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Crimes emerge out of complex interactions of human behaviors and sit-
uations. Linkages between crime incidents are highly complex. Detecting
crime linkage, given a set of incidents, is a highly challenging task since
we only have limited information, including text descriptions, incident times,
and locations. In practice, there are very few labels. We propose a new sta-
tistical modeling framework for spatiotemporal-textual data and demonstrate
its usage on crime linkage detection. We capture linkages of crime incidents
via multivariate marked spatiotemporal Hawkes processes and treat embed-
ding vectors of the free-text as marks of the incident, inspired by the notion of
modus operandi (M.O.) in crime analysis. Numerical results, using real data,
demonstrate the good performance of our method as well as reveals inter-
esting patterns in the crime data: the joint modeling of space, time, and text
information enhances crime linkage detection, compared with the state-of-
the-art, and the learned spatial dependence from data can be useful for police
operations.

1. Introduction. Spatiotemporal-textual incident data are ubiquitous in modern appli-
cations, such as social media posts, electronic health records, and crime incidents. Such inci-
dents data typically include time, location of the incidents, and marks which include categor-
ical or more detailed descriptions of the incidents. One essential task in analyzing such data
is discovering patterns from massive incident data and identifying related incidents. Here, we
focus on a particular application arising from police data analysis to identify crime linkage
from police reports.

Crime linkage detection plays a vital role in police investigations, aiming to identify a se-
ries of incidents committed by a single perpetrator or the same criminal group. The result can
help police narrow down the field of search and allocate the workforce more efficiently. Crime
linkage detection is usually done by finding a similar modus operandi (M.O.), typically, using
physical or other credible evidence, which are observable traces of the perpetrator, such as
clothes, fingerprints, DNA, ways to enter the houses, and tools as well as witness statements
(Bouhana and Johnson (2016), Woodhams, Bull and Hollin (2007)). This process is not au-
tomatic, usually laborious, and requires particular domain knowledge and crime analysis.

There is an opportunity to detect crime linkage using data: a wealth of police report
data containing extensive information about crime incidents exists. An illustrative example
is shown in Figure 1 which shows a series of crime incidents. Such a 911 call-for-service
report records information about police incidents; when a 911 call is initiated, a unique in-
cident ID is created. A police officer is dispatched to the scene to investigate the incident
and electronically enter the incident’s information into the report which contains structured
and unstructured data. The structured data include time, location (street and actual longitude
and latitude), and crime category. The unstructured data include narratives and free-text that
records interviews with the witnesses or descriptions of the scene. Thus, the police report
data is a type of spatiotemporal incident data with marks.
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FI1G. 1. An illustrative example of a crime series consists of four crime incidents. Each crime report includes
the occurrence time, location, and descriptive text that may contain important information about the incident.

In this paper we present a framework for modeling crime incidents data, referred to as the
spatiotemporal-textual point process (STTPP) model, based on which we can detect crime
linkages without fully labeled data. Hawkes processes (Hawkes (1971)) have been used ex-
tensively to study various topics, including crime (Mohler et al. (2011)), social media (Lai
et al. (2016)), and earthquake prediction (Fox, Schoenberg and Gordon (2016)). In our model
each basic police patrolling geographical unit (beat) is regarded as a node in a network as-
sociated with a marked Hawkes process. We jointly model spatiotemporal and textual infor-
mation by incorporating the text as marks of the incidents. To achieve this, we first extract
the information from the free-text, using the bag-of-words representation, and then map the
representation into embedding vectors which can be viewed as extracted M.O. of the incident
from the free-text. The embedding is performed by the regularized Restricted Boltzmann
Machine (RBM) with keywords selection. RBM is commonly used as a generative artificial
neural network, which we adopt here to capture the joint distribution of keywords and embed-
ding vectors. We further design a new regularization function to perform keyword selection
in RBM by penalizing the total probability of the keywords being selected in the model. The
keyword selection plays an important role in crime linkage detection because crime series are
typically linked via a small set of keywords in the documents. Without performing keyword
selection, the model can overfit the training data. Using carefully designed numerical experi-
ments with real data, we show that our method is highly effective in detecting crime linkages,
compared with other methods.

The rest of this paper is organized as follows. We start with a motivating example using
real-data for crime linkage detection. Section 2 presents our proposed spatiotemporal-textual
point process model as well as model estimation methods. Section 3 presents police report
text analysis which will be used in the model as “marks.” Finally, in Section 4 we present a
study of Atlanta police data and a comparison with alternative approaches.

1.1. Motivation with real-data example. To motivate the connection in space, time, and
police text, first, we present a motivating example. A series of residential burglaries were
reported in the Buckhead, a residential neighborhood in Atlanta. From June to November
2016, 23 houses were broken into and robbed. When police arrested the perpetrator, it was
found that the same person committed all these burglaries. We notice that the incidents in the
same crime series tend to aggregate in time and space. This series of burglaries consisting of
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Call time: Oct 12th, 2016, 09:40:00.000 Location: Rd NW, Atlanta, GA 30327 Description:
1, Ofc. _ assigned to - in Vehicle No. was dispatched to _ regarding
a residential burglary. 1 spoke with the victim, Mrs. and she advised me that she left her home
around 0940 hrs. this morning and when she returned home around 1220 hrs. she discovered her side door to
her garage kicked in and the door to the house was open. Mrs. went on to say that she had left the
door to the house unlocked and did not activate the alarm. Mrs. advised me that her serving for 12,

sterling silver flatware was taken along with the 2 drawers that they were in. Mrs. - advised me that
the flatware is engraved with “GFG”, she also stated that the knives had “Mother of Pearl handles”. They also
stole several (10 or more) sterling silver serving set pieces and they were also engraved with “GFG” or “D”.
she is not sure of the value at this time. Mrs. - also advised me that her bedroom was ransacked and that
several pieces of jewelry are missing. The pieces were diamond and gold. Mrs. advised me that she
will have to take an inventory to see what was stolen and the value. Mrs. stated that one of the pieces
of jewelry that was stolen was a gold and diamond necklace (Infinity Necklace valued at 8, 000.00 dollars). Mrs.

advised me that the missing jewelry estimate is around 50, 000 dollars also advised me that after she
takes inventory she will make a list and forward it to our CID. I dusted the home for fingerprints with negative
results. No cameras or witnesses. I notified Investigator _ of the burglary.

FIG. 2. A real police report of the residential burglary in Buckhead, Atlanta. Sensitive information has been
covered. Note that a set of keywords (in red) is highly correlated with the M.O. of this crime.

23 cases occur within four months, and 12 of them are within just three weeks. Figure 3(a)
shows the spatial locations of the 23 burglaries which are clustered within four neighbor-
ing beats in a relatively small area. A similar phenomenon can also be observed in another
robbery series, shown in Figure 3(b). Besides the locations and times of the incidents, de-
tailed descriptions have been recorded as text (entered by the police officer who investigated
the case). From these police reports a clear pattern was identified; the affected houses had
their bedrooms ransacked, drawers pulled out, and valuable jewelry stolen. An example of
a desensitized police report (with sensitive information masked) on a residential burglary is
shown in Figure 2. Upon examining the document, we notice that the keywords (marked in
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F1G. 3. Spatial distribution of: (a) burglary cases and (b) robbery cases in Atlanta from early 2016 to the
end of 2017. The red dots in (a) represent an identified series of burglaries committed by the same perpetrator;
the orange, blue, brown, black, and purple dots in (b) represent five identified series of robberies; the gray dots
represent unidentified burglaries or robberies. The color map indicates the average number of burglaries or
robberies reported in each beat. We observe that the linked incidents in the same crime series tend to occur within
a few (two to four) neighboring beats in a relatively small area of the city.
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FI1G. 4. Distributions of the top 10 high-frequency keywords for six crime series identified by the Atlanta Police
Department. Note that the cooccurring high-frequency keywords for different crime series are different, likely to
be related to different M.O. of these crime series.

red) such as silver, bedroom, ransacked, forced entry, bedroom, jewelry, drawers frequently
appear in the police reports, as shown in Figure 4. This provides vital clues in detecting crime
linkages from many unsolved cases which is related to the M.O. of this crime series. When
examining other crime series, we find that a different set of high-frequency keywords occur
for different series. Motivated by this, we aim to develop an algorithm that, when combining
with time, location information, and the cooccurrence of keywords from police reports, can
automatically capture these related incidents and help police investigators to identify M.O.

1.2. Related work. According to Porter (2016), there are three main types of approaches
to detect crime series, which are pairwise case linkage, reactive linkage, and crime series
clustering, respectively: (1) Pairwise linkage detection (Cocx and Kosters (2006), Lin and
Brown (2006), Nath (2006)) aims to identify whether a pair of crimes were committed by
the same offender or criminal group, where each pair is usually considered separately. Such
works include Cocx and Kosters (2006), Lin and Brown (2006), which evaluate the similarity
between cases according to the weights determined by experts, and Nath (2006) which learns
the similarity from data by considering all incidents jointly. However, they do not consider
the common M.O. of a crime series. (2) Reactive linkage (Porter (2016), Woodhams, Bull
and Hollin (2007)) is similar to pairwise case linkage, which starts with a seed of one or
more crimes, and discovers one crime at a time for a crime series. (3) Crime series clustering
(Adderley (2004), Adderley and Musgrove (2003), Dahbur and Muscarello (2003), Ma, Chen
and Huang (2010), Porter (2016), Wang et al. (2015)) discovers all clusters of crime incidents
simultaneously; however, this approach requires labels which is infeasible in practice.

Recently, there has been much work on modeling discrete incident data using point pro-
cesses. In particular, Hawkes processes (also known as self-exciting point processes) have
been widely used for studying human dynamics (Fox, Schoenberg and Gordon (2016), Lai
et al. (2016), Mohler et al. (2011)) which are characterized by the mutual “triggering” effect
among incidents. Such models can capture inhomogeneous interincident times and causal
(spatial and temporal) effect. Our method extends the vanilla version of multivariate Hawkes
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processes by considering the unstructured text information as marks of the incidents. Un-
like the stochastic declustering methods developed by Veen and Schoenberg (2008), Zhuang,
Ogata and Vere-Jones (2002), Zhuang, Ogata and Vere-Jones (2004), which require an exact
parametric form of triggering function, we derive an expectation maximization (EM) algo-
rithm (Dempster, Laird and Rubin (1977), McLachlan and Krishnan (2008)) to estimate our
model.

There are works studying general correlations between incidents that are not necessarily
crime incidents by performing incident embeddings and evaluating their similarities in the
embedding space. Such works include Zhang et al. (2017), which uses tweet token as context
while capturing correlation between time, location, and keywords (tokens) in the same tweet,
Du et al. (2016), Hong et al. (2017), which are based on Recurrent Neural Networks (RNN)
and treat category as marks of incidents, and Quinn et al. (2011) which infers the causal rela-
tionship for neural data. Our problem’s particular challenge is that our data involves complex
marks which are the police report’s text description.

The spatiotemporal-textual incident data has also been consider in Andrade, Rocha-Junior
and Costa (2017), Liu, Jian and Lu (2010), Wang et al. (2012). Howeyver, these existing works
do not use Hawkes process models or consider crime linkage detection. Another related work
(Kuang, Brantingham and Bertozzi (2017)) uses the topic model for text, and it solves the
problem of crime category classification which is very different in nature from crime linkage
detection.

Existing works on regularized RBMs consider various forms of regularization on the
weights of RBMs to yield sparse outputs (Halkias, Paris and Glotin (2013), Keyvanrad and
Homayounpour (2017), Luo et al. (2011), Shen et al. (2019)) or sparse feature (Ranzato,
Boureau and LeCun (2007), Ranzato et al. (2006)). However, they mainly focus on produc-
ing sparsity in the neural network connection which is different from the probabilistic sparsity
required for the keywords selection in our scenario. Our paper extends our prior preliminary
work (Zhu and Xie (2018), Zhu and Xie (2019)) which only considers text information.

2. Model. Consider a sequence of n spatiotemporal-textual incidents, where each obser-
vation is a tuple consisting of time, location, and text,

(1) (tl’sl’xl)’(t2’529x2)’---a(tl’lasnvxl’l)'

For the ith incident, #; € [0, T'] denotes time, T is the time horizon, and #; <f;+1;5; €S C R?
denotes the spatial location of the ith incident that consists of the latitude and longitude
of the incident; x; = [x;1, X2, ..., Xiq|T € R? corresponds to the fixed-length bag-of-words
representation (Harris (1954)) with g keywords.

Here, x;; is the TF-IDF (term-frequency-inverse-document-frequency) value (Gomaa and
Fahmy (2013)) of the jth keyword, and ¢ is the total number of the keywords that appeared
in the corpus (the collection of all text documents). We will design a mapping function ¢ :
R? — {0, 1} (further discussed in Section 3) to project the bag-of-words representation into
the m-bit binary embeddings & € {0, 1}": h = ¢(x).

2.1. Spatiotemporal-textual process. We model the spatiotemporal-textual incident data
using multivariate marked Hawkes processes (Daley and Vere-Jones (2003)). A widely ac-
cepted hypothesis is that crime incidents exhibit the so-called triggering effect: once a crime
incident occurs, this will increase the chance of similar incidents in the nearby neighborhood
and the near future (Mohler (2014), Mohler et al. (2011), Park et al. (2021)). This effect mo-
tivates the adoption of the self-exciting Hawkes processes. Let 7, denote the o -algebra gen-
erated by all historical incidents before time ¢. Therefore, the conditional intensity function
of the Hawkes process (Rasmussen (2011)) defines the probability density that an incident
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occurs at the location s, at time ¢, and with text k&, conditioning on the history 7, of incidents
happens before time ¢,

) E[N(B(s, As) x B(h, Ah) x [t,t + At))|H,]
2) A LRH)= ,
@ (.1, h[Ho) = Jdm |B(s. As)||B(h, AR)| At

where N (C) is the counting measure, defined as the number of incidents that occur in the
set C C[0,7T] xS x R™ and |B(v, Av)| denotes the Lebesgue measure of a ball centered
at v with the radius Av. Hawkes process is a self-exciting point process with the conditional
intensity being influenced by the past incidents positively,

(3) As. LR H) =p()+ Y g(s.sj.1,1;, b h)),

Jitj<t

where ((s) is the base intensity. Below, we omit H; from the notation while remembering it
is a conditional intensity.

We assume the triggering kernel function to be separable in space, time, and marks, as
commonly assumed in the point process literature (see the review in Reinhart (2018)),

g(s,sj,t,tj,h,hj) =v(s,s;)v(t, tj)k(h, hj) >0,

where v, v, k are three kernel functions for two incidents in time, location, and mark spaces,
respectively. We would like to remark that the separable kernel will lead to a more computa-
tionally efficient procedure since the evaluation of the likelihood function requires integrating
the intensity function over the whole space, which is high dimensional, as explained later in
Section 2.2. Moreover, separable kernels in our case lead to interpretable results. To achieve
this goal, we made the following choices for the kernels in our paper out of many possi-
ble forms: (1) For the temporal kernel v we assume a commonly used exponential function
v(t,t;) = Bexp{—pB(t —tj)}, where ¢ > t; and the parameter 8 > O captures the decay rate
of the influence, since linked crime incidents usually aggregate in time; note that the kernel
integrates to one over ¢. (2) Since police departments operate by beats (geographical units
for police patrolling), we discretize the location into d disjoint units (according to beats) and
replace the location s by the beatindex k € {1, 2, ..., d}. After discretization, the spatial func-
tion v (s, s;) is represented by the coefficient .55 the influence strength of beat s; to beat s.
If a, , = 0, then beat v has no influence to beat u. Note that the spatial influence can be di-
rectional, that is, o, , # ay, . Define the coefficient matrix A = {o, ,} € RAxd oy >0.03)
For text we choose the inner product between text embeddings as kernel function. Since tex-
tual similarity is commonly measured by the normalized inner product between embeddings,
we use this as our kernel function «(h,h;) = hTh;/m = I~1Ti~zj, where h and izj denote
normalized embeddings.

The rationale for choosing the form of the intensity function as above is trifold: (1) The
influence of incidents is causal: the current incident only depends on past incidents, and their
influence decays over time. (2) The spatial coefficient measures the correlation between two
discrete locations, and the correlation may not decay over the distance since, in our context,
crime incidents are not necessarily linked to what happens in the nearby neighborhood (e.g.,
criminals may travel). This approach allows us to capture more complex spatial influence.
(3) We assume two incidents with higher textual similarity are more likely to be linked since
text similarity can imply similar (M.0.). Moreover, we choose to use the inner product of
embedding because it is the most common measure in natural language processing. Also, in
our setting this leads to the closed-form likelihood function.

Following the above modeling assumptions, the conditional intensity of the kth dimension
can be written as

) M) =+ Y o, Be P DR R, ViLk,

Jitj<t
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where [y is a base intensity for beat & which can be related to the ambient crime rate of the
beat. Note that we use an unconventional approach to model marks by including them as a
part of the kernel, which can model the triggering effect of the incidents with similar k&, as
motivated by the fact that crime incidents with similar M.O. tend to trigger each other. In
contrast, the conventional marked point process usually assumes the intensity function to be
factorized into two terms—the conditional intensity function A, (s, ¢) of the space and time
(independent of marks) and the conditional distribution f (x|k, ¢) of the mark given time and
location: A(k,t, h) = Ag(k, ) f(hlk,1).

2.2. Model estimation and likelihood function. In this section we explain the estimation
procedure of our model. First, we choose to estimate the base intensity {ui} by the aver-
age number of incidents that occurred in that beat which can be viewed as a nonparametric
estimation procedure; similar nonparametric estimation for the base intensity, using kernel
estimation, has been considered in (Mohler (2014)). Our approach is computationally more
efficient compared to the traditional stochastic declustering algorithm. We also validate that
the performance of our approach is comparable to that of the stochastic declustering in Sec-
tion 5 of the Supplementary Material (Zhu and Xie (2022)).

The spatial coefficient A are estimated based on the likelihood function. The log-likelihood
function for n incidents in [0, T'] can be derived, based on the conditional intensity (4) (de-
tailed derivation in Section 1 of the Supplementary Material, Zhu and Xie (2022)),

n i—1
(A = Zlog(usl. + ) ayBe i ,-)

i=1 j=1
©) d n d L
Y RT3 Y e (1 - e T,
k=1 j=lk=1heQ

Given fixed B, the spatial coefficient can be estimated by maximum likelihood A=
argmaxy4 £(A); the related optimization problem can be solved efficiently by an expectation-
maximization (EM) algorithm in Section 2.3. It can be shown that £(A) is concave (Simma
and Jordan (2010)), and, hence, there is a unique global maximizer.

We treat the influence parameter 8 > 0 as a tuning parameter that is estimated separately
(discussed in Section 4.4). We take this approach, because if we treat both A and g8 as un-
known, the corresponding maximum likelihood problem is nonconvex, and we cannot easily
find a global optimal solution.

2.3. Spatial coefficients and crime linkage estimation by EM algorithm. In this section
we discuss the model estimation procedure, based on the expectation-maximization (EM)
algorithm, and also explain how to evaluate the likelihood that two crime incidents are linked
by introducing a set of auxiliary variables. The EM algorithm is derived following the similar
strategy as in Reinhart (2018). Introduce a set of auxiliary variables {p;;} satisfying

i
Vi, Y pij=1, pij=0,
j=1

where {p;;}, Vi, j :i > j can be interpreted as the probability that the ith incident is triggered
by the jth incident (i.e., there is a linkage between ith and jth incidents) and {p;;}, Vi can
be interpreted as the probability that the ith incident is generated due to background process.
These auxiliary variables will enable us to derive a computationally efficient EM algorithm,
and they can also be used for crime linkage detection: given a incident of interest i, we can
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use p;; € [0, 1] to measure the likelihood that j is triggered by i, as explained below. As
shown in Section 2 of the Supplementary Material (Zhu and Xie (2022)), we can obtain a
lower bound to the likelihood function (5), using Jensen’s inequality,

n i—1 i
€(A) > Z<p,-,- log(us) + Y pijlog(as,s, Be P Dhlh;) — > pijlog pl-j)
i=1 j=1 j=1

(6)

- Z k|QUT — Z Z S kg, (1— e PTD)h"h;.

k=1 j=1heQ

From the form of the lower bound, it can be seen that the {p;;} can be interpreted as the prob-
ability that one incident triggers another. When maximizing the lower bound, the optimizers
can be expressed in closed forms, as shown in Section 3 of the Supplementary Material (Zhu
and Xie (2022)). Thus, the EM algorithm involves the following iteration: in each iteration r,

(ry _ Msl
(7a) p - ~T~ >
g Ms; =+ Zz 1“s(r)sz/3€_’3(ti_tl)hi h
—BUi—tpp,
al e J h h
(7b) P,(Jr) - Yl ﬂ (r) J <1,
—}—Z oy slIBe ﬁ(tz—fl)h hl
L+ _ =1 Z’j_:l i = .5 = v)pij

(7c)

e sy = )1 — e PO Yo

Given the precomputed text embeddings, the EM algorithm can be performed efficiently.
Moreover, when implementing the algorithm, it appears that we need to sum k € Q; in fact,
we can simplify the computation while achieving good performance. Rather than naively
enumerating all possible embeddings, which will result in summing over 2" terms, we first
perform text embedding (discussed in the next section) and examine the actual support of
the learned embeddings k. Then, we define Q2 as the union of the observed embeddings
from training data. The resulted |2| < 2™. For instance, for our real-data corpus with 10,056
documents, the embedding uses m = 1000, and a naive enumeration will require to sum 2!900
terms. Using our simplification, the size of the set |€2| is 1743. Based on the result of the EM
algorithm, finding the most related incidents of the ith incident can be done by selecting
incidents with the largest p;;.

3. Text embedding with keyword selection. In this section we present our text embed-
ding method with keywords selection. Recall that we treat the text embedding as marks for
the spatiotemporal Hawkes process. The reason for considering text embedding k for marks
instead of the raw bag-of-words representation x is two-fold: (1) The EM algorithm (equa-
tions (7a)—(7c)), if we were to use x (a 7039 dimensional real-valued vector), would require
to integrate x over the entire space €2; however, high-dimensional numerical integral is in-
tractable, in general. Using the embedding representation, in the EM algorithm we need to
sum over h (a 1000 dimensional binary vector), which is a much simpler task than integra-
tion over x. (2) The police report text is unstructured and contains much noisy information;
text embedding can be viewed as a certain “denoising” procedure. Moreover, the important
information about the crime incidents is contained in the frequency of certain keywords that
appeared in the entire corpus, as illustrated in Figure 2; embedding can capture the inherent
latent connection from the raw text. Note that we perform the text embedding and model
estimation for the Hawkes processes separately because jointly learning the two is mathe-
matically intractable.
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FIG. 5. Structure of the regularized RBM for text embedding.

Text embedding is a commonly used technique in natural language processing (Mikolov
et al. (2013)), where each document is viewed as a combination of a set of keywords. The
idea is to map words with similar semantic meanings to be closer to each other in the embed-
ding space. Here, we represent each police report as a feature vector using the bag-of-words
representation. To perform embedding, we use the Restricted Boltzmann Machine (RBM)
(Fischer and Igel (2012)) which characterizes the joint distribution of keywords and unknown
latent variables (the embeddings). Moreover, we introduce a new regularization function for
keyword selection which is important for detecting crime linkages. Recall the example in
Figure 4, where documents in different crime series tend to have a different distribution of
high-frequency keywords. Thus, these cooccurrent keywords in each crime series tend to be
highly related to the M.O. of the crime series. Since such high keywords defining M.O. are
only a small portion of the entire vocabulary, it motivates us to perform keyword selection in
embedding based on a proper regularization. Thus, we penalize the total probability that the
keywords are “active” in the model.

3.1. Restricted Boltzmann Machine (RBM). An RBM is a probability graphical model,
which can also be viewed as a two-layer neural network. As shown in Figure 5, the RBM
consists of two types of units, the so-called visible and hidden units. In our context, the
visible units correspond to keywords, and the hidden units are also called the embeddings.
Assume that the visible layer has ¢ units, denoted by a vector X = [X1, X»,..., X,]T € RY,
and the hidden layer has m units, denoted by H = [H{, H3, ..., H,]T € {0, 1}’". Parameters
of the network are 6 = {w, b, ¢} which include weights w = {w;;} € R?*"™, visible bias b =
{b;} € R?, and hidden bias ¢ = {c;} € R™. Given training data, the parameters of RBM are
tuned to maximize the likelihood of the data under the model.

Consider the Gaussian—Bernoulli RBM, where the joint distribution of visible and hidden
units are specified by

1
p(X, H|0) = EGXP{—Ee(X, H)},

and the partition function Z =}y g e~Eo(X.H) g a normalization constant. The energy
function is given by

¢ Xi—=b)’ g 5
®) B X H)=) o =3 ciHi =Y 3 Hjwy,

where o2 is the variance of the Gaussian noise for visible variables. It can be shown

that the visible and hidden variables are independent upon conditioning on the hidden
and the visible variables, respectively: p(X|H;60) = ]—[;1:1 p(X(|H;0), and p(H|X;0) =
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;.”:1 p(H;|X; 6). This property simplifies our derivation. Let N (x; p, o?) denote the prob-
ability density function of normal random variable with mean y and variance o 2. The condi-
tional probabilities for the ith keyword and the jth entry in the embedding are given by

(9a) PXIIH:0) =N (Xiiby+0 )" wijHj.07),

. Xi
(9b) p(Hj=1|X;9)=s1gm<0j+Zj=1;wij>,

where the sigmoid function is defined as sigm(x) = 1/(1 4+ ¢~*). The marginal distribution
of keywords is given by

1

p(X10) =3, p(X, HIO)=— 3 exp{—Eyg(X, H)},

which is also known as the Gibbs distribution.

3.2. Regularized RBM. Consider independent and identically distributed (i.i.d.) training
data x1,...,x,. The RBM’s log-likelihood function is given by £(0) = >_"_, log p(x;|0).
We now present a regularized maximum likelihood estimate of the RBM model,

(10) ming{ L) +8)",  P(X; = 7l6)},

where § > 0 is the regularization parameter and the threshold 7 a hyperparameter that controls
the threshold for keywords selection. We assume that keywords with TF-IDF value less than
1072 can be ignored and set 7 = 1072 in experiments. The regularization function penalizes
the total probability of visible units (keywords) being “selected” by the model, and, thus,
it encourages “stochastic sparse” activation patterns and only selects a subset of keywords.
Here, we do not directly use the standard £;-norm type of regularizer on the weights because
we want the output to be sparse in a probabilistic sense.

Computing the likelihood of a Markov random field or its gradient is, usually, compu-
tationally intensive. Thus, we employ sampling-based methods to approximate the likeli-
hood function and its gradient (Hinton (2012)) and perform stochastic gradient descent (Lan
(2020)). In each iteration we optimize one variable while fixing other variables, and gradients
are evaluated from samples.

A benefit of our regularization function is that its gradient can be derived in closed form.
Below, let ¢ (-) and ®(-) denote the probability density function and cumulative distribution
function of the standard normal random variable, respectively. Let (-) p denote the expectation
with respect to a distribution P. We can write the regularization term as

T—b —o Z?’:l wlej>>
o p(H)

(11) P(X;>r1|0) =(IP(X1 >1|H, 9))p(H) =1- <d><
Let

m
=1-10 —O'Zijlj, I=1,...,n.
Jj=1
The detailed derivation of gradients is shown in Section 4 of the Supplementary Material

(Zhu and Xie (2022)). This leads to a simple procedure for performing stochastic gradient
descent in the parameters of the RBM model,

Hj(7))

Awyy = (X1 H;) x50 — XUH ) pox —a< > ,
J J1p(H|X)p(X) J1p(X.H) 1_¢(Tl/) PHIX) )



SPATIOTEMPORAL-TEXTUAL POINT PROCESSES 1161

202 \1 = o) | pxypx)’

Acj = p(H;=1|X) — (p(H; =1|X))

Ab; = X; — (X1) p(x) —

p(X)’

where p(X) denotes the empirical distribution. To evaluate the gradient, we adopt the k-step
contrastive divergence (CD-k) algorithm (Hinton (2002)).

4. Real-data study. Using our methods, we now study a large-scale police dataset and
demonstrate their competitive performance for linkage detection. All the code in this article
can be found in the Supplementary Material (Zhu and Xie (2022)).

4.1. Dataset. We study a data set of 10,056 crime incidents recorded by the Atlanta
Police Department from early 2016 to the end of 2017. Each incident is associated with a
911 call, with information including crime category, time and location of the incident, and
comprehensive text descriptions entered by the police officer. Two crime incidents are said
to be linked if they are in the same crime series. We only have a handful of identified crime
series by police, consisting of six crime series and a total of 56 incidents in these series. Thus,
this also shows the importance of an unsupervised learning approach. Here, the labels for the
crime series are not used for fitting the model but are only used for validation. The data are
available in the Supplementary Material (Zhu and Xie (2022)).

We preprocess the raw data as follows: (1) Discretize the continuous geolocation of the
crime incidents according to beats. We associate each crime incident using the policing beat
index. Atlanta is divided into 80 disjoint beats. (2) Normalize the call time. We regard the
call time (when the dispatch center receives the 911 call) as each crime incident’s initial time.
For ease of calculation, we then normalize this time to the range of [0, 1], that is, the time
horizon corresponds to T = 1. (3) Initialize base intensities. We estimate the base intensity
by estimating the average number of incidents in each beat and within the time horizon. (4)
Construct bag-of-words representations for text documents. We normalize the text to lower-
cases so that, for example, the distinction between “The” and “the” are ignored; we also
remove stop-words, independent punctuation, low term-frequency (TF) terms, and the terms
that appeared in most documents (high document frequency terms). Then, we compute the
bag-of-words vector for each police report using 7039 keywords. For the document’s feature
vector each entry corresponds to the TF-IDF value of a keyword or bigram (a sequence of two
adjacent words from a string of text) that appears in the corpus. (5) We study two particular
categories of crime, burglary and robbery, as the same category cases may define similar M.O.
There are 349 burglary crimes (23 of them are labeled) and 333 robbery crimes (23 of them
are labeled), respectively. We also compare with groups with 305 mixed types of crimes (56
of them are labeled).

4.2. Text embedding results. First, we examine the text embedding and keywords se-
lection results. Recall that regularized RBM aims to select the most relevant keywords for
clustering in the embedding space. The number of keywords selected in the model depends
on the regularization parameter value which is typically chosen by cross-validation. Since
we have very few labeled crime series data, we will take the following approach for cross-
validation. Consider two types of police reports, including “burglary, robbery”, and group
the rest of the category as “mixed” type. Based on this, we examine the embedding space
to map the police reports to the same category as much as possible (use this approach as
weak supervision). Specifically, we use the average silhouette score (Rousseeuw (1987)) as
a metric which measures the average distance of a point to its cluster (cohesion) relative to
other clusters (separation). The silhouette ranges from —1 to 1 (the higher, the better), and
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F1G. 6. Optimal choice of regularization parameter § for regularized RBM by five-fold cross-validation. The
vertical axis corresponds to average silhouette scores for clustering “burglary, robbery”, and “mixed” types of
incidents in the embedding space by regularized RBM. The model attains its best performance at § = 1072, which
we use in the subsequent experiments.

we select the value of the regularizing parameter § to maximize the average silhouette score.
As shown in Figure 6, based on five-fold cross-validation, the optimal choice of § = 1072,

The selected keywords (with TF-IDF value > 1072) can be observed in the reconstructed
corpus, which is generated by performing Gibbs sampling according to the conditional prob-
ability (9a), given the text embeddings. Note that the selected subset of keywords in the re-
constructed corpus is small, 280 out of 7038 keywords, as desired. The selected keywords are
supposed to be the most important for embedding. Thus, we examine the selected keywords
in Figure 7, together with high TF-IDF keywords. These keywords correspond to common
descriptors in crime reports. The combination of keywords with high TF-IDF values may por-
tray a certain aspect of the incident and hence help to identify crime linkages. For example,
a combination of high TF-IDF keywords, including home, door, window, stolen, may be as-
sociated with a burglary incident, whereas a combination of midnight, Toyota Corolla, pistol
may be associated with an armed robbery incident. Some keywords are strong indicators of
crime type, for example, marijuana, vandalism, whereas some keywords may reveal the stage
of the investigation of the related crime series, for example, wasn’t sure, suspect, identified,
arrestee, police custody, Miranda. In Figure 8 we also show that the embeddings generated
by the regularized RBM can better cluster incidents for the identified crime series. This con-
firms that our proposed regularized RBM is more effective in clustering police reports than
the vanilla RBM by removing irrelevant keywords.

0.035
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00304 — Reconstructed corpus by RegRBM
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F1G. 7. The average TF-IDF value of keywords in the original corpus (shown in red) and the selected keywords
(shown in blue). Crime analysts in the Atlanta Police Department validate that the selected keywords by our
model, such as stolen, home, marijuana, play a significant role in defining the M.O. and linking crime incidents.
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FI1G. 8. Comparison of embeddings generated by vanilla RBM and our proposed regularized RBM. Each dot
represents a crime incident’s embedding, projected on a two-dimensional space via t-SNE (Van der Maaten and
Hinton (2008)); we show 56 labeled and 500 random crime incidents in both figures.

4.3. Evaluation metrics and procedure. We adopt standard performance metrics, includ-
ing precision, recall, and F7 score. This choice is because linkage detection can be viewed as
a binary classification problem, where we aim to identify if there is a linkage between two
arbitrary crime incidents in the data. Define the set of all truly related incident pairs as U, the
set of positive incident pairs retrieved by our method as V. Then, precision P and recall R
are defined as

P=1UNV|/IVI], R=|UNV|/|U|,

where | - | is the number of elements in the set. The F; score combines the precision and
recall: F1 =2PR/(P + R) and the higher F score the better. Since numbers of positive and
negative pairs in real data are highly unbalanced, we do not use the ROC curve (true positive
rate vs. false-positive rate) in our setting.

The evaluation procedure is as follows. The six identified crime series include 56 incidents
with more than 1000 detected crime linkages between them which can be used as “true labels”
for training and validation purposes. We first shuffle the labeled data set randomly and split
the crime series into k groups (k = 5), where each group has, at least, one identified crime
series. For each unique group we take the group as a hold-out or test data set and take the
remaining groups as a training data set. Then, we fit a model, using all of the unlabeled data, to
find the optimal A, and optimal f is chosen for each location by a grid search in [10~%, 10°],
using the labeled training data. Lastly, we evaluate the fitted model with optimal A, , 8 on
all the labeled test sets and obtain the average F; score. Given all possible incident pairs in a
group of crime incidents, we retrieve the top N pairs with the highest linkage likelihood p;;,
Vi, j values returned our algorithm. If two crime incidents of a retrieved pair were indeed
in the same crime series, then it is a success. Otherwise, the pair is unlinked, and it is a
misdetection. In our data, burglary has 55,278 pairs in total, and 97 are linked; robbery has
60,726 pairs in total, and 231 are linked; mixed has 46,360 pairs in total, 328 of them are
linked.

4.4. Choice of temporal coefficient B by cross-validation. We show that an optimal
choice of the parameter § for crime linkage detection exists, which achieves the best bias-
variance tradeoff. Specifically, we perform the k-fold (k = 5) cross-validation with a grid
search to find the optimal 8 using the labeled data. The tradeoff can be intuitively explained,
as in (7b); when B are too small, the long-range temporal dependence is not captured, and



1164 S.ZHU AND Y. XIE

F7 score for top 500 retrievals

0181 iy *— mixed
0.16 1 1 —— buglary

¥ X «— robbery
0.14+ #

I
=
o
)
>

Fy score

o

—

o
!

0.084

0.06 4

0.04 4

FI1G. 9. Choice of the optimal B by five-fold cross-validation: Fy scores over the temporal correlation parameter
B when retrieving the top N = 500 incident pairs with the highest correlated probabilities p;j; results are obtained
by repeating over 50 random experiments.

when g are too large, the process may not forget the history. Moreover, in our model the
influence kernel jointly captures spatiotemporal and text influence. When B is too large,
the temporal influence may dominate the contribution of textual correlation. An appropri-
ately set temporal coefficient 8 can improve the performance of our method. A real-data
example is shown in Figure 9, where the vertical dash lines in the figures indicate where the
model attains its best performance regarding the F; score (defined in Section 4.6). We test
STTPP+RegRBM using N = 500 pairs of arbitrarily retrieved results (including both linked
and unlinked cases). We note that, in the experiments, 8 ~ 107 leads to the best performance.
In practice, when there is a handful of labeled data indicating crime series (like the dataset
we have here), we can use this small amount of training data to preselect an optimal 8 used
in our model.

4.5. Estimated spatial coefficients o, , and interpretations. The EM algorithm can esti-
mate the spatial coefficient matrix A, capturing the directional influence between locations.
The magnitude of the coefficient captures how large the influence is. In our experiments we
randomly initialize the coefficients in (0, 1).

Now, we visualize the estimated A in Figure 10, treating it as the adjacency matrix of a
weighted and directed graph, where nodes represent beats and edges represent the spatial
influences. We threshold the estimated spatial coefficients and only keep edges if a;; > 0.5.
For burglary and robbery (Figure 10(b), (c)), some beats are isolated and have no connection
with any other beats. A few beats, indicated by large red dots in the graph, have a dominating
influence on their surrounding beats. An interesting observation is that the linked incidents
in the same crime series usually occurred within a few (two to four) neighboring beats, indi-
cating that the perpetrators usually confine their criminal activities in a relatively small area
of the city with which they might be familiar. The situation becomes more complicated when
we consider all types of cases (more than 160 categories of crimes) altogether, as shown in
Figure 10(d). Also, some of the beats, such as 113, 202, 302, and 610, are the crime hotspots
which are very likely to trigger subsequent crime incidents. Increasing patrols in these regions
may help to curb future crime and enhance the safety of the city.

4.6. Comparison with alternative methods. We compare our method, referred to as
the STTPP+RegRBM, to the vanilla RBM without regularization, referred to as the
(STTPP+RBM), as well as other alternative methods. We may consider crime linkage de-
tection as an information retrieval task: given a new incident, we would like to find a num-
ber of the most relevant incidents from historical data. We compare with related alternative
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F1G. 10. (a) Police beat map of Atlanta: regions with white boundary are beats; the ID of beats with significant
influence learned by our model has been highlighted. (b-d) Directed graphs corresponding to the estimated A
for three scenarios, where each node represents a beat and each edge corresponds to oy > 0.5. The red nodes
are the beats with larger outdegree than indegree, indicating that the incidents in these beats are more likely to
trigger subsequent incidents in the connected beats; the blue nodes are the opposite; the green nodes indicate the
beats have equal indegree and outdegree, and the grey nodes are isolated. The dots’ size indicate the indegree and
outdegree differences. We notice that certain beats are more influential than others.

methods, including latent semantic analysis (performed by singular value decomposition)
and latent Dirichlet allocation (LDA) (commonly used in natural language processing). We
also compare with Autoencoder (AE), a neural network-based embedding technique. How-
ever, these alternative methods learn embeddings for documents in feature space without
considering spatiotemporal information. Hence, we extend AE and SVD by including the spa-
tiotemporal information as part of their inputs which are concatenations of the bag-of-words
feature vector and incident time and location (latitude and longitude); each dimension of the
input is normalized to [0, 1]. We refer to these two methods as AE+ST and SVD+ ST, respec-
tively. As a sanity check, we also consider the random-pick strategy as one of the baselines
which randomly selects the subset of variables to be incorporated in the model. To compare
with embedding methods, we compute their inner products in the embedding space for each
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F1G. 11. Comparison between our method STTPP+RegRBM and baselines with respect to precision, recall,
and Fy scores for crime linkage detection. We consider a different number of retrievals on data group burglary
(the first row), robbery (the second row), and mixed (the third row). The vertical dash lines indicate the location

of their best performance.

pair of incidents as a similarity score. Based on this, we find the most similar pairs as the

retrieval results.

As shown in Figure 11, our STTPP methods achieve a much higher F| score than other
methods. The proposed method attains its best performance at N = 314, N = 207, and
N =389 on burglary, robbery, and mixed datasets. This indicates that properly incorporating
spatiotemporal information will drastically improve the accuracy of linkage detection. In par-
ticular, our proposed STTPP+RegRBM greatly outperforms STTPP+RBM (without keyword
selection) on single-category crimes, including robbery and burglary. This may be because
the M.O.s are distributed around a small set of keywords in these cases, and keywords’ selec-
tion plays a critical role in the feature extraction.

5. Discussions. This paper introduced a new framework for modeling police incidents
as spatiotemporal-textual incidents and demonstrated its usage for crime linkage detection.
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We addressed the challenge of a lack of labeled related incidents (and thus, we face an unsu-
pervised learning problem). We developed a model based on the multivariate marked Hawkes
processes, with marks being the incident textual descriptions’ embeddings. We incorporated
the textual similarity as a component in the point process intensity function while still enjoy-
ing computationally tractable likelihood function. We also developed a new embedding tech-
nique with keywords’ selection for text modeling using a regularized Restricted Boltzmann
Machine (RBM). The proposed method was validated using a real dataset and compared with
alternative methods. We want to remark that the proposed algorithm has been adopted by
the Atlanta Police Department and implemented in their AWARE system in 2018. Although
we focus on police report analysis in this paper, our model can be used for other types of
spatiotemporal-textual incident data, such as social media data and electronic health records.

As the linked crime series are hand-labeled by crime analysts, there are likely cases linking
to the existing crime series; however, they are not identified yet. We could not consider these
in the performance evaluation (due to the lack of the ground truth). It could happen that
the algorithm actually detects linkages that are unknown but indeed exist. Nevertheless, the
algorithm is shown to be effective, based on known labeled cases, and provides a potentially
helpful tool for crime analysts to cast their attention to unknown but potential links.

We believe our approach based on embedding enjoys certain robustness. The text of the
police reports is “noisy,” in a highly unstructured form with variable length, and are entered
by different police officers with personal styles. The embedding is based on a transformation
of the raw text of a police report into a fixed-length bag-of-words vector and then mapped
using the regularized RBM which captures the intrinsic similarities between text documents
rather than apparent keywords. The other aspects of robustness for crime data analysis, such
as missing data, are indeed very interesting and can be a topic of further research.

Finally, we want to remark that the crime linkage found by performing analysis based on
the Hawkes processes model can be treated as a form of Granger causality (Xu, Farajtabar
and Zha (2016)) which is a weaker causal inference for time series and does not consider
confounding factors. For instance, reports from the same officer may be similar and reflect
the officer’s opinion. We believe that using embedding rather than the raw text bag-of-words
features will alleviate such an issue to a certain extent since it captures the underlying similar-
ities of crime incidents, as demonstrated in our real-data examples. Further causal inference
analysis for crime linkage detection can be a future research direction. Another future direc-
tion is to extend the pairwise evaluation for crime linkage detection to consider higher-order
interactions among incidents.
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SUPPLEMENTARY MATERIAL

Proofs and other technical results (DOI: 10.1214/21-AOAS1538SUPPA; .pdf). The on-
line Appendix contains proofs of some technical results discussed in the text.

Python code (DOI: 10.1214/21-A0AS1538SUPPB; .zip). The folder “sttpp” contains the
Python code of the proposed spatiotemporal-textual point process and its EM algorithm. The
folder “rrbm” contains the Python code of the proposed regularized RBM model and the
Python code for text preprocessing.

Desensitized police data (DOI: 10.1214/21-AOAS1538SUPPC; .zip). The data files in-
clude more than ten thousand 911-call records, where each record contains its exact time,
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location, and the corresponding bag-of-words vector. The police text corpora can be read
using nltk.corpus package.!
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