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Abstract. We provide a novel analysis of low-rank tensor completion based on hypergraph expanders. As
a proxy for rank, we minimize the max-quasinorm of the tensor, which generalizes the max-norm
for matrices. Our analysis is deterministic and shows that the number of samples required to ap-
proximately recover an order-t tensor with at most n entries per dimension is linear in n, under
the assumption that the rank and order of the tensor are O(1). As steps in our proof, we find a
new expander mixing lemma for a t-partite, t-uniform regular hypergraph model and prove several
new properties about the tensor max-quasinorm. To the best of our knowledge, this is the first
deterministic analysis of tensor completion. We develop a practical algorithm that solves a relaxed
version of the max-quasinorm minimization problem, and we demonstrate its efficacy with numerical
experiments.
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1. Introduction.

1.1. Matrix and tensor completion. Classical compressed sensing considers the recovery
of high-dimensional structured signals from a small number of samples. These signals are
typically represented by sparse vectors or low-rank matrices. A natural generalization is to
study recovery of higher-order tensors, i.e., a multidimensional array of real numbers with
more than two indices, using similar low-rank assumptions. However, much less is understood
about compressed sensing of tensors.

Matrix completion is the problem of reconstructing a matrix from a subset of entries,
leveraging prior knowledge such as its rank. The sparsity pattern of observed entries can be
thought of as the adjacency or biadjacency matrix of a graph, where each edge corresponds
to an observed entry in the matrix. There are two general sampling approaches studied for
matrix completion. During probabilistic sampling, the entries in the matrix are observed at
random according to Erdés—Rényi [34, 54], random regular bipartite [24, 9], or more general
graph models [35]. Deterministic sampling, on the other hand, studies precisely what kinds
of graphs are good for matrix completion and offers some advantages: One does not have
to sample different entries for new matrices, and any recovery guarantees are deterministic
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1118 KAMERON DECKER HARRIS AND YIZHE ZHU

without failure probability. It has been shown in [29, 6, 10] that expander graphs, which have
pseudo-random properties, are a good way to sample deterministically for matrix completion.
A deterministic theory of matrix completion based on graph limits, a different approach,
appeared very recently [13].

Tensor completion, in which we observe a subset of the entries in a tensor and attempt to
fill in the unobserved values, is a useful problem with a number of data science applications
[43, 57]. But fewer numerical and theoretical linear algebra tools exist for working with tensors
than for matrices. For example, computing the spectral norm of a tensor, computing its low
rank decomposition, and computing the eigenvectors all turn out to be NP-hard [30].

Let the tensor of interest T' be order-t, each dimension of size n, and have rank(T") = r,
ie., T e ®§:1 R™ (we introduce our notation more fully in section 1.7). In this paper, tensor
rank will always be using the canonical polyadic (CP) decomposition [36]. A fundamental
question in tensor completion is how many observations via uniform sampling are required to
guarantee recovery of an unknown tensor with high probability. A naive lower bound for the
sample complexity is Q(nrt), the number of unknown parameters in a CP decomposition.

Compared to the classical matrix completion problem, an important phenomenon in tensor
completion is the trade-off between computational and statistical complexity. One way to
reduce tensors to matrices is by flattening the order ¢-tensor into an n!*/2l x nl*/2] matrix,
which can be solved in polynomial time. Yet current results using flattening have sample
complexity at best O (Tn[t/ 21) [25, 49]. A different approach using nuclear norm minimization
was studied in [62] with sample complexity O(n'/?), where O(-) hides polylog factors. However,
it is shown in [22] that computing the nuclear norm of a given tensor is NP-hard. The best
known polynomial time algorithms require O(nt/ 2) sample complexity for an order-t tensor,
including spectral algorithms [48, 60], gradient descent [11, 60], alternating minimization
[32, 41], and convex relaxation via sum of squares [4, 53] or iterative collaborative filtering [56].
There is still a huge gap between the sample complexity of the existing polynomial algorithms
and the statistical lower bound. In [4], Barak and Moitra conjectured that for an order-3
tensor, Q(n3/ 2) many samples are needed for any polynomial algorithms by connecting it to
the literature on refuting random 3-SAT. All of the above results are concerned with uniform
sampling. With adaptive sampling, O(n) sample complexity was obtained in [37, 63]. Very
recently, Yu provided an algorithm that estimates a subclass of low-rank tensor with nearly
linear samples [61].

In [26], Ghadermarzy, Plan, and Yilmaz studied tensor completion without reducing it to
a matrix case by minimizing a max-quasinorm (satisfying all properties of the norm except
a modified triangle inequality, which we call the “max-qnorm”) as a proxy for rank. This is

defined as

t
Tlmex = min JTIUPl2.00 ,
T=UD)o...oU#) paiey

where the factorization is a CP decomposition of 7" (see Definition 4.3 for further details). This
is a generalization of the max-norm for matrices that many have shown yields good matrix
completion results [58, 55, 21, 29, 12, 20]. Assuming that the observed entries are sampled
from some probability distribution, it was shown that solving a max-qnorm constrained least-
squares problem results in O (?—Qt) sample complexity when r = O(1) and even faster rates
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in ¢ for the case of zero noise [26]. However, it is not clear if minimizing the max-qnorm is
NP-hard.

We study the deterministic analogue of the tensor completion approach proposed in [26].
The deterministic analysis leads to a sample complexity which is also linear in n, albeit with
weaker dependence on other parameters (see section 1.4). We assume that the observed entries
correspond to the edges in an expander hypergraph. It has been known that revealing entries of
a low-rank matrix according to the edges of an expander graph allows matrix completion with
small errors [29, 6]. To the best of our knowledge, our work is the first generalization of such a
connection to hypergraph expanders and tensor completion. A deterministic algorithm on low-
rank tensor approximation was studied recently in [50] based on multiparty communication
complexity. However, as pointed out by the authors of [50], their analysis cannot be applied
to tensor completion problems directly.

1.2. Expanders and mixing. The expander mixing lemma for d-regular graphs (e.g., [14])
states the following: Let G be a d-regular graph on n vertices with A = max{qa, |\,|} < d.
For any two sets V1, Vo C V(G), let e(V1, Va) = [{(z,y) € Vi xVa : xy € E(G)}| be the number
of edges between V; and V5. Then we have that

gx\/ww (1= 120 (1- 2,

Inequality (1.1) tells us regular graphs with small A have the expansion property, where the
number of edges between any two sets is well approximated by the number of edges we would
expect if they were drawn at random. The quality of such an approximation is controlled by
A. It is known from the Alon-Boppana bound that A > 2v/d — 1 — o(1), and regular graphs
that achieve this bound are called Ramanujan. Deterministic and random constructions of
Ramanujan (or nearly so) graphs have been extensively studied [5, 45, 8, 10, 47].

Higher-order, i.e., hypergraph, expanders have received significant attention in combina-
torics and theoretical computer science [44]. There are several expander mixing lemmas in the
literature based on the spectral norm of tensors [23, 52, 15, 39]. An obstacle to applying such
results to tensor completion is that in most cases the second eigenvalues of tensors are un-
known, even approximately. In [19], an expander mixing lemma similar to (1.1) based on the
second eigenvalue of the adjacency matrix of regular hypergraphs was derived. However, for
our application we need an expander mixing lemma that estimates the number of hyperedges
among t different vertex subsets.

One exception is the work of Friedman and Wigderson [23], who studied a t-uniform hy-
pergraph model on n vertices with dn'~! hyperedges chosen randomly with d > Clogn. They
proved that the second eigenvalue of the associated tensor A = O((logn)t/?v/d). However,
this is a relatively dense random hypergraph model, since the number of edges grows super-
linearly with n for ¢ > 2. Thus Friedman and Widgerson’s model only applies when one has
the ability to make many measurements, as opposed to the more realistic “big data” scenario
constrained to O(n) observations. If we sample the original tensor according to the hyperedge
set of a hypergraph, we would like the number of hyperedges to be small, in order to be able
to represent a small number of samples. From previous results on matrix completion [29, 6],

d|Vi||Vs
(1) e(vi, V) — T2
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we expect that the reconstruction error should be controlled by a parameter that is related to
the expansion property of the hypergraph.

Our tensor completion analysis can also be applied to observation models where entries
are revealed according to a general t-uniform hypergraph. Define the spectral norm of a tensor
T as

(1.2) T[]/ =  sup Z Tiy,..ipvr (in) -+ v(ie)|

n—1|.
V1., UL ES i1, ik=1

where S™~! is the unit sphere in R”. The mixing lemma for any ¢-uniform hypergraph was
first considered in [23] and was generalized in [15]. We state the expander mixing lemma for
t-partite t-uniform hypergraphs as follows. A quick proof of Lemma 1.1 is provided in section
SM1.1 of the supplement.

Lemma 1.1. Let H = (V, E) be a t-uniform t-partite hypergraph with vertex set V.= V; U
- UV, and adjacency tensor Ty. For any subsets Wy C Vi, ..., Wy C V4, define

e(Wl,...,Wt):|{e:(U1,...,’Ut)EE,UiEWi,lg’iSt}|.

Then the following holds:

E
(1.3) eWi,.... W)~ Ll rWt|\<A2 )/,
where
E
(1.4) Aal(H) = HTH B ' ,

and J s the all-ones tensor.

1.3. Main results. In this paper we seek the connection between two topics, hypergraph
expanders and tensor completion, using the tensor max-quasinorm introduced in [26].

We revisit and generalize the sparse, deterministic hypergraph construction introduced
in [7]. We construct a t-uniform ¢-partite hypergraph by taking a d-regular “base” graph
and forming a hypergraph from its walks of length ¢. In this model, each node is of degree
d*~1, corresponding to nd'~! samples. An advantage of our expander mixing result is that
the expansion property of the hypergraph is controlled by the expansion in a d-regular graph
(Theorem 3.1). This is easy to compute and optimize using known constructions of d-regular
expanders. Based on such hypergraphs, we perform a deterministic analysis of an optimization
problem similar to that analyzed by Ghadermarzy et al. [26].

Our main contributions can be summarized as follows: First, we obtain a variant of
the expander mixing inequalities from [7, 3] and generalize the t-partite t-uniform regular
hypergraph construction in [7] to t-partite t-uniform quasi-regular hypergraphs; see sections 2
and 3. The new expander mixing result provides a better error control for tensor completion.
This improvement might also be useful for the application of hypergraph codes studied in [7].
Next, we perform a deterministic analysis of an optimization problem similar to that analyzed

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/08/22 to 128.54.27.179 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

DETERMINISTIC TENSOR COMPLETION 1121

by Ghadermarzy, Plan, and Yilmaz [26]. Our proof is based on the techniques used to study
matrix completion in [29] (see also [9]). We prove several useful linear algebra facts about the
max-quasinorm for tensors in order to prove the main results on the tensor completion error;
these facts may also be of interest on their own. Finally, we show proof-of-concept numerical
results on minimal max-quasinorm completion.

For a deterministic hypergraph H, if we have a good estimate of A2(H) defined in (1.4),
we can obtain the following tensor completion error bound. Here we state it for t-uniform
t-partite hypergraphs to avoid symmetric sampling, which might be wasteful and will increase
the sample size by a factor of t!, but the analysis can be extended to general t-uniform
hypergraphs.

Theorem 1.2. Given a hypercubic tensor T of order t, reveal its entries according to a t-
uniform t-partite hypergraph H = (V, E) with V.=V U---UV;, [Vi| = --- = |V{| = n, and
second eigenvalue Ao(H). Then solving

T = argnilri,n |T |lmax such that T.=T., foral e€E

will result in the following error bound:
22tnt/2Kév_1A2(H)
|E|
where K < 1.783 is Grothendieck’s constant over R.
Although it is NP hard to compute \o(H) for a given hypergraph H, in [23, 32, 15, 64],
the upper bound on A2(H) is provided for some random hypergraph models. Let Ty be

the adjacency tensor of a given H. From the definition of Ao(H) and (1.2), suppose H has
|E| = o(n') many hyperedges; we have

1713

max?’

1 .
(15) - T <

Ao(H) = max | (Th);, i, — | = 2(1).
Therefore, if we want to use (1.5) to control the mean square error by &, the number of
samples must be Q(n'/2). In [32], an estimate of \y(H) for 3-uniform Erd6s-Rényi random
hypergraphs with p = Ci‘;%" was obtained and our Theorem 1.2 can be applied.
However, using a hypergraph expander model based on regular graphs, we can get a
better error bound without using \o(H). We state our main results on the deterministic
bounds for tensor completion based on hypergraph expander models. A formal definition of

this hypergraph model is given in section 2. When ¢ = 2, it reduces to the result in [29].

Theorem 1.3. Given a hypercubic tensor T of order t, reveal its entries according to a t-
partite, t-uniform, d*=1-regular hypergraph H = (V, E) constructed from a d-regular graph G
of size n with second eigenvalue (in absolute value) \ € (0,d) (see section 2.1). Then solving

(1.6) T = argnilri,n |T |lmax such that T.=T., foral ecE
will result in the following mean squared error bound:

1, - A
(17) N~ T1 < T o
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where Cy = 24(2t — 3)K5 ™, and K¢ < 1.783 is Grothendieck’s constant over R.

Remark 1.4. From Theorem 4.6, ||T|2,,, < 7" ~'!|T|s, where 7 is the rank of the tensor
T. The number of revealed entries in T is nd‘~!. The analysis of sample complexity for the
algorithm is given in section 1.4.

If the tensor T is not hypercubic, say T € ®§:1 R™_ we can still apply Theorem 1.3 by
taking n = maxi<;<;n; and embed T in ®§:1 R™ by filling extra entries with zeros. But
when nq,...,n; are heterogeneous, this might be wasteful. In order to handle heterogeneous
dimensions, we generalize the construction in [3, 7] to construct t-uniform t-partite quasi-
regular hypergraphs with good expansion properties, based on bipartite biregular expanders
(see section 3.2), which yields the following theorem. The proof of Theorem 1.5 is similar to
that of Theorem 1.3, and we include it in section SM1.2.

Theorem 1.5. Given a tensor T € ®§:1 R™ | reveal its entries according to a t-partite,
t-uniform, quasi-regular hypergraph H = (V, E) constTucted from a collection of (da;—1,da;)-
biregular bipartite graphs with second eigenvalues N9 for 1 <i <t—1 (see section 2.2). Then
solving

T = argnjlj/n T | max such that T.=T., forall ecE

will result in the following mean squared error bound:

t—1
1 . B 2\(k)
— 1T —T|% < 2'K, 1( + )HTHmax

[Tiey i Vdidy 1= \/dog—1da

When t = 2, Theorem 1.5 reduces to Theorem 24 in [9] for deterministic matrix completion
with bipartite biregular graphs.

The main motivation to study the mixing properties of hypergraph expanders in sections
2 and 3 is that the key parameter to control the mixing properties is the spectral gap, which
is well understood in spectral graph theory and easy to compute. This gives us explicit error
control in Theorems 1.3 and 1.5.

1.4. Sample complexity. We focus on the sample complexity analysis for the hypergraph
model we used in Theorem 1.3, and other models can be analyzed in a similar way. Recall
that the number of edges in H is nd’~!, equal to the number of samples. Suppose we have
an expander graph G, where A = O(v/d). In order to guarantee the right-hand side in (1.7) is
bounded by ¢, Theorems 1.3 and 4.6 say that, assuming ¢ = O(1), we require

- nr2t=1)(—t-1)
(1.8) |E| = O(||T|tme 2" Vn) = 0<€2(H)

samples, which is linear in n. The computations are shown in section SM1.12.

In Theorem 1.3, the dependence on rank is exponential in ¢, since the best known depen-
dence of the max-qnorm on rank is ||T||max = O(Vrt*~t=1). For matrices, our results have
|E| = O(nr?/e?), which is the same sample complexity derived in [29]. A better understanding
of the max-qnorm for tensors may lead to better dependence on the rank.
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The sample complexity in Theorem 1.2 can be similarly analyzed. To guarantee an € mean
squared error, we have |E| = O(Xo(H)||T||?,.ce " 'nt/?). The dependence on ||T||max and € in
this bound is better, but the dependence on n is much weaker compared to (1.8).

1.5. Computational complexity. The computational complexity for solving the optimiza-
tion problem (1.6) is not clear. Solving it might be NP-hard, but we provide a practical
algorithm to approximately solve it.

1.6. Organization of the paper. In section 2, we construct the hypergraph expanders
with good mixing properties. In section 3, we prove an expander mixing lemma for such
hypergraphs. In section 4, we prove several useful properties of the max-quasinorm for tensors.
In section 5, we leverage these properties to analyze the above tensor completion algorithm
and prove the main results. We extend our result for tensor completion with errors in the
observed entries, which can model noise or adversarial corruptions. In section 6 we provide
a numerical algorithm for finding tensors with the minimum complexity. We conclude with
a discussion of limitations and future directions in section 7. Omitted proofs are provided in
section SM1 of the supplement.

1.7. Notation. The notation we use throughout the paper comes from the review by
Kolda and Bader [36]. We use lowercase symbols u for vectors and uppercase U for matrices
and tensors. The symbol “o” denotes the outer product of vectors; i.e., T'= u o v o w denotes
the order-3, rank-1 tensor with entry 7; ; » = u;v;wi. We also use this symbol for the outer
product of matrices, as appears in the rank-r decomposition of a tensor T = UM o U@ o UG),
where each matrix U® has r columns, so that T; ; , = ZLI UZ.(}) Uﬁ) U,ggl), and T = szlU(i)
is shorthand for the same order-t, rank-r tensor. The symbols ® and * denote Kronecker and
Hadamard products, respectively, which will be defined in section 4. We use ®';f:1 R™ for
the space of all order-t tensors with n; entries in the ith dimension. We use 14 € R™ as the
indicator vector of a set A C [n]; i.e., (14); = 1 if i € A and 0 otherwise. For any order-¢
tensor T' € ®§:1 R™ and subsets I; C [n;], denote T7,, . j, to be the subtensor restricted on
the index set I1 x --- x I;. Norms || - || are by default the 3 norm for vectors and operator
norm for matrices and tensors. We use the notation | - |, for entrywise £, norms of matrices
and tensors and always include the subscript to avoid confusion with set cardinality.

2. Construction of hypergraph expanders. We start with the definition of a hypergraph
and some basic properties.

Definition 2.1 (hypergraph). A hypergraph H consists of a set of vertices V' and a set of
hyperedges E, where each hyperedge is a nonempty set of V', the vertices that participate in
that hyperedge. The hypergraph H is t-uniform for an integer t > 2 if every hyperedge e € E
contains exactly t vertices. The degree of vertex i is the number of all hyperedges containing
i. A hypergraph is d-regular if all of its vertices have degree d.

A t-uniform hypergraph is t-partite if its vertex set V' can be decomposed as ViUV U- - -UV;
such that each hyperedge e € E consists of t vertices v1,...,vs such that v; € V; for 1 <i <t.
For a t-uniform, t-partite hypergraph H = (V, E), we denote each hyperedge e as an ordered
tuple (v1,...,v¢) where vy € Vi, 1 <k < t.

Definition 2.2 (adjacency tensor for t-uniform t-partite hypergraphs). Let H = (V, E) be a

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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1 16

i9 15

i3 14

G H

Figure 2.1. An example hyperedge in the t = 3 case: We depict the base graph G on the left and a single
edge in the hypergraph H on the right. (i1,i2,13) forms an hyperedge e in H if and only if (i1,1i2,43) is a walk
in G.

t-uniform t-partite hypergraph with vertex set V.= Vi U---UV; such that |Vi| = ng,1 < k < t.
We define the adjacency tensor T € @} _,{0,1}" as

4 o 1 if(il,...,it)GE,i]fGVk,lék‘St,
") 00 otherwise.

2.1. Construction of regular hypergraph expanders. Let G = (V(G), E(G)) be a con-
nected d-regular graph on n vertices with second largest eigenvalue (in absolute value) \ €
(0,d). We construct a t-partite, t-uniform, d*~!-regular hypergraph H = (V, E) from G as
follows.

Definition 2.3 (regular hypergraph expander). Let V.=V, U Vo U---UV; be the disjoint
union of t vertex sets such that |Vi| = --- = |V;| = n. The hyperedges of H correspond to all
walks of length t — 1 in G: (v1,...,v) 1s a hyperedge in H if and only if (i1,...,1) is a walk
of length t — 1 in G.

Given the description above, we have |V| = nt and |E| = nd'~!, since E contains all
possible walks of length ¢t — 1 in G. Moreover, every vertex is contained in exactly d*~! many
hyperedges, so H is regular. From our definition of the hyperedges in H, the order of the walk
in G matters. For example, two walks 71 — 73 — i3 and i3 — 79 — 71 correspond to different
hyperedges (i1,12,73) and (i3,i2,41) in H when i1 # i3. When ¢ = 2, H is a bipartite d-regular
graph with 2n vertices. See Figure 2.1 for an example of the construction with ¢ = 3.

This construction was used by [3] to derandomize graph products and by [7] to construct
error correcting codes. Both groups’ results depended on analyzing the expansion properties
of this hypergraph model.

2.2. Generalization to quasi-regular hypergraphs.

Definition 2.4 (bipartite biregular graph). A graph G = (V, E) is bipartite if the vertezx set
V' can be partitioned into disjoint vertex sets Vi, Va such that every edge connects a vertex in

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Vi to a vertex in Va. A bipartite graph G is (dy,dz)-biregular if each vertex in Vi has degree
d1 and each vertex in Vo has degree ds.

We can also generalize our construction in section 2.1 to t-partite quasi-regular hypergraph
H with |Vi| = ny,...,|Vi| = ny. The idea is to combine ¢t — 1 many bipartite biregular graphs
in the following way.

Definition 2.5 (quasi-regular hypergraph expander). Take {d;}1<i<2t—2 such that n;de;—1 =
nip1de; for 1 < ¢ <t —1. Let Gy,...,Gi—1 be bipartite bireqular graphs such that G; is
(dai—1,d2;)-biregular with two vertex sets of size n; and njt1, respectively. We construct H such
that a hyperedge e = (v1,...,v¢) is in H if and only if (vi,vi41) € E(G;) for all1 <i<t—1.
Now we have |E(H)| = ny [['Z] dai_1. Denote the second largest eigenvalue of Gy by \.

Note that the hypergraph H is not regular, but each vertex in V; has the same degree
for 1 <4 <t, as shown in the following lemma. The proof of Lemma 2.6 is given in section
SM1.3.

Lemma 2.6. Let H be the t-uniform t-partite quasi-regular hypergraph defined above; then
the degree of each vertex in V; is (Hz;ll dgk)(HZ;é dog—1).

Deterministic or random construction of a bipartite biregular graph with a small sec-
ond eigenvalue was considered in [10, 9], which can be used to construct the quasi-regular
hypergraph in Definition 2.5.

3. Expander mixing. In this section, we prove novel and tighter expansion properties
in the hypergraph models we constructed in section 2. Later, we will apply them to tensor
completion.

3.1. Regular hypergraph expanders. Let G be a d-regular graph on n vertices with \ €
(0,d), and let H be the corresponding t-partite, t-uniform hypergraph constructed as in section
2.1. We get the following mixing lemma for H. The mixing rate is essentially controlled by
the second eigenvalue of the d-regular graph G. This is an advantage over other expander
mixing lemmas for hypergraphs [23, 15, 52], since in our model the parameters that control
the mixing rate are explicit and easy to compute.

Theorem 3.1. Given a base graph G with A € (0,d), form the hypergraph H following
the construction in section 2. Let W; C V;, 1 < i < t, be any nonempty subsets. Denote
o ::% €10,1,1 <i<t, and let

€(W1,...,Wt) ::]{(vl,...,vt)er X-"XWt:(Q}l,...,’Ut)EE(H)}‘.

Then the following expander mixing property holds:

ndt—l

¢
e(Wy,..., W) H
—_— — ;

=1

(3.1) §% <\/a1(1 —aq)ag(l — as) Hak + Z ajo; (1 — o) H Oék) < (2t4_d3))\
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Remark 3.2. When t = 2, Theorem 3.1 reduces to the expander mixing lemma (1.1) for

regular graphs. The results in [7, 3] estimate the ratio between % and H§:1 ;. In
particular, Lemma 3 in [7] only provides an upper bound, and Theorem 4 of [2] gives a two-
sided bound with an extra assumption that a; > 6A/d for all 1 < i < t. Our new expander
mixing result provides a two-sided control of the difference between the two quantities without
any restriction on «y, which is important for our tensor completion analysis, and the results
in [3, 7] are not directly applicable. The ratio % describes the hitting property of
expander walks, which has many applications in theoretical computer science [1, 33, 31, 16].

Let A be the adjacency matrix of G and M = éA be the transition probability matrix for
the simple random walk on G. Define u = %(1, ...,1)T. Then wu is the first eigenvector of M

with eigenvalue 1 and the second eigenvalue of M is A/d. Define

(3-2) Py= Y eel, lw=) e,

€Wy, €Wy

where e; is the basis vector with 1 in the ith coordinate and 0 elsewhere. Then P is a
projection matrix such that Pye; = 1{i € Wj}e;. Let P be the projection onto the orthogonal
space of u. As shown in [3], considering the simple random walk of ¢ steps in G with a
uniformly chosen initial vertex, the probability that the simple random walk stays in W; at
step i for all 1 <7 <t can be written as

G(Wl, e ,Wt)

(3.3) e

= ”PtMPt_lM e PQMPlqu.

Let v1 = Piu = %1W17'Ui+1 = Pjy1Mwv;. Then

e(Wla"‘7Wt) Va1
(3.4) — d— = |lvelln,  Nvillh = a1, lvillz = %

Decompose v; = x; + y;, where x; is the part of v that is a scalar multiple of u, and
y; = Puv; is orthogonal to u. We first prove the following lemma. The argument is based on
the proof of the expander mixing lemma (1.1) for d-regular graphs (see, e.g., [14]).

Lemma 3.3. For1<i<t-—1,

A
[lvisalls — cillvill2] < E\/nai—i-l(l — i) ||Yill2-

Proof. Since the entries of v; represent probabilities, each v; is entrywise nonnegative.
Denote 1 = (1,...,1)". We have

[vig1ll = [|Ppa Mol = 13y, Mu;
+

= ai+11TM (HU;LH11> + (1W¢+1 - ai-‘y—ll)—r M <’Ui — LUZHl 1>

n

U; U;
+ (Aw,, — 04z'+11)TMH,:l”11 + a1 M <Uz‘ - H:lhl) .
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Note that, since 1 is the eigenvector of M and M7 with eigenvalue 1,

(Lw,y, — Oéi+11)TMM1 =0, a1l M <Ui - ”UZH11> =0.
n n

We obtain

T vill1
Jvisill = ciallviln + (Tw,yy — @ipal) M (Uz' | ;Z” 1> :

Therefore, by the Cauchy inequality, |||vit1]l1 — @it1]lvi|[1] can be bounded by

. A .
‘(1Wi+1 - ai—l—llT) M <Ui - HU1||11> ’ < *HlWiJrl — ai+11T”2 v — Ml
n d n 9
A
= SVnain (1= aip)[yillz- u
With Lemma 3.3, we finish the proof of Theorem 3.1.
Proof of Theorem 3.1. We would like to control ||y;||2. Note that
1 W 1-
ot = or = Bl =2y, - [l fontlmon)
2 o le n

For i > 2, ||lyillz < |Jvill2 = [[PiMvi-1]|2
Lemma 3.3, we have

IN

||UZ;1”2. We obtain ||yl||2 S ||U1H2 = \/oq/n. From

A
ol — oo ] < 5 /aron(T — o),

A
lag||vi—1]]1 — ar—10u]|vi—2])1] < *Oét\/OélOét—l(l — 1),

A
oy - aulJugllt — a3 - aqflvallr] < E(om o)y aras(l — ag),
A
(3.5) o - allvzfls — az---aflurlla] < Z(as- ag)Var (1 - ar)as(l - az).
Since ||v1]l1 = au, for t > 2, combining the inequalities above and applying the triangle
inequality leads to
(3.6) lvelly — ax -+ - u
\ t t
< 7 (ag . 'ozt\/ozl(l —aq)as(l —ag) + Zz; Vajai(l —a;) kHH ak> .
= =1

In the i = ¢ term, the empty product is defined to equal 1. Using the inequality /(1 — x) < %
for any x € [0, 1] and that «; € [0,1], (3.6) implies

< A1 L t—2

—d\4 2 '

G(Wl, ey Wt)
S a]_ DY at
This completes the proof. |

(3.7)

ndtfl
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3.2. Quasi-regular hypergraph expanders. The quasi-regular hypergraph constructed in
section 2.2 has a similar expansion property as follows.

Theorem 3.4. Let H be the hypergraph constructed in Definition 2.5. Let W; C V;, 1 <4 <

t, be any nonempty subsets. Denote o := Wil ¢ €[0,1],1 <i <t, and let e(Wy,...,W;) be the
number of hyperedges between Wi, ..., Wy. Then the following expansion pmperty holds:
e(Wi,..., W,
(" H o
nidy - d2t 3

i=1

t
d1d \/Oq 042 1—a2 Hak+z\/m\/alak+l 1—ak+1 H «;

i=k+2
A =1 A(R)

< Ay .
4+/dy1dy ; 24/ dog—1dag

When t = 2, Theorem 3.4 reduces to the expander mixing lemma for bipartite biregular
graphs [28, 17]. We present the proof of Theorem 3.4 in section SM1.4 of the supplement.

4. Tensor complexity. In order to complete a partially observed matrix or tensor, some
kind of prior knowledge of its structure is required. The tensor that is output by the learn-
ing algorithm will then be the least complex one that is consistent with the observations.
Consistency may be defined as either exactly matching the observed entries—in the case of
zero noise—or being close to them under some loss—in the case where the observations are
corrupted. We now argue for the use of the tensor max-quasinorm (see Definition 4.3 below)
as a measure of complexity. Towards this aim, we also show a number of previously unknown
properties about the max-quasinorm.

For matrices, the most common measure of complexity is the rank. In the tensor setting,
there are various definitions of rank [36]. However, in this paper we will work with the rank
defined via the CP decomposition as

(4.1) rank(7") :min{r ’ T:Zul(.l) o---ouz(-t)},
i=1

U) ¢ R™. Note that the decomposition above is atomic and equivalent to
the decomposition used to define matrix rank when ¢ = 2. The sum is composed of r rank-1

tensors expressed as the outer products ugl) 0---0 ul(t). Our analysis uses Kronecker and
Hadamard products of tensors. These are generalizations of the usual definitions for matrices

in the obvious way.

Definition 4.1. Let T € @i_,R™ and S € ®:_,R™. We define the Kronecker product
of two tensors (T ® S) € @'_; R™™ as the tensor with entries

where each vector u;

(T®S)k‘1,...,kt = nl,..A,itSjl,...,jt fO’f' kl :jl +m1(i1 - 1),"'7kt :jt+mt(it - 1)

Definition 4.2. LetT € ®f:1 R™ and S € ®§:1 R™. We define the Hadamard product of
two tensors (T + S) € @'_, R™ as the tensor with indices (T * S)iy iy = Ty i,Sir..is-
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4.1. Max-qnorm. The max-norm of a matrix (also called 75 norm) is a common relaxation
of rank. It was originally proposed in the theory of Banach spaces [59] but has found applica-
tions in communication complexity [40, 38, 46] and matrix completion [58, 55, 21, 29, 12, 20].
For a matrix A, the max-norm of A is defined as

[Allmax == min [[Ul]2,00[|V
UV:A=UVT

2,00+

Vi

We can generalize its definition to tensors, following [26], with the caveat that it then becomes
a quasinorm since the triangle inequality is not satisfied.

Definition 4.3. Define the max-quasinorm (or max-qnorm) of an order-t tensor T € ®§:1 R
as

t
17| max = i HHU(?;)HZOO, where ||U
i=1

min 200 = max [|Uz||oo,
T=UD)o...oU(t) .1‘”2:1

i.e., the mazimum ly norm of any row of U, and each of the UM € R™*" for some r.
The following lemma provides some basic properties of the max-quasinorm for tensors.

Lemma 4.4 ([26], Theorem 4). Let t > 2; then any two order-t tensors T and S of the
same shape satisfy the following properties:

1. ||T|lmax = 0 if and only if T =0.

2. ||eT |max = |¢l||T || max, where ¢ € R.

3. T+ Sllmax < (1T ke + IS 15k < 2727 (I s+ 115 anae)-

Note that property 3 in Lemma 4.4 implies that | - || max is & so-called p norm with p = 2/t
and also a quasinorm with constant 2¢/2=1 [18]. Finally, in the matrix case it is a norm. As a
matrix norm, many properties and equivalent definitions of the max-norm are known, and it
can be computed via semidefinite programming [40, 38, 46]. In the tensor case, much less is
known about the max-qnorm. We now prove generalizations of some of these properties that
hold for tensors (proof in section SM1.5).

Theorem 4.5. Let T € ®§:1 R™ and S € ®§:1 R™:. The following maz-gnorm properties
hold:
LT, 1 [lmax < || T|lmax for any subsets of indices I; C [n;].

2. |7 ® Slmax < |7 lmax || Sllmax-

3. |T * S||max < ||T ® S||max, where T, S € ®§:1 R™,

4T # Tl|max < | T2 0x-

For any matrix A, there is a surprising relationship between max-norm and rank:

(4.2) [Aloo < [[Allmax < v/rank(A) - | Ao,

which does not depend on the size of A. We denote the entrywise infinity norm |A|o, =
max; ; |A;j|, and similarly |T'|o = max;,,. 4, |T5,,...i,| for tensors. The proof of (4.2) is a result
of John’s theorem and is given in [40]. For the tensor generalization, we prove the following
theorem.
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Theorem 4.6. Let T € @'_, R with rank(T) = r. Then we have that

T|oo < T |lmax <V pt?=t=l T |-

The proof of Theorem 4.6 is included in section SM1.9. This improves Theorem 7(ii) in
[26] by a factor of /r. If we take t = 2, we get that ||A|lmax < \/rank(A) - |A|, which is the
same as (4.2). It remains an open question whether a better bound exists for all ¢ > 2 in terms
of the dependence on ¢. The numerical experiments of [26], which used a bisection method to
estimate the max-qnorm of tensors of known rank, suggest that an improvement is possible.
They study tensors formed from random factors, finding that increasing ¢ by one leads to an
approximately /7 increase. This suggests the conjecture that perhaps ||T'||max < V71T |
is the optimal bound. Further support for this scaling with r and ¢ comes from incoherent
tensors. Our definition is inspired by but slightly different from that used by Barak and
Moitra [4] but reduces to the usual matrix incoherence condition.

Definition 4.7. A rank r tensor T is said to be C-incoherent if there exists a rank-r fac-
torization T = UM o ..o U® such that [UD |, < C fori € [t].

Proposition 4.8. Let T be a C-incoherent tensor. Then ||T|lmax < C*Vrt, and |T|s < C*.

The proof of Proposition 4.8 is included in section SM1.6. In any case, Theorem 4.6 is still
useful for low-rank tensor completion, as it implies that an upper bound on the generalization
error in terms of the max-qnorm can be translated into a bound that depends on the rank.
That upper bound does not depend on n, which is crucial for attaining sample complexity
linear in n.

We have found an improved lower bound on ||T||nax via tensor matricization, sometimes
called tensor unfolding or tensor flattening. The proof is in section SM1.7.

Definition 4.9 (Kolda and Bader [36]). Let T € ®:_,R™. For 1 < i < t, the mode-
i matricization of T' is a matriz denoted by Tj;; € R" x RIL=" such that for any index
(jla s ajt):

(T[i])j“k = le’-n,jt?
with k =1+ ZZ:Lsii(js —1)Ns and Ny = an_zle# N
Proposition 4.10. Let T € @;i_, R™. Then || T |max > maxi<i<t |7} |lmax > max;, .., [T}

4.2. Sign tensors. In order to connect expansion properties of the hypergraph H to the
error of our proposed tensor completion algorithm, we will work with sign tensors. A sign
tensor S has all entries equal to +1 or —1, i.e., S € ®!_,{#1}™. The sign rank of a sign
tensor S is defined as

(4.3)  ranky(S) = inf {7’ ‘ S = Zsl(l) 0-:-0 s,gt), sz(-j) e {£1}" forie[r]and j € [t]} .
i=1

Using rank-1 sign tensors as our atoms, we can construct a nuclear norm [26].

Definition 4.11. We define the sign nuclear norm for a tensor T as

(4.4) |T||+ = inf {Z il | T=" ;S; where o; € R, ranks(S;) = 1} :

i=1 =1
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Note that the set of all rank-1 sign tensors forms a basis for ®f:1 R", so this decomposition
into rank-1 sign tensors is always possible; furthermore, this is a norm for tensors and matrices
[26, 29]. The sign nuclear norm is called the “atomic M-norm” by [26] and the “atomic norm”
by [29].

The next lemma which relates || - ||+ and || - | max follows from a multilinear generalization
of Grothendieck’s inequality (the proof is given in section SM1.8). We use K¢ to denote
Grothendieck’s constant over the reals. For detailed background, see [59].

g

Lemma 4.12. The sign nuclear norm and maz-qnorm satisfy |T|l+ < K& '||T ||lmax, where

K¢ is Grothendieck’s constant over R.
5. Tensor completion.

5.1. Proof of Theorem 1.2. Consider a rank-1 sign tensor S = sjo---0s; with s; € {£1}".
Let J be the tensor of all ones and S" = 3(S + J), so that S’ is shifted to be a tensor of zeros
and ones. Then

(5.1) ! — {1 ?f (s1)i - (3t>z:t i 1,

Define the sets
(52) Wj = {Z € [n] : (Sj)i = —1}.

Let S; be the set of even t-strings in {0,1}’. An even string has an even number of 1’s in
it; e.g., for t = 3 we have 000, 110, 101, 011 as even strings. The number of these strings
is |S;| = 27!, so we can enumerate all possible even t-strings from 1 to 27!, denoted by
wi, ..., wy—1 € {0,1}F. Now for all 1 <i <t and 1< j <2"! we define the sets Wi ; by

(5.3) Wiy {[n] \ Wi (wy); = 0.

By considering the sign of entries in the components of .S, we have the following decomposition
for S” as a sum of rank-1 tensors (a derivation of (5.4) is provided in section SM1.10 of the
supplement):

9t—1
(54) S, = Z 1W17j ©---0 1Wt,j'
7=1
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Now we consider the deviation in the sample mean from the mean over all entries in S:

1 1
w25 |ZS:EZ@S@‘ - s

eeE €ln]t eeF

1
=2|— > S - ZS’
" e€n]t GEE
t—1 t—1
22 Hl 1 Wil Z? 1 eWigy .o, Wij)
¢

=2
n |E]

2t71
Wil IWeil e(Wiy, ..., Wey)
<2 9. 9, _ 9, 9, .
<2y — B

J=1

Applying (1.3) in Lemma 1.1 to the sets Wi ; C Vi,..., W, ; CV, foreach 1 < j < 2=l we
get that

1
EZ e |E,ZS —22 ,E, Wil Wl

e€n]t eck
2t 1
Xo(H)nt2  [|Wy 4]+ Wi 2 Y2\ (H
\E | |E|
We now write the tensor 1" = ZZ «;95; as a sum of rank-1 sign tensors S;, with coefficients

a; € R. Let || - ||+ be the tensor sign nuclear norm, i.e., | T]|+ = Y, |oy]. Then for a general
tensor T', we can apply (5.5) to each S;, and by the triangle inequality we get

1 2tnt/2 \o(H)

— To| < —————||T| -

nt Z T E| Z = | Il

e€[n]t eck

This holds for any tensor 7. Now we apply this inequality to the tensor of squared residuals
R:= (T —T)* (T —T). Since we solve for T" with equality constraints, we have that R, = 0
for all e € E. Thus,

1 . 1
EHT—TH%: o > R

e€n]t

2tnt/2 )y (H 2t Ny (H) .,

—EQ()HR”i < Ez( )KtG 1 | R max (Lemma 4.12)

|E| |E|

2t t/2)\

§”|E|2()Kt T = T2 0 (Theorem 4.5, part 4)
22t72nt/2A H B N 2

(5.6) < 7] 2( )Kg ! (HT||maX+ ||T||max) . (Lemma 4.4)
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Since T is the output of our optimization routine and T is feasible, |T|max < ||T|lmax. This
leads to the final result.

5.2. Proof of Theorem 1.3. Consider a hypercubic tensor T of order ¢, i.e., T € R™**"™,
We sample the entry T, whenever e = (i1,...,4;) is a hyperedge in H defined in section 2.1.
Then the sample size is |E| = nd'~!. Consider a rank-1 sign tensor S = sj o --- 0 s, with
sj € {£1}". Following the same steps in the proof of Theorem 1.2, we obtain

(Wil Wiyl e(Wy, ..., Way)
nt ndt—1

1 | 2
=2 Se—@zse <2}
e€n]t e€eF j=1

Applying Theorem 3.1 to the sets W1 ; C V4,...,W;; C Vi foreach 1 < j < 2-1 we get that

21—1

1 1 2t —3)X

e€[n]t eck

&l >

We now write the tensor 7' = ), «;S; as a sum of rank-1 sign tensors .S;, with coefficients
o; € R. Define R = (T'—T) % (T —T). Following the same steps in the proof of Theorem 1.2,
we have

1, - 1 _ Ao 2
T =TI} = |5 3 Re <2722t = 3)SKE™ (1T lmax + [ Tllma

e€[n]t

Since || ||lmax < || |lmax, this leads to the final result with a constant C; = 2!(2t — )KL

5.3. Tensor completion with erroneous observations. Now we turn to the case when our
observations Z of the original tensor 1" are corrupted by errors v. We will call this noise, but
it can be anything, even chosen adversarially, so long as it is bounded. Let Z € R"” x --- x R"
be the tensor we observe with Z, = 0if e ¢ ¥ and Z. = T, 4+ v, for e € E. In this case, we
study the solution to the following optimization problem:

(5.8) H}}n X ([ max;
1
subject to 3] Z(Xe — Z.)* < 8%,
eckE

for some 6 > 0. The parameter ¢ is a bound on the root mean squared error of the observations.
In a probabilistic setting, we may pick this parameter so that the constraint holds with
sufficiently high probability. We obtain the following corollary of Theorem 1.3, with the proof
in section SM1.11 of the supplement.

Corollary 5.1. Let E be the hyperedge set of H defined in section 2. Suppose we observe
Ze =T + v, for all e € E with bounded mean square error satisfying

1
| | eck
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Then solving the optimization problem (5.8) will give us a solution T that satisfies

(5.10) T = T < 22t = 3K Ty +46°

Remark 5.2. Inequality (5.10) has an error with an irreducible term O(6%), in contrast to
results such as [26], where the error goes to zero even in the presence of noise. In our case,
this term cannot be overcome because the errors do not have any of the nice properties of
noise. For example, all observations Z could be shifted by an amount d, which would bias the
estimation of T' to T + d.J.

6. Practical algorithm for finding minimum complexity tensors. In such tensor factor-
ization problems, one usually picks a rank r and alternately minimizes the objective function
over the factors U®, making the overall approach coordinate descent. Note that the opti-
mization over a single factor is in fact a convex problem for which there exist polynomial time
algorithms. However, care must be taken in designing these convex subproblems for efficiency.
We will relax the problem so as to make it amenable to proximal gradient descent methods.
This will require us to compute the proximal operator of || - |20 and the gradient of the
smooth part of the modified objective.

6.1. Relaxed algorithm. We propose the following more practical relaxation of (5.8).
Rather than deal with the constrained problem, we instead optimize

. K B
(6.1) it X s+ S0 % (X = 2 = R)I + 51 = R

subject to ||M * R||p <.

The mask tensor M has M, =1 if e € E and M, = 0 otherwise. This makes M equivalent to
the adjacency operator of the observation hypergraph H, so the constraint is the same as in
the original noisy problem (5.8). However, we have relaxed the problem by introducing the
auxiliary variable R. Here we absorb \/@ into the noise magnitude § to avoid clutter. The
relaxation parameter s is taken to be large, which keeps R &~ X — Z within the observation
mask; outside the mask, we may assume R = 0. The parameter [ is a small smoothing of the
hard constraint taken for technical reasons laid out in section SM2 of the supplement. For all
experiments, we take k = 100 and § = 1.

The abilities to compute gradients and evaluate the prox of the f3 o, norm are all the
ingredients needed to implement coordinate descent for (6.1). The details of how these are
computed and a variable projection step to minimize out R are provided in section SM2 of
the supplement. At each coordinate descent step, we apply the accelerated proximal gradient
method to the cost. The cost in terms of the coordinate blocks {U(i)}ﬁz1 is written as

t
1 %
(6.2) C =3 (k(1- w? +12B) M« (UM o oUW — 2|5 + T IUD 2,00,
i=1

with g = (UM o--- 0 UW®) given by (SM2.1). After the first iteration of coordinate descent,
we find that it is important to rescale the factors to have equal norms across all columns.
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generalization error
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Figure 6.1. Relative error of reconstruction for t = 4 and n = 40,80. The results are the average of 6
tensors with standard errors shown.

This step does not affect the goodness of fit, but it can cause the max-qnorm penalty term
to increase. However, we have found that it makes the algorithm more stable. Not shown
in (6.2), we also include a small squared Frobenius penalty 0.01 - |U||% on each factor for
numerical stability. Python code to implement this method and reproduce our experiments
is available from https://github.com/kharris/max-qnorm-tensor-completion.

6.2. Numerical experiments. We generate random rank r = 3, order t tensors by drawing
the entries of U independently from the uniform distribution Unif[—1,1] fori = 1,...,t. The
resulting tensor 7 is rescaled to have || T||r = v/nd?, so that the root-mean-square of its entries
is 1. Entries are sampled using a random d-regular expander graph as described in section 2.1,
and no noise was added. In principle, we could have used one of any number of deterministic
d-regular expander constructions, but these are more difficult to implement for arbitrary d.
Simulations were run for parameter ranges n € {20,40,80},¢ € {3,4},d € {3,7,11,15}. We
fit with tensors of rank rg; € {3,8,16,32,64} and residual parameter § = 0.05\/@, with
k = 100, 8 = 1. We report generalization error, defined as

T —T|r

generalization error :=
17|
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Figure 6.2. The behavior of the optimization algorithm by iteration for a test case with t = 4,n = 400,d =
12, rq¢y = 16. Initially, the algorithm focuses on fitting the data, causing the maz-qnorm to increase until the
residuals are comparable to 6, at which point the cost is mostly due to the max-qnorm. In the final stage, the
maz-gnorm is decreased, leading to a decrease in the generalization error. Note that the max-qnorm lines are
upper bounds, and the algorithm has not fully converged in 250 iterations.

The results for and ¢t = 4 are shown in Figure 6.1, with a similar Figure SM1 for t = 3 in the
supplement. In either dimension, errors < 10% are achieved whenever d and rg; are sufficiently
high. The fraction of observed entries in this setting is (d/n)!~!. For sufficiently large rg¢, we
see error < 10% once d > 11, or observing 2% (n = 40,t = 3), 0.6% (n = 40,t = 4), 0.3%
(n =80,t =3), and 0.04% (n = 80,t = 4) of the total entries.

It is interesting to note that having rg; > r helps the optimization algorithm find a better
solution. Furthermore, having a highly overparameterized model does not appreciably hurt its
generalization ability. Once the rank of the fit is above a threshold around 10, the error stays
essentially flat. Overparameterizing the rank appears to help the optimization find a good
solution, while the max-qnorm penalty controls the complexity of this solution to prevent
overfitting.

When we compare [[:_; [U®]2.00 and [T'_; [|U®||2,00, Which are upper bounds on the
max-qnorm of the truth 7' and estimate T, we find that the estimate generalizes well when
its upper bound is less than or equal to that of the truth. This is evident in Figure 6.2, where
we see how the cost and generalization error change with iteration for ¢ = 4,n = 400,d =
12,75y = 16, and otherwise the same parameters as before. This corresponds to a fraction
2.7 x 107 of the total entries observed. The overall relaxed cost (6.2) is shown along with the
max-qnorm upper bounds. Initially, the cost is dominated by the residual term. The residuals
decrease while the bound on ||T||max actually increases. Once the mean-square residuals are
as small as 62, the cost is dominated by the max-qnorm complexity term, and the HT || max
bound decreases. These stages can be understood by the variable projection parameter varying
between p =~ 0 and u = 1; see section SM2.1. Throughout this process the generalization error
decreases, although it has not fully converged in 250 iterations.

Finally, we also have performed an experiment with n = 1000,t = 4,d = 12, rg; = 16, and
otherwise the same parameters as before. After running for 271 iterations, we stopped the
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optimization and found a generalization error of 3.4%. This is a very small fraction 1.7 x 1076
of the total entries in T". This and the n = 400 experiment show that good recovery is possible
even when d < n.

7. Discussion. We have deterministically analyzed tensor completion using the max-
gnorm as a measure of complexity and hypergraph sampling. Our main results show that, by
finding the tensor with smallest max-qnorm that is consistent with the observations, one may
obtain a good estimate of the true tensor. The error of this estimate depends on the expan-
sion properties of the hypergraph model. Auxiliary to this main result are a number of newly
proven facts about the max-qnorm which may be of interest to specialists in communication
complexity.

We show that proximal algorithms based on a relaxation of constrained max-qnorm min-
imization are practical to implement and provide code to reproduce our results. Although
our numerical study is mainly proof-of-concept, the method does work in the problem sizes
that were tested. These were mainly small-scale (n < 100), but promising results were found
in medium-scale tests (n = 400,1000) with very small fractions of the total entries observed.
Sampling based on d-regular expander graphs, as opposed to sampling tensor entries uniformly
at random, was successful in these experiments.

A number of theoretical and practical considerations still remain. Theoretically, it would
be nice to have other constructions of sparse hypergraph expanders. Completely deterministic
constructions could be useful for applications, e.g., for compressive sensing in hardware where
a single sensor reuses its “observation mask” over and over.

Finding the right complexity measures for tensors is still an open problem. Here we
study max-qnorm because it is amenable to deterministic analysis; however, there are likely
other measures that work better in some settings. For example, if the factors are known to
be smooth, e.g., due to spatial autocorrelation in images, then other regularization will be
beneficial [51].

The optimization problem is nonconvex, but our simulations show that good solutions can
be found when the fit uses an overparameterized rank. It may be possible to explain this
using the techniques of [27, 42].

A thorough numerical comparison of the performance of max-qnorm minimization versus
simple Frobenius norm minimization would be informative but outside the scope of this paper.
Simulations of larger size will be needed to see whether the numerical results support the O(n)
sample complexity that the theory predicts. Furthermore, our experiments were with incoher-
ent, random tensors, which could make the problem easier. It would also be interesting to try
expander sampling with real datasets. It will be important to reconcile various conjectured
hardness results [4] with the practical success of these algorithms in many settings.

Acknowledgments. We thank Ioana Dumitriu for support and discussions. We are grate-
ful to Paul Beame for discussions of communication complexity and to Adi Shraibman for
sharing details of the proof of the Hadamard product bound on the max-norm for matrices.
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