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Abstract
In themammalian brain, many neuronal ensembles are involved in representing spatial
structure of the environment. In particular, there exist cells that encode the animal’s
location and cells that encode head direction. A number of studies have addressed
properties of the spatial maps produced by these two populations of neurons, mainly
by establishing correlations between their spiking parameters and geometric charac-
teristics of the animal’s environments. The question remains however, how the brain
may intrinsically combine the direction and the location information into a unified
spatial framework that enables animals’ orientation. Below we propose a model of
such a framework, using ideas and constructs from algebraic topology and synthetic
affine geometry.

Keywords Topological data analysis · Finite synthetic geometry · Neural decoding ·
Spatial representation · Head direction cells · Hippocampus

Mathematics Subject Classification 51E15 · 52C99 · 54J05

1 Introduction and background

Spatial cognition in mammals is based on an internalized representation of space—a
cognitive map 1 that emerges from neuronal activity in several regions of the brain
(O’Keefe and Nadel 1978; Derdikman and Moser 2011; Grieves and Jeffery 2017;
Tolman 1948; McNaughton 1996; Moser et al. 2008; Lisman et al. 2017). The type
of information encoded by a specific neuronal population is discovered by establish-
ing correspondences between its spiking parameters and spatial characteristics of the
environment. For example, ascribing the xy-coordinates to every spike produced by

1 Throughout the text, terminological definitions are given in italics.
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the hippocampal principal neurons according to the animal’s (in the experiments, typ-
ically rat’s) position at the moment of spiking, produces distinct clusters, indicating
that these neurons, the so-called place cells, fire only within specific locations—their
respective place fields (O’Keefe and Dostrovsky 1971; Best and White 1998). The
layout of the place fields in a spatial domain E—the place field map ME (Fig. 1A)—
thus defines the temporal order of the place cells’ spiking activity during the animal’s
navigation, which is a key determinant of the cognitivemap’s structure. Hence, tagging
the spikes with the location information can be viewed as a mapping from a cognitive
map C into the navigated space,

fσ : C → E, (1σ )

referred to as spatial mapping in Babichev et al. (2016). Similarly, tagging the spikes
produced by certain neurons in the postsubiculum (and in few other brain regions
(Taube et al. 1990; Wiener and Taube 2005)) with the rat’s head direction angle ϕ

produces clusters in the space of planar directions—the circle S1, thus defining a
mapping

fη : C → S1. (1η)

The angular domains in which specific head direction cells become active can be
viewed as head direction fields in S1, similar to the hippocampal place fields in the
navigated space. The corresponding head direction map, MS1 , determines the order in
which the head direction cells spike during the rat’s movements (Fig. 1B, Taube et al.
(1996); Muller et al. (1996)).

The preferred angular domains depend weakly, if at all, on the rat’s position, just
as place fields are overall decoupled from the head or body orientation (see however
Jercog et al. 2019; Rubin et al. 2014). Thus, the following discussion will be based on
the assumption that both cell populations contribute to an allocentric representation
of the ambient space: the place cells encode a topological map of locations (Gothard
et al. 1996; Alvernhe et al. 2008, 2011, 2012; Dabaghian et al. 2014; Wu and Foster
2014), whereas head direction cells augment it with angular information (Taube 1998;
Valerio and Taube 2012; McNaughton et al. 2006; Savelli and Knierim 2019).

Topological model. The physiological and the computational mechanisms bywhich
a cognitive map comes into existence remain vague (McNaughton 1996; Moser et al.
2008; Lisman et al. 2017). However, certain insights into its structure can be obtained
through geometric and topological constructions. For example, a place field map ME
can be viewed as a cover of the navigated environment E by the place fields υi ,

E = ∪iυi , (2)

and used to link the topology of E to the topological structure of the cognitive map C.
Indeed, according to the Alexandrov-Čech theorem, if every nonempty set of overlap-
ping place fields, υi0,i1,...,in ≡ υi0 ∩ υi1 ∩ . . . ∩ υin = υi0,i1,...,in �= ∅, is represented
by an abstract simplex, νi0,i1,...,in = [υi0 , υi1 , . . . , υin ], then the homologies of the
resulting simplicial complex Nσ—the nerve of the map ME—match the homologies
of the underlying space H∗(Nσ ) = H∗(E), provided that all the overlaps υi0,i1,...,in
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Fig. 1 Basic topological constructions. A. Simulated place field map ME with place fields scattered
randomly in a 1 × 1 m square environment E with a square hole in the middle. Clusters of dots of a
particular color represent individual place fields. B. A head direction field map MS1 covers the space of

directions, S1. Clusters of colored dots mark specific head direction fields υh , centered each at its preferred
angle ϕh . C. The net pool of place cell coactivities is represented by the coactivity complex Tσ (t) (top
right), which provides a developing topological representation of the environment E (bottom). The head
direction cells map a circular space of directions S1 (shown as a ring around the rat). The net pool of head
direction cell activities is schematically represented the coactivity complex Tη(t). D. The timelines of the
separate pieces (top panel) and holes (bottom panel) in the complex Tσ (t) are shown as horizontal bars. At
the onset of the navigation, Tσ (t) contains many spurious topological defects that disappear after a certain
“learning period" T σ

min, leaving behind a few persistent loops that define the topological shape of Tσ (t)
Dabaghian et al. (2012). Similar behavior is exhibited by the head direction coactivity complex Tη(t)

are contractible. This implies that Nσ and E have the same topological shape—same
number of connectivity components, holes, cavities, tunnels, etc. Hatcher (2002). The
same line of arguments allows relating the head direction map with the topology of
the space of directions S1 (Fig. 1C).

It must be emphasized however, that reasoning in terms of place and head direction
fields may not capture the brain’s intrinsic principles of processing spiking informa-
tion, e.g., explain how either the location or the direction signals contribute to animal’s
spatial awareness, because the experimentally constructed firing fields are nothing
but artificial constructions used to in interpret and visualize spiking data (Hargreaves
et al. 2007; Sargolini et al. 2006). Addressing the brain’s intrinsic space representation
mechanisms requires carrying the analyses directly in terms of spike times, without
invoking auxiliary correlates between neuronal activity and the observed environmen-
tal features.

Fortunately, the approach motivated by the nerve theorem can be easily transferred
into a “spiking" format. Indeed, one can view a combination of the coactive place
cells—a cell assembly (Hebb 1949; Harris 2005; Buzsaki 2010)—as an abstract coac-
tivity simplex,

σi = [ci0 , ci1 , . . . , cin ] (3)

that activates when the rat crosses its simplex field υσi—a domain where all the cells
ci ∈ σi are coactive (Curto and Itskov 2008). By construction, this domain is defined
by the overlap of the corresponding place fields υσi = υi0,i1,...,in , and may hence be
viewed as the the projection of σi s into E under the mapping (1σ ). Note that if two
coactivity simplexes overlap, their respective fields also overlap, σi ∩σ j �= ∅ ⇔ υσi ∩
υσ j �= ∅. Thus, if a cell ci is shared by a setUi of simplexes,Ui = {σ : σ ∩ ci �= ∅},
then its place field is formed by the union of the corresponding σ -fields,
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υi = ∪σ∈Ui υσ .

If a simplex σi first appears at the moment ti , then the net pool of neuronal activities
produced by the time t gives rise to a time-developing simplicial coactivity complex

Tσ (t) = ∪ti<tσi

that inflates (Tσ (t) ⊆ Tσ (t ′) for t < t ′), and eventually saturates, converging to
the nerve complex’s structure, i.e., Tσ (t) ≈ Nσ , for t � T σ∗ . Analyses based on
simulating rat’s moving through randomly scattered place fields show that, e.g., for
a small environment E illustrated on Fig. 1A, the rate of new simplexes’ appearance
slacks in about T σ∗ ≈ 6 minutes (Babichev et al. 2016), which provides an estimate
for the time required to map E .

The topological dynamics of Tσ (t) can be described using Persistent Homology
theory (Zomorodian and Carlsson 2005; Edelsbrunner and Harer 2010; Kang et al.
2021), which allows identifying the ongoing shape of Tσ (t) based on the times of
its simplexes’ first appearance. Typically, Tσ (t) starts off with numerous topological
defects that tend to disappear as the information provided by the spiking place cells
accumulates (see Dabaghian et al. 2012; Arai et al. 2014; Hoffman et al. 2016; Basso
et al. 2016 and Fig. 1D). Hence the minimal period T σ

min required to recover the
“physical" homologies H∗(E) provides an estimate for the time necessary to learn
topological connectivity of the environment, which, for the case illustrated on Fig. 1A,
is about T σ

min ≈ 4 − 5 minutes (Dabaghian et al. 2012; Arai et al. 2014; Basso et al.
2016; Hoffman et al. 2016; Alvernhe et al. 2012; Piet et al. 2018).

Importantly, the coactivity complex may be used not only as a tool for estimating
learning timescales, but also as a schematic representation of the cognitive map’s
developing structure, providing a context for interpreting the ongoing neuronal activity.
Indeed, a consecutive sequence of σ -fields visited by the rat,

ϒ = {υi0 , υi1 , . . . , υin , . . .}, (4)

captures the shape of the underlying physical trajectory s ⊂ ϒ (Guger et al. 2011;
Jensen and Lisman 2000; Frank et al. 2000; Brown et al. 1998; Zhang et al. 1998;
Huang et al. 2009). The corresponding chain of the place cell assemblies ignited in
the hippocampal network is represented by the simplicial path

σ̃ = {σ1, σ2, . . . , σn, . . .}. (5σ )

The fact that this information allows interpreting certain cognitive phenomena (Pfeif-
fer and Foster 2013; Johnson and Redish 2007; Dragoi and Tonegawa 2011) suggests
that the animal’s movements are faithfully monitored by neuronal activity, i.e., that
in sufficiently well-developed complexes (e.g., for t > T σ

min) simplicial paths capture
the shapes of the underlying trajectories (Guger et al. 2011; Jensen and Lisman 2000;
Frank et al. 2000; Brown et al. 1998; Zhang et al. 1998; Huang et al. 2009). For the
referencing convenience, this assumption is formulated as two model requirements:

R1. Actuality. At any moment of time, there exists an active assembly σ that repre-
sents the animal’s current location.
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R2. Specificity.Different place cell assemblies represent different domains in E ,i.e.,
σ -simplexes serve as unique indexes of the animal’s location in a given map C.

An implication of these requirements is that the simplex fields cover the explored
surfaces (2) and that if the consecutive simplexes in (5σ ) areadjacent, i.e., no simplexes
ignite between σi and σi+1 (schematically denoted below as σi � σi+1) then the
corresponding σ -fields are adjacent or overlap.

Head orientation map. Using the same line of arguments, one can deduce the
topology of the space of directions by building a dynamic head direction coactivity
complex Tη(t) from the simplexes

η j = [h j1, . . . , h jl ],

which designate the assemblies of head direction cells h j1 , h j2 , . . . , h jl . If a simplex
η j first activates at the moment t j , then

Tη(t) = ∪t j≤tη j .

As the complex Tη(t) develops, it forms a stage for representing the head direction
cell spiking structure: in full analogy with (5σ ), traversing a physical trajectory s(t)
induces a sequence of active η-simplexes, or a head direction simplicial path

η̃ = {η1, η2, . . . , ηn, . . .}, (5η)

inwhich different η-simplexes represent distinct directions, at all locations. As spiking
information accumulates, the topological structure of Tη(t) converges to the structure
of nerve complex Nη induced by the head direction fields’ cover of S1—every η-
simplex projects into its respective head direction field υη under the mapping (1η).
Simulations demonstrate that in the environment shown on Fig. 1A, a typical coactivity
complex Tη(t) saturates in about T η∗ ≈ 2 minutes, while the persistent homologies
of Tη(t) filtered according to the times of η–simplexes’ first appearances reveal the
circular topology of the space of directions in about T η

min ≈ 1.5 minutes.
From the biological point of view however, these results do not provide an estimate

for orientation learning time: by itself, T η
min may be viewed as the time required to

learn head directions at a particular location, in every environment, whereas learning
to orient in E implies knowing directions at every location and an ability to link
orientations across locations. The latter is a much more extensive task, which, as it
will be argued below, requires additional specifications and interpretations.

The following discussion is dedicated to constructing phenomenological models of
orientation learning using algebraic topology and synthetic geometry approaches. In
Sect. 2, we construct and test a direct generalization of the topologicalmodel, similar to
the one used inDabaghian et al. (2012); Arai et al. (2014); Basso et al. (2016); Hoffman
et al. (2016) and demonstrate that it fails to produce biologically viable predictions
for the learning period. In Sect. 3, the topological approach is qualitatively general-
ized using an alternative scope of ideas inspired by synthetic geometry. In Sect. 4, it is
demonstrated that the resulting framework allows incorporating additional neurophys-
iological mechanisms and acquiring the topological connectivity of the environment
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in a biologically viable time, thus revealing a new level of organization of the cognitive
map, as discussed in Sect. 5.

2 Topological model of orientation learning

Orientation coactivity complex. The model requirements R1 and R2, applied to both
hippocampal and head direction activity, imply that the animal’s location and orien-
tation are represented, at any moment of time, by an active σ -simplex and an active
η-simplex. Thus, the net pattern of activity in the hippocampal and in the head direction
networks defines a (σ, η) pair—a single oriented, or pose simplex

ζ = [σ, η],

(the latter term is borrowed from robotics (Thrun et al. 2005;Heinze et al. 2018; Savelli
and Knierim 2019)). Restricting a ζ -simplex to its maximal subsimplexes spanned,
respectively, by the place- or the head direction cells defines the projections into its
positional and directional components,

πσ : ζ → σ, (6σ )

πη : ζ → η, (6η)

which permits terminology such as “ζ is located at σ ," “ζ is directed toward η,"
“a location σ is directed by η," “η is applied at σ ," etc. Thus, one may refer to the σ -
simplexes as to locations and to the η-simplexes as to directions, implying, depending
on the context, either the items encoded in the cognitive map, or the σ/η-fields, or
both.

As in the previously discussed cases, the collection of pose simplexes produced up to
amoment t forms anorientation coactivity complex Tζ (t) that schematically represents
the net pool of conjunctive patterns generated by the place- and the head direction cells
accumulated since the onset of the navigation. In particular, the combinations of cells
ignited along a physical path s induces an oriented simplicial path

ζ̃ = {ζ1, ζ2, . . . , ζn, . . .}, (7)

which runs through Tζ (t). The transitions from a given active pose simplex, ζi , to
the next, ζi+1, occur at discrete moments t1, t2, . . . , tn, . . ., when either the σ - or
the η-component of ζi deactivates and the corresponding component of ζi+1 ignites.
Thus, the simplicial paths σ̃ and η̃ can be produced from the oriented path (7) using
(5). In contrast with (5σ ) and (5η), the σ - and η-simplexes in such paths are indexed
uniformly, according to the indexes of (7),
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σ̃ = {σ1, σ2, . . . , σn}, (8σ )
η̃ = {η1, η2, . . . , ηn}. (8η)

(8σ ) or in (8η) (but not in both of them simultaneously) may coincide, e.g., the
locationσi may remain the sameduring several timesteps,while theη-activity changes,
or vice versa.

Since the rat can potentially run in any direction at any location (unless stopped by
an obstacle), there are no a priori restrictions on the order of the place cell and the
head direction cells spiking activity. This observation is formalized by another model
requirement:

R3. Independence. A given head direction cell assembly η may become coactive
with any place cell assembly σ and vice versa, with independent σ - and η-spiking
parameters.

In model’s terms, this implies that the development of the coactivity complex Tη(t)
and its ultimate saturated structure Nη is the same at any location σ , and vice versa,
the saturated structure of Tσ (t) is independent from η-activity.

However, since the activities in the hippocampal and in the head direction cell net-
works represent complementary aspects of the samemovements, certain characteristics
of the simplicial paths (8) are coupled. Specifically, in light of R1–R2, a connected
physical trajectory s should induce a connected σ -path in the place cell complex Tσ ,
together with a connected η-path in the head direction complex Tη. Similarly, a looping
trajectory should induce periodic sequences of simplexes,

σ̃o = {σ1, σ2, . . . , σn, σ1, σ2, . . .},
η̃o = {η1, η2, . . . , ηn, η1, η2, . . .}.

In other words, making a loop in physical space E should induced σ - and η-loops.
Thus, without referencing the physical trajectory, the model requires

R4. Topological consistency. The simplicial paths (8) should be connected and a
simple periodic σ -path should induce a simple periodic η-path and vice versa.

Orientation learning. As discussed above, getting rid of the topological defects in
Tσ (t) and in Tη(t) allows faithful topological classification of physical routes in terms
of the neuronal (co)activity. Thus, the “topological maturation" of these complexes can
be viewed as a schematic representation of the learning process. The concept of ori-
ented simplicial paths embedded into the orientation coactivity complex Tζ (t) allows
a similar interpretation of the spatial orientation learning—as acquiring an ability to
distinguish between qualitatively disparate moving sequences. Indeed, knowing how
to orient in a given space, viewed as a cognitive ability to reach desired places from
different directions via a suitable selection of intermediate locations and turns, may
be interpreted mathematically as an ability to classify trajectories using topologically
inequivalent classes of oriented simplicial paths (8). From an algebraic-topological
perspective, this may be possible after the orientation complex Tζ (t) acquires its cor-
rect topology.

123



Y. Dabaghian

To establish the latter, note that the complex Tζ (t) has the same nature as Tσ (t) and
Tη(t)—it is an emerging temporal representation of a nerve complex, induced from
a cover of a certain orientation space O that combines E and S1. Since the preferred
angles of the head direction cells remain the same at all locations Wiener and Taube
(2005), the space of directions S1 represented by these cells does not “twist” as the rat
moves across E , which implies that the orientation space has a direct product structure
O = E × S1 (Hatcher 2002). One may thus combine (1σ ) and (1η) to construct a joint
spatial mapping, fζ = ( fσ , fη), that associates instances of simultaneous activity of
place- and head direction cell groups with domains in the orientation space,

fζ : Tζ → O.

For example, if a given place cell c maps into a field υ = fσ (c), then the coactivity
of a pair ζ = [c, h] (the smallest possible combined coactivity) can be mapped into
O by shifting υ along the corresponding fiber S1 according to the angle field of the
head direction component of ζ , ϕ = fη(h) (Fig. 2A). The resulting orientation fields,
υζi = fζ (ζi ), form a cover of the orientation space,

O = ∪iυζi ,

whose nerve Nζ is reproduced by the temporal orientation complex Tζ (t).
Just as the σ - and η-simplexes, each pose simplex ζk has a well-defined appearance

time, tk , due to which the orientation complex is time-filtered, Tζ (t) ⊆ Tζ (t ′) for
t < t ′. Applying Persistent Homology techniques (Zomorodian and Carlsson 2005;
Edelsbrunner andHarer 2010), one can compare topological shape defined by the time-
dependent Betti numbers of Tζ (t)with the shape of the orientation spaceO = E × S1,
and thus quantify the orientation learning process.

As an illustration of this approach, we simulated the rat’s movements on a circular
runway, for which the total representing space for the combined place cell and head
direction cell coactivity forms a 2D torus (Fig. 2A). To simplify modeling, we used
movement direction as a proxy for the head direction, although physiologically these
parameters not identical (Cei et al. 2014; Raudies et al. 2015; Laurens and Angelaki
2018; Shinder and Taube 2011, 2014). Computations show that the correct topological
shapes of the place- and the head direction complexes emerge in about 1 minute
(Fig. 2B,C), while the transient topological defects in Tζ (t) disappear in about 80
minutes (Fig. 2D)—a surprisingly large value that exceeds behavioral outcomes by
an order of magnitude (Alvernhe et al. 2012; Piet et al. 2018). Even assuming that
biological learning may involve only a partial reconstruction of the orientation space’s
topology, the persistence diagrams shown on Fig. 2D indicate that Tζ (t) is not only
riddled with holes for over 40 minutes, but also that it remains disconnected (b0(Tζ ) >

1) for up until 17 minutes, i.e., according to the model, the animal should not be able to
acquire a connected map of a simple annulus after completing multiple lapses across
it.
Biological implications of mismatches between the experimental and the modeled
estimates of learning timescales are intriguing: since the model’s quantifications
are based on “topological accounting" of place- and head direction cell coactivities
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Fig. 2 Topological leaning dynamics. A. The orientation space for a rat moving on a circular runway
(bottom) is a topological torus (top), O = T 2. Clusters of colored dots show examples of the simplex
fields υζi j of the basic coactivity combinations ζi j = [ci , h j ]. The timelines of the topological loops in the
place cell complex Tσ (t) (panel B, horizontal bars) and in the head direction cell complex Tη(t) (panel C)
disappear in under a minute; a stable loop in 0D and a stable loop in 1D in each case indicate that both the
runway and the direction space are topological circles.D. The orientation coactivity complex Tζ (t) contains
many topological defects that take over an hour to disappear: the spurious 0D loops contract in about 17
minutes (top panel), and the spurious 1D loops persist for 80 minutes. For an “open field" environment
(Fig. 1A) a similar topological learning process takes hours. These estimates exceed the experimental
learning timescales, suggesting that the physiological orientation learning involves additional mechanisms

induced by the animal’s movements, the root of the problem seems to lay not in the
mathematical side of the model, but in the biological assumptions that underlie the
computations. Specifically, the overly long learning periods suggest that building a
spatial map from the movement-triggered neuronal coactivity alone does not take into
account certain principal components of the learning mechanism. In other words, the
fact that the animal seems to produce correct representations of the environment much
faster than it would be possible from the influx of navigation-triggered data, implies
that the brain can bypass the necessity to discover every bit of information empirically,
i.e., that building a cognitive mapmay be accelerated by “generating information from
within,” via autonomous network dynamics.

Physiologically, this conclusion is not surprising: the phenomena associated with
spatial information processing through endogenous hippocampal activity are well
known. Many experiments have demonstrated that the animal can replay place cells
during the quiescent states (Wu and Foster 2014; Karlsson and Frank 2009; Ólafsdóttir
et al. 2018) or sleep (Ji and Wilson 2007; Louie and Wilson 2001), in the order in
which they have fired during preceding active exploration of the environment, or
preplay place cells in sequences that represent future trajectories (Pfeiffer and Foster
2013; Johnson and Redish 2007; Dragoi and Tonegawa 2011). These phenomena
are commonly viewed as manifestations of the animal’s “mental explorations” of its
cognitive map, which help acquiring, sustaining and retrieving memories (Hopfield
2010; Zeithamova et al. 2012).

However, one would expect a different functional impact of replays and preplays
on spatial learning. Since replays represent past experiences, they cannot accelerate
acquisition of new spatial information—in themodel’s terms, reactivation of simplexes
that are already included into the coactivity complex cannot alter its shape (in absence
of synaptic and structural instabilities (Roux et al. 2017; van de Ven et al. 2016;
Babichev et al. 2018, 2019)). In contrast, preplaying place cell combinations that have
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not yet been triggered by previous physical moves may speed up the learning process.
Yet, from the modeling perspective, it is a priori unclear which specific trajectories
may be preplayed by the brain, or, in computational terms, which specific simplicial
trajectories should be “injected" into the simulated cognitive map Tζ (t) to simulate the
preplays that may accelerate learning. Experiments suggest that “natural" connections
between locations are the straight runs (Pfeiffer and Foster 2013; Valerio and Taube
2012; McNaughton et al. 2006); however, implementing such runs would require a
certain “geometrization" of the topological model. In the following, we propose a
geometric implementation of preplays that help to expedite learning process and open
new perspectives modeling spatial representations.

3 Geometric model of orientation learning

The motivation for an alternative approach comes from the observation that combin-
ing inputs from the place and the head direction cells offers a possibility of establishing
different arrangements of the locations in the hippocampalmap. Indeed, common inter-
pretations of the head direction cells’ functions suggest that the rat’smovements guided
by a fixed head direction activity trace approximately straight paths, whereas shifts
in η-activity indicate curved segments of the trajectory, turns, etc. Chen et al. (1994);
Wiener and Taube (2005); Savelli and Knierim (2019). This implies that the brain
may use the head direction cells’ outputs to represent shapes of the paths encoded
by the place cells, to align their segments, identify collinearities, their incidences,
parallelness, etc.

To address these structures and their propertieswewill use the following definitions:

D1. Simplexes σ1 and σ2 are aligned in η-direction, if they may ignite during an
uninterrupted activity of a fixed η-simplex. In formal notations, (σ1, σ2) � η.

D2. Two η-aligned simplexes are η-adjacent, {σ1 � σ2|η}, if the ignition of σ2
follows immediately the ignition of σ1, with no other cell groups igniting in-between.

D3. An ordered sequence of σ -simplexes forms an η-oriented alignment if each
pair of consecutive simplexes, (σi , σi+1) in (8σ ), is η-adjacent, i.e., if the oriented
path,


 = {[σ1, η], [σ2, η], . . . , [σn, η]},
never changes direction. The notation


 = {σ1, σ2, . . . , σn|η} ≡ {σ̄ |η} (9)

highlights the set of collinear locations σ̄ = (σ1, σ2, . . . , σn) and the η-simplex that
orients it. The bar in σ̄ is used to distinguish an alignment from a generic simplicial
path σ̃ .

D4. An alignment 
1 augments an alignment 
2, if both 
1 and 
2 can be guided by
an uninterrupted η-activity (σ̄1��σ̄2 ⇔ (σ̄1 ∪ σ̄2) � η). Conversely, a proper subset σ̄ ′
of an aligned set σ̄ forms its proper subalignment (σ̄ ′ ⊂ σ̄ ⇔ {σ̄ ′|η} � {σ̄ |η}).

123



Learning orientations: a discrete geometry model

D5. Two alignments 
1 and 
2 overlap, if they share a location σ (
1 ∩ 
2 = σ ⇔
σ ∈ σ̄1 ∩ σ̄2).

D6. A location σ ′ lays outside of an η-alignment 
η, if it aligns with any σ from 
η

along a direction different from η (σ ′ /∈ 
η ⇔ ∃σ ∈ 
η, η
′ �= η : (σ, σ ′) � η′).

D7. Two alignments are parallel, if they are directed by the same or opposite η-
activity, without augmenting each other, i.e., if one ±η-alignment contains a location
outside of the other one, (
1 ‖ 
2 ⇔ η1 = ±η2, and ∃σ : σ ∈ σ̄1 , σ /∈ σ̄2, where
fη(−η) � π + fη(η)).
D8. A yaw is an oriented path in which a sequence of η-simplexes ignites at a fixed

location σ ,

� = {[σ, η1], [σ, η2], . . . , [σ, ηn]}.
Thus, yaws may be viewed as structural opposites of the alignments, which is empha-
sized by the notation

� = {η1, η2, . . . , ηn|σ } ≡ {η̂|σ }
that highlights the range of η-simplexes, η̂, ignited at the axis of the yaw, σ .

D9. A clockwise turn is an oriented path ζ̃+ = {[σ1, η1], [σ2, η2], . . . , [σn, ηn]}
with a growing angular sequence, i.e., the angle ϕi that represents the element ηi is
not greater than the next one, ϕi+1 ≥ ϕi . A counterclockwise turn ζ̃− is an oriented
path with a decreasing angular sequence, ϕi+1 ≤ ϕi .

The latter definition is due to the observation that η-simplexes can be ordered
according to the angles they represent, i.e., ηi < ηi+1 iff ϕi < ϕi+1, which also allows
defining the angle between alignments,

�(
ηi , 
η j ) ≡ �(ηi , η j ) ≡ |ϕi − ϕ j | = �ϕi j .

In light of the definitions D1–D9, the model requirements R1–R4 imply that the
entire ensembles of the active place and head direction cells are involved into geometric
arrangements, e.g., every location σ belongs to an alignment directed by a η-simplex,
and conversely, every η-simplex directs a nonempty alignment through the σ -map.
The question is, whether this collection of alignments is sufficiently complete to allow
self-contained geometric reasoning in terms of collinearities, incidences, parallelisms,
etc., i.e., does it form a self-contained geometry?

The standard approach to answering this question is based on verifying a set of
axioms, in this case—the axioms of affine geometry, applied to the elements of a
suitable set A = {x, y, z, . . .} and its select subsets 
1, 
2, . . . ,∈ A:

A1. Any pair of distinct elements of x �= y is included into a unique subset 
.
A2. There exists an element xoutside of any given subset 
, x /∈ 
.
A3. For any subset 
 and an element x /∈ 
, there exists a unique subset 
x that

includes x , but does not overlap with 
.

If these axioms (referred to as A-axioms below) are satisfied, then the subsets

1, 
2, . . ., can be viewed as lines because interrelationships among them and with
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other elements of A reproduce the familiar geometric incidences between lines and
points in the Euclidean plane (Hilbert 1992; Hilbert and Cohn-Vossen 1999; Batten
1997; Karteszi 1976). However, the set of geometries established via the A-axioms is
much broader than its main “motivating example:" the standard planar affine geom-
etry AE is but a specific model implementing the A-axioms using the infinite set of
infinitesimal points and infinite lines (Hilbert 1992; Hilbert and Cohn-Vossen 1999;
Batten 1997; Karteszi 1976). In fact, it is also possible to use the A-axioms to estab-
lish geometry on finite sets, thus producing finite affine planes. This is important for
modeling cognitive maps encoded by the physiological networks that contain finite
numbers of neurons and thus may represent finite sets of locations and alignments.
Specifically, a possible adaptation of the A-axioms using spiking semantics, is the
following:

A1n . Any pair of distinct locations σ1 �= σ2belongs to a unique alignment,
i.e., σ1and σ2 may ignite in sequence during the activity of a single η-simplex
(∀σ1, σ2, ∃!η, σ̄ : (σ1, σ2) � σ̄ � η).

A2n . The location-encoding network can activate a group of cells σ to represent a
location outside of any given alignment (∀
, ∃σ /∈ 
).

A3n . For any alignment 
 and a location σ /∈ 
, there exists a unique alignment 
σ

parallel to 
 that passes through σ (∀
, σ /∈ 
, ∃!
σ : σ ∈ 
σ , 
 ‖ 
σ ).

Validating these axioms over the net pool of spiking activities produced by the
hippocampal and head direction cells would establish a discrete-geometric struc-
ture encoded by (σ, η)-neuronal activity. However, the requirements imposed by the
An-axioms may not be compatible with physiological mechanisms that operate the
corresponding networks, as well as with these networks’ functions. Indeed, the con-
figurations formed by the connections in finite planes are typically non-planar (Fig. 3),
whereas physiological computations combining place and head direction cells’ activ-
ities appear to enable geometric planning in planar environments (Valerio and Taube
2012;McNaughton et al. 2006). Second, the combinations of locations that form “rela-
tional lines" according to the An-axioms may not have the standard properties of their
Euclidean counterparts, e.g., they may include sequences of locations that cannot be
consistently mapped into straight Euclidean paths (Fig. 3). In contrast, experiments
show that neuronal activity during animals’ movements along straight arrangements
of σ -fields, as well as their offline preplays/replays (Mattar and Daw 2018; Byrne and
Becker 2004), dovetail with the definitions D1-D7. Third, given a large number of the
encoded locations (in rats, about 3 × 104 of active place cells in small environments
Ziv et al. (2013)) and a very large set of possible co-active cell combinations (Buzsaki
2010; Babichev et al. 2016), a finite set of η-simplexes may not suffice to align all
pairs of locations in the sense of the definition D7.

On the other hand, certain key features of finite affine planes, e.g., the necessity of
having k parallel lines in every direction and a fixed number, k + 1, of lines passing
through each location (Hilbert 1992; Hilbert and Cohn-Vossen 1999; Batten 1997;
Karteszi 1976) are reflected in the network. Indeed, the existence of a fixed population
of head direction assemblies results in a fixed number k � Nη/2 of distinct alignments
passing through any location and the same number of directions running across the
cognitive map.

123



Learning orientations: a discrete geometry model

Fig. 3 Finite affine plane of the
third order, A3, with 9 points
(black dots) aligned according to
the A-axioms in 12 lines (colors)
forms a non-planar configuration

Together, these observations suggest that the brain may combine certain aspects of
finite geometries and Euclidean plane discretizations. Rather than trying to recognize
the net geometry of the resulting representations from the onset, one may adopt a con-
structive “bottom up" approach: it may be possible to interpret certain local properties
of spiking activity as basic geometric relations and then follow how such relations
accumulate at larger scales, yielding global geometric frameworks. For example, it
can be argued that place cell activities can be aligned locally, i.e., that ignitions of
a specific head direction assembly can accompany transitions of activity from one
place cell assembly to an adjoining one. It is also plausible that, in stable network
configurations, the selection of cell groups involved in such transitions is limited or
even unambiguous. Also, given the number of place cells (Nc ≈ 3× 105) and typical
assembly sizes (60 − 300 cells) (Buzsaki 2010), there should be enough place cell
combinations to represent a sufficient set of alignments, overlaps between them, etc.
(Babichev et al. 2016; Perin et al. 2011; Reimann et al. 2017).

Thus, in addition to (mostly topological) requirements R1–R4, one can consider
the following neuro-geometric rules:

G1. Any two adjacent locations align in a unique direction (∀σ1 � σ2, ∃!η :
(σ1, σ2) � η).

G2. A location adjacent to a given one may be recruited in any direction
(∀η, σ1, ∃̃!σ2 : (σ1 � σ2) � η).

G3. The location-encoding network can explicitly represent the overlap between
any two non-parallel alignments (∀
1, 
2, η1 �= η2, ∃̃!σ : 
1 ∩ 
2 = σ ∈ 
1, 
2).

In contrast with the An-axioms that aim to establish large-scale properties of a
“cognitive" affine plane as a whole, the G-rules define local geometric relationships
induced by localmechanisms controlling neuronal activity. In particular,G1 ascertains
a possibility of aligning any two adjacent locations, rather than any two locations as
required by the A1n . The rule G2 is complementary: it posits that if an active η-
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combination is selected, then the activity can propagate from a given σ1 to a specific
adjacent σ2. Lastly, the rule G3 allows reasoning about the locations, alignments,
incidences, etc., assuming that all these elements can be physiologically actualized.

As a first application of the G-rules, notice that a σ -path, viewed as a sequence of
adjacent σ s, induces a unique ordered η-sequence, i.e., a η̃-path in Tη(t). Together,
these paths define an oriented trajectory ζ̃ ′, formed by uniquely directed straight links
between adjacent locations, which can be graphically represented by a directed polyg-
onal chain of σ -locations (Fig. 4A). Conversely, the fact that a generic ζ̃ projects into a
ordered sequence of adjacent σ -simplexes, σ̃ = πσ (ζ̃ ), implies that oriented paths can
be aligned into the polygonal chains, ζ̃ → ζ̃ ′ (Fig. 4B). From the perspective of the
topological model discussed in Section 2, this means that each path σ̃ can be “lifted"
from Tσ (t) into a unique oriented path ζ̃ ′ ∈ Tζ (t) by a back projection, ζ̃ ′ = π−1

σ (σ̃ ).
In the following, the term “simplicial path" will refer to the polygonal chains only,
unless explicitly stated otherwise, and the “prime" notation will be suppressed.

Reversing the order of simplexes in a chain and inverting the corresponding η-
sequence,

σ̃+ = {σi1, σi2 , . . . , σin } → σ̃− = {σin , σin−1 , . . . , σi1}, (10σ )

η̃+ = {ηi1, ηi2 , . . . , ηin } → η̃− = {±ηin ,±ηin−1 , . . . ,±ηi1}. (10η)

where the angle −η is diametrically opposite to η, fη(−ηi ) � π + fη(ηi ). The
“+" sign in (10η) corresponds to “backing up" along the path σ̃+ and the “−" sign
to reversing the moving direction, either by implementing the required physical steps
or by flipping the order of the replayed or preplayed sequences (Foster and Wilson
2006; Ambrose et al. 2016) (in open fields, place cell spiking is omnidirectional
Chen et al. (2018)). The Since move reversal does not affect the σ -paths’ geometries,

Fig. 4 G-rules based geometric constructions. A. A directed polygonal chain connecting pairs of adjacent
locations along the navigated trajectory in the environment shown on Fig. 1A.B. A schematic representation
of a discrete homotopy fromageneric ζ -path to a polygonal chain: theη-components shift towards the unique
directions that align the adjacent locations (gray arrows). C. The resulting polygonal chain (a combination
of yaws and straight runs) projects by πσ into a undirected chain connecting the adjacent locations—a
fragment of the chain shown on the panel A. D. Lemma 2: If two nonparallel alignments, 
η and 
η′ ,
produce two intersections σ and σ ′, then there exists a σ̃ -trajectory that forms a noncontractible simple
loop, while the corresponding η̃-trajectory forms a contractible segment (top left corner), in contradiction
with R4
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the transformations (10) can be regarded as equivalence relationships, which do not
reference physical trajectory:

R5. Reversibility. Simplicial σ -paths related via (10) are geometrically identical.

In accordance with R5, a given η-oriented alignment, 
+ = {σ̄ |η}, and its inverse,

− = {σ̄ | − η}, define the same collinear sequence, i.e., πσ (
+) = πσ (
−) = σ̄—a
natural observation thatmotivates the definitionD7. In particular, a pair of±η adjacent
locations is also geometrically adjacent (σi � σ j ⇔ {σi � σ j |η} or {σi � σ j | −
η}), which allows representing trajectories by undirected polygonal chains connecting
adjacent σ -fields (Fig. 4C). For example, a bending chain corresponds to a clockwise
turn ζ̃+ as well as to its counterclockwise counterpart ζ̃− (both project to the same
σ -path, πσ (ζ̃+) = πσ (ζ̃−) = σ̃ ); a closed chain—to a loop that can be traversed in
clockwise or in counterclockwise direction (σ̃o = πσ (ζ̃o−) = πσ (ζ̃o+)), etc.

Returning to the link between theG-rules and the remaining twoA- or An-axioms,
it can be observed that the A2n-axiom is an immediate consequence of G2: if the
network is capable of actualizing up to Nη simplexes adjacent to a given one along
Nη available directions, then Nη − 2 of them will necessarily lay outside of a given
alignment. The argument for the existence and uniqueness of parallel lines (axiom
A3n) can be organized into the following two lemmas:

Lemma 1 If σ is a location outside of an alignment 
η, σ /∈ 
η, and 
′
η is an alignment

directed by η at σ , 
η �= 
′
η, then 
η and 
′

η do not overlap.

Proof . Assume that the overlap exists, 
η ∩ 
′
η = σ ′ �= ∅. Since η is a unique index

of directions, the location σ ′ is η-aligned with its adjacent locations both in 
η and in

η′ . Thus, 
η and 
′

η augment each other (σ̄1��σ̄2), forming a single joint η-alignment
that passes through σ , in contradiction with the original assumption σ /∈ 
η. ��
Lemma 2 Two non-parallel lines cannot intersect more than once.

Proof . Consider two alignments 
η and 
η′ , η �= η′, with 
η ∩ 
η′ = σ . Without loss
of generality (change 
η → 
−η if necessary), we may assume that the angle between
them is sharp, �(
η, 
η′) < π/2 (Fig. 4C). Consider an oriented path ζ that starts
at σ in η′-direction, i.e., along 
η′ . If 
η′ crosses 
η again at a location σ ′, then the
path ζ may turn back at σ ′ and continue along 
−η towards σ , then continue along

η′ again, etc., yielding a single closed σ -path. On the other hand, the corresponding
η-path links η and η′ at the first turn and then goes back from η′ to −η at the second
turn, forming a contractible segment, in contradiction with R4. ��

In effect, these two lemmas validate the constructive definition of parallelness D7
and point at an alternative form of the axiom A3n : If two locations σ1 and σ2 are
aligned along η, then any two alignments 
1 and 
2 directed through σ1 and σ2 by a
η′ �= η are parallel.

The foregoing discussion suggests that the spatial framework represented by the
place cells and the head direction cells forms neither a naïve discretization of the
Euclidean plane nor a conventional finite geometry, as defined by the standard A-
axioms. Rather, combining the location and the direction information can be used to
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capture a certain sub-collection of geometric arrangements, e.g., a particular set of
alignments, which may then be used for navigation and geometric planning (Valerio
and Taube 2012; McNaughton et al. 2006). Correspondingly, orientation learning can
be interpreted as a process of establishing and expanding such arrangements (e.g.,
prolonging shorter alignments, completing partial ones, etc.) and accumulating them
in the cognitive map.

4 Synthesizing cognitive geometry

As a basic example of a geometric map learning, consider an oriented trajectory ζ(t)
that starts with an alignment 
1 = {σ0, σ1|η1}, followed by a yaw at σ1, and continues
along 
2 = {σ1, σ2|η2}, reaching σ2 at the moment t2 (Fig. 5A). As in Sec. 2, the head
and the motion directions are identified for simplicity. If σ0, σ1 and σ2 are the only
locations in the emerging affine mapA (t2), then σ2 is adjacent to σ0 and hence it must
align with σ0 along a certain η-direction η20 (assuming a generic case, in which 
1 and

2 are nonparallel, η1 �= ±η2). Representing this alignment in the parahippocampal
network, i.e., producing the corresponding imprints in the synaptic architecture via
plasticity mechanisms (Leuner and Gould 2010; Caroni et al. 2012; Brown and O.
2020), requires actualization by igniting σ2 and σ0 consecutively during the activity of
a particular η20. This can be achieved either by navigating between the corresponding
σ -fields or off-line, via autonomous network activity. In the former case, the connection

20 = {σ2, σ0|η20} is incorporated into the map after the animal arrives to σ0 from
σ2, i.e., at the “empirical learning" timescale discussed in Section 2. In the latter case,

20 may form at the spontaneous spiking activity timescale (milliseconds (Wu and
Foster 2014; Karlsson and Frank 2009; Ólafsdóttir et al. 2018; Ji and Wilson 2007;
Louie and Wilson 2001; Pfeiffer and Foster 2013; Johnson and Redish 2007; Dragoi
and Tonegawa 2011)), as soon as the animal reaches σ2, which clearly accelerates the
formation of the cognitive map.

This illustrates the model’s general approach: although the geometric constructions
were discussed in Section 3 in reference to spiking produced during the animal’s
movements, they also apply to endogenous spiking activity. In other words, the G-
rules can be used “imperatively," for producing geometric structures in the cognitive
map autonomously, based on available information rather than physical navigation. In
particular, preplays can be used for aligning locations with specific η-assemblies by
preplaying straight “home runs,” as soon as the physical trajectory assumes a suitable
configuration.

The physiological processes that enforce transitions of activity between cell assem-
blies are currently studied both experimentally and theoretically (Harris 2005; Buzsaki
2010; Laurens and Angelaki 2018); in case of the head direction and place cells, the
corresponding network computations may be guided by sensory (e.g., visual) and
idiothetic (proprioceptive, vestibular and motor) inputs and involve a variety neuro-
physiological mechanisms (Haggerty and Ji 2015; Knierim et al. 1998; Chen et al.
2013; Zhang et al. 2014; Laurens and Angelaki 2018). However, the principles of
utilizing such mechanisms for acquiring a map of orientations can be illustrated using
basic, self-contained algorithms that rely on the informationprovidedby the hippocam-
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pal and head direction spiking. Specifically, the history of the η-assemblies’ ignitions
allows estimating the direction between the loci of a polygonal chain according to

�ϕi j = 1

N

j∑

k=i

ϕknk,

where nk is the number of spikes produced by the kth head direction assembly ηk , ϕk is
the corresponding angle (i.e., ηk = πη(ζk) and ϕk = fη(ηk)), N is the total number of
spikes. If ηk is characterized by a Poisson firing rateμk , then the number of spikes that
it produces over an ignition period �tk can be estimated as nk = μk�tk . Assuming
for simplicity that all rates are the same μk = μ, the angular shifts can be estimated
from the individual ignitions’ duration and the total navigation time T ,

�ϕi j = 1

T

j∑

k=i

ϕk�tk . (11)

The η-simplex required to perform a home run from σ j to σi can then be selected as
the one whose discrete angle is closest to ϕ j = ϕi + �ϕi j , i.e.,

η j = min
η

(
ϕ j − fη(η)

)
. (12)

In particular, (11) and (12) allow estimating the required direction from σ2 to σ0
and thus identifying the simplex η20 that needs to direct the corresponding home run
preplay 
20. Other models can be built by modifying or altering these rules.

The next move continues along 
3 = {σ2, σ3|η3}, arriving to σ3 at the moment t3,
which allows preplaying connections to previously visited locations along 
31 and 
30
in the map AC(t3) (Fig. 5B). If ζ(t) is a right turn (η1 < η2 < η3), then the line 
31
lays between 
30 and 
3, and, according toG3, overlaps with 
20 at σ̄1, which will thus
lay between σ0 and σ2, 
31 = {σ3, σ̄1, σ1|η31}. Also, since 
3 and 
1 are non-parallel,
they produce an overlap at σ̄2 that extends the “seed alignments" 
1(t2) and 
3(t2)
to 
1(t3) = {σ0, σ1, σ̄2|η1} and 
3(t3) = {σ̄2, σ2, σ3|η3}. The locations within the
alignments 
1 and 
3 are ordered correspondingly, e.g., σ1 falls between σ0 and σ̄2,
and σ2 falls between σ̄2 and σ3.

Note that since σ̄1 and σ̄2 can be viewed as adjacent, it is also possible to form
an additional alignment 
x = {σ̄1, σ̄2|ηx }, which induces two additional locations by
intersecting 
30 and 
12 (Fig. 5C). However, the orientations of the existing segments
of the trajectory do not determine the direction ηx , and 
x can therefore be viewed
as a “provisional" alignment that may be actualized once the explicit information
specifying its orientation emerges. Nevertheless, such alignments and the incidences
that they induce may be incorporated into the hippocampal map, to accelerate its
topological dynamics.

As the turn continues, the next segment connects to σ4 along l4 = {σ3, σ4|η4},
allowing home run preplays 
40, 
41, 
42, which produce additional intersections,
augmenting the lines 
30, 
31 and 
43 in specific order (Fig. 5D). Subsequent segments
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Fig. 5 Aligning the cognitivemap.ATheendpoints of the initial two segments of the trajectory are connected
by a home run preplay 
20 (dashed line). B Reaching the next location, σ3, allows preplaying home runs
to σ0 and σ1 and introducing the intersections σ̄1 and σ̄2 into the map. C The direction of the alignment
connecting the new points σ̄1 and σ̄2 remain undefined, so 
x = {σ̄1, σ̄2|ηx } and may thus be viewed as
provisional (topological) alignment in AC(t3). D The location σ4 induces at several additional preplays to
previously visited locations. E At each step tn , the adjacent segments of the trajectory, σi � σ j induce

a connectivity graph Gσ (tn), and the corresponding clique complex T 

σ (Gσ ) schematically represents the

topological structure of the aligned map AC(tn). F The decays of the cell assemblies representing the
unvisited locations (shaded areas) induces the required topological dynamics

of the trajectory can generate ever larger sets of locations and alignments but the map
learning process can be terminated when the map AC(tn) stabilizes topologically
(see below). At each step, the acquired collection of alignments embedded into the
unfolding cognitive map sustains its ongoing geometric structure.

Other alignments may be produced bymore complex relationships within the exist-
ing configurations and theirmaps, as suggested, e.g., byDesargues or Pappus theorems.
However, in finite planes these relationships may not be necessitated by the incidence
axioms and require additional properties and implementingmechanisms (Hilbert 1992;
Hilbert and Cohn-Vossen 1999; Batten 1997; Karteszi 1976). This scope of questions
falls beyond this discussion and will be addressed elsewhere.

Topological quantification of geometric learning. The assumption of the model
is that the influx of endogenously generated σ - and ζ -simplexes accelerates the emer-
gence of an aligned cognitive map with the correct topological shape. Testing this
hypothesis requires computing the persistent homologies of the corresponding aligned
complexesT 


σ (t) andT 

ζ (t); however, the algorithmdescribed above produces the loca-

tions σi and their appearance times ti without specifying cells that comprise a given
simplex or detailing how these cells are shared between simplexes, which is required
for the homological computations.

To extract the needed information, consider a graph Gσ whose links correspond to
the adjacent simplexes, i.e., vertexes vi , v j ∈ Gσ are connected if σi � σ j . If each
σi acts as an assembly, i.e., ignites when all of its vertex-cells (3) activate and if the
adjacent simplexes share vertexes, i.e., σi � σ j ⇔ σi ∩ σ j �= ∅ (required for spa-
tiotemporal contiguity, see Babichev and Dabaghian (2018)), then each Gσ -link marks
at least one putative cell ck shared by σi and σ j . In a conservative estimate (assuming,
e.g., no “redundant" cells that manifest themselves within just one assembly), the set
ofGσ -links terminating at a given vertex σ thus defines the neuronal decomposition (3)
of the corresponding simplex. Same analyses allow restoring neuronal decompositions
for η-simplexes and constructing the ζ -simplexes, thus producing cliques simplicial
complexes T 


σ (t), T 

η (t) and T 


ζ (t).

123



Learning orientations: a discrete geometry model

If, according to the requirement R1, the resulting σ - and η-fields cover their
respective representing spaces E and S1, then the ζ -fields cover the orientation
space O = E × S1, and the nerves associated with these covers, along with their
temporal representations, T 


σ (t) and T 

ζ (t), should have the required topological prop-

erties. However, this argument has a principal caveat: some locations induced through
endogenous network activity may correspond to physically inaccessible domains in
E , which may divert the evolution of the resulting coactivity complex from the topol-
ogy of the place field nerve of the navigated environment. Simulations show that
indeed, the “autonomously constructed" complex T 


σ (t) tends to acquire a trivial shape
(bn>0(T 


σ ) = 0) irrespective of the shape of the underlying E .
A solution to this problem may be based on exploring functional differences

between place cell combinations σ̇i that represent “physically allowed" locations and
the combinations σ́k that represent “physically prohibited" regions. One would expect
that in a confined environment, the former kind of cell groups should reactivate reg-
ularly due to animal’s (re)visits, whereas the latter kind is never “validated" through
actual exploration—σ́ks may activate only during the occasional preplays or replays.
Taking advantage of this difference, let us assume that cell assemblies have a finite
lifetimes (Buzsaki 2010; Harris 2005), i.e., that 1) the probability of an assembly’s
disappearance after an inactivity period tσ is

pσ � e−tσ /τσ ,

where τσ is σ ’s mean decay period, and 2) that the decay process resets (tσ = 0)
after each reactivation of σ (for some physiological motivations and references see
Babichev et al. (2018, 2019)).

To emphasize the contribution of the locations imprinted into the network structure
due to physical activity over the computationally induced locations, the latter may be
attributed with a shorter decay period, τσ́ = τ � T σ

min, whereas the former may be
treated as semi-stable τσ̇ � τσ́ , e.g., for basic estimates, one can use τσ̇ = ∞. Lastly,
the transition between σ́ s and σ̇ s is modeled by stabilizing the decaying assemblies
upon validation, i.e.,

τσ =
{

τσ́ = τ before animal visits υσ ,

τσ̇ = ∞ after animal visits υσ .

With this plasticity rule, physically permitted locations σ̇ should maintain their pres-
ence in the map, whereas the prohibited locations σ́ should decay, revealing the
physical shape of the environment (Fig. 5E).

To verify this approach, the semi-random foraging trajectory simulated in Section 2
was replaced with a polygonal chain trajectory consisting of straight moves and ran-
dom yaws. The preplays were then modeled by injecting straight alignments into the
coactivity graph as soon as the required information became available (for details see
Babichev et al. (2019)). Based on the results of Babichev et al. (2018, 2019), the decay
rate τ = 0.5 secs was selected to model the dynamics of the unstable locations.
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For these parameters, the homological characteristics of the resulting “flickering"
coactivity complex evaluated using ZigZag Homology techniques (Carlsson and Silva
2010; Carlsson et al. 2009; Edelsbrunner et al. 2002), quickly became stable: the
Betti numbers stabilized at bn≤1(T 


ζ ) = 1, bn>1(T 

ζ ) = 0, in T ζ

min ≈ 5 minutes,
which approximately matches the hippocampal learning time T σ

min and demonstrates
that geometric organization of the cognitive map brings learning dynamics to the
biologically viable timescale.

5 Discussion

The proposed models of orientation learning are built by combining inputs from the
hippocampal place cells and the head directions cells. Experiments demonstrate that
these two populations of neurons are coupled: in slowly deforming environments,
their spiking activities remain highly correlated, pointing at a unified cognitive spatial
framework that involves both locations and orientations (Knierim et al. 1995; Yoga-
narasimha and Knierim 2005; Hargreaves et al. 2007; Sargolini et al. 2006). The goal
of this study is to combine topological and geometric approaches to model such a
framework, and to evaluate the corresponding learning dynamics.

The first model (Sect. 2) is based on the observation that both the hippocampal
and the head direction maps are of a topological nature: while the place cells encode a
qualitative, elastic map of the navigated environment E (Gothard et al. 1996; Alvernhe
et al. 2008, 2011, 2012;Dabaghian et al. 2014;WuandFoster 2014), the head direction
cells map the space of directions, S1 (Taube 1998). A combination of place and head
direction cells’ inputs can hence be used to construct an extended topological map
of oriented locations O, which has a structure of a direct product E × S1—a natural
framework for describing the kinematics of rats’ movements.

The second model (Sect. 3) is structurally similar (a discrete map of directions is
associated with each location), but involves constructions that define an additional,
geometric layer of the cognitive map’s architecture. In particular, this model allows
viewing spatial orientation learning from a geometric perspective—not only as a
process of discovering connections between locations, but also establishing shapes
of location arrangements, e.g., straight or turning paths, their incidences, intersec-
tions, junctions, etc. In neuroscience literature, such references are commonly made
in relation to the physical geometry of the representing spaces E and S1, e.g., the
“straightness" of a σ -field arrangement implies simply that it can be matched by a
Euclidean line in the environment where the rat is observed (Valerio and Taube 2012;
McNaughton et al. 2006). However, understanding the geometric structure of the cog-
nitive map requires interpreting neuronal activity in systems’ own terms, rather than
through the parameters of exterior geometry.

The key observation underlying the geometric model is that the activity of head
direction cells “tags” the activity of place cells in a way that allows an intrinsic geo-
metric interpretation of the combined spiking patterns, i.e., defining alignments, turns,
yaws, etc., in terms of neuronal spiking parameters. A famous quote attributed to D.
Hilbert proclaims that “the axioms of geometry would be just as valid if one replaced
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the undefined terms ‘point, line, and plane’ with ‘table, chair, and beer mug’..." (Blu-
menthal 1935). From such perspective, this model aims at constructing a synthetic
“location and compass" neuro-geometry in termsof the temporal relationships between
the spike trains, without using extrinsic references or ad hoc measures, which may be
a general principle for how space and geometry emerge from neuronal activity.

In order to emphasize connections with conventional geometries, the model is
formulated in a semi-axiomatic form. However, in contrast with the standard affine
A-axioms or their direct analogues, the An-axioms, the rules G1–G3 serve not just
as formal assertions that lay logical foundations for geometric deductions, but also as
reflections of physiological properties of the networks that implement the computa-
tions. First, since the networks contain a finite number of neurons and may actualize
a finite set of locations and alignments, the emergent geometry is finitary. Second,
certain notions that in standard discrete affine planeA are introduced indirectly, rela-
tionally, become constructive in the “cognitive" affine plane. For example, directions
defined through equivalence classes of parallel lines in A (Hilbert 1992; Hilbert and
Cohn-Vossen 1999; Batten 1997; Karteszi 1976), are defined explicitly in AC using
the directing η-activities. Third, certain elements of the geometric structure are actual-
ized explicitly through the network’s architecture, e.g., a fixed number of alignments
passing through every location is implemented by cell assemblies wired into the head
direction network (Bassett et al. 2018; Redish et al. 1996). Other properties are not
prewired but acquired during a particular learning experience and reflect both the
physical structure of a specific environment and intrinsic mechanisms of spatial infor-
mation processing.

6 Appendix: Spatial learning

Spatial learning in mammals is a complex, distributed process, sustained by coherent
effort of many strongly interconnected brain structures, which jointly yield an inter-
nalized, coherent, cognitively accessible representation of a physical environment—a
cognitive map (Grieves and Jeffery 2017; Moser et al. 2008; Derdikman and Moser
2011; McNaughton 1996; Lisman et al. 2017). A key role in this process is played
by hippocampus—evolutionarily one of the oldest brain parts, that is critical for rapid
pattern encoding and erasure, storing conjunctive associations between stimuli, cor-
tical representations, etc. (Kim and Frank 2009; Madroñal et al. 2016; Kragel et al.
2020[103] Cheng 2013; Zhang and Manahan-Vaughan 2015; Poulter et al. 2018).

A key property that links hippocampal principal neurons to spatial learning is spa-
tial selectivity of their spiking: each cell fires in its preferred location that is largely
independent of the animal’s behavior, body or head orientation, movement direction,
etc. (O’Keefe and Nadel 1978; O’Keefe and Dostrovsky 1971; Derdikman and Moser
2011; Grieves and Jeffery 2017; Best andWhite 1998;Moser et al. 2008;McNaughton
1996; Lisman et al. 2017). Spatial layout of the firing fields hence controls the order
of the hippocampal neurons’ activity and is therefore commonly viewed as the main
correlate of the cognitive map (Frank et al. 2000; Guger et al. 2011; Brown et al.
1998; Jensen and Lisman 2000; Zhang et al. 1998; Huang et al. 2009), although the
exact link between the two remains opaque Vorhees and Williams (2014). A common
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(and historically oldest) approach views spatial learning as tuning the individual cells
to their respective firing fields. Once such tuning is complete for most cells in the
ensemble (for rats’ place fields this takes about four minutes Frank et al. 2000), it is
presumed that a large-scale hippocampal map has emerged (Frank et al. 2000; Wilson
and McNaughton 1993; Wills et al. 2010). Further learning is tied to slower informa-
tion flow from hippocampus to cortex and back—a multifaceted process happening at
several timescales, that depends on specific experiences, number of exposures, behav-
ioral control, modality, synaptic mechanisms, etc. (Rothschild et al. 2017; Weber and
Sprekeler 2018; Rolls 2018; Michelmann et al. 2021).

Analyses of these phenomena are based on interpreting population activity (Wilson
and McNaughton 1993; Mau et al. 2020; Zhang et al. 1998; Pouget et al. 2000), and
building specific spatial representations from spiking data (Savelli and Knierim 2019;
Dabaghian 2021; Kang et al. 2021; Gluck et al. 2003). However, the principles that
could guide or constrain such constructions remain controversial. For example, the
shapes and the locations of place fields can be affected by visual, olfactory, vestibular,
kinesthetic, and other cues as well as more subtle cognitive aspects of navigation,
e.g., the animal’s goals and discrepancies between the expected and actual location
of navigational targets (Wood et al. 2000; Butler et al. 2019; Chen et al. 2013; Erdem
and Hasselmo 2012; Kragel et al. 2020; Ji andWilson 2007; Rothschild et al. 2017). It
is hence unclear which part of this information is embedded in the place cell spiking
and transmitted to downstream neurons, along with the consequences for the type of
spatial properties that might form the basis for the cognitive map.

The dominant assumptionwithin the field has been that the hippocampal map incor-
porates detailed geometric information arising through proprioceptive and sensory
cues (Solomon et al. 2019; Stella et al. 2013; Terrazas et al. 2005; Moser and Moser
2008). However, a growing volume of experimental results suggest that hippocampal
map is topological in nature, providing a schematic representation of space, akin to a
subway-map (Alvernhe et al. 2008, 2011, 2012; Gothard et al. 1996; Dabaghian et al.
2014; Place and Nitz 2020; Krupic et al. 2018; Chen et al. 2014, 2012). From a biolog-
ical standpoint, such maps may be viewed as rough-and-ready frameworks into which
geometric details could be situated over time (Chen et al. 2013; Erdem and Hasselmo
2012; Yoder et al. 2011; Knierim et al. 1995, 1998; Jercog et al. 2019). Hippocam-
pal ability to acquire and store conjunctive associations allows coupling the outputs
of the animal’s directional system, notably head direction cells, with hippocampal
connectivity map (Zhang 1996; Zugaro et al. 2003; Hargreaves et al. 2007).

Since many specifics of this process remain unknown, modeling may be based on
describing the structure of the information flow itself, without detailing the mecha-
nisms that may produce or process the contributing spiking activity. The topological
nature of the cognitivemap suggests using topological analyses, notably persistent and
zigzag homology methods that allow assessing the map’s topological dynamics (Chen
et al. 2014, 2012; Dabaghian et al. 2012; Kang et al. 2021), taking into account a wide
scope of physiological phenomena—brain waves (Arai et al. 2014; Basso et al. 2016;
Hoffman et al. 2016), synaptic imperfections Dabaghian (2018), plasticity (Babichev
et al. 2018, 2019), internal dynamics (replays and preplays) (Babichev et al. 2019;Wu
and Foster 2014; Ólafsdóttir et al. 2018), etc. (Dabaghian 2021). The proposed model
aims to extend this approach to address a long standing problem: how complementary
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inputs (topological, geometrical or non-spatial) provided by different brain parts may
combine into a full representation of the environment (Wood et al. 2000; van der Veldt
et al. 2021; Sargolini et al. 2006; O’Reilly and McClelland 1994; Komorowski et al.
2009; Eichenbaum 2004).

7 Methods

The computational algorithms used in this study were described in (Dabaghian et al.
2012; Arai et al. 2014; Basso et al. 2016; Hoffman et al. 2016; Babichev et al. 2016;
Babichev and Dabaghian 2018; Babichev et al. 2016, 2018, 2019).

The environment shown on Fig. 1A is similar to the arenas used in electrophysi-
ological experiments (Hafting et al. 2005)[137]. The simulated trajectory represents
exploratory spatial behavior that does not favor one segment of the environment over
another.

Place cell spiking probability was modeled as a Poisson process with the rate

λ(r) = f e
− (r−r0)2

2s2 ,

where f is the maximal rate and s defines the size of the firing field centered at
r0 = (x0, y0) Barbieri et al. (2004). In addition, spiking probability was modulated
by the θ -waves, which also define the temporal window w ≈ 250 ms (about two θ -
periods) for detecting the place cell spiking coactivity (Arai et al. 2014;Mizuseki et al.
2009). The place field centers r0 for each computed place field map were randomly
and uniformly scattered over the environment .

Persistent Homology Theory computations were performed using Javaplex com-
putational software (Adams et al. 2014) as described in Dabaghian et al. (2012); Arai
et al. (2014); Basso et al. (2016); Hoffman et al. (2016); Babichev et al. (2016). Usage
of zigzag persistent homology methods is described in Babichev et al. (2018, 2019).
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