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Resource-Aware Discretization of Accelerated Optimization Flows:
the Heavy-Ball Dynamics Case

Miguel Vaquero Pol Mestres Jorge Cortés

Abstract—This paper proposes a methodology for discretizing
accelerated optimization flows while retaining their convergence
properties. Inspired by the success of resource-aware control
in developing efficient closed-loop feedback implementations on
digital systems, we view the last sampled state of the system as the
resource to be aware of. We illustrate our design methodology for
discretization on a newly introduced continuous-time dynamics,
the heavy-ball dynamics with displaced gradient. Our algorithm
design employs techniques from resource-aware control that,
in the present context, have interesting parallelisms with the
discrete-time implementation of optimization algorithms. These
include derivative- and performance-based triggers to monitor
the evolution of the Lyapunov function as a way of determining
the stepsize, exploiting sampled information to enhance perfor-
mance, and employing high-order holds using more accurate
integrators of the original dynamics. Our approach gives rise to
variable-stepsize discrete-time algorithms that retain by design
the monotonically decreasing properties of the Lyapunov certifi-
cate of the continuous-time heavy-ball dynamics with displaced
gradient.

I. INTRODUCTION

A recent body of research seeks to understand the acceler-
ation phenomena of first-order discrete optimization methods
by means of models that evolve in continuous time. Roughly
speaking, the idea is to study the behavior of ordinary differ-
ential equations (ODEs) which arise as continuous limits of
discrete-time accelerated algorithms. The basic premise is that
the availability of the powerful tools of the continuous realm,
such as differential calculus, Lie derivatives, and Lyapunov
stability theory, can be then brought to bear to analyze
and explain the accelerated behavior of these flows, in turn
providing insight into their discrete counterparts and possibly
guiding the synthesis of novel discrete algorithms. Realizing
this requires solving the question of how to discretize the
continuous flows while retaining their accelerated convergence
properties. In fact, the discretization of accelerated continuous-
time flows has proven to be challenging, where retaining
acceleration seems to depend largely on the particular ODE
and the discretization method employed. This paper addresses
this challenge for the continuous-time heavy-ball dynamics
by taking advantage of the resource-aware control paradigm
to develop a principled approach to the discretization of
accelerated optimization flows.

Literature Review: The acceleration phenomenon goes back
to the seminal paper [1] introducing the so-called heavy-ball
method, which employed momentum terms to speed up the
convergence of the classical gradient descent method. The
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heavy-ball method achieves optimal convergence rate in a
neighborhood of the minimizer for arbitrary convex functions
and global optimal convergence rate for quadratic objective
functions. Later on, the work [2] proposed the Nesterov’s
accelerated gradient method and, employing the technique
of estimating sequences, showed that it converges globally
with optimal convergence rate for convex and strongly-convex
smooth functions. The algebraic nature of the technique of
estimating sequences does not fully explain the mechanisms
behind the acceleration phenomenon, and this has motivated
many approaches in the literature to provide fundamental un-
derstanding and insights. These include coupling dynamics [3],
dissipativity theory [4], integral quadratic constraints [5], [6],
and geometric arguments [7].

Of specific relevance to this paper is a recent line of
research initiated by [8] that seeks to understand the ac-
celeration phenomenon in first-order optimization methods
by means of models that evolve in continuous time. [8]
introduced a second-order ODE as the continuous limit of
Nesterov’s accelerated gradient method and characterized its
accelerated convergence properties using Lyapunov stability
analysis. The ODE approach to acceleration now includes the
use of Hamiltonian dynamical systems [9], [10], inertial sys-
tems with Hessian-driven damping [11], and high-resolution
ODEs [12], [13]. This body of research is also reminiscent
of the classical dynamical systems approach to algorithms
in optimization, see [14], [15]. The question of how to
discretize the continuous flows while maintaining their acceler-
ated convergence rates has also attracted significant attention,
motivated by the ultimate goal of fully understanding the
acceleration phenomenon and taking advantage of it to design
better optimization algorithms. Interestingly, discretizations of
these ODEs do not necessarily lead to acceleration [16]. In
fact, explicit discretization schemes, like forward Euler, can
even become numerically unstable after a few iterations [17].
Most of the discretization approaches found in the literature
are based on the study of well-known integrators, including
symplectic integrators [9], [18], Runge-Kutta integrators [19]
or modifications of Nesterov’s three sequences [17], [18],
[20]. Our previous work [21] instead developed a variable-
stepsize discretization using zero-order holds and state-triggers
based on the derivative of the Lyapunov function of the
original continuous flow. Here, we provide a comprehensive
approach based on powerful tools from resource-aware control,
including performance-based triggering and state holds that
more effectively use sampled information. We apply them to
the heavy-ball dynamics with displaced gradient, a new dy-
namics also introduced here that has accelerated convergence
rate. Other recent approaches to the acceleration phenomena
and the synthesis of optimization algorithms using control-
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theoretic notions and techniques include [22], which employs
hybrid systems to design a continuous-time dynamics with a
feedback regulator of the viscosity of the heavy-ball ODE to
guarantee arbitrarily fast exponential convergence, and [23],
which introduced an algorithm which alternates between two
(one fast when far from the minimizer but unstable, and
another slower but stable around the minimizer) continuous
heavy-ball dynamics.

Statement of Contributions: This paper proposes a resource-
aware control framework to the discretization of accelerated
optimization flows that takes advantage of their Lyapunov
certificates guaranteeing asymptotic convergence. Our presen-
tation illustrates the application of this approach in the case of
the continuous-time heavy-ball dynamics. We rely on the key
observation that resource-aware control provides a principled
way to go from continuous-time control design to real-time
implementation with stability and performance guarantees by
opportunistically prescribing when certain resource should be
employed. The resource to be aware of is the last sampled
state of the system, and hence what we seek to maximize is the
stepsize of the resulting discrete-time algorithm. We consider
objective functions that are strongly convex, and continuously
differentiable with Lipschitz gradients.

Our first contribution is the introduction of a second-order
differential equation which we term heavy-ball dynamics with
displaced gradient. This dynamics generalizes the continuous-
time heavy-ball dynamics analyzed in the literature by evalu-
ating the gradient of the objective function taking into account
the second-order nature of the flow. We establish that the
proposed dynamics retains the same convergence properties
as the original one while providing additional flexibility for
design in the form of a parameter that can be tuned according
to the designer’s criteria.

Our second contribution is the synthesis of criteria that
determine the variable stepsize of the discrete-time implemen-
tation of the heavy-ball dynamics with displaced gradient. We
refer to these criteria as event- or self-triggered, depending
on whether the stepsize is implicitly or explicitly defined. We
employ derivative- and performance-based triggering to ensure
the algorithm retains the decrease of the Lyapunov function of
the continuous flow. In doing so, we face the challenge that the
evaluation of this function requires knowledge of the unknown
optimizer of the objective function. To circumvent this hurdle,
we derive bounds on the evolution of the Lyapunov function
that can be evaluated without knowledge of the optimizer
and enable the construction of computable surrogates. These
bounds critically rely on the characterization of the optimizer
as a critical point of the objective function. We characterize the
asymptotic convergence properties of the resulting discrete-
time algorithms, establishing the existence of a minimum
inter-event time and exponential performance guarantees with
regards to the decrease of the objective function. Notice that
the existence of continuous flows is key for the application of
resource-aware related techniques, stressing the importance of
studying continuous-time dynamics in optimization.

Our last two contributions provide ways of exploiting the
sampled information to enhance the algorithm performance.
Our third contribution is an implementation of the algorithms

that adaptively adjusts the value of the gradient displacement
parameter depending on the region of the space to which
the state belongs. Our fourth and last contribution builds on
the fact that the continuous-time heavy-ball dynamics can be
decomposed as the sum of a second-order linear dynamics
with a nonlinear forcing term corresponding to the gradient
of the objective function. Building on this observation, we
design a hold for the resource-aware implementation that uses
the samples only on the nonlinear term, and integrates exactly
the resulting linear system with constant forcing, resulting
in a more accurate approximation of the evolution of the
continuous flow. We establish the existence of a minimum
inter-event time and characterize the performance with regards
to the objective function of the resulting high-order-hold
algorithm. Finally, we illustrate the proposed optimization
algorithms in simulation, comparing them against the heavy-
ball and Nesterov’s accelerated gradient methods and showing
superior performance to other discretization methods proposed
in the literature.

We conclude by noting that the proposed methodology for
discretization based on resource-aware control is applicable
to other accelerated optimization flows. Of course, each dy-
namics, along with their corresponding Lyapunov functions,
are different in each case, and this makes it necessary to
carefully work out the proper mathematical bounds to obtain
the desired computable surrogates for each specific dynamics.
Nevertheless, the general framework described here, together
with the specific instantiation in the case of the heavy-ball
method, offers a promising roadmap to tackle the discretization
of other accelerated optimization flows.

II. PRELIMINARIES

This section presents basic notation and preliminaries.

A. Notation
We denote by R and R>0 the sets of real and positive

real numbers, resp. All vectors are column vectors. We de-
note their scalar product by h·, ·i. We use k·k to denote
the 2-norm in Euclidean space. Given µ 2 R>0, a con-
tinuously differentiable function f is µ-strongly convex if
f(y) � f(x) � hrf(x), y � xi + µ

2 kx� yk2 for x, y 2 Rn.
Given L 2 R>0 and a function f : X ! Y between two
normed spaces (X, k·kX) and (Y, k·kY ), f is L-Lipschitz
if kf(x)� f(x0)kY  L kx� x0

kX for x, x0
2 X . The

functions we consider here are continuously differentiable, µ-
strongly convex and have L-Lipschitz continuous gradient.
We refer to the set of functions with all these properties
by S

1
µ,L(Rn). A function f : Rn

! R is positive definite
relative to x⇤ if f(x⇤) = 0 and f(x) > 0 for x 2 Rn

\ {x⇤}.

B. Resource-Aware Control
Our work builds on ideas from resource-aware control to

develop discretizations of continuous-time accelerated flows.
Here, we provide a brief exposition of its basic elements and
refer to [24], [25] for further details.

Given a controlled dynamical system ṗ = X(p, u), with p 2

Rn and u 2 Rm, assume we are given a stabilizing continuous
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state-feedback k : Rn
! Rm so that the closed-loop system

ṗ = X(p, k(p)) has p⇤ as a globally asymptotically stable
equilibrium point. Assume also that a Lyapunov function V :
Rn

! R is available as a certificate of the globally stabilizing
nature of the controller. Here, we assume this takes the form

V̇ = hrV (p), X(p, k(p))i  �

p
µ

4
V (p), (1)

for all p 2 Rn. Although exponential decay of V along the
system trajectories is not necessary, we restrict our attention
to this case as it arises naturally in our treatment.

Suppose we are given the task of implementing the con-
troller signal over a digital platform, meaning that the actuator
cannot be continuously updated as prescribed by the specifi-
cation u = k(p). In such case, one is forced to discretize the
control action along the execution of the dynamics, while mak-
ing sure that stability is still preserved. A simple-to-implement
approach is to update the control action periodically, i.e., fix
h > 0, sample the state as {p(kh)}1k=0 and implement

ṗ(t) = X(p(t), k(p(kh))), t 2 [kh, (k + 1)h].

This approach requires h to be small enough to ensure that V
remains a Lyapunov function and, consequently, the system
remains stable. By contrast, in resource-aware control, one
employs the information generated by the system along its
trajectory to update the control action in an opportunistic
fashion. Specifically, we seek to determine in a state-dependent
fashion a sequence of times {tk}1k=0, not necessarily uni-
formly spaced, such that p⇤ remains a globally asymptotically
stable equilibrium for the system

ṗ(t) = X(p(t), k(p(tk))), t 2 [tk, tk+1]. (2)

The main idea to accomplish this is to let the state sampling
be guided by the principle of maintaining the same type of
exponential decay (1) along the new dynamics. To do this,
one defines triggers to ensure that this decay is never violated
by prescribing a new state sampling. Formally, one sets t0 = 0
and tk+1 = tk +step(p(tk)), where the stepsize is defined by

step(p̂) = min{t > 0 | b(p̂, t) = 0}. (3)

Notice that the function b represents a property that is satisfied
as long as b  0 along the dynamics, which motivates the
definition (3) as the “last instant” where the desired property
is guaranteed to hold, and the necessity to re-evaluate the
sampled state when b vanishes. We refer to the criteria as
event-triggering or self-triggering depending on whether the
evaluation of the function b requires monitoring of the state
p along the trajectory of (2) (ET) or just knowledge of
its initial condition p̂ (ST). The computational complexity
of the triggering criteria depends on the specific form of
the function b: for instance, if the solutions to the equation
b(p̂, t) = 0 in the variable t can be expressed explicitly as a
function of p̂, then the computational complexity is minimal,
as determining the stepsize just consists of evaluating the
corresponding expression of the solution. In general, the event-
triggering approach has a higher computational complexity
than the self-triggering one. The more stringent requirements
to implement event-triggering lead to larger stepsizes versus

the more conservative ones characteristic of self-triggering. In
order for the state sampling to be implementable in practice,
the inter-event times {tk+1� tk}1k=0 must be uniformly lower
bounded by a positive minimum inter-event time, abbreviated
MIET. In particular, the existence of a MIET rules out the
existence of Zeno behavior, i.e., the possibility of an infinite
number of triggers in a finite amount of time.

Depending on how the evolution of the function V is
examined, we describe two types of triggering conditions.
In both cases, for a given p̂ 2 Rn, we let p(t; p̂) denote
the solution of ṗ(t) = X(p(t), k(p̂)) with initial condition
p(0) = p̂:

Derivative-based trigger: In this case, bd is defined as an up-
per bound of the expression d

dtV (p(t; p̂))+
p
µ
4 V (p(t; p̂)).

This definition ensures that (1) is maintained along (2);
Performance-based trigger: In this case, bp is defined as an

upper bound of the expression V (p(t; p̂))� e�
p

µ
4 tV (p̂).

Note that this definition ensures that the integral version
of (1) is maintained along (2).

In general, the performance-based trigger gives rise to step-
sizes that are at least as large as the ones determined by the
derivative-based approach, cf. [26]. This is because the latter
prescribes an update as soon as the exponential decay is about
to be violated, and therefore, does not take into account the
fact that the Lyapunov function might have been decreasing
at a faster rate since the last update. Instead, the performance-
based approach reasons over the accumulated decay of the
Lyapunov function since the last update, potentially yielding
longer inter-sampling times.

A final point worth mentioning is that, in the event-triggered
control literature, the notion of resource to be aware of
can be many different things, beyond the actuator described
above, including the sensor, sensor-controller communication,
communication with other agents, etc. This richness opens the
way to explore more elaborate uses of the sampled information
beyond the zero-order hold in (2), something that we also
leverage later in our presentation.

III. PROBLEM STATEMENT

We aim to design discretization procedures of accelerated
continuous flows that solve unconstrained optimization prob-
lems. Given a function f : Rn

! R, we deal with problems
of the form

min
x2Rn

f(x).

Our motivation here is to show that principled approaches to
discretization can retain the accelerated convergence properties
of continuous-time dynamics, fill the gap between the contin-
uous and discrete viewpoints on optimization algorithms, and
lead to the construction of new ones. Throughout the paper, we
focus on the continuous-time version of the celebrated heavy-
ball method [1]. Assume f belongs to S

1
µ,L(Rn) and let x⇤

be its unique minimizer. The heavy-ball method is known to
have an optimal convergence rate in a neighborhood of the
minimizer. For its continuous-time counterpart, consider the
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following family of second-order equations parametrized by
the variable s 2 R>0, proposed in [12],


ẋ
v̇

�
=


v

�2
p
µv � (1 +

p
µs)rf(x))

�
, (4a)

x(0) = x0, v(0) = �
2
p
srf(x0)

1 +
p
µs

. (4b)

We refer to this dynamics as Xhb. The following result char-
acterizes the convergence properties of (4) to p⇤ = [x⇤, 0]T .

Theorem III.1 ([12]). Let V : Rn
⇥ Rn

! R be

V (x, v) = (1 +
p
µs)(f(x)� f(x⇤)) +

1

4
kvk2

+
1

4
kv + 2

p
µ(x� x⇤)k

2 , (5)

which is positive definite relative to [x⇤, 0]T . Then V̇ 

�

p
µ
4 V along the dynamics (4) and, as a consequence,

p⇤ = [x⇤, 0]T is globally asymptotically stable. Moreover, for
s  1/L, the exponential decrease of V implies

f(x(t))� f(x⇤) 
7 kx(0)� x⇤k

2

2s
e�

p
µ
4 t. (6)

Theorem III.1, along with analogous results [12] for the
Nesterov’s accelerated gradient descent, serves as an inspi-
ration to build Lyapunov functions that help to explain the
accelerated convergence rate of the discrete-time methods.

The problem we seek to solve is establishing a way to
discretize the continuous flow while retaining its accelerated
convergence properties. Inspired by the success of resource-
aware control in developing efficient closed-loop feedback im-
plementations on digital systems, here we present a discretiza-
tion approach to accelerated optimization flows using resource-
aware control. At the basis of the approach taken here is the
observation that the convergence rate (6) of the continuous
flow is a direct consequence of the Lyapunov nature of the
function (5). In fact, the integration of V̇  �

p
µ
4 V along the

system trajectories yields

V (x(t), v(t))  e�
p

µ
4 tV (x(0), v(0)).

Since f(x(t))� f(x⇤)  V (x(t), v(t)), we deduce

f(x(t))� f(x⇤)  e�
p

µ
4 tV (x(0), v(0)) = O(e�

p
µ
4 t).

The characterization of the convergence rate via the decay of
the Lyapunov function is indeed common among accelerated
optimization flows. This observation motivates the resource-
aware approach to discretization pursued here, where the
resource that we aim to use efficiently is the sampling of
the state itself. By doing so, the ultimate goal is to give
rise to large stepsizes that take maximum advantage of the
decay of the Lyapunov function (and consequently of the
accelerated nature) of the continuous-time dynamics in the
resulting discrete-time implementation.

IV. RESOURCE-AWARE DISCRETIZATION OF
CONTINUOUS-TIME HEAVY-BALL DYNAMICS

In this section we propose a discretization of accelerated
optimization flows using state-dependent triggering and an-
alyze the properties of the resulting discrete-time algorithm.
For convenience, we use the shorthand notation p = [x, v]T .
In following with the exposition in Section II-B, we start by
considering the zero-order hold implementation ṗ = Xhb(p̂),
p(0) = p̂ of the heavy-ball dynamics (4),

ẋ = v̂, (7a)
v̇ = �2

p
µv̂ � (1 +

p
µs)rf(x̂). (7b)

Note that the solution trajectory takes the form p(t) = p̂ +
tXhb(p̂), which in discrete-time terminology corresponds to a
forward-Euler discretization of (4). Component-wise, we have

x(t) = x̂+ tv̂,

v(t) = v̂ � t
�
2
p
µv̂ + (1 +

p
µs)rf(x̂)

�
.

As we pointed out in Section II-B, the use of sampled
information opens the way to more elaborated constructions
than the zero-order hold in (7). As an example, given the
second-order nature of the heavy-ball dynamics, it would seem
reasonable to leverage the (position, velocity) nature of the
pair (x̂, v̂) (meaning that, at position x̂, the system is moving
with velocity v̂) in approximating the gradient term rf by
employing the modified zero-order hold:

ẋ = v̂, (8a)
v̇ = �2

p
µv̂ � (1 +

p
µs)rf(x̂+ av̂), (8b)

where a � 0. Note that the trajectory of (8) corresponds to the
forward-Euler discretization of the continuous-time dynamics


ẋ
v̇

�
=


v

�2
p
µv � (1 +

p
µs)rf(x+ av))

�
, (9)

We refer to this as the heavy-ball dynamics with displaced
gradient and denote it by Xa

hb. Note that (8) and (9) with
a = 0 recover (7) and (4), respectively, so the presence of
the parameter a provides additional richness in the type of
dynamics considered, which as we show later, has important
implications in providing flexibility for the design of discrete-
time algorithms. In order to pursue the resource-aware ap-
proach laid out in Section II-B with the modified zero-order
hold in (8), we first need to characterize the asymptotic con-
vergence properties of the heavy-ball dynamics with displaced
gradient, which we tackle next.

Remark IV.1. (Connection between the use of sampled infor-
mation and high-resolution-ODEs). A number of works [27],
[28], [29] have explored formulations of Nesterov’s acceler-
ated that employ displaced-gradient-like terms similar to the
one used above. Here, we make this connection explicit. Given
Nesterov’s algorithm

yk+1 = xk � srf(xk)

xk+1 = yk+1 +
1�

p
µs

1 +
p
µs

(yk+1 � yk)

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on July 06,2022 at 23:19:40 UTC from IEEE Xplore.  Restrictions apply. 



0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3171307, IEEE
Transactions on Automatic Control

5

the work [12] obtains the following limiting high-resolution
ODE

ẍ+ 2
p
µẋ+

p
sr2f(x)ẋ+ (1 +

p
µs)rf(x) = 0. (10)

Interestingly, considering instead the evolution of the y-
variable and applying similar arguments to the ones in [12],
one instead obtains

ÿ + 2
p
µẏ + (1 +

p
µs)rf

�
y +

p
s

1 +
p
µs

ẏ
�
= 0, (11)

which corresponds to the continuous heavy-ball dynamics
in (4) evaluated with a displaced gradient, i.e., (9). Even
further, if we Taylor expand the last term in (11) as

rf(y +

p
s

1 +
p
µs

ẏ) = rf(y) +r
2f(y)

p
s

1 +
p
µs

ẏ +O(s)

and disregard the O(s) term, we recover (10). This shows
that (11) is just (10) with extra higher-order terms in s, and
provides evidence of the role of gradient displacement in
enlarging the modeling capabilities of high-resolution ODEs.
•

A. Asymptotic Convergence of Heavy-Ball Dynamics with
Displaced Gradient

In this section, we study the asymptotic convergence of
heavy-ball dynamics with displaced gradient. Interestingly, for
a sufficiently small, this dynamics enjoys the same conver-
gence properties as the dynamics (4), as the following result
shows.

Theorem IV.2. (Global asymptotic stability of heavy-ball
dynamics with displaced gradient). Let �1, . . . , �4 > 0 be

�1 =
p
µsµ, �2 =

p
µsL
p
µ

,

�3 =
13
p
µ

16
, �4 =

4µ2ps+ 3L
p
µ
p
µs

8L2
,

where, for brevity, pµs = 1 +
p
µs, and define

a⇤1 =
2

�2
2

⇣
�1�4 +

q
�2
2�3�4 + �2

1�
2
4

⌘
. (12)

Then, for 0  a  a⇤1, V̇  �

p
µ
4 V along the dynamics (9)

and, as a consequence, p⇤ = [x⇤, 0]T is globally asymptoti-
cally stable. Moreover, for s  1/L, the exponential decrease
of V implies (6) holds along the trajectories of Xa

hb.

Proof. Note that

hrV (p), Xa
hb(p)i+

p
µ

4
V (p) =

= (1+
p
µs)hrf(x), vi�

p
µ kvk2�

p
µshrf(x+av), vi

�
p
µ
p
µshrf(x+ av), x� x⇤i+

p
µ

4
V (x, v)

= �
p
µ kvk2 �

p
µ
p
µshrf(x), x� x⇤i+

p
µ

4
V (x, v)

| {z }
Term I

�
p
µshrf(x+ av)�rf(x), vi

| {z }
Term II

�
p
µ
p
µshrf(x+ av)�rf(x), x� x⇤i| {z }

Term III

,

where in the second equality, we have added and subtracted
p
µ
p
µshrf(x), x � x⇤i. Observe that “Term I” corresponds

to hrV (p), Xhb(p)i +
p
µ
4 V (p) and is therefore negative by

Theorem III.1. From [21], this term can be bounded as

Term I 
�13

p
µ

16
kvk2

+
⇣4µ2ps+ 3L

p
µ
p
µs

8L2

⌘
krf(x)k2 .

Let us study the other two terms. By strong convexity, we have
�hrf(x+ av)�rf(x), vi  �aµ kvk2, and therefore

Term II  �a
p
µsµ kvk2  0.

Regarding Term III, one can use the L-Lipschitzness of rf
and strong convexity to obtain

Term III 
a

µ

p
µ
p
µsL kvk krf(x)k .

Now, using the notation in the statement, we can write

hrV (p), Xa
hb(p)i+

p
µ

4
V (p) (13)

 a
�
��1 kvk

2 + �2 kvk krf(x)k
�
��3 kvk

2
��4 krf(x)k2 .

If ��1 kvk
2 + �2 kvk krf(x)k  0, then the RHS of (13) is

negative for any a � 0. If ��1 kvk
2 + �2 kvk krf(x)k > 0,

the RHS of (13) is negative if and only if

a 
�3 kvk

2 + �4 krf(x)k2

��1 kvk
2 + �2 kvk krf(x)k

.

The RHS of this equation corresponds to g(krf(x)k/krvk),
with the function g defined in (A.3). From Lemma A.1, as
long as ��1 kvk

2 + �2 kvk krf(x)k > 0, this function is
lower bounded by

a⇤1 =
�3 + �4(z

+
root)

2

��1 + �2z
+
root

> 0,

where z+root is defined in (A.4). This exactly corresponds
to (12), concluding the result.

Remark IV.3. (Adaptive displacement along the trajectories
of heavy-ball dynamics with displaced gradient). From the
proof of Theorem IV.2, one can observe that if (x, v) is
such that n  krf(x)k < n and m  kvk < m, for
n, n,m,m 2 R>0, then one can upper bound the LHS
of (13) by

a(��1m
2 + �2mn)� �3m

2
� �4n

2.

If ��1m2 + �2mn  0, any a � 0 makes this expression
negative. If instead ��1m2 + �2mn � 0, then a must satisfy

a 

���
�3m2 + �4n2

��1m2 + �2mn

���. (14)

This argument shows that over the region R = {(x, v) | n 

krf(x)k < n and m  kvk < m}, any a � 0 satisfying (14)
ensures that V̇  �

p
µ
4 V , and hence the desired exponential

decrease of the Lyapunov function. This observation opens

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on July 06,2022 at 23:19:40 UTC from IEEE Xplore.  Restrictions apply. 



0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3171307, IEEE
Transactions on Automatic Control

6

the way to modify the value of the parameter a adaptively
along the execution of the heavy-ball dynamics with displaced
gradient, depending on the region of state space visited by its
trajectories. •

B. Triggered Design of Variable-Stepsize Algorithms
In this section we propose a discretization of the continuous

heavy-ball dynamics based on resource-aware control. To do
so, we employ the approaches to trigger design described
in Section II-B on the dynamics Xa

hb, whose forward-Euler
discretization corresponds to the modified zero-order hold (8)
of the heavy-ball dynamics.

Our starting point is the characterization of the asymptotic
convergence properties of Xa

hb developed in Section IV-A. The
trigger design necessitates of bounding the evolution of the
Lyapunov function V in (5) for the continuous-time heavy-
ball dynamics with displaced gradient along its zero-order
hold implementation. However, this task presents the challenge
that the definition of V involves the minimizer x⇤ of the
optimization problem itself, which is unknown (in fact, finding
it is the ultimate objective of the discrete-time algorithm we
seek to design). In order to synthesize computable triggers, this
raises the issue of bounding the evolution of V as accurately
as possible while avoiding any requirement on the knowledge
of x⇤. We address this point by computing a surrogate of
V̇ +

p
µ
4 V which upper bounds it and enforcing the latter

to be negative throughout the dynamics. The following result
specifies the surrogate.

Proposition IV.4. (Upper bound for derivative-based trigger-
ing with zero-order hold). Let a � 0 and define

bdET(p̂, t; a) = AET(p̂, t; a) +BET(p̂, t; a) + CET(p̂; a),

bdST(p̂, t; a) = Bq
ST(p̂; a)t

2 + (AST(p̂; a) +Bl
ST(p̂; a))t

+ CST(p̂; a),

where

AET(p̂, t; a) = 2µt kv̂k2 +
p
µs

�
hrf(x̂+ tv̂)�rf(x̂), v̂i

+ 2t
p
µhrf(x̂+ av̂), v̂i+ t

p
µs krf(x̂+ av̂)k2

�
,

BET(p̂, t; a) =

p
µt2

16
k2
p
µv̂ +

p
µsrf(x̂+ av̂)k2

�
tµ

4
kv̂k2 +

p
µ
p
µs

4

�
f(x̂+ tv̂)� f(x̂)+

� thv̂,rf(x̂+ av̂)i+
t2
p
µs

4
krf(x̂+ av̂)k2

�
t
p
µ

L
krf(x̂+ av̂)k2 + t

p
µhav̂,rf(x̂+ av̂)i

�
,

CET(p̂; a) = �
13
p
µ

16
kv̂k2 �

µ2ps

2

krf(x̂)k2

L2

+
p
µs

��3
p
µ

8L
krf(x̂)k2

+
p
µ(f(x̂)� f(x̂+ av̂)) +

p
µ krf(x̂)k kav̂k

�
µ3/2

2
kav̂k2 � hrf(x̂+ av̂)�rf(x̂), v̂i

+
p
µhrf(x̂+ av̂), av̂i

�
,

AST(p̂; a) = 2µ kv̂k2 +
p
µs

�
L kv̂k2 + 2

p
µhrf(x̂+ av̂), v̂i

+
p
µs krf(x̂+ av̂)k2

�
,

Bl
ST(p̂; a) =

p
µ

4

�
�

p
µ kv̂k2 +

p
µs(hrf(x̂)

�rf(x̂+ av̂), v̂i �

p
µ

L
krf(x̂+ av̂)k2

+
p
µhav̂,rf(x̂+ av̂)i)

�
,

Bq
ST(p̂; a) =

p
µ

16
k2
p
µv̂ +

p
µsrf(x̂+ av̂)k2

+

p
µ
p
µs

4

�L
2
kv̂k2 +

p
µs

4
krf(x̂+ av̂)k2

�
,

CST(p̂; a) = CET(p̂; a).

Let t 7! p(t) = p̂+tXa
hb(p̂) be the trajectory of the zero-order

hold dynamics ṗ = Xa
hb(p̂), p(0) = p̂. Then, for t � 0,

d

dt
V (p(t)) +

p
µ

4
V (p(t))  bdET(p̂, t; a)  bdST(p̂, t; a).

The proof of this result is presented in Appendix A and
critically relies on the characterization of the optimizer as
a critical point of the objective function. The importance
of Proposition IV.4 stems from the fact that the triggering
conditions defined by bd#, # 2 {ET, ST}, can be evaluated
without knowledge of the optimizer x⇤. We build on this result
next to establish an upper bound for the performance-based
triggering condition.

Proposition IV.5. (Upper bound for performance-based trig-
gering with zero-order hold). Let a � 0 and

bp#(p̂, t; a) =

Z t

0
e

p
µ
4 ⇣bd#(p̂, ⇣; a)d⇣,

for # 2 {ET, ST}. Let t 7! p(t) = p̂ + tXa
hb(p̂) be the

trajectory of the zero-order hold dynamics ṗ = Xa
hb(p̂),

p(0) = p̂. Then, for t � 0,

V (p(t))�e�
p

µ
4 tV (p̂)e�

p
µ
4 tbpET(p̂, t; a)e�

p
µ
4 tbpST(p̂, t; a).

Proof. We rewrite V (p(t)) � e�
p

µ
4 tV (p̂) =

e�
p

µ
4 t(e

p
µ
4 tV (p(t))� V (p̂)), and note that

e
p

µ
4 tV (p(t))� V (p̂)

=

Z t

0

d

d⇣

�
e

p
µ
4 ⇣V (p(⇣))� V (p̂)

�
d⇣

=

Z t

0
e

p
µ
4 ⇣
⇣ d

d⇣
V (p(⇣)) +

p
µ

4
V (p(⇣)

⌘
d⇣.

Note that the integrand corresponds to the derivative-based
criterion bounded in Proposition IV.4. Therefore,

e
p

µ
4 tV (p(t))� V (p̂) 

Z t

0
e

p
µ
4 ⇣bdET(p̂, ⇣; a)d⇣

= bpET(p̂, t; a)  bpST(p̂, t; a)

for t � 0, and the result follows.

Propositions IV.4 and IV.5 provide us with the tools
to determine the stepsize according to the derivative- and
performance-based triggering criteria, respectively. For con-
venience, and following the notation in (3), we define the
stepsizes

stepd#(p̂; a) = min{t > 0 | bd#(p̂, t; a) = 0}, (15a)
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stepp#(p̂; a) = min{t > 0 | bp#(p̂, t; a) = 0}, (15b)

for # 2 {ET, ST}. Observe that, as long as p̂ 6= p⇤ = [x⇤, 0]T

and 0  a  a⇤1, we have C#(p̂; a) < 0 for # 2 {ST,ET}
and, as a consequence, bd#(p̂, 0; a) < 0. The ET/ST terminol-
ogy is justified by the following observation: in the ET case,
the equation defining the stepsize is in general implicit in t,
which in general requires a dedicated zero-finding routine to
determine the stepsize. Instead, in the ST case, the equation
defining the stepsize is explicit in t, and the stepsize can be
readily determined by evaluating the expression. As a con-
sequence, the ET implementation has a higher computational
complexity than the ST one.

Equipped with this notation, we define the variable-stepsize
algorithm described in Algorithm 1, which consists of fol-
lowing the dynamics (8) until the exponential decay of the
Lyapunov function is violated as estimated by the derivative-
based (⇧ = d) or the performance-based (⇧ = p) triggering
condition. When this happens, the algorithm re-samples the
state before continue flowing along (8).

Algorithm 1: Displaced-Gradient Algorithm
Design Choices: ⇧ 2 {d, p}, # 2 {ET, ST}
Initialization: Initial point (p0), objective function
(f ), tolerance (✏), a � 0, k = 0

while krf(xk)k � ✏ do
Compute stepsize �k = step⇧#(pk; a)
Compute next iterate pk+1 = pk +�kXa

hb(pk)
Set k = k + 1

end

C. Convergence Analysis of Displaced-Gradient Algorithm
Here we study the convergence properties of the derivative-

and performance-based implementations of the Displaced-
Gradient Algorithm. In each case, we show that algorithm is
implementable (i.e., it admits a MIET) and inherits the conver-
gence rate from the continuous-time dynamics. The following
result makes this precise in the case of the derivative-based
implementation of Algorithm 1.

Theorem IV.6. (Convergence of derivative-based implemen-
tation of Displaced-Gradient Algorithm). Let �̂1, . . . , �̂5 > 0
be

�̂1 =
p
µs(

3
p
µ

2
+ L), �̂2 =

p
µ
p
µs

3

2
,

�̂3 =
13

p
µ

16
, �̂4 =

4µ2ps+ 3L
p
µ
p
µs

8L2
,

�̂5 =
p
µs

�5pµL

2
�

µ3/2

2

�
,

and define

a⇤2 = ↵min
n��̂1 +

q
�̂2
1 + 4�̂5�̂3

2�̂5

,
�̂4

�̂2

o
, (16)

with 0 < ↵ < 1. Then, for 0  a  a⇤2, ⇧ = d, and # 2

{ET, ST}, the variable-stepsize strategy in Algorithm 1 has
the following properties

(i) the stepsize is uniformly lower bounded by the positive
constant MIET(a), where

MIET(a) = �⌫ +
p

⌫2 + ⌘, (17)

⌘ = min{⌘1, ⌘2}, ⌫ = max{⌫1, ⌫2}, and

⌘1 =
8a

p
µs

⇣
a(µ� 5L)� 2Lp

µ � 3
⌘
+ 13

2
p
µsL

�
3a2

p
µsL+ 1

�
+ 8µ

,

⌘2 = �
3
p
µs

p
µL(4aL� 1)� 4µ2ps

3µs
p
µL2

,

⌫1 =
µ
�
2a3

p
µsL2 + a

p
µs + 16

�

2
p
µ
�p

µsL
�
3a2

p
µsL+ 1

�
+ 4µ

�

+
8
p
µsL

�
2a2

p
µsL+ 1

�

2
p
µ
�p

µsL
�
3a2

p
µsL+ 1

�
+ 4µ

�

+

p
µs(aL(8aL+ 1) + 4)

p
µsL

�
3a2

p
µsL+ 1

�
+ 4µ

,

⌫2 =
aµ+ 8

p
µs + 8

p
µ

3
p
µs

p
µ

;

(ii) d
dtV (pk + tXa

hb(pk))  �

p
µ
4 V (pk + tXa

hb(pk)) for all
t 2 [0,�k] and k 2 {0} [ N.

As a consequence, f(xk+1)� f(x⇤) = O(e�
p

µ
4

Pk
i=0 �i).

Proof. Regarding fact (i), we prove the result for the ST-case,
as the ET-case follows from stepdET(p̂; a) � stepdST(p̂; a). We
start by upper bounding CST(p̂; a) by a negative quadratic
function of kv̂k and krf(x̂)k as follows,

CST(p̂; a) = �
13

p
µ

16
kv̂k2 +

p
µs

�3
p
µ

8L
krf(x̂)k2

�
µ2ps

2L2
krf(x̂)k2 +

p
µs

�p
µ (f(x̂)� f(x̂+ av̂))| {z }

(a)

+
p
µ krf(x̂)k kav̂k| {z }

(b)

�
µ3/2

2
kav̂k2

+ hrf(x̂)�rf(x̂+ av̂), v̂i| {z }
(c)

+
p
µ hrf(x̂+ av̂), av̂i| {z }

(d)

�
.

Using the L-Lipschitzness of the gradient and Young’s in-
equality, we can easily upper bound

(a)  hrf(x̂+ av̂),�av̂i+
L

2
a2 kv̂k2

| {z }
Using (A.1c)

= hrf(x̂+ av̂)�rf(x̂),�av̂i+
L

2
a2 kv̂k2

+ hrf(x̂),�av̂i

 La2 kv̂k2 +
L

2
a2 kv̂k2 + a

�krf(x̂)k2

2
+

kv̂k2

2

�

=
3La2 + a

2
kv̂k2 +

a

2
krf(x̂)k2 ,

(b)  a
�krf(x̂)k2

2
+

kv̂k2

2

�
,

(c)  La kv̂k2 ,

(d) = hrf(x̂+ av̂)�rf(x̂) +rf(x̂), av̂i
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 La2 kv̂k2 + hrf(x̂), av̂i

=
2La2 + a

2
kv̂k2 +

a

2
krf(ẑ)k2 .

Note that, with the definition of the constants �̂1, . . . , �̂5 > 0
in the statement, we can write

CST(p̂; a)  a�̂1 kv̂k
2 + a2�̂5 kv̂k

2 + a�̂2 krf(x̂)k2

� �̂3 kv̂k
2
� �̂4 krf(x̂)k2 .

Therefore, for a 2 [0, a⇤2], we have

a�̂1 + a2�̂5 � �̂3  a⇤2�̂1 + (a⇤2)
2�̂5 � �̂3 = ��1 < 0

a�̂2 � �̂4  a⇤2�̂2 � �̂4 = ��2 < 0,

and hence CST(p̂; a)  ��1 kv̂k
2
� �2 krf(x̂)k2. Similarly,

introducing

�3 = 2a2µsL
2 + 2a2

p
µs

p
µL2 +

p
µs

p
µ+

p
µsL+ 2µ,

�4 = 2µs + 2
p
µs

p
µ, �5=

1

8
a
p
µs

�
2a2µL2 + µ+ 2

p
µL
�
,

�6 =
aµ

p
µs

4
, �7 =

3

8
a2µs

p
µL2 +

1

8

p
µs

p
µL+

µ3/2

2
,

�8 =
3µs

p
µ

8
,

one can show that

AST(p̂; a)  ÂST(p̂; a) = �3 kv̂k
2 + �4 krf(x̂)k2 ,

Bl
ST(p̂; a)  B̂l

ST(p̂; a) = �5 kv̂k
2 + �6 krf(x̂)k2 ,

Bq
ST(p̂; a)  B̂q

ST(p̂; a) = �7 kv̂k
2 + �8 krf(x̂)k2 .

Thus, from (15a), we have

stepdST(p̂; a) �
�(ÂST(p̂; a) + B̂l

ST(p̂; a))

2B̂q
ST(p̂; a)

(18)

+

vuut
 
ÂST(p̂; a) + B̂l

ST(p̂; a)

2B̂q
ST(p̂; a)

!2

�
CST(p̂; a)

B̂q
ST(p̂; a)

.

Using now [21, supplementary material, Lemma 1], we deduce

⌘ 
�CST(p̂; a)

B̂q
ST(p̂; a)

,
ÂST(p̂; a) + B̂l

ST(p̂; a)

2B̂q
ST(p̂; a)

 ⌫,

where

⌘ = min{
�1
�7

,
�2
�8

}, ⌫ = max{
�3 + �5
2�7

,
�4 + �6
2�8

}.

With these elements in place and referring to (18), we have

stepdST(p̂; a) �
�(ÂST(p̂; a) + B̂l

ST(p̂; a))

2B̂q
ST(p̂; a)

+

vuut
 
ÂST(p̂; a) + B̂l

ST(p̂; a)

2B̂q
ST(p̂; a)

!2

+ ⌘.

We observe now that z 7! g(z) = �z +
p
z2 + ⌘ is

monotonically decreasing and lower bounded. So, if z is
upper bounded, then g(z) is lower bounded by a positive
constant. Taking z = (ÂST(p̂;a)+B̂l

ST(p̂;a))

2B̂q
ST(p̂;a)

 ⌫ gives the bound

of the stepsize. Finally, the algorithm design together with
Proposition IV.4 ensure fact (ii) throughout its evolution.

It is worth noticing that the derivative-based implementation
of the Displaced-Gradient Algorithm generalizes the algorithm
proposed in our previous work [21] (in fact, the strategy pro-
posed there corresponds to the choice a = 0). The next result
characterizes the convergence properties of the performance-
based implementation of Algorithm 1.

Theorem IV.7. (Convergence of performance-based imple-
mentation of Displaced-Gradient Algorithm). For 0  a  a⇤2,
⇧ = p, and # 2 {ET, ST}, the variable-stepsize strategy in
Algorithm 1 has the following properties

(i) the stepsize is uniformly lower bounded by the positive
constant MIET(a);

(ii) V (pk + tXa
hb(pk))  e�

p
µ
4 tV (pk) for all t 2 [0,�k]

and k 2 {0} [ N.
As a consequence, f(xk+1)� f(x⇤) = O(e�

p
µ
4

Pk
i=0 �i).

Proof. To show (i), notice that it is sufficient to prove
that steppST is uniformly lower bounded away from zero.
This is because of the definition of stepsize in (15b) and
the fact that bpET(p̂, t; a)  bpST(p̂, t; a) for all p̂ and all
t. For an arbitrary fixed p̂, note that t 7! bdST(p̂, t; a) is
strictly negative in the interval [0, stepdST(p; a)) given the
definition of stepsize in (15a). Consequently, the function
t 7! bpST(p̂, t; a) =

R t
0 e

p
µ
4 ⇣bdST(p̂; ⇣, a)d⇣ is strictly negative

over (0, stepdST(p̂; a)). From the definition of steppST, it then
follows that steppST(p̂; a) � stepdST(p̂; a). The result now
follows by noting that stepdST is uniformly lower bounded
away from zero by a positive constant, cf. Theorem IV.6(i).

To show (ii), we recall that �k = stepp#(pk; a) for # 2

{ET, ST} and use Proposition IV.5 for p̂ = pk to obtain, for
all t 2 [0,�k],

V (p(t))� e�
p

µ
4 tV (pk)  e�

p
µ
4 tbp#(pk, t; a)

 e�
p

µ
4 tbp#(pk,�k; a) = 0,

as claimed.

The proof of Theorem IV.7 brings up an interesting geo-
metric interpretation of the relationship between the stepsizes
determined according to the derivative- and performance-based
approaches. In fact, since

d

dt
bp#(p̂, t; a) = e

p
µ
4 tbd#(p̂, t; a),

we observe that stepd#(p̂; a) is precisely the (positive) critical
point of t 7! bp#(p̂, t; a). Therefore, steppST(p̂; a) is the
smallest nonzero root of t 7! bp#(p̂, t; a), whereas stepdST(p̂; a)
is the time where t 7! bp#(p̂, t; a) achieves its smallest value,
and consequently is furthest away from zero. This confirms
the fact that the performance-based approach obtains larger
stepsizes than the derivative-based approach.

V. EXPLOITING SAMPLED INFORMATION TO ENHANCE
ALGORITHM PERFORMANCE

Here we describe two different refinements of the imple-
mentations proposed in Section IV to further enhance their
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performance. Both of them are based on further exploiting the
sampled information about the system. The first refinement,
cf. Section V-A, looks at the possibility of adapting the value
of the gradient displacement as the algorithm is executed.
The second refinement, cf. Section V-B, develops a high-order
hold that more accurately approximates the evolution of the
continuous-time heavy-ball dynamics with displaced gradient.

A. Adaptive Gradient Displacement

The derivative- and performance-based triggered implemen-
tations in Section IV-B both employ a constant value of
the parameter a. Here, motivated by the observation made
in Remark IV.3, we develop triggered implementations that
adaptively adjust the value of the gradient displacement de-
pending on the region of the space to which the state belongs.
Rather than relying on the condition (14), which would require
partitioning the state space based on bounds on rf(x) and v,
we seek to compute on the fly a value of the parameter a
that ensures the exponential decrease of the Lyapunov func-
tion at the current state. Formally, the strategy is stated in
Algorithm 2.

Algorithm 2: Adaptive Displaced-Gradient Algorithm
Design Choices: ⇧ 2 {d, p}, # 2 {ET, ST}
Initialization: Initial point (p0), objective function
(f ), tolerance (✏), increase rate (ri > 1), decrease rate
(0 < rd < 1), stepsize lower bound (⌧ ), a � 0, k = 0

while krf(xk)k � ✏ do
increase = True
exit = False
while exit = False do

while C#(pk; a) � 0 do
a = ard
increase = False

end
if step⇧#(pk; a) � ⌧ then

exit = True
else

a = ard
increase = False

end
Compute stepsize �k = step⇧#(pk; a)
Compute next iterate pk+1 = pk +�kXa

hb(pk)
Set k = k + 1
if increase = True then

a = ari
end

Proposition V.1. (Convergence of Adaptive Displaced-
Gradient Algorithm). For ⇧ 2 {d, p}, # 2 {ET, ST}, and
⌧  mina2[0,a⇤

2 ]
MIET(a), the variable-stepsize strategy in

Algorithm 2 has the following properties:
(i) it is executable (i.e., at each iteration, the parameter a

is determined in a finite number of steps);
(ii) the stepsize is uniformly lower bounded by ⌧ ;

(iii) it satisfies f(xk+1)�f(x⇤)=O(e�
p

µ
4

Pk
i=0 �i), for k 2

{0} [ N.

Proof. Notice first that the function a 7! MIET(a) > 0
defined in (17) is continuous and therefore attains its minimum
over a compact set. At each iteration, Algorithm 2 first ensures
that C#(p̂; a) < 0, decreasing a if this is not the case. We
know this process is guaranteed as soon as a < a⇤2 (cf. proof
of Theorem IV.6) and hence only takes a finite number of
steps. Once C#(p̂; a) < 0, the stepsize could be computed to
guarantee the desired decrease of the Lyapunov function V .
The algorithm next checks if the stepsize is lower bounded
by ⌧ . If that is not the case, then the algorithm reduces a and
re-checks if C#(p̂; a) < 0. With this process and in a finite
number of steps, the algorithm eventually either computes a
stepsize lower bounded by ⌧ with a > a⇤2 or a decreases
enough to make a  a⇤2, for which we know that the stepsize
is already lower bounded by ⌧ . These arguments establish facts
(i) and (ii) at the same time. Finally, fact (iii) is a consequence
of the prescribed decreased of the Lyapunov function along the
algorithm execution.

B. Discretization via High-Order Hold

The modified zero-order hold based on employing dis-
placed gradients developed in Section IV is an example of
the possibilities enabled by more elaborate uses of sampled
information. In this section, we propose another such use
based on the observation that the continuous-time heavy-ball
dynamics can be decomposed as the sum of a linear term and
a nonlinear term. Specifically, we have

Xa
hb(p) =


v

�2
p
µv

�
+


0

�
p
µsrf(x+ av)

�
.

Note that the first term in this decomposition is linear, whereas
the other one contains the potentially nonlinear gradient term
that complicates finding a closed-form solution. Keeping this
in mind when considering a discrete-time implementation, it
would seem reasonable to perform a zero-order hold only
on the nonlinear term while exactly integrating the resulting
differential equation. Formally, a zero-order hold at p̂ = [x̂, v̂]
of the nonlinear term above yields a system of the form


ẋ
v̇

�
= A


x
v

�
+ b, (19)

with p(0) = p̂, and where

A =


0 1
0 �2

p
µ

�
, b =


0

�
p
µsrf(x̂+ av̂)

�
.

Equation (19) is an in-homogeneous linear dynamical sys-
tem, which is integrable by the method of variation of con-
stants [30]. Its solution is given by p(t) = eAt

� R t
0 e�A⇣bd⇣+

p(0)
�
, or equivalently,

x(t) = x̂�

p
µsrf(x̂+ av̂)t

2
p
µ

(20a)

+ (1� e�2
p
µt)

p
µsrf(x̂+ av̂) + 2

p
µv̂

4µ
,

v(t) = e�2
p
µtv̂ + (e�2

p
µt

� 1)

p
µsrf(x̂+ av̂)

2
p
µ

. (20b)
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We refer to this trajectory as a high-order-hold integrator. In
order to develop a discrete-time algorithm based on this type of
integrator, the next result provides a bound of the evolution of
the Lyapunov function V along the high-order-hold integrator
trajectories. The proof is presented in Appendix A.

Proposition V.2. (Upper bound for derivative-based triggering
with high-order hold). Let a � 0 and define

bdET(p̂, t; a) = AET(p̂, t; a) +BET(p̂, t; a)

+ CET(p̂; a) +DET(p̂, t; a),

bdST(p̂, t; a) = (Aq
ST(p̂; a) +Bq

ST(p̂; a))t
2 + (Al

ST(p̂; a)

+Bl
ST(p̂; a) +DST(p̂; a))t+ CST(p̂; a),

where

AET(p̂, t; a) =
p
µs(hrf(x(t))�rf(x̂), v(t)i

� hv(t)� v̂,rf(x̂+ av̂)i

�
p
µhx(t)� x̂,rf(x̂+ av̂)i)

�
p
µhv(t)� v̂, v(t)i,

BET(p̂, t; a) =

p
µ

4

�p
µs(f(x(t))� f(x̂))

�
p
µ
p
µst

krf(x̂+ av̂)k2

L

+
p
µ
p
µsthrf(x̂+ av̂), av̂i+

1

4
(kv(t)k2 � kv̂k2)

+
1

4
kv(t)� v̂ + 2

p
µ(x(t)� x̂)k2

+
1

2
hv(t)� v̂ + 2

p
µ(x(t)� x̂), v̂i

�
,

CET(p̂; a) = CET(p̂; a),

DET(p̂, t; a) =
p
µshrf(x̂), v(t)� v̂i

�
p
µhv̂, v(t)� v̂i,

and

Al
ST(p̂; a) = k2

p
µv̂ +

p
µsrf(x̂+ av̂)k

⇣
p
µ kv̂k

+
L
p
µs

2
p
µ

kv̂k+
3
p
µs

2
krf(x̂+ av̂)k

⌘

+
µs

2
krf(x̂+ av̂)k

⇣ L
p
µ
kv̂k+ krf(x̂+ av̂)k

⌘
,

Aq
ST(p̂; a) = k2

p
µv̂ +

p
µsrf(x̂+ av̂)k

·

⇣�Lpµs

2
p
µ

+
p
µ
�
k2
p
µv̂ +

p
µsrf(x̂+ av̂)k

+
Lµs

2
p
µ
krf(x̂+ av̂)k

⌘
,

Bl
ST(p̂; a) =

p
µ
p
µs

4

⇣pµs

2
p
µ
krf(x̂+ av̂)k krf(x̂)k

+
1

2
k2

p
µv̂+

p
µsrf(x̂+ av̂)k

�krf(x̂)k
p
µ

+
kv̂k
p
µs

�

�
p
µ
krf(x̂+ av̂)k2

L
+ (a

p
µ�

1

2
)hrf(x̂+ av̂), v̂i

⌘
,

Bq
ST(p̂; a) =

10µ2 + L2pµs

32µ3/2

· k2
p
µv̂ +

p
µsrf(x̂+ av̂)k2

+
µs

�
4µ2 + L2pµs

�

32µ3/2
krf(x̂+ av̂)k2

+

p
µs

�
4µ2 + L2pµs

�

16µ3/2
k2
p
µv̂ +

p
µsrf(x̂+ av̂)k

· krf(x̂+ av̂)k),

CST(p̂; a) = CST(p̂; a),

DST(p̂; a) = k2
p
µv̂ +

p
µsrf(x̂+ av̂)k ·

⇣
p
µs krf(x̂)k+

p
µ kv̂k

⌘
.

Let t 7! p(t) be the high-order-hold integrator trajectory (20)
from p(0) = p̂. Then, for t � 0,

d

dt
V (p(t)) +

p
µ

4
V (p(t))  bdET(p̂, t; a)  bdST(p̂, t; a).

Analogously to what we did in Section IV-B, we build on
this result to establish an upper bound for the performance-
based triggering condition with the high-order-hold integrator.

Proposition V.3. (Upper bound for performance-based trig-
gering with high-order hold). Let 0  a and

bp#(p̂, t; a) =

Z t

0
e

p
µ
4 ⇣bd#(p̂, ⇣; a)d⇣, (21)

for # 2 {ET, ST}. Let t 7! p(t) be the high-order-hold
integrator trajectory (20) from p(0) = p̂. Then, for t � 0,

V (p(t))�e�
p

µ
4 tV (p̂)e�

p
µ
4 tbpET(p̂, t; a)e�

p
µ
4 tbpST(p̂, t; a).

Using Proposition V.2, the proof of this result is analogous
to that of Proposition IV.5, and we omit it for space reasons.
Propositions V.2 and V.3 are all we need to fully specify the
variable-stepsize algorithm based on high-order-hold integra-
tors. Formally, we set

step⇧#(p̂; a) = min{t > 0 | b⇧#(p̂, t; a) = 0}, (22)

for ⇧ 2 {d, p} and # 2 {ET, ST}. With this in place, we
design Algorithm 3, which is a higher-order counterpart to
Algorithm 2, and whose convergence properties are character-
ized in the following result.

Proposition V.4. (Convergence of Adaptive High-Order-Hold
Algorithm). For ⇧ 2 {d, p}, and # 2 {ET, ST}, there exists
MIET⇧ such that for ⌧  MIET⇧, the variable-stepsize
strategy in Algorithm 3 has the following properties:

(i) it is executable (i.e., at each iteration, the parameter a
is determined in a finite number of steps);

(ii) the stepsize is uniformly lower bounded by ⌧ ;
(iii) it satisfies f(xk+1)�f(x⇤)=O(e�

p
µ
4

Pk
i=0 �i), for k 2

{0} [ N.

We omit the proof of this result, which is analogous to that
of Proposition V.1, with lengthier computations.

VI. SIMULATIONS

Here we illustrate the performance of the algorithms result-
ing from the proposed resource-aware discretization approach
to accelerated optimization flows. Specifically, we simulate
in two examples the performance-based implementation of
the Displaced Gradient algorithm (denoted DGp) and the
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Algorithm 3: Adaptive High-Order-Hold Algorithm
Design Choices: ⇧ 2 {d, p}, # 2 {ET, ST}
Initialization: Initial point (p0), objective function
(f ), tolerance (✏), increase rate (ri > 1), decrease rate
(0 < rd < 1), stepsize lower bound (⌧ ), a � 0, k = 0

while krf(xk)k � ✏ do
increase = True
exit = False
while exit = False do

while C#(pk; a) � 0 do
a = ard
increase = False

end
if step⇧#(pk; a) � ⌧ then

exit = True
else

a = ard
increase = False

end
Compute stepsize �k = step⇧#(pk; a)
Compute next iterate pk+1 using (20)
Set k = k + 1
if increase = True then

a = ari
end

derivative- and performance-based implementations of the
High-Order-Hold (HOHd and HOHp respectively) algorithms.
We compare these algorithms against the Nesterov’s acceler-
ated gradient and the heavy-ball methods, as they exhibit sim-
ilar or superior performance to the discretization approaches
proposed in the literature, cf. Section I. Note that the latter are
constant-stepsize methods, whereas the algorithms developed
here are variable-stepsize ones, where the stepsize is computed
online using state information. In fact, given our design proce-
dure, DGp, HOHd, and HOHp can be understood as different
variable-stepsize implementations of the heavy-ball method.
As the plots below show, the discretizations developed here
retain the convergence rate of their continuous counterpart,
with a performance regarding the objective function that is
comparable or slightly better than state-of-the-art optimization
algorithms.

Optimization of Ill-Conditioned Quadratic Objective Function
Consider the optimization of the objective function f :

R2
! R defined by f(x) = 10�2x2

1 + 102x2
2. Note that

µ = 2 · 10�2 and L = 2 · 102. We use s = µ/(36L2) and
initialize the velocity according to (4b). For DGp, HOHd, and
HOHp, we set a = 0.1 and implement the event-triggered
approach (at each iteration, we employ a numerical zero-
finding routine to explicitly determine the stepsizes steppET,
stepdET, and steppET, respectively).

Figure 1(a) illustrates how the stepsize of HOHp changes
during the first 1000 iterations. After the tuning of the stepsize
during the first iterations, it becomes quite steady (likely due
to the simplicity of quadratic functions) until the trajectory
approaches the minimizer. After 5 iterations, the algorithm
stepsize becomes almost equal to the optimal stepsize.
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Fig. 1. Ill-conditioned quadratic objective function example. (a) Evolution
of the stepsize along the execution of HOHp during the first 1000 iter-
ations. (b) State evolution along DGp, HOHd, HOHp, continuous heavy-
ball dynamics, and Nesterov’s method starting from x = (50, 50) and
v = (�0.0023,�4.7139).

Figure 1(b) compares the performance of DGp, HOHd,
and HOHp against the continuous heavy-ball method and
the discrete Nesterov method for strongly convex functions.
To implement the continuous heavy-ball method, we directly
obtained the solution of the ODE and plotted its trajectories.
The DGp algorithm takes large stepsizes following the evo-
lution of the continuous heavy-ball along the straight lines
p(t) = pk + tXa

hb(pk). Meanwhile, the higher-order nature
of the hold employed by HOHd and HOHp makes them
able to leap over the oscillations, yielding a state evolution
similar to Nesterov’s method. Figure 2 shows a comparison
of the evolution of the objective and Lyapunov functions
(where the heavy-ball method implemented is the discrete
version [1]). We use the stepsizes 1

L for the Nesterov method
and 4

(
p
L+

p
µ)2

for the heavy-ball method, as commonly found
in the literature [12]. We observe that after some initial
iterations, HOHp outperforms Nesterov’s method. Eventually,
also DGp catches up to Nesterov’s method.

Logarithmic Regression
Consider the optimization of the regularized logistic re-

gression cost function f : R4
! R defined by f(x) =P10

i=1 log(1+e�yihzi,xi)+ 1
2 kxk

2, where the points {zi}10i=1 ⇢

R4 are generated randomly using a uniform distribution in the
interval [�5, 5], and the points {yi}10i=1 ⇢ {�1, 1} are gener-
ated similarly with quantized values. This objective function
is 1-strongly convex and one can also compute the value L =
177.49. We use a = 0.025 and s = µ/(36L2), and initialize
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(a)

(b)

Fig. 2. Ill-conditioned quadratic objective function example. (a) Evolution
of the logarithm of the objective function under DGp, HOHd, HOHp, the
heavy-ball method, and Nesterov’s method starting from x = (50, 50) and
v = (�0.0023,�4.7139). (b) Corresponding evolution of the logarithm of
the Lyapunov function along DGp, HOHd, and HOHp.

the velocity according to (4b). Figure 3(a) show the evolution
of the stepsize along HOHp, which changes as a function of
the state looking to satisfy the desired decay of the Lyapunov
function. Figure 3(b) shows the difference between the optimal
stepsize, computed with complete knowledge of the Lyapunov
function, and the stepsize computed using HOHp. This plot
is an illustration of the tightness of the upper bound for the
expression V̇ +

p
µ
4 V given by Proposition V.3. Figure 4

shows the evolution of the objective and Lyapunov functions.
We observe how HOHd and HOHp outperform Nesterov’s
method, although eventually the heavy-ball algorithm performs
the best. The Lyapunov function decreases at a much faster
rate along HOHd and HOHp than along DGp.

VII. CONCLUSIONS

We have introduced a resource-aware control framework
to the discretization of accelerated optimization flows that
specifically takes advantage of their dynamical properties. We
have exploited fundamental concepts from opportunistic state-
triggering related to the various ways of encoding the notion
of valid Lyapunov certificates, the use of sampled-data infor-
mation, and the construction of state estimators and holders to
synthesize variable-stepsize optimization algorithms that retain
by design the convergence properties of the continuous-time
heavy-ball dynamics with displaced gradient. The proposed
methodology is general and applicable, with the appropriate
derivations, to other accelerated optimization flows and in
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Fig. 3. Logarithmic regression example. (a) Evolution of the stepsize
along the execution of HOHp starting from x = (50, 50, 50, 50) and
v = (�0.1026,�0.09265,�0.1078,�0.0899). Notice the complex pattern,
with significant increases and oscillations along the trajectory. (b) Difference
between the optimal stepsize (computed using the exact Lyapunov function,
which assumes knowledge of the minimizer) and the stepsize of HOHp. The
largest difference is achieved at the beginning: after a few iterations, the
difference decreases significantly, periodically becoming almost zero.

fact we expect this work will spur the development of other
variable-stepsize implementations of accelerated optimization
flows. We believe these results open the way to a number
of exciting research directions. Among them, we highlight
the characterization of how close the computed stepsize is
from the stepsize that would be obtained using the original
Lyapunov function, the design of adaptive learning schemes
to refine the use of sampled data and optimize the algorithm
performance with regards to the objective function, the use of
tools and insights from hybrid systems for analysis and design,
the incorporation of re-start schemes as triggering conditions
to avoid overshooting and oscillations, the development of
distributed implementations for network optimization prob-
lems, and the extension of the proposed design methodology
to constrained optimization problems.
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APPENDIX A
Throughout the appendix, we make use of a number of basic

facts that we gather here for convenience,

f(x⇤)� f(x)  �
krf(x)k2

2L
(A.1a)

krf(x)k

L
 kx� x⇤k 

krf(x)k

µ
(A.1b)

f(y)� f(x)� hrf(x), y � xi 
L

2
ky � xk2 (A.1c)

1

L
krf(x)�rf(y)k2  hrf(x)�rf(y), x� yi

(A.1d)

f(y)� f(x)� hrf(x), y � xi 
1

2µ
krf(y)�rf(x)k2

(A.1e)
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We also resort at various points to the expression of the
gradient of V ,

rV (p) =

p
µsrf(x) +

p
µv + 2µ(x� x⇤)

v +
p
µ(x� x⇤)

�
. (A.2)

The following result is used in the proof of Theorem IV.2.

Lemma A.1. For �1, . . . , �4 > 0, the function

g(z) =
�3 + �4z2

��1 + �2z
(A.3)

is positively lower bounded on (�1/�2,1).

Proof. The derivative of g is

g0(z) =
��2�3 + �4z(�2�1 + �2z)

(�1 � �2z)2
.

The solutions to g0(z) = 0 are then given by

z±root =
�1�4 ±

p
�2
2�3�4 + �2

1�
2
4

�2�4
. (A.4)

Note that z�root < 0 < �1/�2 < z+root, g0 is negative
on (z�root, z

+
root), and positive on (z+root,1). Therefore the

minimum value over (�1/�2,1) is achieved at z+root, and
corresponds to g(z+root) > 0.

Proof of Proposition IV.4. We break out d
dtV (p(t)) +p

µ
4 V (p(t)) as follows

d

dt
V (p̂+ tXa

hb(p̂)) +

p
µ

4
V (p̂+ tXa

hb(p̂)) =

= hrV (p̂), Xa
hb(p̂)i+

p
µ

4
V (p̂)

| {z }
Term I + II + III

+ hrV (p̂+ tXa
hb(p̂))�rV (p̂), Xa

hb(p̂)i| {z }
Term IV + V

+

p
µ

4
(V (p̂+ tXa

hb(p̂))� V (p̂)| {z }
Term VI

),

and bound each term separately.
Term I+ II+ III. From the definition (5) of V and the

fact that ky1 + y2k
2
 2 ky1k

2 + 2 ky2k
2, we have

V (p̂) =
p
µs(f(x̂)� f(x⇤)) +

1

4
kv̂k2

+
1

4
kv̂ + 2

p
µ(x̂� x⇤)k

2


p
µs(f(x̂)� f(x⇤))

+
1

4
kv̂k2 +

2

4
kv̂k2 +

2

4
k2
p
µ(x̂� x⇤)k

2

=
p
µs(f(x̂)� f(x⇤)) +

3

4
kv̂k2 + 2µ kx̂� x⇤k

2 .

Using this bound, we obtain

hrV (p̂), Xa
hb(p̂)i+

p
µ

4
V (p̂)

 �
p
µ kv̂k2 +

p
µ

4

p
µs(f(x̂)� f(x⇤)) +

3
p
µ

16
kv̂k2

+
µ
p
µ

2
kx̂� x⇤k

2 +
p
µshrf(x̂)�rf(x̂+ av̂), v̂i

�
p
µ
p
µshrf(x̂+ av̂), x̂� x⇤i.

Writing 0 as 0 = av̂� av̂ and using strong convexity, we can
upper bound hrf(x̂ + av̂), x⇤ � x̂i in the last summand by
the expression

f(x⇤)� f(x̂+ av̂)�
µ

2
kx̂+ av̂ � x⇤k

2 + hrf(x̂+ av̂), av̂i.

Substituting this bound above and re-grouping terms,

hrV (p̂), Xa
hb(p̂)i+

p
µ

4
V (p̂)  �

p
µ kv̂k2

+
p
µ
p
µs

⇣1
4
(f(x̂)� f(x⇤)) + f(x⇤)� f(x̂+ av̂)

⌘

| {z }
(a)

+
3
p
µ

16
kv̂k2 +

p
µshrf(x̂)�rf(x̂+ av̂), v̂i

+
µ
p
µ

2
kx̂� x⇤k

2 +
p
µ
p
µs(�

µ

2
kx̂+ av̂ � x⇤k

2)
| {z }

(b)

+
p
µ
p
µshrf(x̂+ av̂), av̂i.

Observe that

(a) =
p
µ
p
µs

�
�

3

4
(f(x̂)� f(x⇤)) + f(x̂)� f(x̂+ av̂)

�
,

(b)  �
µ2ps

2
kx̂� x⇤k

2 +
p
µsµ

3/2
kx̂� x⇤k kav̂k

�
p
µsµ

3/2/2 kav̂k2 ,

where, in the expression of (a), we have expressed 0 as
0 = 3/4(f(x̂) � f(x̂)) and, in the expression of (b), we
have expanded the square and used the Cauchy-Schwartz
inequality [31]. Finally, resorting to (A.1), we obtain

hrV (p̂), Xa
hb(p̂)i+

p
µ

4
V (p̂)  CET(p̂; a) = CST(p̂; a).

• Term IV +V. Using (A.2) we have

rV (p̂+ tXa
hb(p̂)) =2

64

p
µsrf(x̂+ tv̂) +

p
µv̂ � 2µtv̂

�t
p
µ
p
µsrf(x̂+ av̂) + 2µ(x̂+ tv̂ � x⇤)

v̂ � 2t
p
µv̂ � t

p
µsrf(x̂+ av̂) +

p
µ(x̂+ tv̂ � x⇤)

3

75 .

Therefore, rV (p̂+ tXa
hb(p̂))�rV (p̂) reads

"p
µs(rf(x̂+tv̂)�rf(x̂))�t

p
µ
p
µsrf(x̂+av̂)

�
p
µtv̂ � t

p
µsrf(x̂+ av̂)

#

and hence

hrV (p̂+ tXa
hb(p̂))�rV (p̂), Xa

hb(p̂)i

=
p
µshrf(x̂+ tv̂)�rf(x̂), v̂i

+ 2t
p
µ
p
µshrf(x̂+ av̂), v̂i+ 2tµ kv̂k2

+ tµs krf(x̂+ av̂)k2 .

The RHS of the last expression is precisely AET(p̂, t; a). Using
the L-Lipschitzness of rf , one can see that AET(p̂, t; a) 

AST(p; a)t.
• Term VI. From (5),

V (p̂+ tXa
hb(p̂))� V (p̂) =

p
µs(f(x̂+ tv̂)� f(x⇤))
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+
1

4
kv̂ � 2t

p
µv̂ � t

p
µsrf(x̂+ av̂)k2

+
1

4
kv̂ � 2t

p
µv̂ � t

p
µsrf(x̂+ av̂)

+ 2
p
µ(x̂+ tv̂ � x⇤)k

2
�
p
µs(f(x̂)� f(x⇤))

�
1

4
kv̂k2 �

1

4
kv̂ + 2

p
µ(x̂� x⇤)k

2 .

Expanding the squares in the second and third summands, and
simplifying, we obtain

V (p̂+ tXa
hb(p̂))� V (p̂) =

p
µs(f(x̂+ tv̂)� f(x̂))

+
1

4
k�2t

p
µv̂ � t

p
µsrf(x̂+ av̂)k2

+
1

2
hv̂,�2t

p
µv̂ � t

p
µsrf(x̂+ av̂)i

+
1

4
k�t

p
µsrf(x̂+ av̂)k2

+
1

2
hv̂ + 2

p
µ(x̂� x⇤),�t(

p
µsrf(x̂+ av̂)i

=
p
µs(f(x̂+ tv̂)� f(x̂))

+
1

4
k�2t

p
µv̂ � t

p
µsrf(x̂+ av̂)k2

� t
p
µ kv̂k2 � t

p
µshv̂,rf(x̂+ av̂)i

+
1

4
k�t

p
µsrf(x̂+ av̂)k2

+ h
p
µ(x̂� x⇤),�t

p
µsrf(x̂+ av̂)i.

Note that

hx⇤ � x̂,rf(x̂+ av̂)i

= hx⇤ � x̂� av,rf(x̂+ av̂)i+ hav̂,rf(x̂+ av̂)i

 �
krf(x̂+ av̂)k2

L
+ hav̂,rf(x̂+ av̂)i,

where in the inequality we have used (A.1d) with x = x̂+ av̂
and y = x⇤. Using this in the equation above, one identifies
the expression of BET(p, t; a). Finally, applying (A.1c), one
can show that BET(p, t; a)  Bl

ST(p; a)t + Bq
ST(p; a)t

2,
concluding the proof.

Proof of Proposition V.2. For convenience, let

Xa,p̂
hb (p) =


v

�2
p
µv �

p
µsrf(x̂+ av̂)

�
,

where p̂ = [x̂, v̂]. We next provide a bound for the expression

d

dt
V (p(t))) +

p
µ

4
V (p(t)) = hrV (p̂), Xa,p̂

hb (p̂)i+

p
µ

4
V (p̂)

| {z }
Term I + II + III

+ hrV (p(t))�rV (p̂), Xa,p̂
hb (p(t))i

| {z }
Term IV

+ hrV (p̂), Xa,p̂
hb (p(t))�Xa,p̂

hb (p̂)i
| {z }

Term V

+

p
µ

4
(V (p(t))� V (p̂))| {z }

Term VI

.

Next, we bound each term separately.
• Term I+ II+ III. Since Xa,p̂

hb (p̂) = Xa
hb(p̂), this term

is exactly the same as Term I + II + III in the proof of
Proposition IV.4, and hence the bound obtained there is valid.

• Term IV. Using (A.2), we have

hrV (p(t))�rV (p̂), Xa,p̂
hb (p(t))i

=
p
µshrf(x(t))�rf(x̂), v(t)i

+
p
µhv(t)� v̂, v(t)i+ 2µhx(t)� x̂, v(t)i

� 2
p
µhv(t)� v̂, v(t)i �

p
µshv(t)� v̂,rf(x̂+ av̂)i

� 2µhx(t)� x̂, v(t)i �
p
µs

p
µhx(t)� x̂,rf(x̂+ av̂)i

=
p
µshrf(x(t))�rf(x̂), v(t)i �

p
µhv(t)� v̂, v(t)i

�
p
µshv(t)� v̂,rf(x̂+ av̂)i

�
p
µs

p
µhx(t)� x̂,rf(x̂+ av̂)i,

from where we obtain Term IV  AET(p̂, t; a). Now, using
0 = v̂ � v̂, the L-Lipschitzness of rf , and the Cauchy-
Schwartz inequality, we have

|AET(p̂, t; a)| 
p
µsL kx(t)� x̂k (kv(t)� v̂k+ kv̂k)

+
p
µ kv(t)� v̂k2 +

p
µ kv(t)� v̂k kv̂k

+
p
µs kv(t)� v̂k krf(x̂+ av̂)k

+
p
µs

p
µ kx(t)� x̂k krf(x̂+ av̂)k .

Using (20), the triangle inequality, and 1 � e�2
p
µt

 2
p
µt,

we can write

kx(t)� x̂k 
t

2
p
µ
k2
p
µv̂ +

p
µsrf(x̂+ av̂)k

+

p
µst

2
p
µ

krf(x̂+ av̂)k , (A.5a)

kv(t)� v̂k  t k2
p
µv̂ +

p
µsrf(x̂+ av̂)k . (A.5b)

Substituting into the bound for |AET(p̂, t; a)| above, we obtain

|AET(p̂, t; a)|  Aq
ST (p̂; a)t

2 + Al
ST(p̂; a)t

as claimed.
• Term V. Using (A.2), we have

D
rV (p̂), Xa,p̂

hb (p(t))�Xa,p̂
hb (p̂)

E

= h

p
µsrf(x̂) +

p
µv̂ + 2µ(x̂� x⇤)

v̂ +
p
µ(x̂� x⇤)

�
,


v(t)� v̂

�2
p
µ(v(t)� v̂)

�
i

=
p
µshrf(x̂), v(t)� v̂i+

p
µhv̂, v(t)� v̂i

+ 2µhx̂� x⇤, v(t)� v̂i � 2
p
µhv̂, v(t)� v̂i

� 2µhx̂� x⇤, v(t)� v̂i = DET(p̂, t; a).

Taking the absolute value and using the Cauchy-Schwartz
inequality in conjunction with (A.5), we obtain the expression
corresponding to DST.
• Term VI. From (5),

V (p(t))� V (p̂) =
p
µs(f(x(t))� f(x⇤)) +

1

4
kv(t)k2

+
1

4
kv(t) + 2

p
µ(x(t)� x⇤)k

2

�
p
µs(f(x̂)� f(x⇤))�

1

4
kv̂k2

�
1

4
kv̂ + 2

p
µ(x̂� x⇤)k

2 .

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on July 06,2022 at 23:19:40 UTC from IEEE Xplore.  Restrictions apply. 



0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3171307, IEEE
Transactions on Automatic Control

16

Expanding the third summand (using x(t) = x̂+(x(t)�x̂) and
v(t) = v̂+(v(t)�v̂)) as

��v̂ + 2
p
µ(x̂� x⇤)

��2+2hv̂+2
p
µ(x̂�

x⇤), v(t)�v̂+2
p
µ(x(t)�x̂)i+

��v(t)� v̂ + 2
p
µ(x(t)� x̂)

��2,
we obtain after simplification

V (p(t))� V (p̂) =
p
µs(f(x(t))� f(x̂)) (A.6)

+
1

4
(kv(t)k2 � kv̂k2) +

1

4
kv(t)� v̂ + 2

p
µ(x(t)� x̂)k2

+
1

2
hv(t)� v̂ + 2

p
µ(x(t)� x̂), v̂ + 2

p
µ(x̂� x⇤)i.

Using (20), we have

hv(t)� v̂ + 2
p
µ(x(t)� x̂), 2

p
µ(x̂� x⇤)i

= �2
p
µ
p
µsthrf(x̂+ av̂), x̂� x⇤i

= �2
p
µ
p
µsthrf(x̂+ av̂), x̂+ av̂ � x⇤i

� 2
p
µ
p
µsthrf(x̂+ av̂),�av̂i

 �2
p
µ
p
µst

krf(x̂+ av̂)k2

L
+ 2

p
µ
p
µsthrf(x̂+ av̂), av̂i,

where we have used (A.1d) to derive the inequality. Substitut-
ing this bound into (A.6), we obtain

p
µ
4 (V (p(t)) � V (p̂)) 

BET(p̂, t; a). To obtain the ST-expressions, we bound each
remaining term separately as follows. Note that

f(x(t))� f(x̂) |{z}
(A.1e)

hrf(x̂), x(t)� x̂i+
L2

2µ
kx(t)� x̂k2

 kx(t)� x̂k krf(x̂)k+
L2

2µ
kx(t)� x̂k2


t

2
p
µ
k2
p
µv̂ +

p
µsrf(x̂+ av̂)k krf(x̂)k

+

p
µst

2
p
µ

krf(x̂+ av̂)k krf(x̂)k

+
L2

2µ
(
t2

4µ
k2

p
µv̂ +

p
µsrf(x̂+ av̂)k2

+
µst2

4µ
krf(x̂+ av̂)k2

+

p
µst2

2µ
k2
p
µv̂ +

p
µsrf(x̂+ av̂)k krf(x̂+ av̂)k),

where we have used (A.5a) to obtain the last inequality. Next,

kv(t)k2 � kv̂k2 = kv(t)� v̂k2 + 2hv(t)� v̂, v̂i

 t2 k2
p
µv̂ +

p
µsrf(x̂+ av̂)k2

+ 2t k2
p
µv̂ +

p
µsrf(x̂+ av̂)k kv̂k ,

where we have used (A.5b) to obtain the last inequality. Using
ky1 + y2k

2
 2 ky1k

2 + 2 ky2k
2, we bound

kv(t)�v̂+2
p
µ(x(t)�x̂)k2  2 kv(t)�v̂k2+8µ kx(t)�x̂k2

 2t2 k2
p
µv̂ +

p
µsrf(x̂+ av̂)k2 + 4

p
µt·

·
�
k2
p
µv̂ +

p
µsrf(x̂+ av̂)k+

p
µs krf(x̂+ av̂)k

�2
,

where we have used (A.5). Finally,

hv(t)� v̂ + 2
p
µ(x(t)� x̂), v̂i  �

p
µsthrf(x̂+ av̂), v̂i.

Employing these bounds in the expression of BET, we obtain
|BET(p̂, t; a)|  Bq

ST (p̂; a)t
2 +Bl

ST(p̂; a)t, as claimed.

Miguel Vaquero was born in Galicia, Spain. He re-
ceived his Licenciatura and Master’s degree in math-
ematics from the Universidad de Santiago de Com-
postela, Spain and the Ph.D. degree in mathematics
from Instituto de Ciencias Matemáticas (ICMAT),
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