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Abstract—Robotic systems have been proposed as a
solution to a wide array of problems, from autonomous
warehousing to precision agriculture. Yet these systems
typically require satisfaction of multiple constraints, such
as collision avoidance and connectivity maintenance, while
completing their primary objectives. Many such problems
may be decomposed into stability and invariance crite-
ria (e.g., monitor crop patches while avoiding collisions),
and this article utilizes Lyapunov and barrier functions
to encode stability and invariance, respectively. Barrier
functions provide constraint-satisfaction guarantees, and
prior results have established a Boolean composition and
controller-synthesis framework for these objects via non-
smooth analysis. However, this past work has yet to ad-
dress Boolean composition of Lyapunov functions directly
and does not apply to all Boolean expressions. This arti-
cle resolves these issues by providing a general method
to encode Boolean expressions of Lyapunov or barrier
functions. Moreover, this article develops an associated
controller-synthesis algorithm that yields discontinuous
yet validating controllers with respect to these Boolean
expressions. Experimental results show the efficacy of this
article in a precision-agriculture scenario, where a robot
swarm must visit crop patches while avoiding collisions.

Index Terms—Collision avoidance, Lyapunov methods,
multiagent systems, robustness.

I. INTRODUCTION

ROBOTIC systems are increasingly entering human-
occupied spaces, from factory floors to city highways.

These systems provide a number of benefits; however, they also
introduce interaction-based complexity in that they typically
require satisfaction of multiple constraints, such as speed limits,
collision avoidance, or staying in connectivity range. Moreover,
such systems may also have objectives that must be satisfied in
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the context of these constraints, like completing a delivery or
monitoring a crop patch.

As an example, consider a precision-agriculture scenario in
which a series of robots must dynamically monitor crops patches
in a field (e.g., as in [1]). In this scenario, each patch must be
autonomously visited by a robot, and the robots must avoid
collisions with each other and potential obstacles in the field.
Moreover, the location or number of these patches may change,
altering the problem formulation. Thus, a framework for this
application must be able to synthesize an effective control
law without requiring vast theoretical modifications in the face
of such changes. That is, an applicable controller-synthesis
framework must address both objectives and constraints and
be system agnostic, provably correct, and usable in real time.
This article develops such a framework and addresses a similar
precision-agriculture scenario in an experiment with real robots.

For many systems, the abovementioned constraints (e.g.,
collision avoidance, connectivity maintenance) and others can
be encoded as forward-set-invariance requirements, and recent
results have shown that barrier functions can guarantee this prop-
erty while remaining conducive to controller synthesis [2]–[6].
These objects represent a valuable theoretical and practical tool,
seeing success in applications ranging from teams of quadrotors
to remote-access robotics testbeds [7], [8]. The versatility of
barrier functions stems from the fact that they are not formulated
with respect to particular systems and provide a general method-
ology to formally guarantee safety. Additionally, prior work
demonstrates that safe controllers may be quickly synthesized.
For example, the work in [8] synthesizes controllers at 100 Hz for
an 80-dimensional ensemble system of differential-drive robots.
These observations justify the adoption of barrier functions to
encode constraints.

From a complementary perspective, Lyapunov functions
have long and ubiquitously been used for stability analysis. This
article uses set-stable nonsmooth Lyapunov functions (NLFs) to
encode objectives, and the formulation is primarily based on [9]–
[12]. Together, Lyapunov functions and barrier functions encode
stability and invariance criteria, respectively, but crafting a single
such function to encode a complex, evolving robotics objective,
or constraint may be tedious. In this context, logical composition
provides a powerful simplification tool, allowing complex
behaviors to be created from simple propositions. Boolean
logic represents one such method; however, Boolean operations
such as conjunction and disjunction inevitably introduce
nonsmoothness when encoded with min and max operations.
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In our previous work, we have introduced nonsmooth barrier
functions (NBFs), extending barrier functions to the nonsmooth
case [13] and introducing controller-synthesis methods for
them [14]. Section I-A compares and contrasts related methods,
outside the area of barrier or Lyapunov functions, to this
article.

This work’s first main result elucidates the calculation of
discontinuous but validating controllers for NBFs and NLFs
represented by piecewise-smooth (PCr) functions [15]. These
results utilize discontinuous dynamical systems and nonsmooth
analysis, as studied in [10], [11], [16]–[18]. Specifically, this
result establishes a link between the PCr functions of [15] with
the generalized gradient of [17] to develop a new theory. To ana-
lyzePCr functions, one typically analyzes a set of continuously
differentiable functions, and certain types of index sets capture
the behavior of the generalized gradient. By extending these
index functions to capture the locality of PCr functions, this
article derives a general method for synthesizing discontinuous
controllers for PCr functions that represent an NBF or a NLF.
Moreover, this article shows that Boolean expressions on NBFs
or NLFs fall into the class of PCr functions and provides some
preliminary results on Boolean composition of NLFs.

The second contribution of this article is a controller-synthesis
framework that permits the combination of NBFs and NLFs in an
optimization program. The resulting (potentially discontinuous)
controller guarantees that the objective is accomplished and the
constraints are satisfied. This synthesis procedure relies on using
an appropriate index set for the Boolean expressions, and this ar-
ticle provides a system-independent algorithm to calculate such
index sets. To show the practicality of these results, a practical
experiment showcases that the algorithm may be applied in real
time. In the considered scenario, a swarm of robots must visit a
series of crop patches in a simulated farming environment while
avoiding interrobot collisions in real time. Boolean NLFs and
NBFs capture the objectives and constraints for the experiment.
Section I-A includes a discussion of related work in the context
of these stated contributions.

The organization of this article follows. Section II notes
background material required for this article including the sys-
tem of interest, NBFs, nonsmooth analysis, PCr functions,
and discontinuous dynamical systems. Section III begins the
main contributions for this article, providing results on a class
of index functions for PCr functions and extending the re-
sults of [14]. Next, Section IV formulates Boolean expressions
of NBFs and NLFs and shows that they fall into a specific
class of PCr functions. Moreover, this section formulates an
optimization-based controller-synthesis framework for NBFs
and NLFs. Combining the prior two sections, Section V demon-
strates some recursive methods for calculating appropriate index
functions, applies these methods to Boolean expressions, and
provides a straightforward algorithm for recursively calculating
these index functions. To demonstrate the efficacy of the theo-
retical results, Section VI showcases an experiment that uses the
controller-synthesis framework of Section IV and the algorithm
proposed in Section V to produce a safe and effective controller
in a precision-agriculture scenario.

A. Related Work

Related work to the contributions proposed by Section I lies
in two main areas: set invariance and logical composition of
functions, and nonsmooth-analysis techniques.

1) Set-Invariance Methods: Barrier functions are not the
only set-invariance method, and many other such methods ex-
ist, such as [19]–[22]. These approaches range from potential
functions to PDE-based approaches to compute reachable sets.
Herbert et al. [19] formulated a modular obstacle-avoidance
framework for general dynamical systems, yet this framework
is limited to the particular application of obstacle avoidance.
Mitchell et al. [20] relies on the solution of PDEs to guaran-
tee set invariance, and in practice, these computations can be
prohibitively costly. Finally, potential functions [21] are widely
used, yet they are typically formulated with respect to a specific
system or constraint (i.e., obstacle avoidance) and usually must
be tuned for different objectives. As such, the system’s objective
and constraints may not be readily interchanged. Similarly, Hoy
et al. [22] presented a variety of collision-avoidance methods
that do not generalize beyond solving navigation for mobile
robots in a cluttered environment.

In general, two facts separate barrier functions from other
methods in the context of this article and prior efforts. First,
barrier functions are mathematically agnostic in that the formal
mathematical description of their properties is independent from
any particular system. Second, pointwise satisfying a particular
inequality involving barrier functions across the state space
produces a global invariance result. This last quality allows
barrier functions to be included in optimization programs for
controller-synthesis purposes without requiring a look-ahead
(e.g., as in model-predictive control), significantly reducing the
computational burden.

2) Logical Composition of Functions: It is worth noting
that prior work has considered Boolean logic for real-valued
functions [23], [24]. However, this literature mostly focuses
on smooth functions that capture conjunction and disjunction,
rather than the nonsmooth max/min. Such smooth analogs
are possible; however, they come at the expense of becoming
significantly more difficult to differentiate. Because controller
synthesis with respect to Boolean expressions inevitably in-
volves taking derivatives, this quality complicates the synthesis
process. Conversely, the approach of [13] and [14] becomes
relatively straightforward from a synthesis perspective, at the
expense of requiring nonsmooth analysis. The major limitations
of [13] and [14] are that they do not apply to general Boolean
expressions and do not consider NLFs in controller synthesis.
This article resolves both issues by extending the formulated
controller-synthesis framework to address inductive Boolean
compositions of NBFs and NLFs.

With respect to barrier functions, recent work [25] uses
Lyapunov-like barrier functions in the context of multiagent con-
trol, which are noticeably different in formulation to the barrier
functions here. Moreover, their method of Boolean composition
is a norm-like function similar to the approaches described
previously. In comparison to this article, the results in [25] do not
apply to differential inclusions and establish only weak forward
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invariance, meaning that in the case of multiple solutions, only
one is guaranteed to remain in the considered set. By contrast, the
guarantees of this article apply to all solutions. Furthermore, this
article provides a generic set of novel mathematical objects for
synthesizing controllers with respect to Boolean compositions of
functions, whereas the approach in [25] is tailored to a particular
application.

3) Analysis of Solutions Along Nonsmooth Functions:
Some of the new theory developed in this article aids in the anal-
ysis of PCr functions along solutions to differential inclusions,
particularly those resulting from the Filippov regularization.
Usually, when considering this branch of nonsmooth analysis,
one must typically use different (though analogous) tools than
in the smooth case, such as so-called set-valued Lie deriva-
tives [16]. However, many of these techniques require explicit
computation of the Filippov operator or exact calculation of the
generalized gradient [10], yet exact calculation of these objects
can be tedious due to their limit-point representation. That is, the
behavior of the system must be considered in a neighborhood
around each point rather than just pointwise. This calculation
presents an even larger burden in the case of optimization-based
controller synthesis, as these objects cannot be calculated and
held in memory, at least according to their definitions. The
generalized gradient admits a convenient calculus; however,
with respect to the dynamics, a calculus for the Filippov operator
is less useful because it depends heavily on the particular dy-
namical system. Moreover, as the generalized-gradient calculus
yields a superset of the generalized gradient, certain simplifying
set-valued Lie derivatives cannot be applied [16].

Exacerbating the issue, one typically creates the controller
(analytically or numerically) as a function of the generalized
gradient, much like when creating a controller via the usual gra-
dient of a Lyapunov function in the smooth sense, complicating
the instantiation of the Filippov operator. Accordingly, there is a
need for analysis techniques that allow one to circumvent the ex-
plicit calculation of these objects while retaining their provable
guarantees. Some techniques exist for simplifying the calculus of
Filippov regularizations, such as assuming a piecewise-smooth
vector field [16], but this assumption is quite restrictive at large
and introduces the tradeoff of proving that each particular vector
field satisfies this property.

Toward this end, Glotfelter et al. [14] proposed a mathematical
object that represents the generalized gradient by a finite set
of known, readily computed points for a certain class of func-
tions. Moreover, it also provides a method by which controllers
synthesized with respect to this new object do not need to
be Filippov regularized explicitly, a major leap forward from
existing methods. The application of this technique requires
no additional assumptions on the dynamics. Unfortunately, this
new object applies to a restrictive class of functions along
which trajectories are being considered (e.g., the Lyapunov or
barrier function). Similarly, Della Rossa et al. [26] considered
a comparable problem to [14], avoiding the calculation of the
Filippov regularization; however, as in [14] and [26] applies to a
restrictive class of functions and, differently from [14], requires
the assumption of a piecewise-defined vector field.

This article extends [14], providing new nonsmooth-analysis
techniques and constructive controller-synthesis results for a
useful class of NLFs and NBFs that is closed under Boolean
composition. Moreover, the resulting closed-loop systems need
not be explicitly Filippov regularized, which significantly sim-
plifies their practical application, and this circumvention of
Filippov regularization requires no restrictive assumptions on
the dynamics.

II. BACKGROUND MATERIAL

This section contains background material, introducing the
system of interest, nonsmooth analysis, and NBFs. We consider
control-affine systems with potentially discontinuous control
inputs and, as a result, introduce the theory of discontinuous
dynamical systems. We also present nonsmooth analysis tech-
niques necessary to formulate and validate NBFs.

A. Notation

The symbol × denotes the Cartesian product. For k > 0, the
symbol [k] indicates the set {1,⋯, k}. The notation R≥0 repre-
sents the set of nonnegative real numbers;a.e. symbolizes almost
everywhere in the sense of Lebesgue measure. The operation co
corresponds to the convex hull of a set. A function α ∶ R→ R
is extended class-K if α is continuous, strictly increasing, and
α(0) = 0. An extended class-K function is class-K when re-
stricted to R≥0. A function β ∶ R≥0 ×R≥0 → R≥0 is class-KL if
it is class-K in its first argument and, for each fixed r, β(r, ⋅)
is continuous, decreasing, and lims→∞ β(r, s) = 0. For a set A,∣A∣ means its cardinality, and 2A indicates its powerset.

B. System of Interest

This article considers control-affine systems of the form

ẋ(t) = f(x(t)) + g(x(t))u(x(t)), x(0) = x0 (1)

where f ∶ Rn → Rn, g ∶ Rn → Rn×m are continuous and u ∶
Rn → Rm is measurable and locally bounded. This assumption
covers a wide class of systems, as most robotic systems (e.g.,
differential-drive robots, quadcopters) are control affine. An
important point is that we avoid the assumption that u is con-
tinuous, which becomes relevant for controller synthesis with
respect to NBFs. That is, the synthesized controller may contain
discontinuities, which is allowed for by the measurability and
locally bounded assumptions.

Theoretically speaking, f and g may also be discontinuous,
in the same sense as u; however, as this article pertains to
controller synthesis, it assumes continuity of f and g. Because
u is potentially discontinuous, solutions to (1) may not exist.
Fortunately, Filippov’s operator maps (1) into a differential
inclusion to which solutions exist.

Definition II.1 ([11, Th. 1]): The Filippov operator K[f +
gu] ∶ Rn → 2Rn

with respect to (1) at x′ ∈ Rn is

K[f + gu](x′)
= co{ lim

i→∞f(xi) + g(xi)u(xi) ∶ xi → x,′ xi ∉ S̄ ∪ S}
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where S̄ is a fixed zero-Lebesgue-measure set and S is any set
of zero Lebesgue measure.

Remark II.2: The map of limit points L ∶ Rn → 2Rn

defined
by

L[f + gu](x′)
= { lim

i→∞f(xi) + g(xi)u(xi) ∶ xi → x,′ xi ∉ S̄ ∪ S}
becomes useful later in this article. Note that for every x′ ∈ Rn,
K[f + gu](x′)coL[f + gu](x′). ●

A general differential inclusion is formulated as

ẋ(t) ∈ F (x(t)), x(0) = x0 (2)

where F ∶ Rn → 2Rn

is a nonempty, compact-, convex-valued
map that is upper semicontinuous. A set-valued map F ∶ Rn →
2Rn

is upper semicontinuous if for every x′ ∈ Rn, ε > 0 there
exists δ > 0 such that

y ∈ B(x,′ δ) ⇒ F (y) ⊂ F (x′) +B(0, ε).
Sometimes, set-valued maps are written F ∶ Rn ⇉ Rn, which
has the same meaning as in this article.

These conditions ensure that Carathéodory solutions to (2) ex-
ist. A Carathéodory solution is an absolutely continuous function
x ∶ [0, t1] → Rn such that

ẋ(t) ∈ F (x(t)), x(0) = x0 (3)

almost everywhere on [0, t1] ∋ t, andx(0) = x0. Note that t1 > 0
and that t1 may depend on each particular solution. In general,
Carathéodory solutions to (2) exist, under these regularity con-
ditions, but are not unique. For this article, an important fact is
that Filippov’s operator K[f + gu] satisfies the aforementioned
conditions. That is, the differential inclusion

ẋ(t) ∈K[f + gu](x(t)), x(0) = x0 (4)

has Carathéodory solutions [9], [16]. Such solutions are some-
times referred to as Filippov solutions to (1). For extensive
coverage of discontinuous dynamical systems, see [16].

The usage of Filippov regularization, rather than the similar
Krasovskii regularization (e.g., see [9]), is motivated by prior
work as well as the result in Definition II.1. Indeed, within
the theoretical results of this article, one may immediately
replace the usage of Filippov regularization with Krasovskii
regularization. Sometimes Filippov regularization is denoted by
F [f + gu]; however, to avoid confusion with (3), this article
utilizes the notation in [11].

C. Nonsmooth Analysis

Previous work provides a plethora of methods for analyzing
nonsmooth functions. In the case that the given nonsmooth
function is at least locally Lipschitz, the generalized gradient is a
well-understood object with an extensive calculus. Moreover, in
the case of Boolean composition (i.e., composition with min
and max operators), one can readily find a superset of the
generalized gradient in terms of the component functions. The
formal definition of the generalized gradient is as follows.

Definition II.3 ([17, Th. 2.5.1]): Let h ∶ Rn → R be Lipschitz
near x′, and suppose S is any set of Lebesgue-measure zero in
Rn. Then, the generalized gradient of the function ∂ch(x′) is

∂ch(x′) = co{ lim
i→∞∇h(xi) ∶ xi → x,′ xi ∉ Ωh ∪ S}

where Ωh is the Lebesgue-zero-measure set where h is nondif-
ferentiable.

Note that, per Definition II.3, the generalized gradient ∂ch ∶
Rn → 2Rn

is a set-valued map. Another useful result provides
a chain rule for locally Lipschitz functions. Note that the clo-
sure operation from [17, Th. 2.3.9] may be omitted (see the
proof of the referenced theorem) for finite-dimensional spaces.
Moreover, for two sets A ⊂ Rn×m, B ⊂ Rm×p, the set-valued
multiplication is

AB = {ab ∶ a ∈ A, b ∈ B}.
Theorem II.4 ([17, Th. 2.3.9]): Let h = f ○ g, where g ∶ Rn →

Rm and f ∶ Rm → R are locally Lipschitz functions, and let
x′ ∈ Rn. Then

∂ch(x′) ⊂ co( m⨉
k=1∂cg

k(x′))∂cf(g(x′))
where gk denotes the kth component function of g.

Proposition II.5 ([17, Proposition 2.3.1]): Leth ∶ Rn → R be
a locally Lipschitz function. For any scalar s one has

∂c(sh)(x′) = s∂ch(x′),∀x′ ∈ Rn.

The main advantage of the generalized gradient is that it
permits analysis along Carathéodory solutions. In particular,
given a locally Lipschitz functionh ∶ Rn → R and a Carathédory
solution x ∶ [0, t1] → Rn to (2), we have

d

dt
(h(x(t))) ≥min∂ch(x(t))⊺F (x(t)) (5)

almost everywhere on [0, t1] ∋ t. The map ∂ch(⋅)⊺F (⋅) is some-
times referred to as a set-valued Lie derivative (e.g., see [16]).
Explicitly, the set-valued product is the set

∂ch(⋅)⊺F (⋅) = {a⊺b ∶ a ∈ ∂ch(⋅), b ∈ F (⋅)}
but, for brevity, we use the relaxed notation in (5).

D. Nonsmooth Barrier Functions

This section contains background material on NBFs. For
brevity, NBFs are formulated with respect to the general dif-
ferential inclusion in (3) with the understanding that these re-
sults also apply to the controlled system in (1) via Filippov’s
operator (4).

The formulation of barrier functions is as follows. Given a
function h ∶ Rn → R, the safe set is defined as

C = {x′ ∈ Rn ∶ h(x′) ≥ 0}.
That is, C is the super-zero level set to h. The goal becomes
to ensure forward invariance of C with respect to (3). This
article considers a set C to be forward invariant with respect
to a differential inclusion (3) if

x0 ∈ C ⇒ x(t) ∈ C,∀t ∈ [0, t1]
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for every Carathéodory solution x ∶ [0, t1] → Rn. A valid NBF
is defined as follows.

Definition II.6: A locally Lipschitz function h ∶ Rn → R is a
valid NBF for (3) if, for each x0 ∈ C, there exists a class-KL
function β ∶ R≥0 ×R≥0 → R≥0 such that

h(x(t)) ≥ β(h(x0), t)
for every t ∈ [0, t1] and every Carathéodory solution x ∶[0, t1] → Rn.

The abovementioned definition ensures thath(x(t)) ≥ 0,∀t ∈[0, t1]. Thus, x0 ∈ C implies that x(t) ∈ C for all t ∈ [0, t1], for
every Carathéodory solution, meaning that C is forward invari-
ant. Note that, cf., [13], satisfying the differential inequality

ḣ(x(t)) ≥ −α(h(x(t))), a.e. t ∈ [0, t1] (6)

for every Carathéodory solution and for some locally Lipschitz
extended class-K function α ∶ R→ R, ensures that h is a valid
NBF.

Toward controller synthesis, we should be able to verify (6)
without explicitly calculating the time derivative of h ○ x for
every Carathéodory solution. This is precisely the strength of (5),
as it allows one to check the validity of the NBF spatially (i.e.,
over Rn), rather than computing the time derivative explicitly.
Combining (5) and (6), the next results follow.

Theorem II.7: [13, Th. 2] Let h ∶ Rn → R be a locally Lip-
schitz function. If there exists a locally Lipschitz extended
class-K function α ∶ R→ R such that

min∂ch(x′)⊺F (x′) ≥ −α(h(x′)),∀x′ ∈ Rn

then, h is a valid NBF for (3).
Definition II.8 ([14, Definition 4]): Let h ∶ Rn → R be a

locally Lipschitz function. The function h is a valid Closed-loop
NBF (CNBF) for (1) if and only if there exists a locally Lipschitz
extended class-K function α ∶ R→ R and a measurable and
locally bounded function u ∶ Rn → Rm such that

min∂ch(x′)⊺K[f + gu](x′) ≥ −α(h(x′)),∀x′ ∈ Rn.

Note that Definition II.8 differs in terminology from [14],
which is for symmetry with upcoming definitions; the mathemat-
ical relationship is equivalent. A CNBF automatically satisfies
the requirements for a valid NBF via Theorem II.7 in the sense
that C is forward invariant with respect to (4), but some difficulty
arises in actually finding such a controller, as the Filippov
operator must be applied to it. This situation creates issues
for controller synthesis, because the Filippov operator cannot
feasibly be calculated in real time. Moreover, for a controlled
system

min∂ch(x′)⊺(f(x′) + g(x′)u) ≥ −α(h(x′)),∀x′ ∈ Rn

does not imply that

min∂ch(x′)⊺K[f + gu](x′) ≥ −α(h(x′)),∀x′ ∈ Rn

so the generalized gradient cannot be directly used for controller
synthesis. This implication does not hold because, at any point,
∂ch(x′) and K[f + gu](x′) are collections of limit points and
represent discontinuous objects. The work in [14] shows that,
for certain well-behaved Boolean CNBFs, controller synthesis is

possible by using an extended version of the generalized gradient
called the almost-active gradient. However, this object is limited,
as it only applies to Boolean CNBFs consisting of exclusively∧ or ∨ operations. Section II-E lifts this restriction.

E. Piecewise-Differentiable Functions

This article extends the results in [14] by formulating Boolean
NBFs as piecewise differentiable (PCr) functions as in [15],
and one of the main results of this article, in Section III, utilizes
this theory to formulate controller synthesis for general Boolean
expressions. Accordingly,PCr functions represent an important
class of nonsmooth functions, and this section discusses relevant
background material. Formally, a PCr function is defined as
follows.

Definition II.9 ([15, p. 91]): A function h ∶ Rn → R is piece-
wise differentiable (PCr) if for every x′ ∈ Rn there exists an
open neighborhood N of x′ and a set of Cr functions {hi ∶ i ∈
Kh}, with Kh a finite index set, such that h is a continuous
selection of the functions hi on N . That is, h is continuous
and h(y) ∈ {hi(y) ∶ i ∈Kh}, ∀y ∈ N . The function h is piece-
wise linear (PL) if this definition holds with linear functions
hi(y) = a⊺i y.

Note that, in Definition II.9, the finite set of component func-
tions may vary based on the particular point in the domain. Here,
we only considerPCr functions whose component functions are
defined over the entire domain. That is

h(y) ∈ {hi(y) ∶ i ∈Kh},∀y ∈ Rn

for some finite set of functions denoted by Kh, which is fixed.
In the context of this article, this assumption is not restrictive
and does not inhibit the generality of the proposed results
for controller synthesis. Throughout this article, we make the
assumption that r > 0 (i.e., that all the component functions are
at least C1).

We next relate PCr functions to the generalized gradient
defined in Section II-C. In this case, the active index set,
Iah ∶ Rn → 2Kh , for a PCr function h ∶ Rn → R defined as

Iah(x′) = {i ∈Kh ∶ hi(x′) = h(x′)} (7)

plays a role. However, it may be that the active set captures
irrelevant functions. As such, the essentially active set, Ieh ∶
Rn → 2Kh , defined by

Ieh(x′) = {i ∈Kh ∶ x′ ∈ cl(int({y ∶ hi(y) = h(y)}))} (8)

can be alternatively used. The essentially active index function
Ieh contains only functions that lie in the closure of the interior
of the active set, ignoring lower-dimensional sets. To be in Ieh,
a function must be active on a sequence that converges in the
interior of the active set. As a consequence, Ieh(⋅) ⊂ Iah(⋅) always.
However, Ieh may be more difficult to calculate, whereas Iah(⋅)
remains straightforward to calculate, assuming the component
functions are known.

Tying these theories together, the following result links the
essentially active set Ieh to the generalized gradient, and this
relationship is critical for the forthcoming results.
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Proposition II.10 ([15, Proposition 4.3.1]): If U is an open
subset of Rn and h ∶ U ⊂ Rn → R is a PC1-function with C1

selection functions hi ∶ N → R, i ∈Kh, at x′ ∈ N ⊂ U , where N
is a neighborhood of x′, then

∂ch(x′) = co{∇hi(x′) ∶ i ∈ Ieh(x′)}.
III. EVALUATING SET-VALUED LIE DERIVATIVES WITH

ENCAPSULATING INDEX FUNCTIONS

This section begins with the main results of this article, which
relate to extending the work in [14] to PCr functions through
particular index sets. In turn, this development extends the
controller-synthesis framework for Boolean CNBFs to general
Boolean expressions.

A. Encapsulating Index Functions

As seen in Proposition II.10, index functions unite PCr

functions with the generalized gradient. This section presents a
class of index functions that are eventually useful for validating
NBFs and NLFs in the presence of discontinuities in the control
input. The following definition describes the index functions that
capture the generalized gradient.

Definition III.1: Let h ∶ Rn → R be a PCr function, and
let Ih ∶ Rn → 2Kh be an index function for h. Then, Ih is an
encapsulating index function for h if and only if

∂ch(x′) ⊂ co{∇hi(x′) ∶ i ∈ Ih(x′)}
and hi(x′) = h(x′) for all i ∈ Ih(x′) and all x′ ∈ Rn.

Note that, by Proposition II.10, encapsulating index functions
always exist. Moreover, the requirement that hi(x′) = h(x′)
for all i ∈ Ih(x′) is nonrestrictive, because indices outside this
index set are superfluous. The goal then becomes to find index
functions that are relatively easy to calculate and satisfy this
definition. Because this article studies these index functions
extensively, the following notation:

{∇hi(⋅) ∶ i ∈ I(⋅)} = {∇hi
i∈I }(⋅)

becomes useful for brevity in later results. The following exam-
ple illustrates Definition III.1.

Example III.1: Let h ∶ R→ R be defined as h(x′) = ∣x′∣,
which is equivalent to max{−x,′ x′}. As such, h is a PCr

function with component functions h1, h2 ∶ R→ R defined as
h1(x′) = −x′, h2(x′) = x′. Accordingly, Kh = {1,2}. Note that
the generalized gradient for h is

∂ch(x′) = {−1}, x′ ∈ (−∞,0)
∂ch(x′) = [−1,1], x′ = 0
∂ch(x′) = {1}, x′ ∈ (0,∞).

Then, an encapsulating index function for h is Ih ∶ R→ 2Kh

defined as

Ih(x′) = {1}, x′ ∈ (−∞,0)
Ih(x′) = {1,2}, x′ = 0
Ih(x′) = {2}, x′ ∈ (0,∞).

●

Recall the problem discussed in Section II-D in relation to
synthesizing controllers via the generalized gradient. In this
case, encapsulating index functions, as in Definition III.1, still
encounter this fundamental limitation, because encapsulating
index functions only capture indices that create the generalized
gradient. As such, it becomes necessary to further extend the
index-function developments to make sure that we can rely on
the indices uniformly around any particular point. Resolving
this limitation, this section shows that capturing the locality of
encapsulating index functions creates an object that is sufficient
for controller-synthesis purposes. Toward this end, the following
defines locality-capturing index functions.

Definition III.2: Let h ∶ Rn → R be a PCr function and
I lh ∶ Rn → 2Kh an index function for h. Then, I lh is a locally
encapsulating index function for h if and only if there exists an
encapsulating index function for h, Ih ∶ Rn → 2Kh , such that,
for every x′ ∈ Rn, there exists δ > 0 such that

Ih(x′) ⊂ I lh(y), ∀y ∈ B(x,′ δ).
A locally encapsulating index function maintains the indices

of an encapsulating index function in a neighborhood of each
point. Later, this section shows that this regularity is enough
to circumvent the calculation of the Filippov operator. The
following example demonstrates a locally encapsulating index
function.

Example III.2: Let Ih ∶ R→ 2Kh be defined as in Exam-
ple III.1. Then, a locally encapsulating index function I lh ∶ R→
2Kh for Ih is

I lh(x′) = {1}, x′ ∈ (∞,−ε)
I lh(x′) = {1,2}, x′ ∈ [−ε, ε]
I lh(x′) = {2}, x′ ∈ (ε,∞)

for any fixed ε > 0. ●
An important point is that PCr functions admit locally

encapsulating index functions, as we establish next. As with
encapsulating index functions, the primary consideration for
picking a specific locally encapsulating index function depends
on use-specific circumstances (e.g., Ie versus Ia).

Proposition III.3: Ifh ∶ Rn → R is aPCr function, then there
exists a locally encapsulating index function I lh ∶ Rn → 2Kh

for h.
Proof: Consider the index function I lh ∶ Rn → 2Kh

I lh(x′) = {i ∈Kh ∶ ∣hi(x′) − h(x′)∣ ≤ ε},∀x′ ∈ Rn

for some fixed ε > 0 independent of x′. Let Ieh ∶ Rn → 2Kh be
the essentially active index function for h as in (8).

Now, take x′ ∈ Rn and assume that i ∈ Ie(x′). Since i ∈
Ieh(x′), hi(x′) = h(x′). Moreover, by continuity of hi and h,
there exists a δ1 and δ2 such that

y ∈ B(x,′ δ1) ⇒ ∣hi(y) − hi(x′)∣ ≤ ε/2
and

y ∈ B(x,′ δ2) ⇒ ∣h(y) − h(x′)∣ ≤ ε/2.
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Let δ =min{δ1, δ2}. It remains to be shown that i ∈ I lh(y) for
all y ∈ B(x,′ δ). Let y ∈ B(x,′ δ). Then,

∣hi(y) − h(y)∣ = ∣hi(y) − hi(x′) + h(x′) − h(y)∣
≤ ∣hi(y) − hi(x′)∣ + ∣h(x′) − h(y)∣ ≤ ε

implying that i ∈ I lh(y). Thus, I lh is a locally encapsulating index
function for h via Ieh. ∎

Remark III.4: Note that the proof of Proposition III.3 also
shows that I lh is a locally encapsulating index function for h
with respect to the active index function Iah defined in (7). ●
B. Evaluation of Set-Valued Lie Derivatives

The next theorem represents the first main result of this article,
demonstrating that locally encapsulating index functions are
indeed the correct type of index function to navigate the issues
caused by employing Filippov’s operator.

Theorem III.5: Let f̂ ∶ Rn → Rn be measurable and locally
bounded and α ∶ R→ R continuous. Let h ∶ Rn → R be a PCr

function, and let I lh ∶ Rn → 2Kh be a locally encapsulating index
function for h. If

min
⎧⎪⎪⎨⎪⎪⎩ ∇i∈Il

h

hi

⎫⎪⎪⎬⎪⎪⎭(x
′)⊺f̂(x′) ≥ −α(h(x′)),∀x′ ∈ Rn

then

min∂ch(x′)⊺K[f̂](x′) ≥ −α(h(x′))
for all x′ ∈ Rn.

Proof: Let x′ ∈ Rn. It must be shown that

min∂ch(x′)⊺K[f̂](x′) ≥ −α(h(x′))
and by application of [13, Lemma 3], it suffices to show that

min{ ∇
i∈Ihhi}(x′)⊺L[f̂](x′) ≥ −α(h(x′))

for any encapsulating index function Ih. As such, take l ∈
L[f](x′). Then, there exists xj → x′ such that

l = lim
j→∞ f̂(xj).

Since I lh is a locally encapsulating index function for h, there
exists an encapsulating index function Ih ∶ Rn → 2Kh for h such
that, at x′

Ih(x′) ⊂ I lh(y),∀y ∈ B(x,′ δ)
for some δ > 0. Moreover, there exists an N such that for all
j ≥ N , ∥xj − x′∥ ≤ δ. Thus, reusing notation and without loss of
generality, consider only xj such that j ≥ N .

Now, take i ∈ Ih(x′). It remains to be shown that

∇hi(x′)⊺l ≥ −α(h(x′)).
Accordingly

∇hi(x′)⊺l + α(h(x′))
= ∇hi(x′)⊺ lim

j→∞ f̂(xj) + α(h(x′))

= lim
j→∞∇hi(xj)⊺ lim

j→∞ f̂(xj) + lim
j→∞α(h(xj))

= lim
j→∞∇hi(xj)⊺f̂(xj) + lim

j→∞α(h(xj))
= lim

j→∞ [∇hi(xj)⊺f̂(xj) + α(h(xj))] .
Moreover, ∥xj − x′∥ ≤ δ, ∀j, meaning that i ∈ I lh(xj), ∀j.

Thus,

∇hi(xj)⊺f̂(xj) + α(h(xj)) ≥ 0,∀j
so

lim
j→∞ [∇hi(xj)⊺f̂(xj) + α(h(xj))] ≥ 0

as well, implying that

min∂ch(x′)⊺K[f̂](x′) ≥ −α(h(x′))
and yielding the desired result. ∎

Theorem III.5 becomes particularly useful in the context of
controller synthesis. Specifically, including a locally encapsu-
lating index function as a constraint in an optimization program
yields a validating but potentially discontinuous controller. The
proof of Proposition III.6 is omitted, as it follows directly from
Theorem III.5.

Proposition III.6: Leth ∶ Rn → R be a candidate NBF, and let
f , g be as in (1). If there exists a locally encapsulating index func-
tion I lh ∶ Rn → 2Kh for h; a locally Lipschitz extended class-K
function α ∶ R→ R; and a measurable and locally bounded
function u ∶ Rm → Rn such that

min
⎧⎪⎪⎨⎪⎪⎩∇i∈Il

h

hi

⎫⎪⎪⎬⎪⎪⎭(x
′)⊺(f(x′) + g(x′)u(x′))≥−α(h(x′)),∀x′ ∈ Rn

then, h is a valid CNBF for (1).

IV. BOOLEAN COMPOSITION FOR LYAPUNOV AND
BARRIER FUNCTIONS

This section builds on the concept of locally encapsulating in-
dex functions to formulate the Boolean composition syntax and
the class of Boolean expressions considered in this article. The
first results pertain to formulating NLFs in the present context
and some conditions under which they may be composed with
Boolean operators. Then, we discuss the syntax and semantics
of Boolean composition for NLFs and NBFs.

A. Closed-Loop NLFs

NLFs have been studied in great detail, including [9]–[11].
However, they have not been previously extended to the par-
ticular case of Boolean composition. There are many different
formulations for Lyapunov functions; in this case, we use the
following formulation, as it is amenable to Boolean composition.

Definition IV.1: A locally Lipschitz function V ∶ Rn → R is
a candidate NLF if and only if, with

A = {x′ ∈ Rn ∶ V (x′) = 0}
V (x′) > 0, for all x′ ∉ A, A is nonempty, and

{x′ ∈ Rn ∶ V (x′) ≤ a}
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is bounded for every a ∈ R≥0.
Remark IV.2: For a candidate NLF V , we always use A to

denote the zero level set. Moreover, note that A is compact,
because it is assumed to be bounded and is closed via continuity
of V . ●

Definition IV.3: A candidate NLF V ∶ Rn → R is a valid
closed-loop NLF (CNLF) for (1) if and only if there exists
a continuous, positive-definite function p ∶ R≥0 → R≥0, and a
measurable and locally bounded function u ∶ Rn → Rm such
that

max∂cV (x′)⊺K[f + gu](x′) ≤ −p(V (x′)),∀x′ ∈ Rn.

Note that Definition IV.3 creates some mathematical dif-
ferences from similar existing literature (e.g., that of control
Lyapunov functions). For example, Definition IV.3 assumes
the existence of a measurable and locally bounded controller;
whereas, in the literature, one typically assumes a pointwise
decrease condition. That is, pointwise, there is some value of
u ∈ Rm that generates a decrease. Then, one must prove that a
stabilizing controller exists. This work focuses on constructively
synthesizing validating controllers with respect to index sets, as
previously seen for CNBFs. As such, Definition IV.3 strives to
indicate this pursuit. Moreover, the pointwise condition makes a
statement about a fixed value u ∈ Rm, complicating application
of the Filippov operator, which requires a function. Accordingly,
one may think of Definition IV.3 as assuming the existence of
controller such that the candidate NLF is a valid NLF for the
closed-loop system. Some future work lies in the investigation
of a pointwise condition for Definition IV.3 with respect to an
appropriate index set.

As shown by Definitions IV.1 and IV.3, this article focuses on
set stability for NLFs. The reason for this is as follows. Boolean
composition of NLFs entails intersections and unions of the zero
level set. As such, restricting NLFs to a point limits the generality
of Boolean composition, because union and intersection would
only be able to generate NLFs for a point.

Theorem IV.4: Let V ∶ Rn → R≥0 be a candidate NLF. If V
is a valid CNLF for (1), then the set A is uniformly globally
asymptotically stable with respect to (4).

We omit the proof of Theorem IV.4 for brevity, as it is
similar to many prior proofs of similar results; however, we do
provide a discussion of the required tools. The existence of a
controller such that A is (uniformly globally) asymptotically
stable is also referred to as stabilizability (though, typically,
stabilizability refers to the ability to find such a controller). In this
article, a valid CNLF explicitly requires the existence of such a
controller. Accordingly, as a stabilizing controller immediately
exists, one may consider the closed-loop system with respect to
this particular controller.

Remark IV.5: In the case that the boundedness of level sets
in Definition IV.1 does not hold, then this definition may be
modified to require an open set D ⊂ Rn containing A where the
abovementioned inequality holds. In this case, a local stability
result follows. ●

Definitions IV.1 and IV.3 ensure uniform global asymptotic
stability to the set A in the sense that

∥x(t)∥A ≤ β(∥x0∥A, t) (9)

for every Carathéodory solution x ∶ [0, t1] → Rn to K[f +
gu](⋅), where

∥x′∥A = inf
a∈A ∥x′ − a∥

is the usual point-to-set distance and β ∶ R≥0 ×R≥0 → R≥0 is
a class-KL function. Note that, for this discussion, we assume
that the system has been equipped with the validating controller
and consider the closed-loop system. For the discussion below,
consider this particular controller as us.

This result of asymptotic stability follows from [9], [10], [12],
[27] by noting that one can obtain (cf., [9, Lemma 2.5] or [27,
Lemma 4.3]), class-K∞ functions α1, α2 ∶ R≥0 → R such that

α1(∥x∥A) ≤ V (x) ≤ α2(∥x∥A). (10)

From Definition IV.3, every Carathéodory solution to K[f +
gus](⋅)

V (x(t)) ≤ β(V (x0), t)
where β ∶ R≥0 ×R≥0 → R≥0 is a class-KL function [12,
Lemma 4.2]. Then, applying (10) yields (9). Note that this
discussion depends on equipping the system with the stabilizing
controller.

The next result studies how candidate NLFs can be formed
through max and min operations, a fact that becomes particu-
larly useful when discussing Boolean composition of NLFs later.
Its proof is straightforward, and we omit it for brevity.

Proposition IV.6: Let V1, V2 ∶ Rn → R≥0 be candidate NLFs.
Then, Vmin ∶ Rn → R≥0 defined as

Vmin(x′) =min{V1(x′), V2(x′)},∀x′ ∈ Rn

is a candidate NLF. If, in addition, A1 ∩A2 ≠ ∅, then Vmax ∶
Rn → R≥0 defined as

Vmax(x′) =max{V1(x′), V2(x′)},∀x′ ∈ Rn

is a candidate NLF.
Remark IV.7: The assumption that A1 ∩A2 is nonempty is

necessary in the case of max, as the zero level set of V must
be nonempty, and this property cannot be otherwise guaranteed.
The same assumption is not true for min, as A = A1 ∪A2 and
is nonempty by candidacy of V1 and V2. ●

In a parallel fashion to Proposition III.6, the next result utilizes
Theorem III.5 to address controller synthesis for NLFs via
locally encapsulating index functions.

Proposition IV.8: Let V ∶ Rn → R be a candidate NLF, and
let f , g be as in (1). If there exists a locally encapsulating index
function I lV ∶ Rn → 2KV for V ; a positive-definite, continuous
function p ∶ R≥0 → R≥0; and a measurable and locally bounded
function u ∶ Rm → Rn such that

max
⎧⎪⎪⎨⎪⎪⎩ ∇i∈Il

V

Vi

⎫⎪⎪⎬⎪⎪⎭(x
′)⊺(f(x′) + g(x′)u(x′))

≤ −p(V (x′)),∀x′ ∈ Rn
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then, V is a valid CNLF for (1).

B. Composition Syntax

This section details the Boolean composition syntax and re-
sulting expressions considered in this work. Formally, a Boolean
expression on a finite number of Cr component functions
f1, . . . , fk ∶ Rn → R is symbolically defined as

B[f1,⋯, fk]. (11)

The component functions may be NBFs or NLFs, and the given
expressions are comprised ofmin,max, and− operators. Specif-
ically, this article considers Boolean NBFs inductively defined
with the following syntax:

B ∶= hi ∣ ¬B1 ∣ B1 ∧B2 ∣ B1 ∨B2 (12)

where the logical operators are defined as

¬B1 = −B1

B1 ∧B2 =min{B1,B2}
B1 ∨B2 =max{B1, b2}.

The syntax for Boolean NLFs is given as follows:

B ∶= Vi ∣ B1 ∧B2 ∣ B1 ∨B2

where the logical operators are defined as

B1 ∧B2 =max{B1,B2}
B1 ∨B2 =min{B1,B2}.

For NLFs, note that the abovementioned syntax omits the
negation operator ¬ and that the roles of min and max are
swapped with respect to NBFs. We omit this operator due to
the requirements of Definition IV.1 (i.e., positivity of the candi-
date NLF).

For NLFs or NBFs, the component functions disambiguate
the Boolean expression. For a Boolean composition B of NLFs
or NBFs, the atomic component functions are denoted Vi or hi,
respectively. The notation Bi refers to the inductive component
expressions, as in (12). The following example demonstrates this
property.

Example IV.1: An example of a Boolean NBF is as follows.
Let h ∶ Rn → R be pointwise defined as

h(x′) =max{min{h1(x′), h2(x′)}, h3(x′)}
where each hi ∶ Rn → R, i ∈ [3], is locally Lipschitz. Then, h is
a Boolean NBF. The abovementioned expression is equivalent
to

h = (h1 ∧ h2) ∨ h3.

Set B1 = h1, B2 = h2, B3 = h3. Now, define B4 = B1 ∧B2,
which follows (12). Finally, set

h = B4 ∨B3.

In this example, the component function for h are h1, h2, and
h3. For h, the component expressions are B4 and B3. For B4 the
component functions are h1 and h2; the component expressions
are B1 and B2. ●

As expected, the following result shows that Boolean expres-
sions are indeed PCr. Note that the result may be applied to
Boolean NBFs or NLFs.

Proposition IV.9: If B[f1,⋯, fk] ∶ Rn → R is a Boolean ex-
pression with Cr component functions fi ∶ Rn → R, i ∈ [k],
then B[f1,⋯, fk] is a PCr function.

Proof: Since B[f1,⋯, fk] is a Boolean expression, it is an
inductive composition of the fi using min, max or − opera-
tors. As such, B[f1,⋯, fk] is continuous, and at any x′ ∈ Rn,
B[f1,⋯, fk](x′) = fi(x′) or B[f1,⋯, fk](x′) = −fi(x′), for
some i ∈ [k]. As such

B[f1,⋯, fk](x′)
∈ {−fi(x′) ∶ i ∈ [k]} ∪ {fi(x′) ∶ i ∈ [k]},∀x′ ∈ Rn.

Because each fi and −fi is Cr, B[f1,⋯, fk] is a continuous
selection of Cr component functions, making it PCr. ∎

From this result, note that the Boolean composition of
Boolean expressions is also PCr, since the composite expres-
sion is a selection of the component functions of the component
expressions. The next result describes a controller-synthesis
method using locally encapsulating index functions.

Proposition IV.10: Let h ∶ Rn → R be a locally Lipschitz
Boolean NBF and V ∶ Rn → R≥0 be a candidate Boolean NLF.
Let I lh ∶ Rn → 2Kh be a locally encapsulating index function
for h, and let I lV ∶ Rn → 2KV be a locally encapsulating index
function for V . Let α ∶ R→ R be a locally Lipschitz extended
class-K function and p ∶ R≥0 → R≥0 be a continuous, positive-
definite function. If u⋆ ∶ Rn → Rm defined as

u⋆(x′) ∈ argmin
u∈Rm

u⊺A(x′)u + u⊺b(x′)

s.t. min
⎧⎪⎪⎨⎪⎪⎩ ∇i∈Il

h

hi

⎫⎪⎪⎬⎪⎪⎭(x
′)⊺(f(x′) + g(x′)u) ≥ −α(h(x′))

max
⎧⎪⎪⎨⎪⎪⎩ ∇i∈Il

V

Vi

⎫⎪⎪⎬⎪⎪⎭(x
′)⊺(f(x′) + g(x′)u) ≤ −p(V (x′))

with A ∶ Rn → Rm×m continuous, pointwise positive-definite,
symmetric and b ∶ Rn → Rm continuous, exists for every x′ ∈
Rn and is measurable and locally bounded, then h is a valid
CNBF, and V is a valid CNLF.

This result is a direct consequence of Propositions III.6–IV.9,
and its proof is omitted for brevity. In Proposition IV.10, the
optimization program is a quadratic program (QP) due to the
control-affine system. As such, assuming standard solvers, the
runtime for solving such a program at a point is typically on
the order of O((∣I lh(⋅)∣ + ∣I lV (⋅)∣ +m)3) (i.e., cubic complexity
in the number of constraints and decision variables). As such,
it can typically be solved in real time, even for relatively large
problems (e.g., [8]). The existence of solutions to this QP is
predicated on the dynamics as well as the candidate NLF and
NBF. In this case, uniqueness is guaranteed by the convexity of
the constraint set and strict convexity of the objective function;
though, existence is the key concern for this article.
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Since Boolean NLFs or NBFs fall into the class of PCr

functions, controller-synthesis algorithms for Boolean expres-
sions focus on finding an appropriate locally encapsulating index
function. However, many such index functions exist for any
given PCr function, and not all such functions are, practically
speaking, conducive to synthesis. For instance, given a Boolean
NBF, h, Proposition IV.9 shows that h is PCr with component
functions hi and −hi with i ∈ [k] for some finite k. As such

h(x′) ∈ {−hi(x′) ∶ i ∈ [k]} ∪ {hi(x′) ∶ i ∈ [k]}.
We temporarily use −i to refer to −hi. Accordingly, by Proposi-
tion III.3, a suitable locally encapsulating index function for Ieh
is

I lh(⋅) = {i ∈ [k] ∶ ∣hi(⋅) − h(⋅)∣ ≤ ε}
∪ {−i ∈ [k] ∶ ∣ − hi(⋅) − h(⋅)∣ ≤ ε}.

However, I lh(⋅) may capture too many component functions.
The following example illustrates this point.

Example IV.2: Consider the Boolean NBF give in Exam-
ple IV.1. Assume that, for a particular x′, h1(x′) is within
ε > 0 of h3(x′) but h2(x′) is much smaller than h3(x′). Then,(h1 ∧ h2)(x′) =min{h1(x′), h2(x′)} is also much smaller
than h3(x′). Thus, intuitively, only 3 should be included in
I lh(x′). However, using the previously noted I lh, both 1 and
3 would be included in I lh(x′). As such, choosing I lh in this
manner may be too conservative. ●

Given the point illustrated in Example IV.2, the following
section explores recursive methods to calculate an appropriate
locally encapsulating index functions for Boolean expressions.

V. RECURSIVE COMPUTATION OF LOCALLY ENCAPSULATING
INDEX FUNCTIONS FOR BOOLEAN EXPRESSIONS

Given the results in Sections III–IV, the goal becomes to
calculate efficient and manageable locally encapsulating index
functions. As such, this section presents a method for recur-
sively calculating a locally encapsulating index function for an
arbitrary composition of PCr functions. Then, the method is
specialized to the case of a Boolean NBF or NLF.

A. Locally Encapsulating Index Functions for
Compositions of PCr Functions

We start this section by considering the composition of PCr

functions. If g ∶ Rn → Rm and f ∶ Rm → R are PCr functions
and h = f ○ g, then h is also a PCr function. This result follows
from the fact that h is a continuous selection of the functions
hi = fj ○ gk, where i ∈Kf ×Kg . In this case, the component
functions of h may be denoted by i or, equivalently, by the tuple(j, k) corresponding to fj ○ gk. Moreover, the gradients of each
hi at x′ ∈ Rn are given by ∇gk(x′)∇fj(gk(x′)).

One additional notational issue remains. In the case of Propo-
sition II.10, the PCr function in question maps from Rn to
R; instead, here, g ∶ Rn → Rm. As such, we consider g to be a
continuous selection of PCr functions gjij ∶ Rn → R such that

g(x′) ∈ {[g1i1(x′)⋯gmim(x′)]⊺ ∶ ij ∈Kgj ,∀j ∈ [m]}.

For a given gjij , the subscript ij represents a particular choice of
a function for that component, and the superscript j represents
the component of the vector-valued function g. The distinction is
necessary because each component j could have a different set of
selection functions. From this perspective, a particular vector-
valued component function gi ∶ Rn → Rm may be viewed as
i ∈Kg1 ×⋯×Kgm =Kg . As such, gjij refers to a selection of
the jth component function gj , whereas gi refers to a selection
of a vector-valued component function for g.

Since h is a PCr function, it always has an encapsulating
index function; however, in the case that the component func-
tions are known, it may be more desirable to compute this index
function for h in terms of f and g. The next result, one of the
main results of this article, demonstrates a recursive method for
calculating encapsulating index functions.

Theorem V.1: Let g ∶ Rn → Rm, f ∶ Rm → R be PCr func-
tions, with g = [g1,⋯, gm]⊺, and let h ∶ Rn → R be defined as
h = f ○ g. If If ∶ Rm → 2Kf , Igk ∶ Rn → 2Kgk are encapsulating
index functions for f and each gk, k ∈ [m], respectively, then

Ih ∶ Rn → 2Kf×Kg

defined as

Ih(x′) = If(g(x′)) × m⨉
k=1 Igk(x′), ∀x′ ∈ Rn

is an encapsulating index function for h.
Proof: Let If , Igk , k ∈ [m], be encapsulating index functions

for f and each gk, k ∈ [m]; and let Ih ∶ Rn → 2Kf×Kg be defined
as the pointwise Cartesian product

Ih(⋅) = If(g(⋅)) × m⨉
k=1 Igk(⋅).

The abovementioned index function Ih is an acceptable index
function for h, since

h(⋅) ∈ {fi(gj(⋅)) ∶ i ∈Kf , j ∈Kg}
where by prior discussion, Kg = m⨉

k=1Kgk .

It remains to be shown that Ih is an encapsulating index
function for h. Let x′ ∈ Rn. Then

∂ch(x′) ⊂ co( m⨉
k=1∂cg

k(x′))∂cf(g(x′))

⊂ co
⎛⎜⎝

m⨉
k=1 co{∇gkjk}

jk∈Igk
(x′)⎞⎟⎠

⎛
⎝co{∇fi}

i∈If
(g(x′))⎞⎠

= co
⎛⎜⎝co

m⨉
k=1{∇gkjk}jk∈Igk

(x′)⎞⎟⎠
⎛
⎝co{∇fi}

i∈If
(g(x′))⎞⎠

= co
⎛⎜⎝

m⨉
k=1{∇gkjk}jk∈Igk

(x′)⎞⎟⎠{∇fi}i∈If
(g(x′))

= co{( m⨉
k=1∇gkjk(x′))∇fi(g(x′)) ∶ i ∈ If(g(x′)), jk ∈ Igk(x′)}
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= co{∇gj(x′)∇fi(gj(x′)) ∶ (i, j) ∈ If(g(x′)) × m⨉
k=1 Igk(x′)}

since, for every j ∈ m⨉
k=1 Igk(x′), gj(x′) = g(x′) by Defini-

tion III.1. Thus, Ih is an encapsulating index function for h.∎
To separate the index sets in the proof of Theorem V.1, the fact

that g(x′) = gj(x′) for every j ∈ m⨉
k=1 Igk(x′) must be utilized.

When formulating a similar result for locally encapsulating
index functions, special assumptions must be made to ensure
that this decomposition is possible: namely, that the outermost
function in the composition is PL.

Theorem V.2: Let f ∶ Rm → R be a PL function, g ∶ Rn →
Rm be a PCr function, with g = [g1,⋯, gm]⊺. If I lf ∶ Rm →
2Kf , I lgk ∶ Rn → 2Kg , k ∈ [m], are locally encapsulating index
functions for f and each gk, k ∈ [m], then there exists a locally
encapsulating index function I lh ∶ Rn → 2Kf×Kg for h such that,
for all x′ ∈ Rn

{∇hi}
i∈Il

h

(x′) = ⎛⎜⎝
m⨉
k=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∇

jk∈Il
gk

gkjk

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(x′)⎞⎟⎠{ai}i∈Il

f

(g(x′))
where, for each i ∈Kf , ai = ∇fi.

Proof: Let x′ ∈ Rn. Because I lf is a locally encapsulating
index function for f , there exists an encapsulating index function
If ∶ Rm → 2Kf for f such that at g(x′) there exists δ1 > 0
satisfying

If(g(x′)) ⊂ I lf(y),∀y ∈ B(g(x′), δ1).
By continuity of g, let δ2 be such that

y ∈ B(x,′ δ2) ⇒ ∥g(y) − g(x′)∥ ≤ δ1.
Similarly, let δk3 be such that

Igk(x′) ⊂ I lgk(y),∀y ∈ B(x,′ δk3)
for each k ∈ [m]. Then, define δ3 =mink∈[m] δk3 , and set

δ =min{δ1, δ2, δ3}.
By Theorem V.1
Ih ∶ Rn → 2Kf×Kg defined as

Ih(⋅) = If(g(⋅)) × Ig(⋅)
is an encapsulating index function for h, where Kg = m⨉

k=1Kgk

and Ig(⋅) = m⨉
k=1 Igk(⋅), and

by the particular selection of δ, for every y ∈ B(x,′ δ)
If(g(x′)) ⊂ I lf(g(y)), Igk(x′) ⊂ I lgk(y),∀k ∈ [m].

As such

Ih(x′) = If(g(x′)) × Ig(x′)
⊂ I lf(g(y)) × I lg(y),∀y ∈ B(x,′ δ)

so I lf ○ g × I lg is a locally encapsulating index function for Ih.
Moreover

{∇gj(x′)∇fi(gj(x′))) ∶ (i, j) ∈ I lf(g(x′)) × I lg(x′)}
= {∇gj(x′)ai ∶ (i, j) ∈ I lf(g(x′)) × I lg(x′)}
= {∇gj}

j∈Il
g

(x′){ai}
i∈Il

f

(g(x′))

= ⎛⎜⎜⎝
m⨉
k=1{∇gkjk}jk∈Il

gk

(x′)⎞⎟⎟⎠{ai}i∈Il
f

(g(x′))
showing the desired relation. ∎
B. Locally Encapsulating Index Functions for Boolean
Expressions

Here, we discuss the computation of locally encapsulating
index functions for Boolean expressions. To apply Theorem V.2
to Boolean composition, we start by addressing the particular
case of min and max operations. In fact, the next result shows
that calculating a locally encapsulating index set for a Boolean
expression admits a convenient format.

Proposition V.3: Let g ∶ Rn → Rm be a PCr function, with
each component gi ∶ Rn → R, i ∈ [m], and let f ∶ Rm → R be a
PL function with component functions ei, i ∈ [m], where each
ei is the ith standard basis vector. Let h ∶ Rn → R be a PCr

function satisfying

h(x′) ∈ {e⊺i g(x′) ∶ i ∈ [m]},∀x′ ∈ Rn.

If I lgi , i ∈ [m], are locally encapsulating index functions for each
gi and I lf is a locally encapsulating index function for f . Then,
there exists a locally encapsulating index function I lh ∶ Rn →
2Kf×Kg for h such that

{∇hi}
i∈Il

h

(x′) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{∇giji}
ji∈Il

gi

(x′) ∶ i ∈ I lf(g(x′))
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

Proof: Let x′ ∈ Rn, and let each I lgj and I lf be as assumed.
Consequently, by application of Theorem V.2, there exists a
locally encapsulating index function I lh such that

{∇hi}
i∈Il

h

(x′) = ⎛⎜⎜⎝
m⨉
k=1{∇gkjk}jk∈Il

gk

(x′)⎞⎟⎟⎠{ei}i∈Il
f

(g(x′))

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{∇giji}
ji∈Il

gi

(x′) ∶ i ∈ I lf(g(x′))
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

which follows because multiplication by any ei leaves only the
ith component function. ∎

Remark V.4: Proposition V.3 applies to Boolean expressions
including ∨ and ∧, as in (12), because max or min may be
written as a multiplication with a standard basis vector ei. For
example, the function max is a PL function, with component
functions ei, where ei is the ith standard basis vector. Because
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Algorithm 1: δ_ENCAPSULATING.
Input: Boolean expression: B[f1,⋯, fk]
locally encapsulating index function for ∧/∨: I l∧/∨
Argument: x′ ∈ Rn

Output: Evaluated locally encapsulating index function
for B: I lB(x′)
I lB(x′) ← ∅
if B is fi, for i ∈ [k] then
I lB(x′) ∪ {i}
returnI lB(x′)

if B is ¬B1 then
I lB(x′) ∪ −δ_ENCAPSULATING(B1, x

′)
returnI lB(x′)

for i ∈ I l∧/∨(B(x′)) do
I lB ∪ δ_ENCAPSULATING(Bi, x

′)
return I lB(x′)

at any x′ ∈ Rn, max may be written as

max
i∈[m]{Bi(x′)} = e⊺i [B1(x′),⋯,Bm(x′)]⊺

for some i ∈ [m]. ●
The next result deals with the case of negation. The proof

follows directly from Proposition II.5.
Proposition V.5: Let h ∶ Rn → R be a PCr function. If I lh ∶

Rn → 2Kh is a locally encapsulating index function for h, then,
for any scalar s, I lh is a locally encapsulating index function for
h̄ ∶ Rn → R defined as

h̄(x′) = sh(x′),∀x′ ∈ Rn.

Remark V.6: Proposition V.5 may be used to calculate the
negation of Boolean expressions B as in (12) by calculating a
locally encapsulating index function for the negated expression.
That is, if B = ¬B1, then I lB1

is also a locally encapsulating
index function for B. However, each index i ∈ I lB1

now refers
to a negated component function. For convenience, the notation−I lB1

refers to negated component functions but only for Boolean
expressions. ●

Using Theorem V.2 and Propositions V.3 and V.5, Algorithm 1
calculates a locally encapsulating index function for a Boolean
composition as in (11). Importantly, Algorithm 1 does not
change based on the particular Boolean expression or system
under consideration. Note that, due to Remark V.4, for Boolean
expressions only, the index calculation can be significantly sim-
plified. In particular, given a Boolean expression B[f1,⋯, fk]
with component expressions B1[f1,⋯, fk], B2[f1,⋯, fk], B,
B1, and B2 are PCr functions, which all have component
functions fi, i ∈ [k]. As such, the intermediate indices do not
have to be preserved when calculating a locally encapsulating
index function for B, because all of the Boolean expressions
have the same component functions. Another noteworthy point is
that Algorithm 1 requires a locally encapsulating index function
for ∧/∨ functions, which is provided by Proposition III.3. The
following example explicitly shows this calculation.

Example V.1: This example demonstrates a calculation of
I l∧/∨(B(x′)) in Algorithm 1. Let B ∶ Rn → R be a Boolean
expression with component expressions Bi ∶ Rn → R, i ∈ [k],
be defined as

B = k⋀
i=1Bi =min

i∈[k]Bi

or

B = k⋁
i=1Bi =max

i∈[k] Bi.

Then, with a slight abuse of notation, a locally encapsulating
index function I l∧/∨ ∶ Rn → 2KB for the ∧ or ∨ operation, ac-
cording to Proposition III.3, evaluated at B(x′) is

I l∧/∨(B(x′)) = {i ∈ [k] ∶ ∥Bi(x′) −B(x′)∥ ≤ ε},∀x′ ∈ Rn

for any fixed ε > 0. ●
VI. EXPERIMENTAL RESULTS

This section presents experimental results for the frame-
work developed in this article. Our experiment is inspired by
a precision-agriculture scenario, wherein a team of robots must
visit a series of crop patches in a field while avoiding collisions
with neighboring agents. The objectives and constraints are
encoded using the methods discussed in Section IV. The op-
timization program noted in Section IV synthesizes a controller
that satisfies the objectives and the constraints, where the locally
encapsulating index function is provided via Algorithm 1. For
brevity, throughout the section, we drop the explicit dependence
on time.

A. Experiment Formulation and Results

The formulation of the experiment is as follows. Consider
an even number N of differential-drive robots in R2, which
represents the field. For simplicity, assume that the robots have
state xi ∈ R2, i ∈ [N], and dynamics ẋi = ui (later, we utilize
the method in [28] to map the single-integrator input onto the
full nonlinear differential-drive dynamics). The ensemble state
and input is written as x ∈ R2 N and u ∈ R2 N , respectively.

This experiment requires that all robots avoid collisions, and
this constraint may be encoded via the C1 pairwise collision-
avoidance constraint

hij(xi, xj) = ∥xi − xj∥2 − d2
where d > 0 indicates the diameter of the robot. As such, the
ensemble collision-avoidance constraint is given by the Boolean
NBF

h = N−1⋀
i=1

N⋀
j=i+1hij

where the large ∧ symbol represents conjunction. Note that

∇xihij(xi, xj) = 2(xi − xj), ∇xjhij(xi, xj) = 2(xj − xi)
and∇xhij may be calculated by substituting∇xihij and∇xjhij

into the ith and jth indices.
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The objectives for the robots are as follows. A pre-existing
planner has determined that robots i and i + 1 must visit crop
patches pi ∈ R2 and pi+1 ∈ R2, for i = 1,3,⋯,N − 1, where the
specific robot-to-patch assignment is unspecified for each pair.
As such, this specification holds for each consecutive pair of
robots. For example, robots 1 and 2 must visit patches p1 and p2
while robots 3 and 4 must visit p3 and p4.

Now, we formulate the corresponding objectives. Note that
the parameterized function

Vi,p(xi) = (xi − p)⊺(xi − p)
yields a candidate NLF for robot i for the patch p ∈ R2. Then

∇xiVi,p(xi) = 2(xi − p)
and ∇xVi,p may be calculated by substituting ∇xiVi,p into the
ith component. For robots i and i + 1 the objective that the robots
visit pi and pi+1 may be captured as

(Vi,pi ∧ Vi+1,pi+1) ∨ (Vi,pi+1 ∧ Vi+1,pi). (13)

The abovementioned expression captures the specification that
the robots must be at both points, but the order does not matter.
The abovementioned expression is a candidate NLF; however,
Proposition IV.6 cannot be directly applied as Vi,pi is not a
candidate NLF for the subsystem containing xi and xi+1 (Vi,pi

does not have bounded level sets with respect to xi+1). That is

{(xi, xi+1) ∶ Vi,pi(xi) ≤ a} = Ai,pi ×R2

is unbounded. However, the conjunction operation resolves this
issue. Thus

(Vi,pi ∧ Vi+1,pi+1) (14)

is a candidate NLF, and by Proposition IV.6, (13) is a candidate
NLF.

As such, the overall objective for the system may be encoded
as the candidate NLF

V = N/2⋀
i=1 (V2i−1,p2i−1 ∧ V2i,p2i) ∨ (V2i−1,p2i ∧ V2i,p2i−1)

and for the same reason as (14), V is also a candidate NLF.
Now that the system’s constraints and objectives have been

formulated, the locally encapsulating index functions for use
with Algorithm 1 must be specified. This experiment utilizes
the index function discussed in Proposition III.3, i.e.,

I l∧/∨ = {i ∈KB ∶ ∣Bi(⋅) −B(⋅)∣ ≤ ε}
for some fixed ε > 0. The function I l∧/∨ is used as a locally
encapsulating for every Boolean expression.

In the spirit of Proposition IV.10, the QP for this experiment
is given by

u⋆(x) ∈ argmin
u∈Rm

u⊺u

s.t. ∇hi(x)⊺(f(x) + g(x)u) ≥ −γh(x)3,∀i ∈ I lh(x)
∇Vi(x)⊺(f(x) + g(x)u) ≤ −min{c, V (x)},∀i ∈ I lV (x) (15)

where γ, c > 0. Note that V (x) ↦min{c, V (x)} is the selected
positive-definite function, as in Definition IV.3, and h(x) ↦

γh(x)3 is the selected extended class-K function, as in Defi-
nition II.8.

For the experiment, we utilize Algorithm 1 to calculate a
locally encapsulating index set for h and V . Then, combin-
ing h and V with these index functions into a QP, as in
Proposition IV.10, yields a controller that ensures the robots visit
the required locations and avoid collisions. For this experiment,
we assume that the remaining hypotheses of Proposition IV.10
hold. Namely, that u⋆ exists and is measurable and locally
bounded (we believe this property holds in general, albeit it has
not been formally established). At each point, applications of
Algorithm 1 calculate I lh and I lV , and MATLAB’s optimization
toolbox is utilized to solve the QP.

It is by no means guaranteed that, for any objective and
constraint, h and V may be simultaneously solved in the QP. In
this case, the compatibility is shown experimentally. In general,
techniques exist to ensure that this solution exists, such as the
inclusion of slack variables (e.g., [3], [6]). For example, one may
treat the safety constraints (i.e., those generated by barrier func-
tions) as usual and associate slack variables with the objective
constraints (i.e., those generated by Lyapunov functions). Note
that this procedure increases feasibility of the QP at the cost of
relaxing the satisfaction of the objective.

To show the efficacy of these results on a real system, the
controller u⋆ from (15) is deployed onto N = 12 differential
drive robots in the Robotarium, a remotely accessible swarm-
robotics testbed [8]. Fig. 1 shows the robots over the course
of the experiment. The projected pictures of corn and numbers
on the testbed mark the assigned crop patches for each pair of
robots as well as the robots’ identifiers. Fig. 1 shows that all
robots reach their designated locations while avoiding collisions.
Specifically, Fig. 2 shows the value of h over the course of the
experiment. The Boolean NBF h remains positive, indicating
that all constraints are satisfied. Fig. 3 shows the value of V
during the experiment. The value of V decreases to 0, ensuring
that each location is visited, which completes the objective. Note
that, during the experiment, V increases marginally at a few
times. These slight increases are due to disturbances present in
real-world experiments, such as network latency or wheel slip.
Both simulation and theory confirm that the value is strictly
decreasing over time (simulation results are not given here for
brevity). Over the course of the experiment, determining the
locally encapsulating index functions was nearly instantaneous
while solving the QP in (15) was on the order of milliseconds.

Regarding the assumed single-integrator dynamics, the robots
presented in Fig. 1 show that the utilized robots are differential
drive, a nonlinear system. Within the Robotarium, these robots
are feedback linearized, meaning that they may be abstracted as
single integrators. This article treats these systems as such for
brevity, but note that these results are practically applied to a
nonlinear system.

For brevity, this article does not model disturbances during
controller synthesis, as their inclusion is not explicitly related to
the results of this article. However, given the set-valued nature
of differential inclusions, it falls within the same mathematical
framework to model disturbances. Indeed, recent work [29] has
considered similar scenarios.

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on July 06,2022 at 23:20:01 UTC from IEEE Xplore.  Restrictions apply. 



GLOTFELTER et al.: NONSMOOTH APPROACH TO CONTROLLER SYNTHESIS FOR BOOLEAN SPECIFICATIONS 5173

Fig. 1. Completion of the precision-agriculture experiment described in Section VI (initial position displayed on the left, final positions on the right).
Each pair of robots (e.g., 1 and 2) must visit a pair of crop patches, which are labeled accordingly, while avoiding collisions. This figure shows that
the robots successfully visit each crop patch and avoid collisions, completing the objectives and satisfying the constraints.

Fig. 2. Value of the NBF that encodes the collision-avoidance con-
straints for the experiment described in Section VI. The value of the
NBF remains positive over the course of the experiment, showing that
all of the constraints are satisfied, i.e., no robots collide.

Fig. 3. Value of objective-encoding NLF in Section VI. The value of
the NLF goes to zero as time increases, indicating that the objective has
been completed for all robots, that is, all crop patches have been visited.

B. Discussion of Parameters

Here, we discuss the role of the parameters in the experiment
of Section VI-A. The values that we have employed are

d = 0.15, γ = 10000, c = 0.3, ε = 0.05.
The number d denotes the diameter of the Robotarium’s
differential-drive robots. The parameter γ controls the flatness
(around the origin) of the extended class-K function h(x) ↦
γh(x)3. This function is flat around 0, attentuating the rate at

which the system can approach the boundary of the safe set.
The parameter γ adjusts this rate: the larger γ is, the quicker
robots can approach each other. For V , c controls how quickly
the system must reduce the NLF. As such, c is chosen to ensure
that the magnitude of u⋆ remains within the physical limits of
the robots.

The parameter ε pertains to the locally encapsulating index
function and controls how many indices are included at each
point. For example, for h, the locally encapsulating index func-
tion is

I lh(x) = {i ∶ ∣hi(x) − h(x)∣ ≤ ε}
where each i corresponds to a collision constraint between a
pair of robots. In effect, h represents the pair(s) of robots which
are the closest, and ε controls how close other robots must be
before being included in the QP [see (15)]. Intuitively, making ε
smaller reduces the number of constraints that must be included
in the QP. Conversely, larger values of ε increase the number of
constraints (i.e., nearby robots) that are included in the QP. A
similar line of reasoning holds for V and I lV .

Theoretically speaking, as long as ε > 0, I lh is indeed a locally
encapsulating index function. Though, practically speaking,
since this implementation is inherently digital, increasing the
value of ε can increase the robustness of the actual implemen-
tation by ensuring the constraints are included in the QP early
enough. A similar line of reasoning holds for V and I lV .

VII. CONCLUSION

This article has built on the current capabilities of barrier
and Lyapunov functions to represent constraints and stability
objectives for controlled dynamical systems, respectively. We
have presented a new class of nonsmooth barrier functions and
nonsmooth Lyapunov functions using the theory of piecewise
smooth (PCr) functions, and we have shown that Boolean
combinations of barrier and Lyapunov functions fall into the
class of PCr functions. The notion of PCr function depends
heavily on its corresponding index functions, and by utilizing a
particular class of them, we have proved that one may efficiently
synthesize controllers that are discontinuous yet, nonetheless,
provably guarantee the validity of the barrier and Lyapunov
functions. The experimental results have illustrated how our
theoretical contributions can be used to generate safe controllers
that also accomplish an objective for a swarm of physical robots
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in a precision-agriculture scenario. Future work would explore
the expansion of the proposed Boolean-composition framework
for NLFs and the generalization of the controller-synthesis pro-
cedure beyond quadratic programs.
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