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Abstract—This letter deals with linear algebraic equa-
tions where the global coefficient matrix and constant
vector are given respectively, by the summation of the
coefficient matrices and constant vectors of the individual
agents. Our approach is based on reformulating the original
problem as an unconstrained optimization. Based on this
exact reformulation, we first provide a gradient-based, cen-
tralized algorithm which serves as a reference for the ensu-
ing design of distributed algorithms. We propose two sets
of exponentially stable continuous-time distributed algo-
rithms that do not require the individual agent matrices to
be invertible, and are based on estimating non-distributed
terms in the centralized algorithm using dynamic aver-
age consensus. The first algorithm works for time-varying
weight-balanced directed networks, and the second algo-
rithm works for general directed networks for which the
communication graphs might not be balanced. Numerical
simulations illustrate our results.

Index Terms—Linear algebraic equations, distributed
algorithms, directed graphs.

I. INTRODUCTION

THE IMPORTANCE of solving linear algebraic equations
is paramount. They appear frequently in core mathemat-

ics as well as in applications, in physics and engineering.
Nonlinear systems can often be well understood by their linear
approximation. Due to the recent development of large-scale
networks coupled with parallel processing power and fast com-
munication capabilities, there is a growing effort aimed at
developing distributed algorithms to solve systems of linear
equations. Distributed algorithms preserve the privacy of the
agents, are robust against single point of failures, and scale
well with the network size. Keeping these considerations in
mind, this letter is a contribution to the growing body of
distributed algorithms to solve linear algebraic equations.

Literature Review: Justifying the ubiquity of linear equa-
tions, there is a vast and expanding literature to solve them
efficiently, see [1]–[3] and references therein. However, most
of the works consider the information structure where each
agent knows some rows of the coefficient matrix and the
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constant vector. In those cases, the collective problem has a
solution if and only if the individual equations are solvable.
Instead, the problem structure considered here is different,
and assumes that each agent has a full coefficient matrix and
constant vector of its own. This setting appears frequently
in distributed sensor fusion, where sensors are spatially dis-
tributed and they seek to build a global state estimate (e.g.,
about the location of a source or the position of a target)
from local measurements, see [4], [5]. All the works in this
category rely on the communication graph being undirected.
The work [4] relies on the positive definiteness of the indi-
vidual matrices to compute the updates and prove stability.
Reference [5] uses element-wise average consensus for the
coefficient matrix as well as the constant vector, which
does not scale with either the problem dimension or the
network size, and is not desirable from a privacy standpoint.
Reference [6] also exploits the positive definite property of
the individual matrices and requires the agents to know the
state as well as the matrices of the neighbors. Reference [7]
proposes a distributed algorithm without any positive def-
initeness condition, but agents are allowed to converge to
different solutions. Our approach here uses dynamic average
consensus [8], [9] to estimate certain non-distributed terms in
a gradient-based algorithm for the reformulated optimization
problem. We also draw inspiration from [10], [11] on dis-
tributed optimization to extend our treatment to deal with
unbalanced networks. However, unlike the aforementioned
works where the desired solution is not an equilibrium of the
dynamics, requiring a diminishing time-varying stepsize-like
parameter to ensure convergence, here we make sure that any
solution of the linear equation is indeed an equilibrium of the

0We employ the following notation. R, R>0 and Z denote the set of real
numbers, positive real numbers, and integers, resp. |X | denotes the cardinality
of a set X . 1, 0 and I denote a vector or matrix of all ones and zeros, and
an identity matrix of appropriate dimension, resp. We let lowercase letters to
denote vectors and uppercase letters to denote matrices. ‖x‖ and ‖A‖ denote
the 2-norm of a vector x and the induced 2-norm of a matrix A, resp. diag(x)
denotes the diagonal matrix obtained after arranging the entries of the vector
x along the principal diagonal. Aij denotes the ijth element of a matrix A,
A" its transpose, A−1 its inverse (if it exists) and null(A) its null space.
A ⊗ B denotes the Kronecker product between two matrices A and B. Unless
otherwise stated, x ∈ Rmn denotes the concatenated vector obtained after
stacking the vectors {xi}n

i=1 ∈ Rm. A & 0 and A ' 0 imply that a matrix A is
positive definite and semidefinite, resp. For a symmetric matrix A, λmax(A)
and λmin(A) denote its maximum and minimum eigenvalue, resp. Regardless
of the multiplicity of eigenvalue 0, λ2(A) denotes the minimum non-zero
eigenvalue of a positive semidefinite matrix A. For two vectors x, y ∈ Rn,
[x; y] denotes the concatenated vector containing the entries of x and y, in
that order, and x > y means that the inequality holds elementwise.

2475-1456 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on July 06,2022 at 23:19:49 UTC from IEEE Xplore.  Restrictions apply. 



SRIVASTAVA AND CORTÉS: SOLVING LINEAR EQUATIONS WITH SEPARABLE PROBLEM DATA OVER DIRECTED NETWORKS 597

proposed dynamics. This enables us to employ Lyapunov sta-
bility analysis to establish convergence and offers a framework
to study robustness against disturbances and errors. Our
work [12] requires bidirectional 2-hop communication. In
contrast, the distributed algorithms here require information
exchange only with immediate neighbors and work for arbi-
trary directed graphs.

Statement of Contributions: We consider linear algebraic
equations where the coefficient matrices and constant vec-
tor for the overall problem are given, respectively, by the
summation of the individual agents’ coefficient matrices and
constant vectors. Our starting point is the exact reformulation
of this problem as a constrained optimization problem. Using
the observation that the optimal value of this optimization is
zero, we reformulate it as optimization of an unconstrained
function, and propose a centralized algorithm which works
for weight-balanced networks and serves as a reference for
the design of distributed algorithms. Using dynamic average
consensus, we then propose a distributed algorithm that does
not require the agent matrices to be positive definite, works
for time-varying weight-balanced networks and is guaranteed
to converge to a solution of the original problem exponen-
tially fast. Building on the insights gained in establishing these
results, we propose a distributed algorithm that is not lim-
ited to weight-balanced networks and is also guaranteed to
converge to a solution of the linear equation exponentially
fast.

II. PRELIMINARIES

Here we review basic notions from graph theory
[10], [13], [14] and dynamic average consensus [8], [9].

Graph Theory: Let G = (V, E, A) be a weighted directed
graph (or digraph), with V as the set of vertices (or nodes) and
E ⊆ V ×V as the set of edges: (vi, vj) ∈ E iff there is an edge
from node vi to node vj. With |V | = n, the adjacency matrix
A ∈ Rn×n of G is such that Aij > 0 if (vi, vj) ∈ E and Aij = 0,
otherwise. A directed path is an ordered sequence of vertices
such that any pair of consecutive vertices is an edge. A digraph
is strongly connected if there is a directed path between any
two distinct vertices. The out- and in-degree of a node are,
resp., the number of outgoing edges from and incoming edges
to it. The weighted out-degree and weighted in-degree of a
node vi are dout(vi) = ∑n

j=1 Aij and din(vi) = ∑n
j=1 Aji, resp.

The out-degree matrix Dout ∈ Rn×n and in-degree matrix Din ∈
Rn×n are diagonal matrices defined as Dout

ii = dout(vi) and
Din

ii = din(vi), resp. A graph is weight-balanced if Dout = Din.
The Laplacian L ∈ Rn×n is L = Din − A. All eigenvalues of L
have nonnegative real parts, 0 is simple with left eigenvector
1 iff G is strongly connected, and L 1 = 0 iff G is weight-
balanced iff L + L" is positive semidefinite, see [13, Th. 1.37].
If G is strongly connected, it follows from [14, Lemma 3] that
there exists a positive right eigenvector v̄ ∈ Rn associated to 0.

Dynamic Average Consensus: Consider a group of n ∈ Z>1
agents communicating over a weight-balanced digraph G with
Laplacian L. Each agent i ∈ {1, . . . , n} has a state xi ∈ R
and an input zi ∈ R. The dynamic average consensus algo-
rithm aims at making all the agents track the average 1

n

∑n
i=1 zi

asymptotically. Here we present the algorithm following [8],
where it was introduced for undirected graphs. Consider

ẋ = − L x +ż.

If
∑n

i=1 xi(0) = ∑n
i=1 zi(0) and the input z is bounded, then

xi(t) → 1
n

∑n
i=1 zi(t) as t → ∞ for i ∈ {1, . . . , n}, see [8].

III. PROBLEM FORMULATION

Consider a group of n agents interacting over a digraph that
seek to solve in a distributed way the linear algebraic equation

(
n∑

i=1

Ai

)

︸ ︷︷ ︸
A

x =
(

n∑

i=1

bi

)

︸ ︷︷ ︸
b

, (1)

where x ∈ Rm is the unknown solution vector, and Ai ∈ Rm×m

and bi ∈ Rm are the coefficient matrix and constant vector
corresponding to agent i ∈ {1, . . . , n}. We assume that (1)
has at least one solution. The formulation (1) includes, as
a particular case, scenarios where each agent i knows only
some rows of the coefficient matrix A and constant vector b.
Our approach consists of first formulating (1) as a system
involving n unknown solution vectors, one per agent, and then
reformulating it as a convex optimization problem. Based on
this reformulation, we propose two sets of (out-)distributed
algorithms (where each agent only needs information from its
out-neighbors) to find the solutions of (1). We start by endow-
ing each agent with its own version xi ∈ Rm of x. Then (1)
can be equivalently written as

n∑

i=1

Aixi =
n∑

i=1

bi, (2a)

xi = xj ∀i, j. (2b)

Equation (2b) ensures that xi = x for all the agents. Clearly the
set of equations (2) and the original problem (1) are equiva-
lent. Next we formulate (2) as a convex optimization problem.
Consider the quadratic function f : Rmn → R

f (x) =
( n∑

i=1

(Aixi − bi)

)"( n∑

i=1

(Aixi − bi)

)
,

which is convex and attains its minimum over the solu-
tion set of (2a). For convenience, we use L = L ⊗I and
f (x) = (A x − b)" 11"(A x − b), where 1 = 1 ⊗I, A ∈
Rmn×mn denotes the block-diagonal matrix obtained after
putting the matrices {Ai}n

i=1 along the principal diagonal, and
b = [b1; . . . ; bn] ∈ Rmn. If G is strongly connected, the
solutions of (2) are the same as the optimizers of

min
x

f (x)

s.t. L" x = 0 . (3)

Remark 1 (Distributed Algorithmic Solutions to
Optimization Problem): The problem (3) can be solved
over an undirected graph by reformulating it using the
techniques in [15] and employing the saddle-point dynamics,
see [16], [17]. These dynamics involve terms of the form
L" and, to be implemented over a digraph, would need
information from in- as well as out-neighbors and hence are
not suitable for our setup. Works that deal with distributed
optimization under consensus constraints over digraphs, see,
e.g., [10], [18] and references therein, require the objective
function to be separable, and therefore are not applicable
either here.
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IV. DISTRIBUTED ALGORITHMS OVER
WEIGHT-BALANCED NETWORKS

We present distributed algorithms to solve (1) over weight-
balanced networks.

A. Centralized Algorithm
We first introduce a centralized algorithm using the fact that

the objective function vanishes at the optimizers of (3). Let

min
x

1
2
α x"(L + L") x +βf (x), (4)

where α, β > 0. Clearly, (3) and (4) have the same set
of solutions if G is strongly connected and weight-balanced.
Since problem (4) is unconstrained, one can use gradi-
ent descent to find its optimizers. However, the gradient
−α(L + L") x −β A" 11"(A x − b) of the objective function
in (4) involves terms with L", whose computation would
require information from in-neighbors. Instead, we consider
the following gradient-based dynamics

ẋ = −α L x −β A" 11"(A x − b). (5)

Whenever convenient, we refer to (5) as ψgrad. Note that
the first term in the dynamics (5) is distributed, meaning
that each agent can implement it with information from its
out-neighbors. The second term, however, requires collective
information from all the agents because of the summation
across the network. Nevertheless, this algorithm serves as the
basis for our distributed algorithm design in the next section.

The next result formally characterizes the equivalence
between the equilibria of (5) and the solutions of (1).

Lemma 1 (Equivalence Between (5) and (1)): Let G be a
strongly connected and weight-balanced digraph. Then for all
α, β ∈ R>0, x∗ is an equilibrium of (5) if and only if x∗ =
1 ⊗x∗, where x∗ ∈ Rm solves (1).

Proof: The implication from right to left is immediate. To
prove the implication in the other direction, let x̄ ∈ Rm be a
solution of (1) and consider x̄ = 1 ⊗x̄. Since x∗ and x̄ are
equilibria of (5),

α L(x∗ −x̄) + β A" 11" A(x∗ −x̄) = 0 . (6)

Let Q11 = 1
2α(L + L") + β A" 11" A. Then (6) implies

(x∗ −x̄)"Q11(x∗ −x̄) = 0.

Since G is weight-balanced, (L + L") ' 0. This along with
the fact that A" 11" A ' 0 implies L"(x∗ −x̄) = 0 and
1" A(x∗ −x̄) = 0. Therefore, x∗ = 1 ⊗x∗, for some x∗ ∈ Rm

which satisfies Ax∗ = Ax̄ = b, as claimed.
The next result characterizes the convergence of (5).
Proposition 1 (Exponential Stability of (5)): Let G be a

strongly connected and weight-balanced digraph. Then for all
α, β ∈ R>0, any trajectory of (5) converges exponentially to
a point of the form x∗ = 1 ⊗x∗, where x∗ ∈ Rm solves (1).

Proof: Consider a vector w ∈ Rmn in the null space of
Q11. Using the same line of arguments as in the proof of
Lemma 1, this implies that L" w = 0 and 1" A w = 0.
Therefore, along (5),

ẋ"w = −(α x" L" +β(A x − b)" 11" A)w = 0.

This means that the dynamics (5) are orthogonal to the null
space of Q11 and hence the component of x in the null space

of Q11, say xnull, remains constant. Given the initial condition
x(0), consider the particular equilibrium x∗ of (5) satisfying
x∗

null = x(0)null. Since different equilibria differ only in their
null space component, x∗ defined this way is unique. Consider
the Lyapunov function candidate V:Rmn → R

V(x) = 1
2
(x − x∗)"(x − x∗).

The Lie derivative of V along the dynamics (5) is given by

Lψgrad V = −(x − x∗)"(α L x +β A" 11"(A x − b))

= −(x − x∗)"Q11(x − x∗) ≤ −2λ2(Q11)V.

The last inequality follows from applying the Courant-
Fischer theorem [19, Th. 4.2.11] together with the fact that
(x − x∗)"w = 0 as xnull is constant. Using the monotonicity
theorem [19, Corollary 4.3.3], we further have

Lψgrad V ≤ −2 min
{

1
2
αλ2(L + L"), βλ2(A" 11" A)

}
V.

Hence, the dynamics (5) is exponentially stable with a rate
depending on α, β, L and {Ai}n

i=1.

B. Distributed Algorithm
We present a distributed algorithm to find a solution of (1),

which is based on the centralized algorithm (5) and involves
employing dynamic average consensus (see Section II) to
estimate the aggregate 1"(A x − b). Formally,

ẋ = −α L x −nβ A" y, (7a)
ẏ = −αA L x −nβ A A" y − γ L y, (7b)

with design parameter γ > 0. Here, each agent i ∈ {1, . . . , n}
updates yi ∈ Rm which estimates the average mismatch
1
n 1

"(A x − b). The dynamics (7) is distributed as each agent
just needs to know its state and that of its out-neighbors.
Whenever convenient, we refer to it as ψgdac. The following
result characterizes the equilibria of (7) and shows that the
total deviation from the average mismatch is conserved.

Lemma 2 (Equilibria of (7) and Invariance of Total
Deviation): Let G be a strongly connected and weight-balanced
digraph. Then, if (x∗, 0) is an equilibrium of (7) then x∗ =
1 ⊗x∗, where x∗ ∈ Rm. Moreover, for all α, β, γ ∈ R>0,
1"(y − A x) remains constant along the evolution of (7).

Proof: Let (x∗, 0) be an equilibrium of (7). From (7a),
it follows that L x = 0, and hence x∗ = 1 ⊗x∗ for some
x∗ ∈ Rm, establishing the first statement. Now, consider the
derivative 1"(ẏ−A ẋ) = −γ 1" L y = 0. Hence, 1"(y−A x)
is conserved along the evolution of (7).

Remark 2 (Distributed Initialization of the ψgdac
Algorithm): From Lemma 2, we observe that in order for
a trajectory of (7) to converge to an equilibrium of the
form (x∗, y∗) = (1 ⊗x∗, 0), where x∗ ∈ Rm solves (1), its
initial condition must satisfy 1" y(0) = 1"(A x(0) − b).
This could be implemented in a distributed way if each
agent i ∈ {1, . . . , n} chooses its initial states satisfying
yi(0) = Aixi(0) − bi. One trivial selection, for example, is
x(0) = 0 and y(0) = − b.

The next result characterizes the convergence of (7).
Theorem 1 (Exponential Stability of (7) Over Balanced

Networks): Let G be a strongly connected and weight-balanced
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digraph and assume null(A) ⊆ null(Ai), for all i ∈ {1, . . . , n}.
Let α, β ∈ R>0 and define

γ̄ = max

{
2

λ2(L + L")
λmax

(
Q"

12Q12

λ2(Q11)
− nβ A A"

)

, 0

}

,

where Q11 = 1
2α(L + L") + β A" 11" A and Q12 =

1
2 (nβ A" +α L" A" +β A" 11" A A"). Then, for all γ ∈
(γ̄ ,∞), any trajectory of (7) with initial condition satisfying
1" y(0) = 1"(A x(0)− b) converges exponentially to (x∗, 0),
where x∗ = 1 ⊗x∗ and x∗ ∈ Rm solves (1).

Proof: Define the error variable

e = y − 1
n
11"(A x − b), (8)

measuring the difference between the agents’ estimates and
the actual value of average mismatch. Note that

ė = −α&A L x −nβ&A A" y − γ L y,

where & = I − 1
n 11". Rewriting (7) in terms of x and e,

ẋ = −α L x −β A" 11"(A x − b) − nβ A" e, (9a)
ė = −α&A L x −β&A A" 11"(A x − b)

− nβ&A A" e − γ L e. (9b)

From the proof of Proposition 1, we know that if w ∈ Rmn is
in the null space of Q11, then L" w = 0 and 1" A w = 0.
Therefore, w = 1 ⊗w, where w ∈ Rm belongs to w ∈ null(A).
By hypothesis, Aiw = 0 for all i ∈ {1, . . . , n}. Therefore,
from (9a), ẋ"w = 0, and the x component of the equilibrium
(x∗, y∗) of (7) satisfies x∗

null = x(0)null and is unique. With the
initialization of the statement, it follows from Lemma 2 that
y∗ = 1 ⊗ 1

n 1
"(A x∗ − b). Substituting this value of y∗ in (7a)

and following the proof of Lemma 1, one can establish that
the corresponding equilibrium is of the form (1 ⊗x∗, 0), where
x∗ ∈ Rm is a solution of (1). Consider the Lyapunov function
candidate V2 : R2mn → R

V2(x, e) = 1
2
(x − x∗)"(x − x∗) + 1

2
e"e.

The Lie derivative of V2 along (9) is given by

Lψgdac V2 = −(x − x∗)"(α L x +β A" 11"(A x − b))

− nβ(x − x∗)" A" e − e"&A(α L x +nβ A" e)
− e"(β&A A" 11"(A x − b) + γ L e)

= −
[

x − x∗
e

]"[Q11 Q12
Q"

12 Q22

][
x − x∗

e

]
,

where Q22 = 1
2γ (L + L") + nβ A A" and we have used the

fact that due to the mentioned initialization, 1" e = 0 from
Lemma 2. Since xnull is constant, (x − x∗)"w = 0 and from
the Courant-Fischer theorem [19, Th. 4.2.11],

−(x − x∗)"Q11(x − x∗) ≤ −λ2(Q11)(x − x∗)"(x − x∗).

Also, since 1" e = 0 and G is weight-balanced, it again
follows from the Courant-Fischer theorem that

−e"Q22e ≤ −1
2
γ λ2(L + L")e"e − nβe" A A" e.

Therefore, we can upper bound the Lie derivative as

Lψgdac V2 ≤ −
[

x − x∗
e

]" [
λ2(Q11)I Q12

Q"
12 Q̄22

]

︸ ︷︷ ︸
Q̄

[
x − x∗

e

]
,

where Q̄22 = 1
2γ λ2(L + L")I + nβ A A". Next, we examine

the positive definiteness of Q̄. Using the Schur comple-
ment [20], Q̄ & 0 iff

1
2
γ λ2(L + L")I + nβ A A" − 1

λ2(Q11)
Q"

12Q12 & 0 .

Hence, Q̄ & 0 if γ > γ̄ , and Lψgdac V2 ≤ −2λmin(Q̄)V2.
The null space condition in Theorem 1 makes sure that x∗

null
remains invariant along the evolution of (7) and all the agents
approach the solution of (1) closest to x(0). This condition is
automatically satisfied if the matrix A is full rank, or in other
words, equation (1) has a unique solution. We believe (and
simulations also suggest) that if this condition is not satisfied,
the x component of the dynamics still converges to a solution
of (1).

Remark 3 (Lower Bound on γ ): The lower bound γ̄
in Theorem 1 is conservative in general. In fact, the algo-
rithm may converge even if this condition is not sat-
isfied, something that we have observed in simulation.
Note also that although α and β are free parameters,
they should still be carefully chosen as γ̄ depends on
them.

The result above can be extended to time-varying networks.
In case G(t) is time-varying, the algorithm in (7) reads as

ẋ = −α L(t) x −nβ A" y, (10a)
ẏ = −αA L(t) x −nβ A A" y − γ L(t)y. (10b)

The next result formally characterizes the convergence of (10).
Its proof is similar to that of Theorem 1 and hence omitted.

Theorem 2 (Exponential Stability of (10) Over Time-
Varying Balanced Networks): Let {G(t)}∞t=0 be a sequence of
strongly connected and weight-balanced digraphs with uni-
formly bounded edge weights (i.e., there exists a ∈ (0,∞)
such that Aij(t) < a for all (i, j) and t ≥ 0), and assume
null(A) ⊆ null(Ai), for all i ∈ {1, . . . , n}. Let α, β ∈ R>0 and
define γ̄ (t) as

max
{

2
λ2(L(t) + L(t)")

λmax

(
Q12(t)"Q12(t)
λ2(Q11(t))

− nβ A A"
)

, 0
}
,

where Q11(t) = 1
2α(L(t) + L(t)") + β A" 11" A and

Q12(t) = 1
2 (nβ A" +α L(t)" A" +β A" 11" A A"). Then

for all γ ∈ (γ̂ ,∞), where γ̂ = supt≥0 γ̄ (t), any trajectory
of (10) with initial conditions 1" y(0) = 1"(A x(0) − b)
converges exponentially to (x∗, 0), where x∗ = 1 ⊗x∗ and
x∗ ∈ Rm solves (1).

V. DISTRIBUTED ALGORITHMS OVER
UNBALANCED NETWORKS

In this section, we extend our approach to solve problem (1)
over graphs that are not necessarily balanced. In those
scenarios, since L 1 1= 0, the one-to-one correspondence
between the desired equilibria of (5) or (7) and the
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solutions of (1) does not hold anymore. To overcome this,
we propose

ẋ = −α L V̄ x −nβ A" y, (11a)
ẏ = −αA L V̄ x −nβ A A" y − γ L V̄y, (11b)

where V̄ = diag(v̄), v̄ = 1 ⊗v̄, and v̄ is a positive right eigen-
vector with eigenvalue 0 of L. Exponential stability of (11)
can be established by interpreting L · diag(v̄) as the Laplacian
of a weight-balanced graph and then following the same steps
as in the proof of Theorem 1, but we omit it here for rea-
sons of space. Although (11) is distributed, it assumes that
agents have a priori knowledge of the corresponding entries
of v̄ which might be limiting in practice. To deal with this
limitation, we propose an algorithm that does not require such
knowledge by augmenting (11) with an additional dynamics
converging to v̄,

ẋ = −α L V x −nβ A" y, (12a)
ẏ = −αA L V x −nβ A A" y − γ L Vy, (12b)
v̇ = − L v, (12c)

where V = diag(v). Whenever convenient, we refer to dynam-
ics (12) as ψdist. Note that, unlike all the dynamics discussed
so far, ψdist is nonlinear.

Remark 4 (Distributed Nature of (12)): The dynamics (12)
is out-distributed, but requires each agent i ∈ {1, . . . , n}
to have knowledge of its in-degree because L = Din − A
and the graph is not weight-balanced. If we use instead
the out-Laplacian L = Dout − A, then one could still define
an equivalent algorithm for (11) with L V̄ replaced by V̄ L,
but (12c) would look like v̇ = − L" v, which would require
state information from in-neighbors too.

The next result characterizes the convergence of (12).
Theorem 3 (Exponential Stability of (12) Over Unbalanced

Networks): Let G be a strongly connected digraph and assume
null(A) ⊆ null(Ai), for all i ∈ {1, . . . , n}. Let α, β ∈ R>0 and
define

γ̄ = max

{
2

λ2(L V̄ + V̄ L")
λmax

(
Q"

12Q12

λ2(Q11)
− nβ A A"

)

, 0

}

,

where Q11 = 1
2 (α L V̄ + V̄ L") + β A" 11" A, Q12 =

1
2 (nβ A" +αV̄ L" A" +β A" 11" A A"), v̄ is the positive
eigenvector with eigenvalue 0 of L satisfying 1" v̄ = 1, and
V̄ = diag(v̄). Then, for all γ ∈ (γ̄ ,∞), any trajectory of (12)
with initial condition satisfying 1" y(0) = 1"(A x(0) − b)
and v(0) = 1

n 1, converges exponentially to (x∗, 0, v̄), where
x∗ = 1 ⊗x∗ and x∗ ∈ Rm solves (1), and v̄ = 1 ⊗v̄.

Proof: From [11, Proposition 2.2], we have that v(t) > 0 for
all t ≥ 0. Also, since 1" L = 0, 1" v is conserved along the
evolution of (12c). Hence v(t) → v̄ exponentially fast with
a rate determined by the non-zero eigenvalue of L with the
smallest real part. Let us interpret the dynamics (12a)-(12b)
as the dynamics (11) with some disturbance d(t) defined by

d =
[

dx

dy

]
=
[

−α L(V − V̄) x
−αA L(V − V̄) x −γ L(V − V̄)y

]
,

which goes to 0 as t → ∞. Consider a vector w ∈ null(Q11).
Then as in the proof of Theorem 1, w = 1 ⊗w, where
w ∈ null(A) and by hypothesis, Aiw = 0 for all i ∈ {1, . . . , n}.
Since 1" L = 0, therefore, w"dx = 0 and we still have
w"ẋ = 0, and the x component of the equilibrium (x∗, y∗, v̄)

of (12) satisfies x∗
null = x(0)null and is unique. With the

initialization of the statement and following the same steps
as in the proof of Lemma 2, one can establish that y∗ =
1 ⊗ 1

n 1
"(A x∗ − b). Substituting this value of y∗ in (12a) and

following the proof of Lemma 1, one can establish that the
corresponding equilibrium is of the form (1 ⊗x∗, 0, v̄), where
x∗ ∈ Rm is a solution of (1). Consider now the Lyapunov
function candidate V3 : R3mn → R

V3(x, e, v) = V2(x, e) + δ

2
(v − v̄)" P(v − v̄),

where δ > 0, P = V̄−1, e is defined as in (8), and V2 is the
same function as in the proof of Theorem 1. The Lie derivative
of V3 along (12) is given by

Lψdist V3 = −
[

x − x∗
e

]"[Q11 Q12
Q"

12 Q22

][
x − x∗

e

]
+ (x − x∗)"dx

+ e"de − δ(v − v̄)"(L" P + P L)(v − v̄),

where de = −α&A L(V − V̄) x −γ L(V − V̄)e, and Q22 =
1
2γ (L V̄ + V̄ L") + nβ A A". Interestingly, L V̄ can be inter-
preted as the Laplacian of a weight-balanced graph and as a
result, L V̄ + V̄ L" ' 0 implying that L" P + P L ' 0. Once
again, following Lemma 2, one can establish that with the
initialization of the statement, 1" e = 0 and therefore using
the Courant-Fischer theorem [19, Th. 4.2.11] together with the
fact that (x − x∗)"w = 0 due to invariance of xnull, we can
upper bound the Lie derivative as

Lψdist V3 ≤ −
[

x − x∗

e

]" [
λ2(Q11)I Q12

Q"
12 Q̄22

]

︸ ︷︷ ︸
Q̄

[
x − x∗

e

]

+ α‖ x − x∗ ‖‖ L ‖‖v − v̄‖(‖ x − x∗ ‖ + ‖ x∗ ‖)
+ α‖e‖‖&A L ‖‖v − v̄‖(‖ x − x∗ ‖ + ‖ x∗ ‖)
+ γ ‖e‖‖ L ‖‖v − v̄‖‖e‖ − δλ2(L" P + P L)‖v − v̄‖2,

where Q̄22 = 1
2γ λ2(L V̄ + V̄ L")I + nβ A A". Define z =

[‖ x − x∗ ‖; ‖e‖; ‖v − v̄‖]. If γ > γ̄ , then Q̄ & 0 and from the
Courant-Fischer theorem, we have

Lψdist V3 ≤ − z"




λmin(Q̄) 0 Q̂13(z)

0 λmin(Q̄) Q̂23(z)
Q̂13(z) Q̂23(z) δλ2(L" P + P L)





︸ ︷︷ ︸
Q̂(z)

z,

where Q̂23(z) = − 1
2α‖&A L ‖(z +‖ x∗ ‖) − 1

2γ ‖ L ‖ z and
Q̂13(z) = − 1

2α‖ L ‖(z +‖ x∗ ‖). Using the Schur complement,
one can verify that for a given value of z, Q̂(z) & 0 iff

δ > δ̄(z) = 1

λmin(Q̄)λ2(L" P + P L)
(Q̂13(z)2 + Q̂23(z)2).

Hence, if δ > δ̄(z(0)), then Lψdist V3 ≤ −λmin(Q̂(z(0))) z" z.
This along with the fact that 1

2 min{1, δλmin(P)}‖ z ‖2 ≤
V3 ≤ 1

2 max{1, δλmax(P)}‖ z ‖2, implies that V3 satisfies the
hypotheses of [21, Th. 4.10] for exponential stability.

The exponential convergence of algorithms (5) and (7)
for weight-balanced graphs, and (11) for unbalanced graphs
follows from their linear nature. For algorithm (12), expo-
nential convergence could be attributed to the fact that the
dynamics (12c) converge exponentially and hence, after some
time, (11) and (12a)-(12b) are essentially the same.
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Fig. 1. Communication topologies among the agents. The edge weights
are adjusted to make the graphs either weight-balanced or unbalanced,
as needed.

Fig. 2. Evolution of the error between the actual solution and the aver-
age state using the proposed algorithms from initial condition x (0) = 0,
y(0) = − b, over the graphs shown in Fig. 1. The algorithms are imple-
mented in discrete time with a stepsize of 2.5 × 10−3, and the values
of α = 2, β = 0.1 and γ = 20. Straight lines correspond to exponential
convergence.

VI. SIMULATIONS

We consider 10 agents communicating over the digraphs
shown in Fig. 1, seeking to solve problem (1) with {Ai}10

i=1 ∈
R5×5 and {bi}10

i=1 ∈ R5. Since the proposed dynamics are in
continuous time, we use a first-order Euler discretization with
stepsize 2.5 × 10−3 for the MATLAB implementation. The
edge weights for various cases are adjusted to make the graphs
weight-balanced and unbalanced, resp. For the time-varying
case, at every iteration, the communication graph is switched
randomly between G1 and G2. In Fig. 2, we plot the evolution
of the error between the actual solution of (1) and the average
state x̄ = 1

n 1
" x using (7), (10) and (12). The initial conditions

for all the algorithms are chosen according to Remark 2. Even
though G2 (with 4.6 as the minimum of the real parts of non-
zero eigenvalues of L and λ2(L + L") = 7.6, for the weight-
balanced case) is more connected than G1 (with 1.9 as the
minimum of the real parts of non-zero eigenvalues of L and
λ2(L + L") = 3.8, for the weight-balanced case), convergence
is slower. The error in the time-varying case is lower and upper
bounded by the error for G1 and G2, resp.

VII. CONCLUSION AND FUTURE WORK

We have presented continuous-time algorithms to solve lin-
ear algebraic equations whose problem data is represented as
the summation of the data of individual agents. The proposed
algorithms are distributed over general directed networks, do

not require the individual agent matrices to be positive definite,
and are guaranteed to converge to a solution of the linear
equation exponentially fast. Future work will involve formally
characterizing the convergence when the null space condi-
tion is not satisfied, and explore the design of distributed
algorithms for finding least-square solutions when exact ones
do not exist, extension to cases where the problem data is
time-varying, and the communication graph is unbalanced and
time-varying.
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