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Abstract

We analyze the passage from discrete (i.e., point) charges and the corresponding
discrete electrostatic energies to a continuum charge density and the correspond-
ing continuum electrostatic energy in the limit of a large number of point charges.
Given a continuous function on a bounded region that represents a continuum charge
density, we construct a sequence of point charges and prove that the corresponding
discrete electrostatic energies converge to the continuum counterpart. In a more
general setting, we consider a given, compactly supported, signed Radon measure in
the three-dimensional space representing the distribution of charges. We construct a
sequence of point charges that converge to the given signed Radon measure and show
that the corresponding discrete energies converge to the continuum one defined by
the signed Radon measure. Conversely, for any sequence of point charges that satisfy
certain reasonable assumptions on local geometry and excluded volumes, we prove
that there exists a subsequence converging to a signed Radon measure and that the
corresponding discrete energies converge to the continuum one defined by the limit-
ing signed Radon measure. Tools used in our analysis include the explicit construc-
tions of point charges from a given signed Radon measure as well as approximation
properties of signed Radon measures. Finally, we apply our discrete-to-continuum
analysis to the minimization of electrostatic energy related to the classical balayage
problem in the potential theory. Such minimization can be potentially applied to
the modeling of charged molecular systems with heterogeneously distributed charges
embedded in a continuum solvent.
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1 Introduction

The continuum electrostatic energy is defined to be [15,19,21,25]

1
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where the dielectric coefficient is taken to be unity in certain units. Here, p : R® — R is a
given function representing a continuum charge density and ¥ : R® — R is the electrostatic
potential determined uniquely by Poisson’s equation together with boundary conditions

AYp=—p inR? and  ¢(o0) =0.
With some assumptions, the potential 1) can be expressed as (cf. p.23 in [12] and Section 1.7

in [21])
W(x) = ! / Py) dy Vo € R,

—E R3 |x—y|

and the corresponding electrostatic energy can be expressed as

1 1 p(z)p(y)
gPYdz = o ———== dady. .

In contrast, given a set of point charges @Q; € R? located at x; € R® (i =1,..., N), which
determine a discrete charge density

N
i=1

where d, is the Dirac measure concentrated at a € R3, the discrete electrostatic energy,
the Coulomb energy, is given by [15,19,21, 25]

Si Z @ (1.2)

T iy 1% il

Both the continuum and discrete descriptions of electric charges and electrostatic en-
ergies are widely used in many areas of science and engineering, such as molecular biology,
colloidal science, and chemical engineering. The discrete description of electrostatics is
a main part of an interaction potential (i.e., forcefield) for a macromolecular system in
molecular dynamics and Monte Carlo simulations that have been extensively developed in
recent decades [10,17,20,22,23,31,35]. In implicit-solvent models for biological molecules,
both discrete and continuum descriptions of charge densities are used [8,34, 36, 39, 40].

Intuitively, the passage from the discrete to continuum description is clear: if the
number of point charges is large enough, then the discrete charge density and the discrete
electrostatic energy should be close to the continuum charge density and the continuum
electrostatic energy, respectively. This is indeed true, as we justify here such a statement
in several settings.

Our main results are as follows:



(1) Assume  is a bounded region in R?* and p € C(Q). We can decompose the region
Q into the union of many small regions w’ and define charges Q; = p(z')|w’| with
2" and |w'| a point in w’ and the volume of w’, respectively. Then as the number
of charges increases to infinity and the volume of each small region decreases to
zero, the discrete electrostatic energies (cf. (1.2)) converge to the continuum one (cf.
(1.1)); cf. Theorem 2.1;

(2) Given a compactly supported signed Radon measure p on R, we construct a se-
quence of point charges
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that converge in a weak sense to the signed Radon measure p and that the corre-
sponding discrete energies converge to the energy defined by the given signed Radon
measure; cf. Theorem 3.1; and
(3) Conversely, given a sequence of point charges as in (1.3) such that their locations
are nearly evenly distributed in a bounded region in R® and that their values are
uniformly bounded (i.e., sup,, ; |Q%] < 00), we show that there exists a subsequence
that converges to a limiting signed Radon measure, and the corresponding discrete
energies converge to the continuum one; cf. Theorem 4.1. We also give an example
to show the nonuniqueness of such a subsequence.
In addition, we apply our analysis to an electrostatic energy minimization problem related
to the classical balayage problem in the potential theory; cf. Theorem 5.1. Such an
application can potentially be developed into a model for the charged molecules embedded
in a continuum solvent, where the charge distributions are often heterogeneous [7,8,39,41].
Let us make several remarks on our results. First, our result on the discrete-to-
continuum passage with a given continuous and bounded function representing a charge
density (cf. Part (1) above) is a special case with a given signed Radon measure (cf. Part
(2) above), as any continuous and bounded function defines uniquely such a measure.
However, with a continuous function, the construction of discrete charges is explicit, and
the proof of the discrete-to-continuum passage is also more intuitive, allowing us to better
understand such a passage. Second, our results are not complete and there are still some
open questions. One of them is whether or not the results in Part (3) above can be gener-
alized to the case where the sequence of discrete charges are not quite evenly distributed
in the entire region but are rather concentrated only on a measurable subset that may be
very irregular. Another related question is to identify conditions under which the density
of a limiting measure is continuous or even differentiable. Third and finally, we only prove
the discrete-to-continuum convergence of charge densities and electrostatic energies, but
provide no quantitative convergence rates. In particular, since we do not consider effects
of charge sizes, correlations, and fluctuations, our analysis does not justify the use of
continuum electrostatics in certain circumstances where the discreteness is strong.
The mathematical analysis of the discrete-to-continuum passage is a common task in
understanding an underlying physical system. Often, one begins with a pairwise inter-



action potential, augmented by some external potential, defined on lattices, and derives
a continuum energy in the limit of vanishing lattice size. For instance, in recent stud-
ies on problems arising from solid mechanics and materials, the interaction potential can
be the Lennard-Jones potential or some potential modeling material defects (e.g., dislo-
cations), and the techniques of analysis include homogenization and I'-convergence; cf.
e.g., [1-3,5,18,30].

Relevant to our work are the studies presented in [6,11,32,37,38] (cf. also the references
therein). In [6], the authors considered the discrete electrostatic energy of the interaction of
N (—1)-charges and between these “electrons” and M positively charged “atomic nuclei”
with a hard core and a total charge Z. They show the I'-convergence as N, Z — oo with
M fixed and N/Z asymptotically equal to a constant A of these discrete energy functionals
to a continuum energy functional I defined on all the Radon measures p on R? given by

1 dp(x)dp(y) ) dulx
Ty = 2 //(R3\Q)><(R3\Q) |z =y " /IR3\Q Viz) dul),

if the total mass of u is bounded above by A and I(u) = 400 otherwise, where V' de-
scribes the Coulomb interaction between the nuclei and electrons through their limiting
distributions and where €2 is the hardcore region of all the nuclei. The large-/N analysis
further shows charge screening. Some parts of the analysis in [32, 37, 38] (cf. also the
references therein) obtain a similar I'-convergence for a sequence of discrete energies as
the number of charges tends to infinity. Each energy results from the interaction among
finitely many (+41)-charges together with an external potential on each of these charges.
A growth assumption on the external potential is made to show that the infimum of the
[-limit is finite and the convergence of the discrete minimizers and minimum values to
their continuum counterparts.

In contrast, we consider charges of different signs and different values (partial charges)
confined in an arbitrary bounded region (with some regularities), and our results are for
any sequence of discrete charge configurations not necessary energy-minimizing ones. We
also consider a general question on the construction of discrete quantities from a given
continuum one and obtain the discrete-to-continuum passage, not just inequalities as in
the I'-convergence analysis. In addition, our renewed result on the classical balayage
problem (cf. section 5) may possibly be applied to the study of charged macromolecules
that often have heterogenous charge distributions.

Our analysis relies on several techniques. One of them is the construction of point
charges from a given signed Radon measure. Such constructions have been initially devel-
oped in [6]; cf. also [37]. The other is to construct a family of diffeomorphisms to “flow”
the charges on the boundary of an underlying bounded open set into the interior of such
an open set so that various smoothing and approximating methods can be used to define
the point charges that are supported inside the open set. This technique may be used
to smooth out surface charges. In studying the continuum limit of a sequence of discrete
charges, we identify geometrical conditions that imply the existence of an L*°-density.

The rest of the paper is organized as follows. In section 2, we are given a continuous
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function on a bounded region and define discrete charges from such a function. We then
prove the convergence of the corresponding discrete energies to the continuum one. In
section 3, we consider the general case in which a compactly supported signed Radon
measure is given to represent a distribution of charges. We construct discrete charges
and show that they converge to the signed Radon measure and that the corresponding
discrete energies converge to the continuum one defined by the signed Radon measure.
In section 4, we prove the converse: given a sequence of point charges satisfying certain
geometrical conditions, there exists a subsequence of such charges that converges to a
signed Radon measure. Moreover, the corresponding energies also converge to the one de-
fined by the limiting signed Radon measure. Finally, in section 5, we prove the existence
and uniqueness of the minimizer of the electrostatic energy functional defined on signed
Radon measures with an external field, and also prove that the minimizer can be approx-
imated by point charges that are supported in a small neighborhood of the boundary of
the underlying bounded region.

2 Convergence of Discrete Energies with a Given Con-
tinuous Function of Charge Density

In this section, we construct a sequence of discrete charges from a given continuum charge
density. We prove that the corresponding sequence of discrete energies converge to the
continuum energy defined by the given charge density.

Let Q be a nonempty, bounded, open subset of R3 with a Lipschitz-continuous bound-

ary 0f). Let p € C(f2) represent a charge density. The corresponding (continuum) elec-

trostatic energy is given by [21]
1
_// Mdm% (2.1)
87 JJaxa |z —yl

where the dielectric coefficient is taken to be unity in certain units.

We now define a sequence of discrete charges from the density p. We call a class of
finitely many subsets of Q a partition of Q, if each of these subsets is a domain in R?® with
a Lipschitz-continuous boundary, these subsets are pairwise disjoint, and the union of the
closures of these subsets is Q. We call these subsets cells of the partition. A sequence of
partitions, {P,}22,, of  is admissible if there exist natural numbers N,, ,/* 4+oc and real
numbers 7, N\, 0 such that each P,, consists of two parts: w’, (i =1,..., N,) (called regular
cells) and the remaining cells, if any (called irregular cells), that satisfy the following two
conditions:

e The uniform size condition: There exists a constant v € (0, 1), and for each n > 1

and each i (1 < i < N,), there exists 2!, € w! (a point of charge) such that

Bl 1) C ol C B (a: 7"—") ; (2:2)
Y
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e The almost covering condition:

lim
n—oo

a\ (JLVJUTTL>| = 0. (2.3)

i=1

Here and below, we denote by |A| the Lebesgue measure of a Lebesgue-measurable set A.
Since 1, \, 0, the uniform size condition implies that

1Pl reg == ax. diam (wi) < % —0  asn— oo. (2.4)

A typical example of an admissible sequence of partitions P,, (n =1,2,...) of Q is as
follows: all the regular cells of P, consist of all the cubes that are subsets of { and that
have their sides 27" and faces on coordinate planes with values j 4+ k27", where j and k
are integers and 0 < k < 2" — 1. We have r,, = 27!, The points x; are the centers of the
regular cells. The uniform size condition is satisfied with v = 2/4/3. Since the boundary
01 is Lipschitz-continuous,

lim [{z € Q: dist (z,00) < n}| =0;
n—0

cf. e.g., [27]. Therefore, the almost covering condition (2.3) is satisfied.

Given an admissible sequence of partitions {P,}°%, of Q as above, we define the
sequence of discrete charges {Q 0, Mo(n=1,2,...) (ie., we place the charge Q! at
point x!) corresponding to the given charge density p by

Q= plap)lwnl,  i=1. Nyn=12... (2.5)

This means that the discrete charge density for each n is
Ny, 1 Ny
=Y Qb = 5 > Quday,
i=1 "oi=1

where Q1 = N, Q! . By (2.2) and (2.3), we see that Q' and p(z) are of the same order, i.¢.,
the ratio Q° /p(z) (if p(x’) # 0) is bounded above and below by two positive constants
that are independent of 7 and n, if n is large enough. Note in particular that the total
charge in the limit of large number of charges is

Nn
lim ;Qn = /Q p(x) d.

By Coulomb’s law [21], the corresponding discrete electrostatic energy for each n is given
by
N, . .
1 ~ e
— > M (2.6)
8w = ’xl — a:‘%|
7'7]:177'7£J n
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The main result of this section is Theorem 2.1 below. It states that the discrete
electrostatic energies converge to the continuum one given by (2.1). This is a special case
of Lemma 3.2 in terms of the discrete-to-continuum passage. But the construction of
nearly evenly distributed discrete charges here is natural and explicit, and is a stronger
result.

Theorem 2.1. Let ) C ]1&3 be nonempty, bounded, and open with a Lipschitz-continuous
boundary 02. Let p € C(Q). Let {P,}2, be a sequence of admissible partitions of Q0 with
reqular cells w!, and charges Q' at points x, € W' (i = 1,...,Ny;n = 1,2,...), all as

defined above. We have

Nn

. QLQ!
i 3o o [ AP deay 27

(N
ij=1,i#] [, — 2]

We need the following lemma to prove the theorem: (This lemma will also be used in
proving Lemma 3.2.)

Lemma 2.1. If zg, yo € R® and R, S > 0 satisfy B(xg, R) N B(yo, S) = 0, then
: ST
— dyd:v
[zo —yo|  |B(xo, R \ |B(Y0: S)| JBwo.r) JByo,s) 1T —

Proof. Note that 1/|z| is a harmonic function for z € R3\ {0}. Note also that z & B(yo, S)
if © € B(xg, R). Thus it follows from the (volumetric) mean-value theorem for a harmonic
function that

1 / d
= I——— 1
|0 — Yol 330, )| (z0,R) |z — o

= dy]da:
B(xg, R ’/xoR [lByO, |/yoS |z —

= dydzx,
| B(o, R)I |1 B(yo, 5] /B(zO,R) /B(yo,s> [z =yl

The proof is complete. O

Proof of Theorem 2.1. We denote
floy) = 220y e
|z =y
Clearly, f € L*(Q2 x ). We also denote

Nn

_ _ Q0L
—/QXQ f(z,y) dedy and E, = Z

cnen
5 2= A



We need to prove lim,,_,, E,, = F, and we divide our proof into three steps.
Step 1. Treatment of irreqular cells. For each n > 1, let us denote by R, and I, the

class of all regular cells and irregular cells of the partition P,, and by UR,, and UI, their
unions, respectively. Since f(z,y) = f(y,x

= / f(x,y) dvdy
QxQ

(Lot LI L) i)

_ / f(z,y) dedy + / f(z,y) dedy + 2 / F(2,y) dudy
UR, YJUR, Jl, JUI, U URn

—// f(z,y) dl’dy+// f(x,y)dxderQ// f(x,y) dedy
(URn) % (URn) (UL) % (UIn) (UL) % (URy)

It then follows from the almost covering condition (2.3) that lim, o | U I,,| = 0, which
implies that lim,, o |(Ul,) x (Ul,)| = 0 and lim,,_,, |(UI,) X (UR,)| = 0. Hence,

= lim // f(z,y) dxdy.
=0 J J(URR) X (URR)

It therefore suffices to show that, for any € > 0, there exists a natural number N such
that

‘// flz,y)dedy — E,| < (2.8)
(URn)X(URy)

Step 2. Treatment of pairs of reqular cells in a small neighborhood of the diagonal

region D = {(z,y) € Q x Q: x = y}. By the integrability of f(x,y) and that of 1/|x — y|
on €2 x €2, there exists 0 > 0 such that for any measurable subset A C 2 x )

dxd 6
//|f:z:y\d$dy<— and //|:1:y il

if |A] < 6, 2.9
ey 3 (2.9)

), for each n we have by (2.1) that

€ Vn > N.

where 7 is the same as in (2.2). Denote

D, ={(z,y) € Q2 x Q:dist ((z,y), D) < a}
for any o > 0. Since (2 is bounded, |D,| — 0 as & — 0. Thus, there exists n > 0 such that

| Ds,| < 0. (2.10)
For each n > 1, let us denote

Ty ={w, xw! :1<4i,j <n, ()

XW%)HDU%QL

n:{w;xwﬂb:lgi,jgn(wzxwﬁl)mDn:@}.



Note that S, , and T;,, are disjoint. Moreover,
(UR,) x (UR,) = (US,,,) U (UT,, ). (2.11)
By (2.4), there exists N such that
UT,, € Dy,  ifn>N. (2.12)

This, together with (2.10) and (2.9), implies that

6 ~
// f(z,y)| dxdy < — and // dxdy EZ ifn>N. (2.13)
UTn.n UTM, 3(llpllz + 1)

Now, let w), X w! € T,,, with i # j. It follows from the definition of Q! and @7, (cf
(2.5)), Lemma 2.1, and the uniform size condition (cf. (2.2)) that

@nQal _ llplSfwn] |

|25, = l’n! |25, — xnl

- ||PH // dxdy
\ LT HB ., )| JJ B, ) x B(ah ) |z — 9|

B(x
2 d d ~
HpH // z y 0> N
wl Xwn

This and (2.13) then imply that

LQ 2 dzd -
1 €T —
w%xwaETn,n,i;éj |$n .I’n| v UThn Y
Step 3. Treatment of pairs of reqular cells away from the diagonal region D. The
uniform continuity of f on Q x Q\ D, implies the existence of o > 0 such that

3

|f(z,y) — f(2', )] < R

if [(z,y) — (', y)] < 0. (2.15)

By (2.4), there exists a natural number N such that |P,|l.es < o if n > N. Note that if
wl X wl € S, ., then we must have ¢ # j. Therefore, it follows from (2.5) and (2.15) that

// fla,y)dedy — > Q”—Q]”]

Wi X €S n |ZEZn B ZEn|

< Y //Ww |f(z,y) = flap, )| dedy

w}, XwnESn "



< if n>N. (2.16)

Wl M

Finally, let N = max{N, N}. We have by (2.11), (2.13), (2.14), and (2.16) that

(URn)X(URR)

< //UTM|f<x,y>|dasdy+ )3 %

o Tl — Xn
W XWh ETn i ] | n

+//usnmf($’y)d$dy— 3 L%

|z, — xn]

wh XwhHESn,n

<e ifn>N,

leading to (2.8). O

3 Convergence of Discrete Energies with a Given Signed
Radon Measure of Charge Density

In this section, we consider a given charge density represented by a compactly supported
signed Radon measure on R?. We construct a sequence of discrete charges such that they
converge to the given signed Radon measure and that the corresponding discrete energies
converge to the continuum energy defined by the given signed Radon measure.

We first recall some definition and notation. For any nonnegative Radon measures «
and 3 on R?, we set

D Lt = L L = L L
R3xR3 |x—y| R3 JR3 |33—y| R3 JR3 ]x—y]

The second and third equalities follow from the Fubini-Tonelli Theorem. In general
Ela, 8] € [0,00]. For any signed Radon measure p on R3, let u = pu™ — p~ be the
unique Jordan decomposition of ;i into nonnegative Radon measures p* and g~ on R3,
respectively. If E[u™, p~] < oo, then we define

Elp) = Bl p"]+ Ep=, 5] = 2B[u", .

If i is a positive Radon measure on R3, then E[u] = E[u, p].
For any nonempty, bounded, open set Q C R?, we denote

M(Q) = {all signed Radon measures ; on R? such that supp (1) C Q}. (3.1)

10



If 1 € M(Q) then the total variation of g is ||u|| = |u|(R?) = |u|(Q) < co. We also denote

AQ) = { ZQ% Qi€R,z; €Q, and a; # x; if i £, N _1,2,...}. (3.2)

=1

For any A > 0, we denote

MA(Q) = {1 € M(Q) : [lull <A}, (3-3)

N
— 1 _
A\(Q) = {N E Qilz; + |Qil < AN x; €, and x; # x; if i # j,N = 1,2,...}, (3.4)
i=1

We define the discrete energy

Eqlp] = % Z % if o= i Z Qily; (3.5)

1<4,j<N,i#j

where Q; € R and z; € R? with z; # x; if ¢ # j. Since 8, X & = (o) for any a,b € R® we

have
// d(p > )z, y) (3.6)
{(z,y) ER3 xR3:x#£y} |$ - y|

Note that we drop the factor 1/2 in our definition of Ela, 8], Elul, and Eq[p].
For any signed Radon measure p on R? and any g € Cy(R?), we denote

<u79>:/Rggdu-

When no confusion arises, we also use (-,-) to denote the L?*(R?)-inner product. If p,, i
(n=1,2,...) are all signed Radon measures on R3, then the vague convergence (i.e., the
weak-* convergence) of p,, to i, denoted g, — p, is defined by {(t,,g) — (i, g) for any
g < CO (R3)

Our main result of this section is the following:

Theorem 3.1. Let Q C R? be a nonempty, bounded, open subset with a C? boundary. Let
A > 0. Assume p € My(Q) with E[|u]] < oo. Then there exist ji,, € Ax(Q) (n =1,2,...)
such that

[ — and  Eqlp,] — Ely] as n — oo.

Moreover, if supp (1) C 02 and € > 0, then the measures j,, can be constructed so that
supp (p,) C {z € Q : dist (x,090) < ¢} (n=1,2,...).

To prove the theorem, we need two lemmas. The first lemma states that the charge
distribution represented by a signed Radon measure that is compactly supported in €2
can be approximated by those with C*°-densities (with respect to the Lebesgue measure)

11



that are compactly supported inside 2. The approximation is carried out by a family
of diffeomorphisms that “flow” the support of the given measure into the interior of €2,
providing space for smoothing. Such diffeomorphisms are vector fields (cf. Chapter 9
of [9]), and are determined here locally by the gradient of signed distance to the boundary
9.

Lemma 3.1. Let Q, A\, and u be the same as in Theorem 3.1. There exist v, € My ()
(n=1,2...) that satisfy the following:
(1) For each m, v, is absolutely continuous with respect to the Lebesque measure with a
C>®-density, and supp (v,) C Q. Moreover, if supp (u) C 92 and € > 0, then the
measures v, can be constructed so that

supp (v,,) C {z € Q : dist (z,090) < €} (n=1,2,...);
(2) v, = p and Elv,) — Ely] as n — oco.

Proof. We divide our proof into four steps. In Step 1, we use the gradient of the signed
distance function (with the distance to the boundary 0f2) to construct a family of diffeo-
morphisms that can flow the points on the boundary 0 into the interior of 2. In Step 2,
we use the diffeomorphisms to construct the corresponding push-forward measures that
are compactly supported inside €2 and prove the desired convergence properties. In Step
3, we mollify those push-forward measures to construct signed Radon measures supported
inside 2 with C'*°-densities. Finally, in Step 4, we construct the desired sequence of signed
Radon measures {v,}22, and prove the related convergence properties.

Step 1. Construction of a family of diffeomorphisms. We define the signed distance
function

. . - (3.7)
—dist(xz,00Q) ifx e R\ Q,

For r > 0, set T, := {zx € R? : |d(z)| < r}. Since 99 is C?, there exists § > 0 such that

d(e) = {dist(x, a9) if z €0,

de C*(T;) and  |Vd|=1 inT;. (3.8)

Moreover, for every x € Ty there exists a unique 2’ € 92 such that |x — 2/| = dist(z, Q)
(cf. Theorem 3 in [24]). Since 9Q = {x € R?® : d(x) = 0}, at each point on 99, Vd is the
unit normal to 92, and is oriented toward the interior of Q. Let & € C2°(R?) be such that
£ =1 on Ty and supp (§) C T5. Define

d(z) = d(z)é(x) Vo € R%. (3.9)

Note that d € C2(R3), supp (d) C Ty, and d = d on T5/2. The vector field Vd : R* - R
is Lipschitz-continuous with the Lipschitz constant
[Vd(x) — Vd(y)

L= sup < 0. (3.10)
z,y€ER3 2y |I - yl

12



The global Lipschitz continuity of Vd ensures the existence of a unique family of diffeo-
morphisims @, : R® — R? defined by

d ~
E(I)t(x) = Vd(Py(x)) and Py(z) = =. (3.11)

We have the following properties:

e The family of transformations {®;};cr form a group of diffeomorphisms with ®; o
o, = &, for any t, s € R, and in particular, ®,0P_, = &, = id, where id : R? — R3
is the identity map. These follow from the definition (3.11);

e Since d € C?(R?) and Q is bounded, there exists R > 0 such that

QCB(0,R) and &, (z)=2 VYreR*\B(0,R)and Vt € R; (3.12)
e We have
e |z —y| < |®By(z) — By(y)| < ez —y| Vo,y € R®* and Vt € R, (3.13)
To show (3.13), let us first consider ¢ > 0. By (3.11) and (3.10), we have

1By(2) — By(y)| = |z —y + / [Vd(@,(x) ~ Vd(@,(1))] ds

t
Slx—y|+/
0

t
<lr—y +/ L|®y(z) — By (y)| ds.
0

Vd(®.(x)) - V(@.(y)] ds

Gronwall’s inequality then leads to the second inequality in (3.13) for ¢ > 0. Similarly,
|P_(z) — ®(y)] < ez —y.

Note that ®_,(P4(x)) = x for any ¢t and z. So, replacing = and y above by ®;(x) and
®,(y), respectively, we obtain

|z —y| < €Lt|q>t(x) — ()],

which leads to the first inequality in (3.13) for ¢ > 0. If £ < 0, then we can replace z and y
in (3.13) for ¢t > 0 by ®_;(z) and ®_,(y), respectively, to obtain the inequalities in (3.13)
for t < 0. We have thus proved (3.13).

Step 2. Construction of signed Radon measures supported inside §2 with the desired
convergence properties. For the given u € M, (Q) in the lemma, we consider the family of
push-forward measures {y o ®; ' },cg, where (o ®; ')(A) = pu(®,; '(A)) for any Borel set
A C R?. We claim:

(2.1) For any t € R, o ®; ! is a signed Radon measure on R?® with || o ®;*| = ||u|| and

supp (p o ®;) € ®;(supp (1)) € ®4(Q) € B(0, R),

where R is the same as in (3.12);
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(22) Ast =0, po®, ' > pand Efuo &' — Elul; and
(2.3) If t > 0, then supp (o ®; ') C Q and o ®; ' € My (Q). Moreover, if supp (1) C 09
and € > 0 then there exists t. > 0 such that

supp (po ®; 1) C {x € Q : dist (x,090) < ¢/2}, provided that 0 <t < t..

Proof of Claim (2.1). Fix t € R. Since ®; : R* — R? is a homeomorphism, R* = PUN
is a Hahn decomposition for u (i.e., P and N are disjoint Borel subsets of R?, and they
are positive and negative sets for ju, respectively) if and only if R? = &,(P) U ®;(N) is a
Hahn decomposition for p o ®;'. Consequently,

o ®71| = | &7 (R = (00 &71) (9,(P)) — (110 @7") (B,(N))
— j(P) — u(N) = [ul(R*) = ||u].

Thus, po ®; ' is a signed Radon measure on R?® with ||,u o ® ! = ||| < A Let A be
a Borel subset of R3. If AN @ (supp (1)) = 0, then @, '(A) Nsupp(u) = 0 and hence
(o ® 1) (A) = u(®;'(A)) = 0. Thus, supp (u o ®; ') C &, (supp(p)) € ®(Q). If z €
B(0, R) but ®;(z) € R¥\ B(0, R) for some ¢, then by (3.12) z = ®_(®,(z)) € R3\
a contradiction. Thus, ®;(B(0, R)) C B(0, R). Hence ®,(Q) C ®,(B(0,R)) C
The proof of Claim (2.1) is complete.

Proof of Claim (2.2). Let g € C.(R?). Let R > 0 be the same as in (3.12). Choose
R > R so that supp (g) € B(0,R). If z € R® and |z| > R, then g(®,(z)) = g(x) = 0 for
all t € R. Thus, |g 0 @] < ||gllecXp(.i) on R for all ¢ € R. Since each @, : R* — R? is
a homeomorphism and [|u]] < A, we have by the change of variables (cf. Theorem 3.6.1
in [4]), the Dominated Convergence Theorem, and the fact that ®¢(z) = z for all x € R?
that

lli% gd(uotb )—lg% go®,du = /}Rslg%go¢tdu:/H§39du.
Thus, po®; ' = past — 0.

Now let 4 = u™ — u~ be the Jordan decomposition of p corresponding to the Hahn
decomposition R* = P U N, where P and N are disjoint Borel subsets of R3, positive
and negative for p, respectively. We have ut(A) = u(ANP) and p (A) = —u(ANN)
for any Borel subset A C R3. Thus, for each ¢ € R, R® = ®,(P) U ®;(N) is a Hahn
decomposition for o ®; !, and po®; ' = pTo®,; ' — = o ®; * is the Jordan decomposition
for p, ie., (po ®; N = pt o ®; ! and (o &)~ = p~ o @1 If h € C(R? x R?) is
nonnegative and bounded, then by the fact that |[(zo @)%| < ||juo &l = ||n]] < X and
(o @)~ || < ||wo Pf] = ||]] < A, the change of variables, and Fubini’s Theorem, we
have

// W, y)d((po @) x (o @) ) (@, y)
- / U Bz, y) d(p* 0 &7 ()| d(p~ 0 371)(y)
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/. [/ (@), 0) dﬂw)] A~ 0 2;)()

h(®(x), @o(y)) du™ (x) | dp (y)
LLL |

B //]RB RS h(®y(x), Po(y)) d(p™ x p™) (2, y).

Define h,(z,y) = min(1/|z — y|,n) (n = 1,2,...). Then each h, € C(R3 x R3) is
nonnegative and bounded, and h,, < h, 41 (n =1,2,...). Replacing h above with h,, and
applying the Monotone Convergence Theorem, we obtain that

E[(p,o(I) (,uoq) ) ]
// d((po @)t x (no @) )(x,y)
R3 xR3 ’x_y’

_ Jim // w(ey) d((po @7 x (o @) ) (x,y)

n—o0

= lim //RR P (P4 (), Dy (y)) d(p™ x p7) (2, y)

n—oo

_ (u* ><u )(2,y)
_//R3><]R3 |q)t (I)t(y)| ’ (314)

It follows from (3.13) that

~ Ll 1 Lt

e e
< <
[z =yl = |®i(2) = Bu(y)] ~ |z —yl

We can replace |¢| in the exponent by some T' > 0 so that the inequalities hold true for
all t € [-T,T]. Since E[|p|] < oo, the function 1/|z — y|, and hence 1/|®(z) — $;(y)| for
each ¢, is integrable against the product measure pt x p~. Therefore, by (3.14) and the
Dominated Convergence Theorem,

vVt e R. (3.15)

X p)(,y)
lim E[(u o ®; o d;! // dn —E
P [(p ) ( - Iz — ] [,u ST
Similarly,
El(po® Y] — E[ut] and El(p o® ") = E[p] ast — 0.

The proof of Claim (2.2) is complete.
Proof of Claim (2.3). We first show that there exists ty > 0 such that

d(z) < d(P(z)) < g if 0 <d(x) < zél and 0 < t < ty, (3.16)
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where § > 0 is the same as in (3.8). Let € R® and assume 0 < d(x) < §/4. (This implies
that = € Q.) Recall from (3.9) that d € C*(R?), supp (d) C T5, and d = d on Tjs,. Taylor
expanding ®;(z) at t = 0, we have by (3.8) and (3.11) that

B,(x) = Bo(a) + 14 b, (2) i s @)

t=1

2 - ~
=x +tVd(x) + §V2d(<b7(x))Vd(<I>T(a:)) vt > 0, (3.17)
where 7 = 7(z,t) € [0,t] and V2d denotes the Hessian matrix of d. Thus, since |Vd(z)| = 1,
12 ~ ~
[@u(2) =2 < t+ S V][ V]

Consequently, since 0 < d(x) < §/4, the distance function is Lipschitz-continuous with
the Lipschitz constant 1 (cf. the proof of Lemma 3.2.34 in [14] and Section 1.1 of [42]),
which implies that

A(®(2)) < d(x) + |u(a) — 2] < &+ [0(a) —a]

and ®,(z) is continuous in ¢, there exists t; > 0 such that d(®.(x)) < 6/2if 0 < t < 1y.
Now, denoting ) )

Wl ) = (1/2) V(@ (2)) Vd(@, (x)),
Taylor expanding d(®;(z)) with ®;(z) given in (3.17), and noting that d = d on Ty /s, we
obtain

d(®y(x)) = d(®i(2))
=d (z + tVd(z) + t*w(z, 1))
= d(z) + Vd(z) - [tVd(z) + t*w(z,1)]

+ %V2J(it) [tVd(z) + tPw(z,t)] - [tVd(z) + tPw(z,t)]
=d(x) +t+u(x,t),
where 7; € R3 lies on the line segment connecting = and ®;(z) and
lu(z, t)] < C (*+* + )

with C' = C(||V2d||s, | Vd||sc) > 0 a constant independent on z and ¢. Therefore, there
exists tog € (0, 1] such that (3.16) is true.
We now claim:
(2.3.1) d(®,(x)) > d(z) for any € Q with 0 < d(x) < 6/8 and any ¢ > 0; and
(2.3.2) d(®,(z)) > /8 for any = € Q with d(z) > §/8 and for any ¢ > 0.
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If these are proved, then ®,(€2) C Q for any ¢ > 0. By Claim (2.1), we have for any ¢ > 0
that supp (uo®; ') C ®(supp (1)) C ®4(Q). This, together with Claim (2.1) again, implies
that po®; ' € My (Q). Moreover, assume supp (1) C 9Q and £ > 0. Then, replacing § > 0
in (3.16) by € and setting t. = ¢y there, we have by Claim (2.1) and (3.16) that

supp (o ®; 1) C @, (supp (i) € ®,(9Q) C {x € Q : dist (z,090) < ¢/2},

provided that 0 < t < t.. Claim (2.3) will then be true.

To prove Claim (2.3.1), we assume on the contrary that there existed some z with
0 < d(zx) < §/8 and some t' > 0 such that d(Py(x)) < d(x). By (3.16), t' > t; and
d(z) < d(Py(z)) < 6/2. Let d. = min(d(Py,(x)),0/4). Since d(P¢(x)) is continuous in
t, d(Py,(x)) > d., and d(Pp(z)) < d(z) < d., the set {t € [to,t'] : d(Pi(x)) = d.}
is nonempty and compact, and hence has a maximum value t,, € [to,t'). It satisfies
d(®y, (r)) =d. < 0/4 and

d(®,(z)) < d. ifty <t <t (3.18)

Now, let t" € (0,tp] be such that ¢, + " < t’. Then, we have by (3.16) with &, (z)
replacing  that d(®y,, 14 (x)) = d(Pypr (Py,, (x))) > d(Dy,, (x)) = d.. This contradicts (3.18).
Thus, Claim (2.3.1) is true. Claim (2.3.2) can be proved similarly: If d(z) > §/8 but
d(®y(x)) < 6/8 for some t > 0, then there would exist ¢/, € (0,¢) such that d(®s(z)) > /8
for all s € [0,¢,] but d(®s(x)) < 0/8if s € (t,,t). Again by (3.16) with ¢, (z) replacing
x, it would lead to a contradiction. The proof of Claim (2.3) is complete.

Step 3. Construction of signed Radon measures supported inside 2 with C*-densities
and the desired convergence properties. Let p € C®(R?) be nonnegative and radially
symmetric with supp (¢) C B(0,1) and

/ g&dx:/ pdr = 1. (3.19)
R3 B(0,1)

alr) = a3 <£> Ya > 0 Vz € R®.
Q@
For any ¢t € R and any o > 0, we consider the function ¢, * (o ®; ') : R® — R. Since
po ®;1is a signed Radon measure with ||z o & = |||| < A (cf. Claim (2.1) in Step
2), by the definition of partial derivatives and the Dominated Convergence Theorem, we
have ¢, * (no ®; 1) € C*°(R?). Moreover, since
supp (g * (1o ®; 1)) C supp (@q) + supp (o ®; ') € B(0,a) + B(0, R), (3.20)

where R is the same as in (3.12), the function ¢, * (o ®; ') is compactly supported.
Hence, i * (110 @) € C(R?).

For any a@ > 0 and any ¢ € R, we define the signed measure v,; on the Borel subsets
of R by dvg; = 0o * (o ®; 1) dz, ie.,

Define

Vait(A) = / Yo * (o ® ) dx for any Borel set A C R
A

We claim:
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(3.1) Forany t € R and any a > 0, v, is a signed Radon measure with a compact support
and a C°-density (with respect to the Lebesgue measure), and |[v, 4| < [|p]| < A;
(3.2) For each t € R,

Vay — po®; ! and Elvas] — Elpo @] as a — 0t

(3.3) For any t > 0, there exists a; > 0 such that v, € M (Q) with supp (v4,) C € for
all v € (0, ). If supp () € 09 and € > 0, then there exists a. > 0 such that

supp (Vo) C {z € Q2 : dist (x,002) < e} Va € (0, a.] Vt € (0,t.]. (3.21)

where t. > 0 is the same as that in Claim (2.3) in Step 2.
Proof of Claim (3.1). Since the density ¢, * (no ®; ") € C>®(R?), the measure v, has
a compact support and also a C®-density. Noting that d|v,| = |pa * (o ®;1)| dz, we
have by Fubini’s Theorem that

Wl = / (0 # (10 &) da
R3

s@a(x—y)d(uoé H(y )‘ dx

/Rg/Rf”_ )d|pwo &7 |(y) da
_/Rg {/st_ m] dlu o @7(y)

- / dlpto @74 (y)
RS

= [l @M.

Thus, ||[Vat|| < |lp]l < A (cf. Claim (2.1) in Step 2). The proof of Claim (3.1) is complete.
Proof of Claim (3.2). Fix t € R and g € Cy(R?). Note that ¢, * g — g uniformly on
R3 as o — 0. We have by Fubini’s Theorem that

/R3 9(x) dva(z) = /]R3 g(x) [/RS Yaly — ) d(po @7V (y) | dz
= /Rg(soa *9)(y) d(p o ;1) (y)

= [ gy)d(po®)(y) asa— 07
R?)

Hence, v,y — po ®; ' as a — 07.

Since E[|u|] < oo, it follows from (3.14) and (3.15) that E[(uo®; )", (no®; )] < oo.
Similarly, E[(po ®; 1), (o & 1)F] < oo and E[(juo ®;')~, (o ®;')7] < co. Hence,
E[|po ®;'|] < oo. Consequently, by the definition of v, for a > 0 and Lemma A1 in [6]
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(cf. also Step 2.3 in the proof of Theorem 4.1), E[vy ] — E[uo®; '] as a — 0%. The proof
of Claim (3.2) is complete.

Proof of Claim (3.3). Let ¢t > 0 and K, = supp (o ®; '). By the Claim (2.3) in Step
2, K, is a compact subset of Q. Let oy = dist(Ky, 92)/4 > 0. Then, for any o € (0, oy,
we have by the first inclusion in (3.20) that

supp (gq * (o ®;1)) € B(0,a) + K; = UBxa

JJEKt

This, together with the definition of v, and Claim (3.1), implies that v, € M, (Q) with
supp (vx4) C 2 for all @ € (0, ay]. Assume supp () € 9Q and € > 0. Let t. > 0 be the
same as in Claim (2.3) of Step 2. Then K; C {z € Q : dist(z,00) < ¢/2} if t € (0,¢.]. By
choosing o, € (0,¢/2), we obtain (3.21) by the same argument and the definition of v, ;.
The proof of Claim (3.3) is complete.

Step 4. Construction of the desired sequence {v,,}5°, of signed Radon measures and
proof of the related convergence properties. Since C(Q) is a separable Banach space, the
closed unit ball of the dual space [C(Q)]* is metrizable with respect to the vague (i.e.,
weak-star) topology (cf. Lemma 3.101 in [13]). But [C(Q)]* is isometrically isomorphic to
the space of signed Radon measures on § (cf. e.g., Theorem 7.18 in [16]). By identifying
measures on ) with their zero extensions to R?, we find the closed unit ball of the set of
signed Radon measures on € to be isometrically isomorphic to M (Q). Therefore, M;(€2),
and hence M, (Q), is metrizable with respect to the vague topology. Let us denote this
metric by Dy : My(Q) x My(Q) = R. If £,&, € MA(Q) (n = 1,2,...), then &, > ¢ if
and only if D,\(fn,f) — 0.

Let 0, = po (I)l/ (n=1,2,...). By Step 2 (cf. Claims (2.2) and (2.3)), each v, €
M\(Q) and supp (2,) C Q, and

Dy(Vp, ) — 0 and Ev,] — Elu) as n — 00.

Now, by Step 3 (cf. Claims (3.1)-(3.3)), for each n, there exists a(n) > 0 such that
Vn = Vam)i/n = Pan) * Un € Mi(Q), v, is absolutely continuous with respect to the
Lebesgue measure with a C°(R3)-density, supp (v,,) C €,

Dy(Vn, 1) < 1/n and |E[v,] — E[0,]] < 1/n (n=1,2,...).

In the case that supp (¢) € 9 and € > 0, set ©,, = p o <I>t In (n=1,2,...), where t. is
given in Claim (2.3) of Step 2. Then, similarly, for each n, 7, € M,(Q) and

supp (7,) C {x € Q : dist (x,00) < €/2}.

Moreover,
Dy (D, ) = 0 and Ev,] — Elu) as n — 00.
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Now, by Step 3 (cf. Claims (3.1)—(3.3)), for each n, there exists a(n) € (0,a.), where

o is given in (3.21), such that v, = Vam)t/n = Pam) * Un € MA(2), v, is absolutely
continuous with respect to the Lebesgue measure with a C°(R?)-density, and

supp (v,,) C {z € Q : dist (x,00) < ¢}.
Moreover,
Dy (vp, ) < 1/n, and |Ev,) — Elvn]] < 1/n (n=1,2,...).

In both cases, we have

Dy, pt) < Dx(Vp, Un) + Da(Dn, 1) < % + Dy(Dp, ) — 0,
|Elvn] — E[u]] < |Elvn] — Elin]| + |E[D,] — Elu]] < % + |E[on] — Elp]| = 0,

as n — 0o. This concludes the proof of Lemma 3.1. m

The second lemma states that the result of Theorem 3.1 holds true if the given signed
Radon measure has an L>°(£2)-density with respect to the Lebesgue measure. Note that
the smoothness of the boundary 0f2 is relaxed here. In proving the lemma, we apply the
method in [6] (with some modifications) to construct the sequence of discrete charges. For
any p € L*>(Q), we denote

_ p2)ply) .
.l _//M HOPD dady (3.22)

Lemma 3.2. Let Q C R? be a nonempty, bounded, open set with a Lipschitz-continuous
boundary 0. Let p € L°(Q) with A := ||p||r1@) > 0. Set p =0 on R*\ Q. There exist
tn € AN(Q) (n=1,2,...) such that

Jim (1, 9) = (p.g) Vg€ Co(RY)  and  lim Eylp,] = E[p].

n—oo

Moreover, if e >0 and p =0 on {x € Q : dist (x,0Q) > €}, then w, can be constructed so
that
supp(py,) C {x € Q : dist (z,00) < 2¢} (n=1,2,...).

Proof. For convenience, let us denote by g the signed Radon measure on R?® with the
density p, i.e., du = pdx. Thus, for any Borel set A C R3,

u(A) = / pla)de,  |ul(4) = / pl(@)dz, and Bl = Edlp.

Note that supp (1) € 2 and [|ul| = [ul(R?) = |u|(2) = A. So, p € M(Q).
We now proceed in three steps.
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Step 1. Construction of discrete densities. Since €) is bounded in R3, there exists a
natural number Ly > 0 such that Q C [~ Lo, Lg)®. We divide the cube [— Lo, Lo)? into (2Lg)?
(open) cubes of side 1 and vertices (k, k2, k3) with each k; an integer and —Lo < k; < L.
Bisecting sides of those cubes to divide each of them into 8 small cubes, we obtain a new
collection of small cubes of side 27!. Continuing this process, we obtain a sequence of
collections of open cubes. All cubes in the same nth collection have the same side 27";
and each of such cubes is one of those 8 cubes composed of a cube of side 27! in the
preceding collection. Since () is open, there exists a smallest integer ng > 0 such that at
least one of those cubes of side hy := 27" is contained in €). In the case that p = 0 on
{x € Q:dist (x,09Q) > €}, we choose ng to be large enough so that v/3hg < £/2.

For each integer n > 1, we denote by C, the sub-collection of cubes in R? of side
ho2™™ that are completely contained in Q. We denote by m,, the total number of cubes
in the collection C,, and enumerate these cubes as C,, = {wn1,...,Wnm,}. Since 0N is
Lipschitz-continuous, we have m,, — oo as n — oo and

Q\ (D wn> ‘ = 0. (3.23)

Let {pn};2; be an increasing sequence of natural numbers such that p, — oo as
n — oo. For each integer n > 1, we set N,, = myp,. Fix n and i € {1,...,m,}. Since
| (wni) /|1 (2) € [0, 1], there exists a unique integer N,,; € [0, V,,] such that

0< Nni _ Jullwns) - 1 (3.24)

TN, W@ N,
Note that N, ; = 0if and only |u|(w,;) = 0. Assume ¢ € {1,...,m,} and |pu|(w,;) > 0. Let
I, > 1 be the smallest integer that is greater than or equal to [1 + Ny, |p| (wn) /| ()3
We divide each side of the cube w,,; which has the length 727" into [, ; small intervals
each of which has the length a,; := ho27"/l,,;,. We have thus decomposed w,; into a
collection of disjoined small cubes with side a,, ;. The total number of such small cubes is
13 ;, which is larger than N,,; by (3.24). We choose N,,; such small cubes and denote their
centers by a:ﬁ” (7 =1,..., Ny;). At each of these points, which are all inside w,,; and have
the spacing a,,;, we place a charge of the value @),,; defined to be

f{wn,i) 1] (€2)
1l (wnyi)

For convenience, we set Q,; = 0if |u|(wn;) = 0 (i.e., if N,,; = 0). Setting N,, = > """ Ny,
we define

lim
n—oo

@ni = (3.25)

Nn,i

[ty = Ni Z > Quidy (3.26)

™ i=1,N, i >1 j=1

Clearly, p,, € A\(2) (where A = ||p||z1(0))- In the case p = 0 on {z € Q : dist (z,09) >
e}, we have v/3hy < /2. Thus, each p, is supported in {z € Q : dist (z,00) < 2¢}.
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Summing over i € {1,...,m,} in (3.24), we obtain

o< Mo Uz _ 1
N ®) T

This and (3.23) lead to
N,
lim =" = 1. (3.27)
n—r00 Nn

Noting that (a + b)? < 2P(a? 4 b”) for any a,b > 0 and p € [1,00), we have from our
definition of [,,; and the fact that |u|(w,; < ||p|lLee(@)|wn,i| that

3

1+ N, 3
B.< + Nl (wh,i) 11
’ |1l (€2)
_1 Nn n,1
PN IER AT
@
1 oo () NV | W
<8 + llpllz= @) \W,’+1
T ©)
This, together with (3.23) and (3.27), leads to
limsup max [2, <8 (1 + |lpll oo @) + ;> . (3.28)
e 2, e W)

Step 2. Prove the convergence {ji,,g) — (p,g) = {(u,g) for any g € Co(R3), i.e.,
o — p. Fix g € C5(R3). For each n and i € {1,...,m,}, we denote by c,; the center of
the cube w,, ;. We have by the definition of s, Q,;, and xﬁ” (j=1,...,N,,) above that

= I, + Jo+ K, — e, (3.29)

where we used the fact that N, ; = 0 if and only if |u|(w, ;) = 0.
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Denoting for any o > 0
wy(o) = sup{|g(z) — g(y)| 1 x,y € Qand |z —y| < o},

the modulus of continuity for g on Q, we have wy(c) — 0 as o — 0% since g € C(Q).
NOtlng that N = Z ana dlam(wn z) \/§h027n7 and |Qn,i| < ||p||L1(Q) by (325)7 we
have

o Nns V3h
0
| In| = E § ) = 9(eni)]| < wy ( o ) lpllzrey =0 (3.30)
i=1,N,, 4 =1

[glens) — 9(@)] pla) dr| < o, (fh) lolw =0 (331)

as n — oo. It follows from (3.23) and the fact that gp € L'(Q) that

/ o(2)p(c) da
Q\( i— 1wn Z)

By the definition of @, ; (cf. (3.25)), we have

[l=1 > [ ]’VQ’Q(Cn,z')—g(cn,i)/ vp(fv>dw]

1=1,Np ;>1

len] = — 0 as n — 00. (3.32)

< ngooi:l%; N"’ééﬁi?{l Z\)@) o)
< lollul(®) NZ :m ‘Nm "f)j}‘}’;’;‘)

JUEZEDS ]]VV - “r/'f’z‘g;)

o [ Sl S
2 gl mz( | %>+ S
= lgllo |1 (52 (1—%%+ %_1 %)
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— 0 as n — 0o, (3.33)

where the last step follows from (3.23) and (3.27).

Combining all (3.29)-(3.33), we obtain the desired convergence.

Step 3. Prove the convergence Eq4[u,] — E[p]. Denote the Coulomb potential v(z) =
1/|x|. For a > 0, define the a-cutoff Coulomb potential

oul@) = {1/|x! if 2| > a,

1/a if |z| < a.

Denoting
D={(z,y) € AxQ:2 =y}

and noting that all y1,, and p are supported in §, we then have by (3.5) and (3.6) that for
any a > 0

01 ][t
_ / /(M)\ (= y) = valz — y)] dln % ) (. 9)
//< ) dlpn o)) = [ vnla =) dux ()
// vl — ) d(jin X 112)(x, )

// (2 — ) — valz — y)] d(u % w)(zy)
= A,(a) + By(a) — Cp(a) — D(a).

We estimate the terms D(«), Cy, (), B,(«), and finally A,,(«). Let ¢ > 0. Denote
Sy ={(z,y) €QAxQ: |z —y| <al.
Then the R? x R3-Lebesgue measure of S, tends to 0 as a — 0. Since du = p dx, we have

dlpx pl(z,y) = dlu| < ul(z,y) = |p(2)| [p(y)| dedy.
Note that p = 0 outside Q. We thus have

0)] = \// 0z — ) — vale — )] d(s x ). )

= //Qxﬂ [o(z —y) —valz = y)| |p(2)|[p(y)| dzdy
N // [v(z —y) = valz = y)] [p(z)||p(y)| dzdy
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// lp(@)] |p(y)| dxdy
Cr—yl

as a — 0.

Thus, there exists ap > 0 such that |D(a)| <eif 0 < a < ap.
For any fixed o > 0, we have by (3.25) and the fact that N,, = > """ N,,; that

I—’// (T —y) d(pn X p1n)(2,y)
1 i

< HIOH%l(Q)
- aN,
—0 as n — 00.

From Step 2, we have j, — p. Thus, p, X jin i\_ [ X . Since v, is continuous, we
can modify its values outside a large ball containing €2 so that the modified function is in
Co(R3). Thus, we have for any fixed a > 0 that

// (= )l )~ [[ ol =) dGex o)

as n — o0.

We now estimate A,,(«) for any o > 0. By (3.26), we have

Mn Nn i
=5 > S lQuis,

™ i=1,N, i >1 j=1

It then follows from Lemma 2.1 that

|—\// o(z — ) — valz — y)] d(unxm(m,y)\
QXQ
<[], 1) = el =)l Al x )
Q><Q
- / / B o — ) — vale — )] dllital X ]} (2, 5)
{zeQxQ:0<|z—y|<a}
< / / o o(@ — ) d(\n] X 2], )
{zeQxQ:0<|z— y\<a}
R @il [ Qs
- N2 Z Z Z |k — L
" i=1,Nn,i>1 j=1,Np ;21 1<k<N, ;,1<ISN, ;,0<|zk —al, <o .
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o 1 < — |Qn,zHQn,y‘
N3 ; ; 2 1B(0; ani/2)| | B(0, an,;/2)]

n,i=>1j=1 L1<k<Np 3, 1<I<Ny 3,0<[af —al [[<a
/ / dxdy
B(ak an,:/2) B@%wmw/%|x__yy

Denoting a, = max," a,; and [, = max;[,;, and noting that 1/|B(0,a,;/2)| =
6l§l’z/(7r|wn7z|) and that Wy 1= Wy, is independent of ¢ = 1,...,m,, we continue to have by
(3.25) that

36121171 gyl
[An(e)] < WQN—M

dxdy
Z Z Z /B(xfm,an,iﬂ) /(

. . I . xr —
1=1 Nn i21j=1,Ny j>1 1§k§Nn,i71§lSNn,j70<|$fL i—.l‘ln j\<a B $”737an’]/2) | y|

36HpHL1 Iy / / drdy
2N2w2 (2,y)EQXQ:0<|z—y|<a+an} |.Z‘ - y| .

For the given € > 0, by the integrability of 1/|z — y|, there exists ay > 0 such that

dxd
// :cy<€ if 0 < a < ay.
Kxgﬂéﬁxfi0<h%ﬂA<2a}’$ —yl

Consequently, by (3.28) and (3.23), we have

limsup |A,(a)| < Coe if0<a<ag,

n—oo

where Cj is a constant given by

6
36 - 85| pll31 g [1 + [lpllzoe ey + 1/111(2)]
7T2|Q|2 :

O:

Finally, by choosing o € (0, min(ap, as)), we have

limsup |Eq4|pn] — Elp]| < limsup |A,(a) + By(a) — Cy(a) — D(a)|

n—oo n—oo

< (1 + 00)6.
Thus, Baljim] — Bl =
We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let p € M\ (Q) with Efju|] < oo. By Lemma 3.1, there exist
v, € My(Q2) (k= 1,2,...) such that each 14 has a C°(2)-density and supp () C €,
and

*

Vp — [ and Eqlvy] — E[u] as k — oo.
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By Lemma 3.2, for each k, there exist vy, € A\(Q) (n =1,2,...) such that

Vi — Uk and Ealvkn] = Elvi] as n — 0o.

Note that the weak-* topology of M () is metrizable; cf. Step 4 in the proof of Lemma 3.1.
Denote this metric by D,. By induction, we can choose a sequence of increasing integers
ng > 1 such that

DV, k) < 1/k and | Ea[Vkn,) — Elvi]| < 1/k forall k=1,2,...
Therefore, setting iy = Vg, € Ar(Q) (k=1,2,...), we have

Dy (ks 1) < Dx(Vgmys Vi) + Da(vg, ) — 0,
| Ealpx] — Elpl] < |Ealpnn,] — Elvill + | Elvi] — Elp]| — 0,

as k — oo. Hence, 1, — p and Eqlpx] — E[u] as k — oo.
If supp(pu) € 02 and € > 0, then by Lemma 3.1, the measures v, above can be
constructed so that

supp (v) C {r € Q : dist(x,090) < ¢/2} (k=1,2,...).
By Lemma 3.2, the measures v, above can be constructed so that
supp (pn) C {z € Q : dist(z,09) < ¢} (k,n=1,2,...).
Thus, since py = Vg, , we have
supp (ux) € {z € Q : dist(x,00) < e} (k=1,2,...).

The proof is complete. O

4 Continuum Limit of a Given Sequence of Discrete
Charges

We now study the continuum limit of a given sequence of sets of point charges and the
corresponding limit of electrostatic energies. Let N, be an increasing sequence of natural
numbers such that N, — oo as n — oo. For each n € {1,2,...}, let L, ... 2 be
N, distinct points in © and let QL,... QN € [—1,1]. (The particular bound 1 of all
the charges Q% is not essential; we can replace 1 by any given positive number.) Define
tn € A1(2) (cf. (3.4)) by

1 O
o= i 4.1
=3 ; Qnl, (4.1)
Recall that the corresponding discrete energies Eq[u,] are defined in (3.5). We consider

the following geometric conditions: For each n = 1,2, ... there exists a radius r,, > 0 such
that
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o B(xi r,)CcQforalli=1,...,Ny;

e B(z!,r,) N B(x,r,)=0foralli,j=1,...,N, with j # i; and

e 7 :=inf,>1 N,|B,,| > 0, where B, denotes an open ball of radius A > 0.
Since €2 is bounded, a consequence of these conditions is that r, — 0 as n — oo.

Theorem 4.1. Let Q C R? be a nonempty, bounded, open set with a Lipschitz-continuous
boundary 0. For each natural number n > 1, let p, € A (Q) be given in (4.1) with
distinct ¥, € Q and Q' € [-1,1] (i =1,...,Ny;n = 1,2,...). Assume the geometrical
conditions hold true. Then, there is a subsequence of {,}, not relabeled, such that i, — p
on R3 for some Radon measure u, given by du = pdz for some p € L=(R?) with p =0
a.e. on Q. Moreover, E[|u]] < oo, and

lim Eufji,] = Elp. (4.2

We remark that the geometrical conditions imply that the discrete charges are nearly
evenly distributed in the entire region. A limit measure (if exists) may not have an L>(2)-
density if the geometrical conditions are not satisfied. A simple example is = (0, 1)3,
N, =n, 2t = (i/n,0,0), and Q! = 1. The geometrical conditions with respect to () are
violated. The limit measure is the Dirac measure concentrated on [0,1] x 0 x 0 C §, which
does not have a density (with respect to the Lebesgue measure). We also remark that there
may exist different subsequences of {u,}22; that converge vaguely to different limits, and
the corresponding subsequences of rescaled discrete energies converge to different limits.
We shall give an example to show such nonuniqueness at the end of this section.

We need two lemmas to prove our theorem. The first lemma below is a variation of
Newton’s Theorem. The second lemma is similar to a known result (cf. e.g., the proof of
Proposition 2.1 in [6]). For R € (0, 0o], we say that a function ¢ : B(0, R) — R is radially
symmetric if there exists a function ¢y : [0, R] — R such that ¢(z) = ¢o(|z|) for all z € R?
with |z| < R.

Lemma 4.1. Let R > 0. ]fgb e C(B(0,R)) is radially symmetric, then

/ G / dx Yy € R® with |y| > R.
B(0,R) Iy—a:I \y! B(0,R)

Proof. With abuse of notation, ¢(|y|) = ¢(y), using the spherical coordinates, and by the
mean-value property for a harmonic function, we have

/B(OR |y—$| / >/83 %dr
- oo
= m/B(o,R) o(x) dz

completing the proof. O
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Lemma 4.2. If ¢ € C(R3) N LY(R?) is radially symmetric, then

o(c) | (1 1) 3
dx = _— d \vé R°.
/. F—he [ min ERITACAERCE

Proof. If y = 0, then the two integrals are the same. Assume y € R? and y # 0. By the
Dominated Convergence Theorem and Part (1) of Lemma 4.1, we have

/ o(z) dr = lim / o(z) dx
B(0,]y)) |z —y] e=0% JB(0,|y|—¢) |z —y]

= lim o(z) dx

e=0% JB(0,|y|—¢) |y

:/ Mdaz:.
B(0,|y]) |y

h(z) = / ¢(x) dr  VzeR.
R3\ B(

0,lyl) |x B Z|

Since ¢ is radially symmetric and the Lebesgue measure is rotationally invariant, h(z) =
h(y) for any z € 0B(0,|y|). Moreover, h is harmonic in the region |z| < |y| (see, e.g.,
Theorem 1.4 in [26]). Therefore, by the mean-value property for a harmonic function, the
integral of h over the sphere 0B(0, |y|) divided by the area of that sphere is just h(0).
Hence h(y) = h(0). Therefore,

¢() ¢(x) o(x)
dr = d R e
/R3 [z — | ! /B(O,y|) |z — y| v /11&3\3(0,3) |z — y| !
= / @ dz + / M dx
BOl) 1Yl BA\BO,y)) 7]

_ /Rg min <é é) é(x) dz.

The proof is complete. O

Define

Proof of Theorem 4.1. We divide the proof into two steps.

Step 1. We prove the existence of a subsequence of {u,}2, that converges vaguely
to some Radon measure x with an L>(R?) density vanishing a.e. on Q° and E[|u|] < oo.
It suffices to consider the case that all Q! > 0, since in general we have the Jordan
decomposition p, = .t — p, with

N,
. 1 .
fy = N 2 max(@n, 000z, and g = N ;:1 max(—Qy, 0)d,1,
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and we can first extract a vaguely convergent subsequence from {7 }5° | and then a further
vaguely convergent subsequence from {,un }22 ,, with the limiting Radon measures having
L>°(IR3) densities vanishing a.e. on Q'

Since 0 < Q! < 1 for all ¢ and n, we have ||i,|| < 1 for all n > 1. Thus, it follows from
the Banach—Alaoglu Theorem that there exists a subsequence of {u,}5°,, not relabeled,
such that p,, = p for some nonnegative Radon measure 1 on R?.

For any open ball By of radius A > 0, we have

1 y
tn(By) < FCard ({i: xz, € By\}), (4.3)

n

where Card (A) denotes the cardinality of a set A, For each natural number n, we denote by
By, the ball of radius A+, that is concentric with the ball By. Since B(z',r,) C By,
if ' € By and B(z',r,) N B(x!,r,) = 0 if ¢ # j, we have from volume considerations

that
| BTn ‘

This, together with (4.3) and the definition of 7 in the geometrical conditions, implies
that

Card({i : ' € B\}) < Card({i : B(z!,,r,) C Baxjr, }) <

B)\ Tn
(BA) ]|V |g || > |B)\+'rn| — = |BA‘ as n — oo,
since 1, — 0. Consequently, for any open ball B C R?, we have
1
o <1
hﬂg}fun(B) < T|B\. (4.4)

Suppose A C R? is bounded with |A| = 0 and € > 0. It follows from Vitali’s covering
lemma that there exist countably many open balls B; covering A with ). |B;| < e. Since

n — 1, we have
p(U) < liminf u, (U) (4.5)
n— o0

for any open set U C R3; cf. Theorem 1.24 in [29]. This and (4.4) imply that

A) < pu <UBi> <> u(B) < %Z|Bl~| < %g.

Hence, it follows from the Radon—Nikodym Theorem that du = pdx for some p € L'(R3?).
Since all y,, > 0, we have p > 0, and hence p > 0 a.e. in R®. The Lebesgue Differentiation
Theorem now gives that

_ 3
p(x) = Tgrgl+|er|/” a.e. v € R°.

But it follows from ( ) that

) and (
1
] o 089 = (B )



1
_ -
< B lim inf || (B(, 7))

1

<=
-

Hence, 0 < p(z) < 1/7 for a.e. € R?; hence p € L>°(R3). Since (4.5) holds for any

UcQ and p1,(Q°) = 0, we have supp (1) € Q. This implies that p = 0 a.e. on Q. Note

that d|pu| = |p|dx = pdx. Thus Ef|p]] < .

Step 2. We prove the convergence (4.2), assuming all Q! € [—1,1] and du = p dz with
p € L®(R?) vanishing at a.e. z € Q.

Let ¢ € C2°(R?) be nonnegative and radially symmetric, satisfying supp (¢) C B(0, 1)
and (3.19). Define py(z) = A3p(x/\) for any A > 0 and x € R3. Recall for any Radon
measure v on R? and any £ € C.(R?) that the convolusion v x £ € C®°(R3?) is defined by
(v &)(x) = (v, &(x = )) (x € R?). Hence,

(pn * o) (2 ZQngp,\ T — Vz € R* and Vn > 1,

(1 p2)(2) = / oale — u) duly) = / - pl)dy Ve e R
We now write

|Ealpn] — Elp]
< |Ealpin] = Eelpin * o] + | Eclpn * ©x] — Eclpn * ox]] + [Eelp * or] — Elu]],  (4.6)

where E. is defined in (3.22). We estimate these three terms in three substeps and combine
all the estimates to obtain the desired convergence result in the fourth and last substep.
Step 2.1. We claim that there exists a constant C' > 0 such that

Ealin] — Eolin * 3] so(v ) Yn>1 and VA0,  (47)

Ny A

where 7, is given in the geometrical conditions.
Proof of the claim. It follows from the Fubini—Tonelli Theorem that

R3xR3

\x— yl

//RSxRS |$—y|[ ZQ%QO*QU_I ][ ZQ#PA — )| dzdy
— > QZQJ// palz — @)y — @ J)dd

n 1<i,j<Np, 3xR3 ‘I—y‘
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Making the change of variables y — y + 2" gives

Eqlpin % @x] = —2 > QZQ”//RJ%M_ _x‘(y)dd7

1<4,7<Np,

and the further change of variables z — y — x + ' gives

Eelpn * 0] —2 Z Q,Q, / / p 216 dzdy
n 1<4,5<N, 3 JR3 |$ —l'n—l"
1 ZQZQJ/—l / (y — 2)px(y) dy| d
N 1<4,j<Np 3 |$%—l‘%—x| R3(p>\y AT
DY @@/—eér—m, (4.8)
n 1<i,j<Np 3 |‘T77'1—.Tn —.T’
where ) = ¢y * ¢y € C(R3). Consequently,
Eqlpin] = Eelpin * 03]
! ! ()
= G55 > QO s
Ng 1<q ];n i#£j | | 7% <”Z<Nn R3 |xz xn — l’|
1 1
- %a. | ( I )wg;)dx
Ny l<7,]§]\;n i#] |zt — 7| |zt — x), — x|
e A g

o= [ @i = [ (or@)o)de

This is a positive number by the local integrability of 1/|x| and it depends only on ¢. The
integral in 3,(\) is then found to equal c¢o/\. Since |Q%| < 1 for all n and i, we have

We first estimate the second term (,()\). Let us denote

N, N,
1 n . 2 n 0 C
—_ 7 —_ 7 i < .
OV = 3 2@ [ = D @S < i w0
in (4.9). Note that 9, = @y * ¢y € C(R3)

We now estimate the first term v, (\)
nonnegative, radially symmetric, and supported on B(0,2)). Moreover

[ n@de= [ p@dr [ p@do=1
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If |2¢, — 27| > 2, then Lemma 4.1 implies that

1 1
/( ] - ) - )19,\(1:)dx—0.
w \Jah —ail [l — ot — 1l

For 0 < |z!, — 2| < 2\, we have that

1 1

i, |, — ot~ ]

2]

j Y
n_x

< — ——
2}, — ahl|h, —

and by Lemma 4.2 that

1 1
/ M :/ min (—,—> |z|9)(x) dz
B |23, —an— x| Jwe 2] [, — wnl

1
< / —|z|9\(z) dx
R

s |l
= 1.

Therefore, since |Q%| < 1 for all n and 4, we obtain from (4.9) that

1 o 1 1
wl=3z X e (o )i
N 1<4,j<Np,i#j R3 |‘Tn - I‘n| |xn — Tn — ‘Tl
1 1 0
<= Z A : |x| ,\(az) dz.
W gy [T = Tn] SR [, — i — ]
1<i,j<N,0<|z, —xf, | <22
1 1
= — _ 4.12
N? Z ‘ |2 — | (4.12)
1<6,j<N,0<|ai, —ad|<2x ™
Since the balls B(x%,r,) (i = 1,...,N,) (introduced in the geometrical conditions) are

pairwise disjoint, the Mean-Value Theorem for a harmonic function implies that

1 1 / dy oy
, — = —_— if i # 7.
|$% - ZE%| (4/3)7TT§1 Bzl rn) |x21 - y|

By the geometrical conditions, N,r3 > 37/(47) (n = 1,2,...). Consequently, we obtain
from (4.12) that

1 N, 1 dy
a,(N)| < — —/
O D D D v e 1) AN Py

"=l 1<GEN0< |~ | <2

< 3 / dy
~ATNLS 023t Y]

8_77 2 2
< - (2)\ —|—7"n).
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This, together with (4.9) and (4.10), implies (4.7). The claim is proved.
Step 2.2. We prove for any A > 0 that

Hm E¢[u, * or] = Eelp * @yl (4.13)

n—00

We have for any n and x that

N,
1 = _
b % oa( ZQn% r—a,)| < FZ Qullleallce < lloalloe = A7 ([0 ]lco-
™oi=1
Hence,
i * )@ 22)0)  ONell)® s

|z — | |z —y|

The right-hand side of this inequality is locally integrable in R? x R3. Since j, — p and
ox(z — ) € C*(R?), we have

Hm (pn, % @x)(x) = (1 * o)) (x) Vr € R, (4.14)

n—oo

It then follows from the Dominated Convergence Theorem that

lim // (fin * 02) () (i * 02)(y dxdy // (% ) () (1 % o) (y )dl,dy.
n—oo | Jr3yR3 |IL"— | R3xR3 |£L’— |

This is exactly (4.13).
Step 2.3. We have

lm Ecluxpy] = Elu]. (4.15)

This is a known result; cf. e.g., Lemma Al in [6]. Here for completeness we provide some
details of the proof in our setting.
We have by (4.14) that

Elu* gy = // b x o) @) o)) g
R3 xR3

|z =yl

-] [ s
=L UL B iy an )

By Lemma 4.2, we have for y € R? and y # 0 that

[ et L g L

s e —yl T |yl Jrs Iyl
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Since @y > 0, it follows that

//Rsst Y6 _‘f)f);‘(y =) dody — /RS ey — ) URB W} dy
—/ng(y—y’){ %dx)d dy

rs |2 — (y — 2

—a
S/ oy —y) g,
R |y — |

_ PA(y)
s |y — (2 —y')|

1

dy

Since dy = pda with p € L®(R?) and p = 0 a.e. on Q°, 1/|2/ —y/| is integrable on R? x R?
against d(u x p)(2’,7'). Similar to the calculation leading to (4.8), we can write

// @A(I - 95/)9%(3/ - y’) dady — 19,\(2) dz
R3xR3

|z —y| re |2 —y — 2|

Since ¥ is radially symmetric, nonnegative, and of unit mass (cf. (4.11)),

lim g(2)9\(2) dz = ¢(0) Vg € Co(R?).

A—=0t g3

In particular, if 2’ # ¢’ and if g(+) is equal to 1/|2’ — ¢’ — -| multiplied by a smooth cutoff
function equal to 1 in a neighborhood of the origin and supported in a ball of radius less
than |2/ — ¢/|, we get that

: Ua(z)dz 1
lim = :
A=0t Jps |2 —y' — 2| | — |

Hence,

/ /
. . 1
lim // oAl = 2)ealy = o) dedy = ——  ae. (2/,y) € R®* x R?.
A=0% J Jraxrs |z =y 2" —y/|

This and (4.16), together with the Dominated Convergence Theorem, imply (4.15).
Step 2.4. We finally prove the limit (4.2). Given ¢ > 0. By (4.7) and (4.15), there
exists A > 0 such that

1
|Ealpin) — Eclpin * @] < - +C (ri + ) Vn > 1,

NpA

|Ec[lu’ * ()0)\] - Ec[:u’” <
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These, together with (4.6) and (4.13), the fact that NV, — oo and 7, — 0, imply that

lim sup | Ealpn] — E[u]] < e.

n—o0

leading to (4.2). The proof is complete. O

We now provide an example to show the convergent subsequence stated in Theorem 4.1
is not unique. Let €2 be a bounded open set as in the theorem. We partition €2 into two
parts A and B such that A and B are nonempty open subsets of R®, Q = AUB, ANB = 0,
and |[AN B| = 0. Let Y,, = (27"Z3) N Q and define

_ (Y,NB)U (Y1 NA) if n is even,
"l (YN A) U (Y N B) if n is odd.

Denote by N,, the number of distinct points in X,, and set

un:—de (n=1,2,...).
T, €Xp
We observe that X,, C X, for each n > 1 and that the geometrical conditions are

satisfied. Moreover, since X, is uniformly distributed on each of A and B, but has 23 = 8
times as many points per unit volume in one than the other, hence 8 times the density,

we have
Ji2n = floven and fion—1 = [lodd;
where fleven and jioqq are two Radon measures supported on Q with distinct densities
8 1
Peven = RJA 1 |B|XA+ RJA| 1 |B|XB
1 8
Podd = 31B[ + |A|XA+ 31B[ + |A|XB,
respectively, where xs denotes the characteristic function of a set S. Note that ||u,| =1
for all n, and || feven|| = ||ftoad|| = 1. Note also that these two densities are always different.

If we set specifically
Q={reR:|z| <2}, A={recR®: |z|<1}, and B={rcR®:1< |z <2},

then the densities are

2 1 1 2
even — d odd = )
p F2 XA + 5072 XB an Podd = me5 XA + 102 XB

respectively. We now calculate the energies F[fieven] and Efpoqq]. Note that x4 and xp
are radially symmetric. By approximations by smooth and radially symmetric functions,
we have by Lemma 4.2 that

R R = Y
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= [ () xatw ]
=Sl () e

= (47r)2/01 UOI min (%%) s” ds} t*dt
:(47r)2/01 Uots%dsju/tlst?ds} dt

_320
15
Similarly,
// vo(@)vsly) dedy / [ / - (L L) dw} dy
I AV A\l
2 2 1 1
:(47T)2/ [/ min —,—) Sstl t*dt
1 1 st
~ 5
and

[ e AR A R
11
st
= (47)? /12 (/01 sztds) dt

= 872

Therefore, since dpieven = Peven dx and djioqqa = poaq dx, we obtain by a series of calculations

that
/Oeven x peven y dxdy
Eljtese] :// () Peven(y)
R3 xR3 |CU - y|

2 1 2 1 dxdy
[ |+ o] | o + get)|
59

75
Similarly, Epoaq] = 626/1083. Note that E[peven] # F[ttodd)-

By Theorem 4.1, there exists a subsequence {u, } of {p9,} and a subsequence {u”} of
{pton_1} such that g/, = preven and p = pioqq. Moveover, Ep!] = E|pteven] and E[u!] —
Elptoaa], respectively. Note that the sequence {u! } is different from {u’}, preven 7 Hodd,
and Elfteven| # Elftoaqa]- Therefore, the subsequence in Theorem 4.1 is not unique,
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5 Minimization of Electrostatic Eenrgy in the Pres-
ence of an External Field

Let © C R3 be a bounded open set. Given a finite, signed Radon measure v on R? and
assume it is compactly supported in Q° = R3 \ Q. We consider minimizing the energy
E[u + v] among all u € M(Q) (cf. (3.1)). Such minimization has various applications,
particularly, in an implicit-solvent model of the charged molecules occupying the region
(2 in aqueous (i.e., water or salted water) environment; cf. [7,8,28,33,39,41].
Formally,
Elp+v) = Elp]+ 2E[u,v] + Elv].

Since v is given and fixed, we consider the first two terms here. We define U” :  — R by
dv(y)

Vo e Q.
R3 ]a:—y]

U (x) :=

Since |[v|| < oo and supp (v) C Q°, U¥(x) is well defined and is finite for each = € Q. If
we denote § = dist (supp (v), 2) > 0, then

d d _
3 [T — Y| upp (v) 0 0
Moreover, for any z, z € €,
dv( ) '
U'(x) =U"(2)| =
e -v@l=| [ L
<[ leodd
supp (v |9C —yllz -y
V|
< %|m—z| (5.2)

Hence, U" is Lipschitz continuous on . Therefore, if u € M(Q), then E[u,v] is well
defined and is finite. In fact, it follows from the Fubini-Tonelli theorem and (5.1) that

Bl =| [ v@an)| < [ ool < P 6

We define J : M(Q) — RU {+o0} by

Il = {E[m +2E[uv]if Ellu] < o0

Vi e M(Q).

00 otherwise
Similarly, we define Jy : A(Q) — RU {+o0} by
Jali) = Bali) + 2B v] Ve AQ)
where Eq4[p] for p € A(Q) is defined in (3.5).

38



Theorem 5.1. Let Q be a nonempty, bounded, open subset of R® with a C? boundary 0.
Let v be a compactly supported signed Radon measure on R3 with supp (v) C [
(1) There exists a unique p € M(Q) such that

Jlp] = inf_ Jlu].
HEM(Q)
Moreover, supp (u) C OS2,
(2) For any e > 0 there exist ji, € A(Q) (n=1,2,...) such that

supp (pn) € {x € Q : dist(x,00Q) < €} (n=1,2,...),

and
[tn = 1 and Jalpn] — J{p] as n — 0o.

Proof. Let G =R\ Q = Q. Since G = 9Q is C?, it satisfies the exterior cone condition:
every point x € 0G is accessible from outside of GG by a finite cone that does not otherwise
intersect G. Therefore, there exists a unique Radon measure v/ on R? with supp(v') C 99
and [|¢/|| < ||v|| such that U” = U" on ; cf. Chapter 4 of [26]. Note that v/ € M(Q).

Both E[v/] and E|[u, '] with u € M(S) are well defined and finite. In fact, similar to
(5.3), we have for § = dist (supp (v), 02) > 0 that

E[V']Z/U”’dy’:/ // dv' (@ . dv/(z) dv(y)
R3 o0 o0 JRI\Q ’l’ y!

1011 o 2
S T

< . (5.4)

Moreover, since supp (u) C €2, we have
Elp, '] = / U dp = / U”dp = Elp, v,
Q Q
which is finite by (5.3). Thus, for u € M(Q) with E[|u|] < oo,
Jlp) = Elp] +2E[p,v] = Elp] + 2E[p, V'] + E[V] — E[V] = Elu+ V] — E[V].
Since p + v/ is compactly supported, we have (cf. Theorem 3.10 of [29])
47
s |€]7
where @ is the Fourier transform of a signed Radon measure «. The integral vanishes if
and only if I + v/ = 0 identically on R?, which is true if and only if u + 1/ = 0 (the
zero measure) by the uniqueness of the Fourier transform of compactly supported finite

measures [29]. Therefore, the functional J is uniquely minimized at yu = —/ € M(Q),
establishing (1). Note the minimum value is then given by J[—v/| = —E[/].

~

) + () de>o,

szEm+ﬂ=@m34
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To prove (2), we note that E[|v/|] < oo, which is similar to (5.4). Since supp (u) =
supp (v/ ) € 09, we obtain by Theorem 3.1 a sequence of discrete charge distributions
tn € A(S2) such that

supp (p,) C {z € Q : dist (x,090) < ¢} (n=1,2,...),

and
!

[t — = —v and Eqlpin] = Elp) = E[—V/] as n — 0o.

Since U” is continuous on € (cf. (5.2)), all u,, (n = 1,2,...) and v/ are supported on €,
and U” = U” on Q, we find that

lim Elp,,v] = lim [ U’ du, = —/ U”dv' = —/ U dv = —E[V].
n—o0o n—o00 Q Q a

Therefore,
lim Jg[p,) = hm (Ed[,un | + 2Epin, v ) = E[-V] — 2E[V]
ZE[ 1-2E]=-E}] = [—V]IJ[E]I inf_Jp]
HEM(Q)
The proof is complete. O
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