ(Φ−1
t (A)) = 0. Thus, supp (µ ◦ Φ−1

t ) ⊆ Φt(supp(µ)) ⊆ Φt(Ω). If x ∈
B(0, R) but Φt(x) ∈ R3\B(0, R) for some t, then by (3.12) x = Φ−t(Φt(x)) ∈ R3\B(0, R),
a contradiction. Thus, Φt(B(0, R)) ⊆ B(0, R). Hence Φt(Ω) ⊆ Φt(B(0, R)) ⊆ B(0, R).
The proof of Claim (2.1) is complete.

Proof of Claim (2.2). Let g ∈ Cc(R3). Let R > 0 be the same as in (3.12). Choose
R̃ > R so that supp (g) ⊆ B(0, R̃). If x ∈ R3 and |x| > R̃, then g(Φt(x)) = g(x) = 0 for
all t ∈ R. Thus, |g ◦ Φt| ≤ ‖g‖∞χB(0,R̃) on R3 for all t ∈ R. Since each Φt : R3 → R3 is
a homeomorphism and ‖µ‖ ≤ λ, we have by the change of variables (cf. Theorem 3.6.1
in [4]), the Dominated Convergence Theorem, and the fact that Φ0(x) = x for all x ∈ R3

that

lim
t→0

∫
R3

g d
(
µ ◦ Φ−1

t

)
= lim

t→0

∫
R3

g ◦ Φt dµ =

∫
R3

lim
t→0

g ◦ Φt dµ =

∫
R3

g dµ.

Thus, µ ◦ Φ−1
t

∗
⇀ µ as t→ 0.

Now let µ = µ+ − µ− be the Jordan decomposition of µ corresponding to the Hahn
decomposition R3 = P ∪ N , where P and N are disjoint Borel subsets of R3, positive
and negative for µ, respectively. We have µ+(A) = µ(A ∩ P ) and µ−(A) = −µ(A ∩ N)
for any Borel subset A ⊆ R3. Thus, for each t ∈ R, R3 = Φt(P ) ∪ Φt(N) is a Hahn
decomposition for µ◦Φ−1

t , and µ◦Φ−1
t = µ+ ◦Φ−1

t −µ− ◦Φ−1
t is the Jordan decomposition

for µ, i.e., (µ ◦ Φ−1
t )+ = µ+ ◦ Φ−1

t and (µ ◦ Φ−1
t )− = µ− ◦ Φ−1

t . If h ∈ C(R3 × R3) is
nonnegative and bounded, then by the fact that ‖(µ ◦ Φt)

+‖ ≤ ‖µ ◦ Φt‖ = ‖µ‖ ≤ λ and
‖(µ ◦ Φt)

−‖ ≤ ‖µ ◦ Φt‖ = ‖µ‖ ≤ λ, the change of variables, and Fubini’s Theorem, we
have ∫∫

R3×R3

h(x, y) d((µ ◦ Φ−1
t )+ × (µ ◦ Φ−1

t )−)(x, y)

=

∫
R3

[∫
R3

h(x, y) d(µ+ ◦ Φ−1
t )(x)

]
d(µ− ◦ Φ−1

t )(y)
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=

∫
R3

[∫
R3

h(Φt(x), y) dµ+(x)

]
d(µ− ◦ Φ−1

t )(y)

=

∫
R3

[∫
R3

h(Φt(x),Φt(y)) dµ+(x)

]
dµ−(y)

=

∫∫
R3×R3

h(Φt(x),Φt(y)) d(µ+ × µ−)(x, y).

Define hn(x, y) = min(1/|x − y|, n) (n = 1, 2, . . . ). Then each hn ∈ C(R3 × R3) is
nonnegative and bounded, and hn ≤ hn+1 (n = 1, 2, . . . ). Replacing h above with hn and
applying the Monotone Convergence Theorem, we obtain that

E[(µ ◦ Φ−1
t )+, (µ ◦ Φ−1

t )−]

=

∫∫
R3×R3

d((µ ◦ Φ−1
t )+ × (µ ◦ Φ−1

t )−)(x, y)

|x− y|

= lim
n→∞

∫∫
R3×R3

hn(x, y) d((µ ◦ Φ−1
t )+ × (µ ◦ Φ−1

t )−)(x, y)

= lim
n→∞

∫∫
R3×R3

hn(Φt(x),Φt(y)) d(µ+ × µ−)(x, y)

=

∫∫
R3×R3

d(µ+ × µ−)(x, y)

|Φt(x)− Φt(y)|
. (3.14)

It follows from (3.13) that

e−L|t|

|x− y|
≤ 1

|Φt(x)− Φt(y)|
≤ eL|t|

|x− y|
∀t ∈ R. (3.15)

We can replace |t| in the exponent by some T > 0 so that the inequalities hold true for
all t ∈ [−T, T ]. Since E[|µ|] <∞, the function 1/|x− y|, and hence 1/|Φt(x)− Φt(y)| for
each t, is integrable against the product measure µ+ × µ−. Therefore, by (3.14) and the
Dominated Convergence Theorem,

lim
t→0

E[(µ ◦ Φ−1
t )+, (µ ◦ Φ−1

t )−] =

∫∫
R3×R3

d(µ+ × µ−)(x, y)

|x− y|
= E[µ+, µ−].

Similarly,

E[(µ ◦ Φ−1
t )+]→ E[µ+] and E[(µ− ◦ Φ−1

t )−]→ E[µ−] as t→ 0.

The proof of Claim (2.2) is complete.
Proof of Claim (2.3). We first show that there exists t0 > 0 such that

d(x) < d(Φt(x)) <
δ

2
if 0 ≤ d(x) ≤ δ

4
and 0 < t ≤ t0, (3.16)
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where δ > 0 is the same as in (3.8). Let x ∈ R3 and assume 0 ≤ d(x) ≤ δ/4. (This implies
that x ∈ Ω.) Recall from (3.9) that d̃ ∈ C2(R3), supp (d̃) ⊂ Tδ, and d̃ = d on Tδ/2. Taylor
expanding Φt(x) at t = 0, we have by (3.8) and (3.11) that

Φt(x) = Φ0(x) + t
d

dt
Φt(x)

∣∣∣∣
t=0

+
t2

2

d2

dt2
(Φt(x))

∣∣∣∣
t=τ

= x+ t∇d(x) +
t2

2
∇2d̃(Φτ (x))∇d̃(Φτ (x)) ∀t > 0, (3.17)

where τ = τ(x, t) ∈ [0, t] and∇2d̃ denotes the Hessian matrix of d̃. Thus, since |∇d(x)| = 1,

|Φt(x)− x| ≤ t+
t2

2
‖∇2d̃‖∞‖∇d̃‖∞.

Consequently, since 0 ≤ d(x) ≤ δ/4, the distance function is Lipschitz-continuous with
the Lipschitz constant 1 (cf. the proof of Lemma 3.2.34 in [14] and Section 1.1 of [42]),
which implies that

d(Φt(x)) ≤ d(x) + |Φt(x)− x| ≤ δ

4
+ |Φt(x)− x|,

and Φt(x) is continuous in t, there exists t1 > 0 such that d(Φt(x)) < δ/2 if 0 < t ≤ t1.
Now, denoting

w(x, t) = (1/2)∇2d̃(Φτ (x))∇d̃(Φτ (x)),

Taylor expanding d(Φt(x)) with Φt(x) given in (3.17), and noting that d = d̃ on Tδ/2, we
obtain

d(Φt(x)) = d̃(Φt(x))

= d̃
(
x+ t∇d(x) + t2w(x, t)

)
= d̃(x) +∇d̃(x) ·

[
t∇d(x) + t2w(x, t)

]
+

1

2
∇2d̃(x̂t)

[
t∇d(x) + t2w(x, t)

]
·
[
t∇d(x) + t2w(x, t)

]
= d(x) + t+ u(x, t),

where x̂t ∈ R3 lies on the line segment connecting x and Φt(x) and

|u(x, t)| ≤ C
(
t2 + t3 + t4

)
with C = C(‖∇2d̃‖∞, ‖∇d̃‖∞) > 0 a constant independent on x and t. Therefore, there
exists t0 ∈ (0, t1] such that (3.16) is true.

We now claim:
(2.3.1) d(Φt(x)) > d(x) for any x ∈ Ω with 0 ≤ d(x) ≤ δ/8 and any t > 0; and
(2.3.2) d(Φt(x)) ≥ δ/8 for any x ∈ Ω with d(x) > δ/8 and for any t > 0.

16



If these are proved, then Φt(Ω) ⊂ Ω for any t > 0. By Claim (2.1), we have for any t > 0
that supp (µ◦Φ−1

t ) ⊆ Φt(supp (µ)) ⊆ Φt(Ω). This, together with Claim (2.1) again, implies
that µ◦Φ−1

t ∈Mλ(Ω). Moreover, assume supp (µ) ⊆ ∂Ω and ε > 0. Then, replacing δ > 0
in (3.16) by ε and setting tε = t0 there, we have by Claim (2.1) and (3.16) that

supp (µ ◦ Φ−1
t ) ⊆ Φt(supp (µ)) ⊆ Φt(∂Ω) ⊂ {x ∈ Ω : dist (x, ∂Ω) < ε/2},

provided that 0 < t < tε. Claim (2.3) will then be true.
To prove Claim (2.3.1), we assume on the contrary that there existed some x with

0 ≤ d(x) ≤ δ/8 and some t′ > 0 such that d(Φt′(x)) ≤ d(x). By (3.16), t′ > t0 and
d(x) < d(Φt0(x)) < δ/2. Let dc = min(d(Φt0(x)), δ/4). Since d(Φt(x)) is continuous in
t, d(Φt0(x)) ≥ dc, and d(Φt′(x)) ≤ d(x) < dc, the set {t ∈ [t0, t

′] : d(Φt(x)) = dc}
is nonempty and compact, and hence has a maximum value tm ∈ [t0, t

′). It satisfies
d(Φtm(x)) = dc ≤ δ/4 and

d(Φt(x)) < dc if tm < t ≤ t′. (3.18)

Now, let t′′ ∈ (0, t0] be such that tm + t′′ ≤ t′. Then, we have by (3.16) with Φtm(x)
replacing x that d(Φtm+t′′(x)) = d(Φt′′(Φtm(x))) > d(Φtm(x)) = dc. This contradicts (3.18).
Thus, Claim (2.3.1) is true. Claim (2.3.2) can be proved similarly: If d(x) > δ/8 but
d(Φt(x)) < δ/8 for some t > 0, then there would exist t′m ∈ (0, t) such that d(Φs(x)) ≥ δ/8
for all s ∈ [0, t′m] but d(Φs(x)) < δ/8 if s ∈ (t′m, t). Again by (3.16) with Φt′m(x) replacing
x, it would lead to a contradiction. The proof of Claim (2.3) is complete.

Step 3. Construction of signed Radon measures supported inside Ω with C∞-densities
and the desired convergence properties. Let ϕ ∈ C∞c (R3) be nonnegative and radially
symmetric with supp (ϕ) ⊂ B(0, 1) and∫

R3

ϕdx =

∫
B(0,1)

ϕdx = 1. (3.19)

Define
ϕα(x) = α−3ϕ

(x
α

)
∀α > 0 ∀x ∈ R3.

For any t ∈ R and any α > 0, we consider the function ϕα ∗ (µ ◦ Φ−1
t ) : R3 → R. Since

µ ◦ Φ−1
t is a signed Radon measure with ‖µ ◦ Φ−1

t ‖ = ‖µ‖ ≤ λ (cf. Claim (2.1) in Step
2), by the definition of partial derivatives and the Dominated Convergence Theorem, we
have ϕα ∗ (µ ◦ Φ−1

t ) ∈ C∞(R3). Moreover, since

supp (ϕα ∗ (µ ◦ Φ−1
t )) ⊆ supp (ϕα) + supp (µ ◦ Φ−1

t ) ⊆ B(0, α) + B(0, R), (3.20)

where R is the same as in (3.12), the function ϕα ∗ (µ ◦ Φ−1
t ) is compactly supported.

Hence, ϕα ∗ (µ ◦ Φ−1
t ) ∈ C∞c (R3).

For any α > 0 and any t ∈ R, we define the signed measure να,t on the Borel subsets
of R3 by dνα,t = ϕα ∗ (µ ◦ Φ−1

t ) dx, i.e.,

να,t(A) =

∫
A

ϕα ∗ (µ ◦ Φ−1
t ) dx for any Borel set A ⊆ R3.

We claim:
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(3.1) For any t ∈ R and any α > 0, να,t is a signed Radon measure with a compact support
and a C∞c -density (with respect to the Lebesgue measure), and ‖να,t‖ ≤ ‖µ‖ ≤ λ;

(3.2) For each t ∈ R,

να,t
∗
⇀ µ ◦ Φ−1

t and E[να,t]→ E[µ ◦ Φ−1
t ] as α→ 0+;

(3.3) For any t > 0, there exists αt > 0 such that να,t ∈ Mλ(Ω) with supp (να,t) ⊂ Ω for
all α ∈ (0, αt]. If supp (µ) ⊆ ∂Ω and ε > 0, then there exists αε > 0 such that

supp (να,t) ⊂ {x ∈ Ω : dist (x, ∂Ω) < ε} ∀α ∈ (0, αε] ∀t ∈ (0, tε]. (3.21)

where tε > 0 is the same as that in Claim (2.3) in Step 2.
Proof of Claim (3.1). Since the density ϕα ∗ (µ ◦Φ−1

t ) ∈ C∞c (R3), the measure να,t has
a compact support and also a C∞c -density. Noting that d|να,t| = |ϕα ∗ (µ ◦ Φ−1

t )| dx, we
have by Fubini’s Theorem that

‖να,t‖ =

∫
R3

|ϕα ∗ (µ ◦ Φ−1
t )| dx

=

∫
R3

∣∣∣∣∫
R3

ϕα(x− y) d(µ ◦ Φ−1
t )(y)

∣∣∣∣ dx
≤
∫
R3

∫
R3

ϕα(x− y) d|µ ◦ Φ−1
t |(y) dx

=

∫
R3

[∫
R3

ϕα(x− y) dx

]
d|µ ◦ Φ−1

t |(y)

=

∫
R3

d|µ ◦ Φ−1
t |(y)

= ‖µ ◦ Φ−1
t ‖.

Thus, ‖να,t‖ ≤ ‖µ‖ ≤ λ (cf. Claim (2.1) in Step 2). The proof of Claim (3.1) is complete.
Proof of Claim (3.2). Fix t ∈ R and g ∈ C0(R3). Note that ϕα ∗ g → g uniformly on

R3 as α→ 0+. We have by Fubini’s Theorem that∫
R3

g(x) dνα,t(x) =

∫
R3

g(x)

[∫
R3

ϕα(y − x) d(µ ◦ Φ−1
t )(y)

]
dx

=

∫
R3

(ϕα ∗ g)(y) d(µ ◦ Φ−1
t )(y)

→
∫
R3

g(y) d(µ ◦ Φ−1
t )(y) as α→ 0+.

Hence, να,t
∗
⇀ µ ◦ Φ−1

t as α→ 0+.
Since E[|µ|] <∞, it follows from (3.14) and (3.15) that E[(µ◦Φ−1

t )+, (µ◦Φ−1
t )−] <∞.

Similarly, E[(µ ◦ Φ−1
t )+, (µ ◦ Φ−1

t )+] < ∞ and E[(µ ◦ Φ−1
t )−, (µ ◦ Φ−1

t )−] < ∞. Hence,
E[|µ ◦ Φ−1

t |] <∞. Consequently, by the definition of να,t for α > 0 and Lemma A1 in [6]
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(cf. also Step 2.3 in the proof of Theorem 4.1), E[να,t]→ E[µ◦Φ−1
t ] as α→ 0+. The proof

of Claim (3.2) is complete.
Proof of Claim (3.3). Let t > 0 and Kt = supp (µ ◦ Φ−1

t ). By the Claim (2.3) in Step
2, Kt is a compact subset of Ω. Let αt = dist(Kt, ∂Ω)/4 > 0. Then, for any α ∈ (0, αt],
we have by the first inclusion in (3.20) that

supp (ϕα ∗ (µ ◦ Φ−1
t )) ⊆ B(0, α) +Kt =

⋃
x∈Kt

B(x, α) ⊂ Ω.

This, together with the definition of να,t and Claim (3.1), implies that να,t ∈Mλ(Ω) with
supp (νλ,t) ⊂ Ω for all α ∈ (0, αt]. Assume supp (µ) ⊆ ∂Ω and ε > 0. Let tε > 0 be the
same as in Claim (2.3) of Step 2. Then Kt ⊂ {x ∈ Ω : dist(x, ∂Ω) < ε/2} if t ∈ (0, tε]. By
choosing αε ∈ (0, ε/2), we obtain (3.21) by the same argument and the definition of να,t.
The proof of Claim (3.3) is complete.

Step 4. Construction of the desired sequence {νn}∞n=1 of signed Radon measures and
proof of the related convergence properties. Since C(Ω) is a separable Banach space, the
closed unit ball of the dual space [C(Ω)]∗ is metrizable with respect to the vague (i.e.,
weak-star) topology (cf. Lemma 3.101 in [13]). But [C(Ω)]∗ is isometrically isomorphic to
the space of signed Radon measures on Ω (cf. e.g., Theorem 7.18 in [16]). By identifying
measures on Ω with their zero extensions to R3, we find the closed unit ball of the set of
signed Radon measures on Ω to be isometrically isomorphic toM1(Ω). Therefore,M1(Ω),
and hence Mλ(Ω), is metrizable with respect to the vague topology. Let us denote this

metric by Dλ : Mλ(Ω) ×Mλ(Ω) → R. If ξ, ξn ∈ Mλ(Ω) (n = 1, 2, . . . ), then ξn
∗
⇀ ξ if

and only if Dλ(ξn, ξ)→ 0.
Let ν̂n = µ ◦ Φ−1

1/n (n = 1, 2, . . . ). By Step 2 (cf. Claims (2.2) and (2.3)), each ν̂n ∈
Mλ(Ω) and supp (ν̂n) ⊂ Ω, and

Dλ(ν̂n, µ)→ 0 and E[ν̂n]→ E[µ] as n→∞.

Now, by Step 3 (cf. Claims (3.1)–(3.3)), for each n, there exists α(n) > 0 such that
νn := να(n),1/n = ϕα(n) ∗ ν̂n ∈ Mλ(Ω), νn is absolutely continuous with respect to the
Lebesgue measure with a C∞c (R3)-density, supp (νn) ⊂ Ω,

Dλ(νn, ν̂n) ≤ 1/n and |E[νn]− E[ν̂n]| ≤ 1/n (n = 1, 2, . . . ).

In the case that supp (µ) ⊆ ∂Ω and ε > 0, set ν̂n = µ ◦ Φ−1
tε/n

(n = 1, 2, . . . ), where tε is

given in Claim (2.3) of Step 2. Then, similarly, for each n, ν̂n ∈Mλ(Ω) and

supp (ν̂n) ⊂ {x ∈ Ω : dist (x, ∂Ω) < ε/2}.

Moreover,
Dλ(ν̂n, µ)→ 0 and E[ν̂n]→ E[µ] as n→∞.
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Now, by Step 3 (cf. Claims (3.1)–(3.3)), for each n, there exists α(n) ∈ (0, αε), where
αε is given in (3.21), such that νn := να(n),tε/n = ϕα(n) ∗ ν̂n ∈ Mλ(Ω), νn is absolutely
continuous with respect to the Lebesgue measure with a C∞c (R3)-density, and

supp (νn) ⊂ {x ∈ Ω : dist (x, ∂Ω) < ε}.

Moreover,

Dλ(νn, ν̂n) ≤ 1/n, and |E[νn]− E[ν̂n]| ≤ 1/n (n = 1, 2, . . . ).

In both cases, we have

Dλ(νn, µ) ≤ Dλ(νn, ν̂n) +Dλ(ν̂n, µ) ≤ 1

n
+Dλ(ν̂n, µ)→ 0,

|E[νn]− E[µ]| ≤ |E[νn]− E[ν̂n]|+ |E[ν̂n]− E[µ]| ≤ 1

n
+ |E[ν̂n]− E[µ]| → 0,

as n→∞. This concludes the proof of Lemma 3.1.

The second lemma states that the result of Theorem 3.1 holds true if the given signed
Radon measure has an L∞(Ω)-density with respect to the Lebesgue measure. Note that
the smoothness of the boundary ∂Ω is relaxed here. In proving the lemma, we apply the
method in [6] (with some modifications) to construct the sequence of discrete charges. For
any ρ ∈ L∞(Ω), we denote

Ec[ρ] =

∫∫
Ω×Ω

ρ(x)ρ(y)

|x− y|
dxdy. (3.22)

Lemma 3.2. Let Ω ⊂ R3 be a nonempty, bounded, open set with a Lipschitz-continuous
boundary ∂Ω. Let ρ ∈ L∞(Ω) with λ := ‖ρ‖L1(Ω) > 0. Set ρ = 0 on R3 \ Ω. There exist

µn ∈ Aλ(Ω) (n = 1, 2, . . . ) such that

lim
n→∞
〈µn, g〉 = 〈ρ, g〉 ∀g ∈ C0(R3) and lim

n→∞
Ed[µn] = Ec[ρ].

Moreover, if ε > 0 and ρ = 0 on {x ∈ Ω : dist (x, ∂Ω) > ε}, then µn can be constructed so
that

supp(µn) ⊂ {x ∈ Ω : dist (x, ∂Ω) < 2ε} (n = 1, 2, . . . ).

Proof. For convenience, let us denote by µ the signed Radon measure on R3 with the
density ρ, i.e., dµ = ρ dx. Thus, for any Borel set A ⊆ R3,

µ(A) =

∫
A

ρ(x) dx, |µ|(A) =

∫
A

|ρ|(x) dx, and E[µ] = Ec[ρ].

Note that supp (µ) ⊆ Ω and ‖µ‖ = |µ|(R3) = |µ|(Ω) = λ. So, µ ∈Mλ(Ω).
We now proceed in three steps.
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Step 1. Construction of discrete densities. Since Ω is bounded in R3, there exists a
natural number L0 > 0 such that Ω ⊆ [−L0, L0]3.We divide the cube [−L0, L0]3 into (2L0)3

(open) cubes of side 1 and vertices (k1, k2, k3) with each kj an integer and −L0 ≤ kj ≤ L0.
Bisecting sides of those cubes to divide each of them into 8 small cubes, we obtain a new
collection of small cubes of side 2−1. Continuing this process, we obtain a sequence of
collections of open cubes. All cubes in the same nth collection have the same side 2−n;
and each of such cubes is one of those 8 cubes composed of a cube of side 2−n+1 in the
preceding collection. Since Ω is open, there exists a smallest integer n0 ≥ 0 such that at
least one of those cubes of side h0 := 2−n0 is contained in Ω. In the case that ρ = 0 on
{x ∈ Ω : dist (x, ∂Ω) > ε}, we choose n0 to be large enough so that

√
3h0 < ε/2.

For each integer n ≥ 1, we denote by Cn the sub-collection of cubes in R3 of side
h02−n that are completely contained in Ω. We denote by mn the total number of cubes
in the collection Cn, and enumerate these cubes as Cn = {ωn,1, . . . , ωn,mn} . Since ∂Ω is
Lipschitz-continuous, we have mn →∞ as n→∞ and

lim
n→∞

∣∣∣∣∣Ω \
(
mn⋃
i=1

ωn,i

)∣∣∣∣∣ = 0. (3.23)

Let {pn}∞n=1 be an increasing sequence of natural numbers such that pn → ∞ as
n → ∞. For each integer n ≥ 1, we set N̂n = mnpn. Fix n and i ∈ {1, . . . ,mn}. Since
|µ|(ωn,i)/|µ|(Ω) ∈ [0, 1], there exists a unique integer Nn,i ∈ [0, N̂n] such that

0 ≤ Nn,i

N̂n

− |µ|(ωn,i)
|µ|(Ω)

<
1

N̂n

. (3.24)

Note that Nn,i = 0 if and only |µ|(ωn,i) = 0. Assume i ∈ {1, . . . ,mn} and |µ|(ωn,i) > 0. Let

ln,i ≥ 1 be the smallest integer that is greater than or equal to [1 + N̂n|µ|(ωn,i)/|µ|(Ω)]1/3.
We divide each side of the cube ωn,i which has the length h02−n into ln,i small intervals
each of which has the length an,i := h02−n/ln,i. We have thus decomposed ωn,i into a
collection of disjoined small cubes with side an,i. The total number of such small cubes is
l3n,i, which is larger than Nn,i by (3.24). We choose Nn,i such small cubes and denote their

centers by xjn,i (j = 1, . . . , Nn,i). At each of these points, which are all inside ωn,i and have
the spacing an,i, we place a charge of the value Qn,i defined to be

Qn,i =
µ(ωn,i)|µ|(Ω)

|µ|(ωn,i)
. (3.25)

For convenience, we set Qn,i = 0 if |µ|(ωn,i) = 0 (i.e., if Nn,i = 0). Setting Nn =
∑mn

i=1 Nn,i,
we define

µn =
1

Nn

mn∑
i=1,Nn,i≥1

Nn,i∑
j=1

Qn,iδxjn,i
. (3.26)

Clearly, µn ∈ Aλ(Ω) (where λ = ‖ρ‖L1(Ω)). In the case ρ = 0 on {x ∈ Ω : dist (x, ∂Ω) >

ε}, we have
√

3h0 < ε/2. Thus, each µn is supported in {x ∈ Ω : dist (x, ∂Ω) < 2ε}.
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Summing over i ∈ {1, . . . ,mn} in (3.24), we obtain

0 ≤ Nn

N̂n

− |µ|(∪
mn
i=1ωn,i)

|µ|(Ω)
<

1

pn
.

This and (3.23) lead to

lim
n→∞

Nn

N̂n

= 1. (3.27)

Noting that (a + b)p ≤ 2p(ap + bp) for any a, b > 0 and p ∈ [1,∞), we have from our
definition of ln,i and the fact that |µ|(ωn,i ≤ ‖ρ‖L∞(Ω)|ωn,i| that

l3n,i ≤

(1 + N̂n|µ|(ωn,i)
|µ|(Ω)

)1/3

+ 1

3

≤ 8

[
1 + N̂n|µ|(ωn,i)
|µ|(Ω)

+ 1

]

≤ 8

[
1 + ‖ρ‖L∞(Ω)N̂n|ωn,i|

|µ|(Ω)
+ 1

]
.

This, together with (3.23) and (3.27), leads to

lim sup
n→∞

max
1≤i≤mn

l3n,i ≤ 8

(
1 + ‖ρ‖L∞(Ω) +

1

|µ|(Ω)

)
. (3.28)

Step 2. Prove the convergence 〈µn, g〉 → 〈ρ, g〉 = 〈µ, g〉 for any g ∈ C0(R3), i.e.,

µn
∗
⇀ µ. Fix g ∈ C0(R3). For each n and i ∈ {1, . . . ,mn}, we denote by cn,i the center of

the cube ωn,i. We have by the definition of µn, Qn,i, and xjn,i (j = 1, . . . , Nn,i) above that

〈µn, g〉 − 〈ρ, g〉 =
mn∑

i=1,Nn,i≥1

Qn,i

Nn

Nn,i∑
j=1

[
g
(
xjn,i
)
− g(cn,i)

]
+

mn∑
i=1,Nn,i≥1

[
Nn,iQn,i

Nn

g(cn,i)− g(cn,i)

∫
ωn,i

ρ(x) dx

]

+
mn∑

i=1,Nn,i≥1

∫
ωn,i

[g(cn,i)− g(x)] ρ(x) dx

−
∫

Ω\(∪mni=1ωn,i)

g(x)ρ(x) dx

= In + Jn +Kn − εn, (3.29)

where we used the fact that Nn,i = 0 if and only if |µ|(ωn,i) = 0.
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Denoting for any σ > 0

ωg(σ) = sup{|g(x)− g(y)| : x, y ∈ Ω and |x− y| ≤ σ},

the modulus of continuity for g on Ω, we have ωg(σ) → 0 as σ → 0+ since g ∈ C(Ω).
Noting that Nn =

∑mn
i=1 Nn,i, diam(ωn,i) =

√
3h02−n, and |Qn,i| ≤ ‖ρ‖L1(Ω) by (3.25), we

have

|In| =

∣∣∣∣∣∣
mn∑

i=1,Nn,i≥1

Qn,i

Nn

Nn,i∑
j=1

[
g
(
xjn,i
)
− g(cn,i)

]∣∣∣∣∣∣ ≤ ωg

(√
3h0

2n

)
‖ρ‖L1(Ω) → 0 (3.30)

as n→∞. Similarly,

|Kn| =

∣∣∣∣∣∣
mn∑

i=1,Nn,i≥1

∫
ωn,i

[g(cn,i)− g(x)] ρ(x) dx

∣∣∣∣∣∣ ≤ ωg

(√
3h0

2n

)
‖ρ‖L1(Ω) → 0 (3.31)

as n→∞. It follows from (3.23) and the fact that gρ ∈ L1(Ω) that

|εn| =

∣∣∣∣∣
∫

Ω\(∪mni=1ωn,i)

g(x)ρ(x) dx

∣∣∣∣∣→ 0 as n→∞. (3.32)

By the definition of Qn,i (cf. (3.25)), we have

|Jn| =

∣∣∣∣∣∣
mn∑

i=1,Nn,i≥1

[
Nn,iQn,i

Nn

g(cn,i)− g(cn,i)

∫
ωn,i

ρ(x) dx

]∣∣∣∣∣∣
≤ ‖g‖∞

mn∑
i=1,Nn,i≥1

∣∣∣∣Nn,iµ(ωn,i)|µ|(Ω)

Nn|µ|(ωn,i)
− µ(ωn,i)

∣∣∣∣
≤ ‖g‖∞|µ|(Ω)

mn∑
i=1,Nn,i≥1

|µ(ωn,i)|
|µ|(ωn,i)

∣∣∣∣Nn,i

Nn

− |µ|(ωn,i)
|µ|(Ω)

∣∣∣∣
≤ ‖g‖∞|µ|(Ω)

mn∑
i=1

∣∣∣∣Nn,i

Nn

− |µ|(ωn,i)
|µ|(Ω)

∣∣∣∣
≤ ‖g‖∞|µ|(Ω)

[
mn∑
i=1

∣∣∣∣∣Nn,i

Nn

− N̂n|µ|(ωn,i)
Nn|µ|(Ω)

∣∣∣∣∣+
mn∑
i=1

∣∣∣∣∣N̂n

Nn

− 1

∣∣∣∣∣ |µ|(ωn,i)|µ|(Ω)

]
(3.24)
= ‖g‖∞|µ|(Ω)

[
1

Nn

mn∑
i=1

(
Nn,i −

N̂n|µ|(ωn,i)
|µ|(Ω)

)
+

∣∣∣∣∣N̂n

Nn

− 1

∣∣∣∣∣ |µ|(∪mni=1ωn,i)

|µ|(Ω)

]

= ‖g‖∞|µ|(Ω)

(
1− N̂n

Nn

|µ|(∪mni=1ωn,i)

|µ|(Ω)
+

∣∣∣∣∣N̂n

Nn

− 1

∣∣∣∣∣ |µ|(∪mni=1ωn,i)

|µ|(Ω)

)
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→ 0 as n→∞, (3.33)

where the last step follows from (3.23) and (3.27).
Combining all (3.29)–(3.33), we obtain the desired convergence.
Step 3. Prove the convergence Ed[µn] → E[µ]. Denote the Coulomb potential v(x) =

1/|x|. For α > 0, define the α-cutoff Coulomb potential

vα(x) =

{
1/|x| if |x| ≥ α,

1/α if |x| < α.

Denoting
D = {(x, y) ∈ Ω× Ω : x = y}

and noting that all µn and µ are supported in Ω, we then have by (3.5) and (3.6) that for
any α > 0

Ed[µn]− E[µ] =

∫∫
(Ω×Ω)\D

v(x− y) d(µn × µn)(x, y)−
∫∫

Ω×Ω

v(x− y) d(µ× µ)(x, y)

=

∫∫
(Ω×Ω)\D

[v(x− y)− vα(x− y)] d(µn × µn)(x, y)

+

∫∫
Ω×Ω

vα(x− y) d(µn × µn)(x, y)−
∫∫

Ω×Ω

vα(x− y) d(µ× µ)(x, y)

−
∫∫

D

vα(x− y) d(µn × µn)(x, y)

−
∫∫

Ω×Ω

[v(x− y)− vα(x− y)] d(µ× µ)(x, y)

= An(α) + Bn(α)− Cn(α)−D(α).

We estimate the terms D(α), Cn(α), Bn(α), and finally An(α). Let ε > 0. Denote

Sα = {(x, y) ∈ Ω× Ω : |x− y| < α}.

Then the R3×R3-Lebesgue measure of Sα tends to 0 as α→ 0. Since dµ = ρ dx, we have

d|µ× µ|(x, y) = d|µ| × |µ|(x, y) = |ρ(x)| |ρ(y)| dxdy.

Note that ρ = 0 outside Ω. We thus have

|D(α)| =
∣∣∣∣∫∫

Ω×Ω

[v(x− y)− vα(x− y)] d(µ× µ)(x, y)

∣∣∣∣
≤
∫∫

Ω×Ω

|v(x− y)− vα(x− y)| |ρ(x)| |ρ(y)| dxdy

=

∫∫
Sα

[v(x− y)− vα(x− y)] |ρ(x)| |ρ(y)| dxdy
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≤
∫∫

Sα

|ρ(x)| |ρ(y)|
|x− y|

dxdy

→ 0 as α→ 0.

Thus, there exists αD > 0 such that |D(α)| < ε if 0 < α ≤ αD.
For any fixed α > 0, we have by (3.25) and the fact that Nn =

∑mn
i=1 Nn,i that

|Cn(α)| =
∣∣∣∣∫∫

D

vα(x− y) d(µn × µn)(x, y)

∣∣∣∣
=

1

αN2
n

mn∑
i=1

Nn,i∑
j=1

(Qn,j)
2

≤
‖ρ‖2

L1(Ω)

αNn

→ 0 as n→∞.

From Step 2, we have µn
∗
⇀ µ. Thus, µn × µn

∗
⇀ µ × µ. Since vα is continuous, we

can modify its values outside a large ball containing Ω so that the modified function is in
C0(R3). Thus, we have for any fixed α > 0 that

Bn(α) =

∫∫
Ω×Ω

vα(x− y) d(µn × µn)(x, y)−
∫∫

Ω×Ω

vα(x− y) d(µ× µ)(x, y)

→ 0 as n→∞.

We now estimate An(α) for any α > 0. By (3.26), we have

|µn| =
1

Nn

mn∑
i=1,Nn,i≥1

Nn,i∑
j=1

|Qn,i|δxjn,i .

It then follows from Lemma 2.1 that

|An(α)| =
∣∣∣∣∫∫

(Ω×Ω)\D
[v(x− y)− vα(x− y)] d(µn × µn)(x, y)

∣∣∣∣
≤
∫∫

(Ω×Ω)\D
|v(x− y)− vα(x− y)| d(|µn| × |µn|)(x, y)

=

∫∫
{x∈Ω×Ω:0<|x−y|<α}

[v(x− y)− vα(x− y)] d(|µn| × |µn|)(x, y)

≤
∫∫
{x∈Ω×Ω:0<|x−y|<α}

v(x− y) d(|µn| × |µn|)(x, y)

=
1

N2
n

mn∑
i=1,Nn,i≥1

mn∑
j=1,Nn,j≥1

∑
1≤k≤Nn,i,1≤l≤Nn,j ,0<|xkn,i−xln,j |<α

|Qn,i| |Qn,j|
|xkn,i − xln,j|
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=
1

N2
n

mn∑
i=1,Nn,i≥1

mn∑
j=1,Nn,j≥1

∑
1≤k≤Nn,i,1≤l≤Nn,j ,0<|xkn,i−xln,j |<α

|Qn,i| |Qn,j|
|B(0, an,i/2)| |B(0, an,j/2)|

·
∫
B(xkn,i,an,i/2)

∫
B(xln,j ,an,j/2)

dxdy

|x− y|
.

Denoting an = maxmni=1 an,i and ln = maxmni=1 ln,i, and noting that 1/|B(0, an,i/2)| =
6l3n,i/(π|ωn,i|) and that ωn := ωn,i is independent of i = 1, . . . ,mn, we continue to have by
(3.25) that

|An(α)| ≤
36‖ρ‖2

L1(Ω)l
6
n

π2N2
nω

2
n

·
mn∑

i=1,Nn,i≥1

mn∑
j=1,Nn,j≥1

∑
1≤k≤Nn,i,1≤l≤Nn,j ,0<|xkn,i−xln,j |<α

∫
B(xkn,i,an,i/2)

∫
B(xln,j ,an,j/2)

dxdy

|x− y|

≤
36‖ρ‖2

L1(Ω)l
6
n

π2N2
nω

2
n

∫∫
{(x,y)∈Ω×Ω:0<|x−y|<α+an}

dxdy

|x− y|
.

For the given ε > 0, by the integrability of 1/|x− y|, there exists αA > 0 such that∫∫
{(x,y)∈Ω×Ω:0<|x−y|<2α}

dxdy

|x− y|
< ε if 0 < α < αA.

Consequently, by (3.28) and (3.23), we have

lim sup
n→∞

|An(α)| ≤ C0ε if 0 < α < αA,

where C0 is a constant given by

C0 =
36 · 86‖ρ‖2

L1(Ω)

[
1 + ‖ρ‖L∞(Ω) + 1/|µ|(Ω)

]6
π2|Ω|2

.

Finally, by choosing α ∈ (0,min(αD, αA)), we have

lim sup
n→∞

|Ed[µn]− E[µ]| ≤ lim sup
n→∞

|An(α) + Bn(α)− Cn(α)−D(α)|

≤ (1 + C0)ε.

Thus, Ed[µn]→ E[µ].

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let µ ∈ Mλ(Ω) with E[|µ|] < ∞. By Lemma 3.1, there exist
νk ∈ Mλ(Ω) (k = 1, 2, . . . ) such that each νk has a C∞c (Ω)-density and supp (νk) ⊆ Ω,
and

νk
∗
⇀ µ and Ed[νk]→ E[µ] as k →∞.
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By Lemma 3.2, for each k, there exist νk,n ∈ Aλ(Ω) (n = 1, 2, . . . ) such that

νk,n
∗
⇀ νk and Ed[νk,n]→ E[νk] as n→∞.

Note that the weak-∗ topology ofMλ(Ω) is metrizable; cf. Step 4 in the proof of Lemma 3.1.
Denote this metric by Dλ. By induction, we can choose a sequence of increasing integers
nk ≥ 1 such that

Dλ(νk,nk , νk) < 1/k and |Ed[νk,nk ]− E[νk]| < 1/k for all k = 1, 2, . . .

Therefore, setting µk = νk,nk ∈ Aλ(Ω) (k = 1, 2, . . . ), we have

Dλ(µk, µ) ≤ Dλ(νk,nk , νk) +Dλ(νk, µ)→ 0,

|Ed[µk]− E[µ]| ≤ |Ed[µk,nk ]− E[νk]|+ |E[νk]− E[µ]| → 0,

as k →∞. Hence, µk
∗
⇀ µ and Ed[µk]→ E[µ] as k →∞.

If supp(µ) ⊆ ∂Ω and ε > 0, then by Lemma 3.1, the measures νk above can be
constructed so that

supp (νk) ⊆ {x ∈ Ω : dist(x, ∂Ω) < ε/2} (k = 1, 2, . . . ).

By Lemma 3.2, the measures νk,n above can be constructed so that

supp (νk,n) ⊆ {x ∈ Ω : dist(x, ∂Ω) < ε} (k, n = 1, 2, . . . ).

Thus, since µk = νk,nk , we have

supp (µk) ⊆ {x ∈ Ω : dist(x, ∂Ω) < ε} (k = 1, 2, . . . ).

The proof is complete.

4 Continuum Limit of a Given Sequence of Discrete

Charges

We now study the continuum limit of a given sequence of sets of point charges and the
corresponding limit of electrostatic energies. Let Nn be an increasing sequence of natural
numbers such that Nn → ∞ as n → ∞. For each n ∈ {1, 2, . . .}, let x1

n, . . . , x
Nn
n be

Nn distinct points in Ω and let Q1
n, . . . , Q

Nn
n ∈ [−1, 1]. (The particular bound 1 of all

the charges Qi
n is not essential; we can replace 1 by any given positive number.) Define

µn ∈ A1(Ω) (cf. (3.4)) by

µn =
1

Nn

Nn∑
i=1

Qi
nδxin . (4.1)

Recall that the corresponding discrete energies Ed[µn] are defined in (3.5). We consider
the following geometric conditions: For each n = 1, 2, ... there exists a radius rn > 0 such
that
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• B(xin, rn) ⊂ Ω for all i = 1, . . . , Nn;
• B(xin, rn) ∩ B(xjn, rn) = ∅ for all i, j = 1, . . . , Nn with j 6= i; and
• τ := infn≥1 Nn|Brn | > 0, where Bλ denotes an open ball of radius λ > 0.

Since Ω is bounded, a consequence of these conditions is that rn → 0 as n→∞.

Theorem 4.1. Let Ω ⊂ R3 be a nonempty, bounded, open set with a Lipschitz-continuous
boundary ∂Ω. For each natural number n ≥ 1, let µn ∈ A1(Ω) be given in (4.1) with
distinct xin ∈ Ω and Qi

n ∈ [−1, 1] (i = 1, . . . , Nn;n = 1, 2, . . . ). Assume the geometrical

conditions hold true. Then, there is a subsequence of {µn}, not relabeled, such that µn
∗
⇀ µ

on R3 for some Radon measure µ, given by dµ = ρ dx for some ρ ∈ L∞(R3) with ρ = 0
a.e. on Ω

c
. Moreover, E[|µ|] <∞, and

lim
n→∞

Ed[µn] = E[µ]. (4.2)

We remark that the geometrical conditions imply that the discrete charges are nearly
evenly distributed in the entire region. A limit measure (if exists) may not have an L∞(Ω)-
density if the geometrical conditions are not satisfied. A simple example is Ω = (0, 1)3,
Nn = n, xin = (i/n, 0, 0), and Qi

n = 1. The geometrical conditions with respect to Ω are
violated. The limit measure is the Dirac measure concentrated on [0, 1]×0×0 ⊂ Ω, which
does not have a density (with respect to the Lebesgue measure). We also remark that there
may exist different subsequences of {µn}∞n=1 that converge vaguely to different limits, and
the corresponding subsequences of rescaled discrete energies converge to different limits.
We shall give an example to show such nonuniqueness at the end of this section.

We need two lemmas to prove our theorem. The first lemma below is a variation of
Newton’s Theorem. The second lemma is similar to a known result (cf. e.g., the proof of
Proposition 2.1 in [6]). For R ∈ (0,∞], we say that a function φ : B(0, R)→ R is radially
symmetric if there exists a function φ0 : [0, R]→ R such that φ(x) = φ0(|x|) for all x ∈ R3

with |x| ≤ R.

Lemma 4.1. Let R > 0. If φ ∈ C(B(0, R)) is radially symmetric, then∫
B(0,R)

φ(x)

|y − x|
dx =

1

|y|

∫
B(0,R)

φ(x) dx ∀y ∈ R3 with |y| > R.

Proof. With abuse of notation, φ(|y|) = φ(y), using the spherical coordinates, and by the
mean-value property for a harmonic function, we have∫

B(0,R)

φ(x)

|y − x|
dx =

∫ R

0

φ(r)

∫
∂B(0,r)

dSω
|y − ω|

dr

=

∫ R

0

φ(r)
4πr2

|y|
dr

=
1

|y|

∫
B(0,R)

φ(x) dx,

completing the proof.
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Lemma 4.2. If φ ∈ C(R3) ∩ L1(R3) is radially symmetric, then∫
R3

φ(x)

|x− y|
dx =

∫
R3

min

(
1

|x|
,

1

|y|

)
φ(x) dx ∀y ∈ R3.

Proof. If y = 0, then the two integrals are the same. Assume y ∈ R3 and y 6= 0. By the
Dominated Convergence Theorem and Part (1) of Lemma 4.1, we have∫

B(0,|y|)

φ(x)

|x− y|
dx = lim

ε→0+

∫
B(0,|y|−ε)

φ(x)

|x− y|
dx

= lim
ε→0+

∫
B(0,|y|−ε)

φ(x)

|y|
dx

=

∫
B(0,|y|)

φ(x)

|y|
dx.

Define

h(z) =

∫
R3\B(0,|y|)

φ(x)

|x− z|
dx ∀z ∈ R3.

Since φ is radially symmetric and the Lebesgue measure is rotationally invariant, h(z) =
h(y) for any z ∈ ∂B(0, |y|). Moreover, h is harmonic in the region |z| ≤ |y| (see, e.g.,
Theorem 1.4 in [26]). Therefore, by the mean-value property for a harmonic function, the
integral of h over the sphere ∂B(0, |y|) divided by the area of that sphere is just h(0).
Hence h(y) = h(0). Therefore,∫

R3

φ(x)

|x− y|
dx =

∫
B(0,|y|)

φ(x)

|x− y|
dx+

∫
R3\B(0,R)

φ(x)

|x− y|
dx

=

∫
B(0,|y|)

φ(x)

|y|
dx+

∫
R3\B(0,|y|)

φ(x)

|x|
dx

=

∫
R3

min

(
1

|x|
,

1

|y|

)
φ(x) dx.

The proof is complete.

Proof of Theorem 4.1. We divide the proof into two steps.
Step 1. We prove the existence of a subsequence of {µn}∞n=1 that converges vaguely

to some Radon measure µ with an L∞(R3) density vanishing a.e. on Ω
c

and E[|µ|] <∞.
It suffices to consider the case that all Qi

n ≥ 0, since in general we have the Jordan
decomposition µn = µ+

n − µ−n with

µ+
n =

1

Nn

Nn∑
i=1

max(Qi
n, 0)δxin and µ−n =

1

Nn

Nn∑
i=1

max(−Qi
n, 0)δxin ,

29



and we can first extract a vaguely convergent subsequence from {µ+
n }∞n=1 and then a further

vaguely convergent subsequence from {µ−n }∞n=1, with the limiting Radon measures having
L∞(R3) densities vanishing a.e. on Ω

c
.

Since 0 ≤ Qi
n ≤ 1 for all i and n, we have ‖µn‖ ≤ 1 for all n ≥ 1. Thus, it follows from

the Banach–Alaoglu Theorem that there exists a subsequence of {µn}∞n=1, not relabeled,

such that µn
∗
⇀ µ for some nonnegative Radon measure µ on R3.

For any open ball Bλ of radius λ > 0, we have

µn(Bλ) ≤
1

Nn

Card ({i : xin ∈ Bλ}), (4.3)

where Card (A) denotes the cardinality of a set A, For each natural number n, we denote by
Bλ+rn the ball of radius λ+rn that is concentric with the ball Bλ. Since B(xin, rn) ⊂ Bλ+rn

if xin ∈ Bλ and B(xin, rn) ∩ B(xjn, rn) = ∅ if i 6= j, we have from volume considerations
that

Card({i : xin ∈ Bλ}) ≤ Card({i : B(xin, rn) ⊂ Bλ+rn}) ≤
|Bλ+rn |
|Brn |

.

This, together with (4.3) and the definition of τ in the geometrical conditions, implies
that

µn(Bλ) ≤
|Bλ+rn |
Nn|Brn |

≤ 1

τ
|Bλ+rn | →

1

τ
|Bλ| as n→∞,

since rn → 0. Consequently, for any open ball B ⊂ R3, we have

lim inf
n→∞

µn(B) ≤ 1

τ
|B|. (4.4)

Suppose A ⊂ R3 is bounded with |A| = 0 and ε > 0. It follows from Vitali’s covering
lemma that there exist countably many open balls Bi covering A with

∑
i |Bi| < ε. Since

µn
∗
⇀ µ, we have

µ(U) ≤ lim inf
n→∞

µn(U) (4.5)

for any open set U ⊆ R3; cf. Theorem 1.24 in [29]. This and (4.4) imply that

µ(A) ≤ µ

(⋃
i

Bi

)
≤
∑
i

µ(Bi) ≤
1

γ

∑
i

|Bi| <
1

γ
ε.

Hence, it follows from the Radon–Nikodym Theorem that dµ = ρ dx for some ρ ∈ L1(R3).
Since all µn ≥ 0, we have µ ≥ 0, and hence ρ ≥ 0 a.e. in R3. The Lebesgue Differentiation
Theorem now gives that

ρ(x) = lim
r→0+

1

|B(x, r)|

∫
B(x,r)

ρ(y) dy a.e. x ∈ R3.

But it follows from (4.4) and (4.5) that

1

|B(x, r)|

∫
B(x,r)

ρ(y) dy =
1

|B(x, r)|
µ(B(x, r))
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≤ 1

|B(x, r)|
lim inf
n→∞

|µn|(B(x, r))

≤ 1

τ
.

Hence, 0 ≤ ρ(x) ≤ 1/τ for a.e. x ∈ R3; hence ρ ∈ L∞(R3). Since (4.5) holds for any
U ⊂ Ω

c
and µn(Ω

c
) = 0, we have supp (µ) ⊆ Ω. This implies that ρ = 0 a.e. on Ω

c
. Note

that d|µ| = |ρ| dx = ρ dx. Thus E[|µ|] <∞.
Step 2. We prove the convergence (4.2), assuming all Qi

n ∈ [−1, 1] and dµ = ρ dx with
ρ ∈ L∞(R3) vanishing at a.e. x ∈ Ω

c
.

Let ϕ ∈ C∞c (R3) be nonnegative and radially symmetric, satisfying supp (ϕ) ⊂ B(0, 1)
and (3.19). Define ϕλ(x) = λ−3ϕ(x/λ) for any λ > 0 and x ∈ R3. Recall for any Radon
measure ν on R3 and any ξ ∈ Cc(R3) that the convolusion ν ∗ ξ ∈ C∞c (R3) is defined by
(ν ∗ ξ)(x) = 〈ν, ξ(x− ·)〉 (x ∈ R3). Hence,

(µn ∗ ϕλ)(x) =
1

Nn

Nn∑
i=1

Qi
nϕλ(x− xin) ∀x ∈ R3 and ∀n ≥ 1,

(µ ∗ ϕλ)(x) =

∫
R3

ϕλ(x− y) dµ(y) =

∫
R3

ϕλ(x− y)ρ(y) dy ∀x ∈ R3.

We now write

|Ed[µn]− E[µ]|
≤ |Ed[µn]− Ec[µn ∗ ϕλ]|+ |Ec[µn ∗ ϕλ]− Ec[µ ∗ ϕλ]|+ |Ec[µ ∗ ϕλ]− E[µ]|, (4.6)

where Ec is defined in (3.22). We estimate these three terms in three substeps and combine
all the estimates to obtain the desired convergence result in the fourth and last substep.

Step 2.1. We claim that there exists a constant C > 0 such that

|Ed[µn]− Ec[µn ∗ ϕλ]| ≤ C

(
λ2 + r2

n +
1

Nnλ

)
∀n ≥ 1 and ∀λ > 0, (4.7)

where rn is given in the geometrical conditions.
Proof of the claim. It follows from the Fubini–Tonelli Theorem that

Ec[µn ∗ ϕλ] =

∫∫
R3×R3

(µn ∗ ϕλ)(x)(µn ∗ ϕλ)(y)

|x− y|
dxdy

=

∫∫
R3×R3

1

|x− y|

[
1

Nn

Nn∑
i=1

Qi
nϕλ(x− xin)

][
1

Nn

Nn∑
j=1

Qj
nϕλ(y − xjn)

]
dxdy

=
1

N2
n

∑
1≤i,j≤Nn

Qi
nQ

j
n

∫∫
R3×R3

ϕλ(x− xin)ϕλ(y − xjn)

|x− y|
dxdy.
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Making the change of variables y 7→ y + xnj gives

Ec[µn ∗ ϕλ] =
1

N2
n

∑
1≤i,j≤Nn

Qi
nQ

j
n

∫
R3

∫
R3

ϕλ(x− xin)ϕλ(y)

|x− y − xjn|
dxdy,

and the further change of variables x 7→ y − x+ xin gives

Ec[µn ∗ ϕλ] =
1

N2
n

∑
1≤i,j≤Nn

Qi
nQ

j
n

∫
R3

∫
R3

ϕλ(y − x)ϕλ(y)

|xin − x
j
n − x|

dxdy

=
1

N2
n

∑
1≤i,j≤Nn

Qi
nQ

j
n

∫
R3

1

|xin − x
j
n − x|

[∫
R3

ϕλ(y − x)ϕλ(y) dy

]
dx

=
1

N2
n

∑
1≤i,j≤Nn

Qi
nQ

j
n

∫
R3

ϑλ(x)

|xin − x
j
n − x|

dx, (4.8)

where ϑλ = ϕλ ∗ ϕλ ∈ C∞c (R3). Consequently,

Ed[µn]− Ec[µn ∗ ϕλ]

=
1

N2
n

∑
1≤i,j≤Nn,i 6=j

Qi
nQ

j
n

1

|xin − x
j
n|
− 1

N2
n

∑
1≤i,j≤Nn

Qi
nQ

j
n

∫
R3

ϑλ(x)

|xin − x
j
n − x|

dx

=
1

N2
n

∑
1≤i,j≤Nn,i 6=j

Qi
nQ

j
n

∫
R3

(
1

|xin − x
j
n|
− 1

|xin − x
j
n − x|

)
ϑλ(x) dx

− 1

N2
n

Nn∑
i=1

(Qi
n)2

∫
R3

ϑλ(x)
1

|x|
dx

=: αn(λ)− βn(λ). (4.9)

We first estimate the second term βn(λ). Let us denote

c0 =

∫
R3

ϑ(x)
1

|x|
dx =

∫
R3

(ϕ ∗ ϕ)(x)
1

|x|
dx,

This is a positive number by the local integrability of 1/|x| and it depends only on ϕ. The
integral in βn(λ) is then found to equal c0/λ. Since |Qi

n| ≤ 1 for all n and i, we have

|βn(λ)| = 1

N2
n

Nn∑
i=1

(Qi
n)2

∫
R3

ϑλ(x)
1

|x|
dx =

1

N2
n

Nn∑
i=1

(Qi
n)2 c0

λ
≤ c0

Nnλ
. (4.10)

We now estimate the first term αn(λ) in (4.9). Note that ϑλ = ϕλ ∗ ϕλ ∈ C∞c (R3) is
nonnegative, radially symmetric, and supported on B(0, 2λ). Moreover,∫

R3

ϑλ(x) dx =

∫
R3

ϕλ(x) dx

∫
R3

ϕλ(x) dx = 1. (4.11)
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If |xin − xjn| > 2λ, then Lemma 4.1 implies that∫
R3

(
1

|xin − x
j
n|
− 1

|xin − x
j
n − x|

)
ϑλ(x) dx = 0.

For 0 < |xin − xjn| ≤ 2λ, we have that∣∣∣∣ 1

|xin − x
j
n|
− 1

|xin − x
j
n − x|

∣∣∣∣ ≤ |x|
|xin − x

j
n||xin − x

j
n − x|

,

and by Lemma 4.2 that∫
R3

|x|ϑλ(x)dx

|xin − x
j
n − x|

=

∫
R3

min

(
1

|x|
,

1

|xin − x
j
n|

)
|x|ϑλ(x) dx

≤
∫
R3

1

|x|
|x|ϑλ(x) dx

= 1.

Therefore, since |Qi
n| ≤ 1 for all n and i, we obtain from (4.9) that

|αn(λ)| =

∣∣∣∣∣ 1

N2
n

∑
1≤i,j≤Nn,i 6=j

Qi
nQ

j
n

∫
R3

(
1

|xin − x
j
n|
− 1

|xin − x
j
n − x|

)
ϑλ(x)dx

∣∣∣∣∣
≤ 1

N2
n

∑
1≤i,j≤N,0<|xin−x

j
n|≤2λ

1

|xin − x
j
n|

∫
R3

|x|ϑλ(x)

|xin − x
j
n − x|

dx.

=
1

N2
n

∑
1≤i,j≤N,0<|xin−x

j
n|≤2λ

1

|xin − x
j
n|
. (4.12)

Since the balls B(xin, rn) (i = 1, . . . , Nn) (introduced in the geometrical conditions) are
pairwise disjoint, the Mean-Value Theorem for a harmonic function implies that

1

|xin − x
j
n|

=
1

(4/3)πr3
n

∫
B(xjn,rn)

dy

|xin − y|
if i 6= j.

By the geometrical conditions, Nnr
3
n ≥ 3τ/(4π) (n = 1, 2, . . . ). Consequently, we obtain

from (4.12) that

|αn(λ)| ≤ 1

N2
n

Nn∑
i=1

∑
1≤j≤N,0<|xin−x

j
n|≤2λ

1

(4/3)πr3
n

∫
B(xjn,rn)

dy

|xni − y|

≤ 3

4πNnr3
n

∫
B(0,2λ+rn)

dy

|y|

≤ 8π

τ

(
2λ2 + r2

n

)
.
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This, together with (4.9) and (4.10), implies (4.7). The claim is proved.
Step 2.2. We prove for any λ > 0 that

lim
n→∞

Ec[µn ∗ ϕλ] = Ec[µ ∗ ϕλ]. (4.13)

We have for any n and x that

|µn ∗ ϕλ(x)| =

∣∣∣∣∣ 1

Nn

Nn∑
i=1

Qi
nϕλ(x− xin)

∣∣∣∣∣ ≤ 1

Nn

Nn∑
i=1

|Qi
n|‖ϕλ‖∞ ≤ ‖ϕλ‖∞ = λ−3‖ϕ‖∞.

Hence,
(µn ∗ ϕλ)(x)(µn ∗ ϕλ)(y)

|x− y|
≤ (λ−3‖ϕ‖∞)2

|x− y|
a.e. (x, y) ∈ R3 × R3.

The right-hand side of this inequality is locally integrable in R3 × R3. Since µn
∗
⇀ µ and

ϕλ(x− ·) ∈ C∞c (R3), we have

lim
n→∞

(µn ∗ ϕλ)(x) = (µ ∗ ϕλ)(x) ∀x ∈ R3. (4.14)

It then follows from the Dominated Convergence Theorem that

lim
n→∞

∫∫
R3×R3

(µn ∗ ϕλ)(x)(µn ∗ ϕλ)(y)

|x− y|
dxdy =

∫∫
R3×R3

(µ ∗ ϕλ)(x)(µ ∗ ϕλ)(y)

|x− y|
dxdy.

This is exactly (4.13).
Step 2.3. We have

lim
λ→0+

Ec[µ ∗ ϕλ] = E[µ]. (4.15)

This is a known result; cf. e.g., Lemma A1 in [6]. Here for completeness we provide some
details of the proof in our setting.

We have by (4.14) that

Ec[µ ∗ ϕλ] =

∫∫
R3×R3

(µ ∗ ϕλ)(x)(µ ∗ ϕλ)(y)

|x− y|
dxdy

=

∫∫
R3×R3

1

|x− y|

[∫
R3

ϕλ(x− x′)dµ(x′)

] [∫
R3

ϕλ(y − y′)dµ(y′)

]
dxdy

=

∫∫
R3×R3

[∫∫
R3×R3

ϕλ(x− x′)ϕλ(y − y′)
|x− y|

dxdy

]
dµ(x′)dµ(y′).

By Lemma 4.2, we have for y ∈ R3 and y 6= 0 that∫
R3

ϕλ(x) dx

|x− y|
≤ 1

|y|

∫
R3

ϕλ(x) dx =
1

|y|
.
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Since ϕλ ≥ 0, it follows that∫∫
R3×R3

ϕλ(x− x′)ϕλ(y − y′)
|x− y|

dxdy =

∫
R3

ϕλ(y − y′)
[∫

R3

ϕλ(x− x′) dx
|x− y|

]
dy

=

∫
R3

ϕλ(y − y′)
[∫

R3

ϕλ(x) dx

|x− (y − x′)|

]
dy

≤
∫
R3

ϕλ(y − y′)
|y − x′|

dy

=

∫
R3

ϕλ(y)

|y − (x′ − y′)|
dy

≤ 1

|x′ − y′|
if x′ 6= y′. (4.16)

Since dµ = ρ dx with ρ ∈ L∞(R3) and ρ = 0 a.e. on Ω
c
, 1/|x′−y′| is integrable on R3×R3

against d(µ× µ)(x′, y′). Similar to the calculation leading to (4.8), we can write∫∫
R3×R3

ϕλ(x− x′)ϕλ(y − y′)
|x− y|

dxdy =

∫
R3

ϑλ(z) dz

|x′ − y′ − z|
.

Since ϑ is radially symmetric, nonnegative, and of unit mass (cf. (4.11)),

lim
λ→0+

∫
R3

g(z)ϑλ(z) dz = g(0) ∀g ∈ C0(R3).

In particular, if x′ 6= y′ and if g(·) is equal to 1/|x′ − y′ − ·| multiplied by a smooth cutoff
function equal to 1 in a neighborhood of the origin and supported in a ball of radius less
than |x′ − y′|, we get that

lim
λ→0+

∫
R3

ϑλ(z)dz

|x′ − y′ − z|
=

1

|x′ − y′|
.

Hence,

lim
λ→0+

∫∫
R3×R3

ϕλ(x− x′)ϕλ(y − y′)
|x− y|

dxdy =
1

|x′ − y′|
a.e. (x′, y′) ∈ R3 × R3.

This and (4.16), together with the Dominated Convergence Theorem, imply (4.15).
Step 2.4. We finally prove the limit (4.2). Given ε > 0. By (4.7) and (4.15), there

exists λ > 0 such that

|Ed[µn]− Ec[µn ∗ ϕλ]| ≤
ε

2
+ C

(
r2
n +

1

Nnλ

)
∀n ≥ 1,

|Ec[µ ∗ ϕλ]− Ec[µ]| < ε

2
.
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These, together with (4.6) and (4.13), the fact that Nn →∞ and rn → 0, imply that

lim sup
n→∞

|Ed[µn]− E[µ]| ≤ ε.

leading to (4.2). The proof is complete.

We now provide an example to show the convergent subsequence stated in Theorem 4.1
is not unique. Let Ω be a bounded open set as in the theorem. We partition Ω into two
parts A and B such that A and B are nonempty open subsets of R3, Ω = A∪B, A∩B = ∅,
and |A ∩ B| = 0. Let Yn = (2−nZ3) ∩ Ω and define

Xn =

{
(Yn ∩ B) ∪ (Yn+1 ∩ A) if n is even,

(Yn ∩ A) ∪ (Yn+1 ∩B) if n is odd.

Denote by Nn the number of distinct points in Xn and set

µn =
1

Nn

∑
xi∈Xn

δxi (n = 1, 2, . . . ).

We observe that Xn ⊂ Xn+1 for each n ≥ 1 and that the geometrical conditions are
satisfied. Moreover, since Xn is uniformly distributed on each of A and B, but has 23 = 8
times as many points per unit volume in one than the other, hence 8 times the density,
we have

µ2n
∗
⇀ µeven and µ2n−1

∗
⇀ µodd,

where µeven and µodd are two Radon measures supported on Ω with distinct densities

ρeven =
8

8|A|+ |B|
χA +

1

8|A|+ |B|
χB

ρodd =
1

8|B|+ |A|
χA +

8

8|B|+ |A|
χB,

respectively, where χS denotes the characteristic function of a set S. Note that ‖µn‖ = 1
for all n, and ‖µeven‖ = ‖µodd‖ = 1. Note also that these two densities are always different.

If we set specifically

Ω = {x ∈ R3 : |x| < 2}, A = {x ∈ R3 : |x| < 1}, and B = {x ∈ R3 : 1 < |x| < 2},

then the densities are

ρeven =
2

5π2
χA +

1

20π2
χB and ρodd =

1

76π2
χA +

2

19π2
χB,

respectively. We now calculate the energies E[µeven] and E[µodd]. Note that χA and χB
are radially symmetric. By approximations by smooth and radially symmetric functions,
we have by Lemma 4.2 that∫∫

R3×R3

χA(x)χA(y) dxdy

|x− y|
=

∫
R3

[∫
R3

χA(x) dx

|x− y|

]
χA(y) dy
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=

∫
R3

[∫
R3

min

(
1

|x|
,

1

|y|

)
χA(x) dx

]
χA(y) dy

=

∫
A

[∫
A

min

(
1

|x|
,

1

|y|

)
dx

]
dy

= (4π)2

∫ 1

0

[∫ 1

0

min

(
1

s
,
1

t

)
s2 ds

]
t2 dt

= (4π)2

∫ 1

0

[∫ t

0

s2t ds+

∫ 1

t

st2 ds

]
dt

=
32

15
π2.

Similarly, ∫∫
R3×R3

χB(x)χB(y) dxdy

|x− y|
=

∫
B

[∫
B

min

(
1

|x|
,

1

|y|

)
dx

]
dy

= (4π)2

∫ 2

1

[∫ 2

1

min

(
1

s
,
1

t

)
s2 ds

]
t2 dt

=
752

15
π2,

and ∫∫
R3×R3

χA(x)χB(y) dxdy

|x− y|
=

∫
B

[∫
A

min

(
1

|x|
,

1

|y|

)
dx

]
dy

= (4π)2

∫ 2

1

[∫ 1

0

min

(
1

s
,
1

t

)
s2 ds

]
t2 dt

= (4π)2

∫ 2

1

(∫ 1

0

s2t ds

)
dt

= 8π2.

Therefore, since dµeven = ρeven dx and dµodd = ρodd dx, we obtain by a series of calculations
that

E[µeven] =

∫∫
R3×R3

ρeven(x) ρeven(y) dxdy

|x− y|

=

∫∫
R3×R3

[
2

5π2
χA(x) +

1

20π2
χB(x)

] [
2

5π2
χA(y) +

1

20π2
χB(y)

]
dxdy

|x− y|

=
59

75
.

Similarly, E[µodd] = 626/1083. Note that E[µeven] 6= E[µodd].
By Theorem 4.1, there exists a subsequence {µ′n} of {µ2n} and a subsequence {µ′′n} of

{µ2n−1} such that µ′n
∗
⇀ µeven and µ′′n

∗
⇀ µodd. Moveover, E[µ′n] → E[µeven] and E[µ′′n] →

E[µodd], respectively. Note that the sequence {µ′n} is different from {µ′′n}, µeven 6= µodd,
and E[µeven] 6= E[µodd]. Therefore, the subsequence in Theorem 4.1 is not unique,
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5 Minimization of Electrostatic Eenrgy in the Pres-

ence of an External Field

Let Ω ⊆ R3 be a bounded open set. Given a finite, signed Radon measure ν on R3 and
assume it is compactly supported in Ω

c
= R3 \ Ω. We consider minimizing the energy

E[µ + ν] among all µ ∈ M(Ω) (cf. (3.1)). Such minimization has various applications,
particularly, in an implicit-solvent model of the charged molecules occupying the region
Ω in aqueous (i.e., water or salted water) environment; cf. [7, 8, 28,33,39,41].

Formally,
E[µ+ ν] = E[µ] + 2E[µ, ν] + E[ν].

Since ν is given and fixed, we consider the first two terms here. We define U ν : Ω→ R by

U ν(x) :=

∫
R3

dν(y)

|x− y|
∀x ∈ Ω.

Since ‖ν‖ < ∞ and supp (ν) ⊂ Ω
c
, U ν(x) is well defined and is finite for each x ∈ Ω. If

we denote δ = dist (supp (ν),Ω) > 0, then

|U ν(x)| ≤
∫
R3

d|ν|(y)

|x− y|
≤
∫

supp (ν)

d|ν|(y)

δ
=
‖ν‖
δ

∀x ∈ Ω. (5.1)

Moreover, for any x, z ∈ Ω,

|U ν(x)− U ν(z)| =
∣∣∣∣∫

R3

dν(y)

|x− y|
−
∫
R3

dν(y)

|z − y|

∣∣∣∣
≤
∫

supp (ν)

|x− z|d|ν|(y)

|x− y||z − y|

≤ ‖ν‖
δ2
|x− z|. (5.2)

Hence, U ν is Lipschitz continuous on Ω. Therefore, if µ ∈ M(Ω), then E[µ, ν] is well
defined and is finite. In fact, it follows from the Fubini–Tonelli theorem and (5.1) that

|E[µ, ν]| =
∣∣∣∣∫

R3

U ν(x)dµ(x)

∣∣∣∣ ≤ ∫
R3

|U ν(x)| d|µ|(x) ≤ ‖µ‖ ‖ν‖
δ

. (5.3)

We define J :M(Ω)→ R ∪ {+∞} by

J [µ] =

{
E[µ] + 2E[µ, ν] if E[|µ|] <∞
∞ otherwise

∀µ ∈M(Ω).

Similarly, we define Jd : A(Ω)→ R ∪ {+∞} by

Jd[µ] = Ed[µ] + 2E[µ, ν] ∀µ ∈ A(Ω).

where Ed[µ] for µ ∈ A(Ω) is defined in (3.5).
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Theorem 5.1. Let Ω be a nonempty, bounded, open subset of R3 with a C2 boundary ∂Ω.
Let ν be a compactly supported signed Radon measure on R3 with supp (ν) ⊂ Ω

c
.

(1) There exists a unique µ ∈M(Ω) such that

J [µ] = inf
µ∈M(Ω)

J [µ].

Moreover, supp (µ) ⊆ ∂Ω.

(2) For any ε > 0 there exist µn ∈ A(Ω) (n = 1, 2, . . . ) such that

supp (µn) ⊆ {x ∈ Ω : dist(x, ∂Ω) < ε} (n = 1, 2, . . . ),

and
µn

∗
⇀ µ and Jd[µn]→ J [µ] as n→∞.

Proof. Let G = R3 \Ω = Ω
c
. Since ∂G = ∂Ω is C2, it satisfies the exterior cone condition:

every point x ∈ ∂G is accessible from outside of G by a finite cone that does not otherwise
intersect G. Therefore, there exists a unique Radon measure ν ′ on R3 with supp(ν ′) ⊆ ∂Ω
and ‖ν ′‖ ≤ ‖ν‖ such that U ν = U ν′ on Ω; cf. Chapter 4 of [26]. Note that ν ′ ∈M(Ω).

Both E[ν ′] and E[µ, ν ′] with µ ∈ M(Ω) are well defined and finite. In fact, similar to
(5.3), we have for δ = dist (supp (ν), ∂Ω) > 0 that

E[ν ′] =

∫
R3

U ν′ dν ′ =

∫
∂Ω

U ν(x) dν ′(x) =

∫
∂Ω

∫
R3\Ω

dν ′(x) dν(y)

|x− y|

≤ ‖ν
′‖ ‖ν‖
δ

≤ ‖ν‖
2

δ
<∞. (5.4)

Moreover, since supp (µ) ⊆ Ω, we have

E[µ, ν ′] =

∫
Ω

U ν′ dµ =

∫
Ω

U ν dµ = E[µ, ν],

which is finite by (5.3). Thus, for µ ∈M(Ω) with E[|µ|] <∞,

J [µ] = E[µ] + 2E[µ, ν] = E[µ] + 2E[µ, ν ′] + E[ν ′]− E[ν ′] = E[µ+ ν ′]− E[ν ′].

Since µ+ ν ′ is compactly supported, we have (cf. Theorem 3.10 of [29])

J [µ] = E[µ+ ν ′] = (2π)−3

∫
R3

4π

|ξ|2
∣∣∣µ̂(ξ) + ν̂ ′(ξ)

∣∣∣2 dξ ≥ 0,

where α̂ is the Fourier transform of a signed Radon measure α. The integral vanishes if
and only if µ̂ + ν̂ ′ = 0 identically on R3, which is true if and only if µ + ν ′ = 0 (the
zero measure) by the uniqueness of the Fourier transform of compactly supported finite
measures [29]. Therefore, the functional J is uniquely minimized at µ = −ν ′ ∈ M(Ω),
establishing (1). Note the minimum value is then given by J [−ν ′] = −E[ν ′].
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To prove (2), we note that E[|ν ′|] < ∞, which is similar to (5.4). Since supp (µ) =
supp (ν ′) ⊆ ∂Ω, we obtain by Theorem 3.1 a sequence of discrete charge distributions
µn ∈ A(Ω) such that

supp (µn) ⊆ {x ∈ Ω : dist (x, ∂Ω) < ε} (n = 1, 2, . . . ),

and
µn

∗
⇀ µ = −ν ′ and Ed[µn]→ E[µ] = E[−ν ′] as n→∞.

Since U ν is continuous on Ω (cf. (5.2)), all µn (n = 1, 2, . . . ) and ν ′ are supported on Ω,
and U ν = U ν′ on Ω, we find that

lim
n→∞

E[µn, ν] = lim
n→∞

∫
Ω

U ν dµn = −
∫

Ω

U ν dν ′ = −
∫

Ω

U ν′ dν ′ = −E[ν ′].

Therefore,

lim
n→∞

Jd[µn] = lim
n→∞

(
Ed[µn] + 2E[µn, ν]

)
= E[−ν ′]− 2E[ν ′]

= E[ν ′]− 2E[ν ′] = −E[ν ′] = J [−ν ′] = J [µ] = inf
µ∈M(Ω)

J [µ].

The proof is complete.
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[13] M. Fabian, P. Habala, P. Hájek, V. Montesinos, and V. Zizler. Banach Space Theory.
CMS Books in Mathematics. Springer–Verlag, New York, 2011.

[14] H. Federer. Geometric Measure Theory. Springer–Verlag, New York, 1969.

[15] R. P. Feynman, R. B. Leighton, and M. Sands. Mainly Electromagnetism and Matter,
volume II of The Feynman Lectures on Physics. Basic Books, the new millennium
edition, 2011.

[16] G. Folland. Real Analysis. Wiley, 2nd edition, 1999.

[17] D. Frenkel and B. Smit. Understanding Molecular Simulation: From Algorithms to
Applications. Academic Press, 2nd edition, 1996.

[18] A. Garroni, P. van Meurs, M. A. Peletier, and L. Scardia. Convergence and non-
convergence of many-particle evolutions with multiple signs. Arch. Rational Mech.
Anal., 235:3–49, 2020.

[19] D. J. Griffiths. Introduction to Electrodynamics. Cambridge Univ. Press, 4th edition,
2017.

41



[20] J. Hu, A. Ma, and A. R. Dinner. Monte Carlo simulations of biomolecules: The MC
module in CHARMM. J. Comput. Chem., 27(2):203–216, 2006.

[21] J. D. Jackson. Classical Electrodynamics. Wiley, New York, 3rd edition, 1999.

[22] M. Karplus and J. A. McCammon. Molecular dynamics simulations of biomolecules.
Nat. Struct. Mol. Biol., 9:646–652, 2002.

[23] M. Karplus and G. A. Petsko. Molecular dynamics simulations in biology. Nature,
347:631–639, 1990.

[24] S. G. Krantz and H. R. Parks. Distance to Ck Hypersurfaces. J. Diff. Equations,
40:116–120, 1981.

[25] L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii. Electrodynamics of Continuous
Media, volume 8 of Landau and Lifshitz Course of Theoretical Physics. Butterworth–
Heinemann, 2nd edition, 1984.

[26] N. S. Landkof. Foundations of Modern Potential Theory. Springer–Verlag, Berlin,
1972.

[27] B. Li. Variational properties of unbounded order parameters. SIAM J. Math Anal,
38(1):16–36, 2006.

[28] B. Li. Minimization of electrostatic free energy and the Poisson–Boltzmann equation
for molecular solvation with implicit solvent. SIAM J. Math. Anal., 40:2536–2566,
2009.

[29] P. Mattila. Geometry of Sets and Measures in Euclidean Spaces: Fractals and Recti-
fiability. Cambridge University Press, 1995.

[30] S. Pagano and R. Paroni. A simple model for phase transitions: From the discrete
to the continuum problem. Quart. Appl. Math., 61(1):89–109, 2003.

[31] D. C. Rapaport. The Art of Molecular Dynamics Simulation. Cambridge Univ. Press,
2nd edition, 2004.

[32] N. Rougerie and S. Serfaty. Higher-dimensional Coulomb gases and renormalized
energy functionals. Commun. Pure Appl. Math., 69(3):519–605, 2016.

[33] B. Roux and T. Simonson. Implicit solvent models. Biophys. Chem., 78:1–20, 1999.

[34] J. A. C. Rullmann and P. Th. van Duijnen. Analysis of discrete and continuum
dielectric models: Application to the calculation of protonation energies in solution.
Molecular Physics, 61(2):293–311, 1987.

[35] C. Sagui and T. A. Darden. Molecular dynamics simulations of biomolecules: Long-
range electrostatic effectis. Annu. Rev. Biophys. Biomol. Struct., 28:155–179, 1999.

42



[36] M. Schaefer and M. Karplus. A comprehensive analytical treatment of continuum
electrostatics. J. Phys. Chem., 100:1578–1599, 1996.

[37] S. Serfaty. Coulomb Gases and Ginzburg–Landau Vortices. EMS Zurich Lectures in
Adv. Math. European Math. Soc., 2015.

[38] S. Serfaty. Systems of points with Coulomb interactions. In B. Sirakov, P. N. de
Souza, and M. Viana, editors, Proc. Intern. Cong. Math 2018, Rio de Janeiro, Brazil,
volume 1, pages 935–978. World Scientific, 2019.

[39] K. A. Sharp and B. Honig. Electrostatic interactions in macromolecules: Theory and
applications. Annu. Rev. Biophys. Biophys. Chem., 19:301–332, 1990.

[40] A. Warshel, P. K. Sharma, M. Kato, and W. W. Parson. Modeling electrostatic
effects in proteins. Biochim. Biophys. Acta, 1764:1647–1676, 2006.

[41] S. Zhou, L.-T. Cheng, J. Dzubiella, B. Li, and J. A. McCammon. Variational implicit
solvation with Poisson–Boltzmann theory. J. Chem. Theory Comput., 10:1454–1467,
2014.

[42] W. P. Ziemer. Weakly Differentiable Functions. Springer–Verlag, New York, 1989.

43


