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a b s t r a c t

Dynamical Ising machines are actively investigated from the perspective of finding efficient heuristics
for NP-hard optimization problems. However, the existing data demonstrate super-polynomial scaling
of the running time with the system size, which is incompatible with large NP-hard problems. We
show that oscillator networks implementing the Kuramoto model of synchronization are capable of
demonstrating polynomial scaling. The dynamics of these networks is related to the semidefinite
programming relaxation of the Ising model ground state problem. Consequently, such networks, as
we numerically demonstrate, are capable of producing the best possible approximation in polynomial
time. To reach such performance, however, the reconstruction of the binary Ising state (rounding) must
be specially addressed. We demonstrate that commonly implemented forced collapse to a close-to-
Ising state may diminish the computational capabilities up to their complete invalidation. Therefore,
consistent treatment of rounding may cardinally improve various operation metrics of already existing
and upcoming dynamical Ising machines.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Challenges set by large-scale NP-hard problems make un-
conventional models of computation of special interest and im-
portance. One of such models is based on the Ising model de-
scribing a network of coupled classical spins. In 197031980-s,
researchers realized that reaching the equilibrium of the Ising
model is equivalent to solving certain optimization problems [13
3]. Furthermore, in [3], it was observed that the ground state of
the Ising model on a graph delivers the maximal cut of the graph.
This tied the Ising model with a series of other NP-hard problems
as established in [4,5] and explicated in [6]. These observations
exposed the Ising model as a special model of computation, which
represents computing tasks in terms of set partitioning.

Recently, a significant research effort is put into development
of continuous dynamical Ising machines [7325]. Characteristi-
cally, these machines do not represent the classical spins by
a binary (taking values ±1) object. Instead, they leverage the
emergent property of specially constructed continuous dynamical
system to minimize the Ising model Hamiltonian.

To better understand challenges faced by Ising machines, it
should be reminded that finding the maximum cut is an APX-
hard problem [26,27]. If P ̸= NP, an APX-hard problem cannot be
solved with arbitrarily good approximation within time scaling
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polynomially with the system size. For finding the maximal cut,
this means that any Ising solver acting on a sufficiently rich set
of large graphs can either guarantee, at best, 16/17 ≈ 0.941 [28]
value of the maximal cut, or its running time will scale super-
polynomially. The fact that an Ising machine is continuous does
not change the implications of the APX-hardness. Moreover, find-
ing the ground state of the Ising model admits various continuous
(exact) representations. We consider an Ising machine based on
one of such representation and show that its performance 3 the
degree of approximation achievable in polynomial time 3 is the
same as of a simple local search.

The questions of performance received little attention in the
Ising machine literature. Virtually, the only adopted method of
evaluating the accuracy is testing the machines against a selective
set of benchmarks. While such tests are, of course, important,
they provide little insight into how the machines would op-
erate on a general class of problems, especially while dealing
with graphs of gigantic size (say, with millions or billions of
nodes) [29]. In turn, studies of the dependence of the running
time on the problem size are also scarce. The existing data [30,31]
demonstrate super-polynomial scaling: the best result reported

in [31] is O

(
e
√
N
)
, where N is the number of graph nodes. Such

scaling effectively puts large NP-hard problem out of the reach.
In the present paper, we show that Ising machines based on

networks implementing the Kuramoto model of synchronization
[32335] are capable of demonstrating scaling compatible with
large NP-hard problems. The ability of these machines [15,16,213
23,36,37] to find the ground state of the Ising model is of the same
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Fig. 1. (a) A graph with 8 nodes and one of its maximal cut partitions. (b)3(d) Representative dynamical regimes obtained for different K/Ks . The obtained cut values

are (c) 10, (d) 6. (e) The probability of finding a max-cut configuration as a function of K/Ks .

origin as for the semidefinite programming (SDP) relaxation [38].

This suggests that such oscillatory Ising machines can reach the

theoretical limits: the best classically possible quality of solutions

[27,39] in time that scales almost linearly with the problem

size [40,41].

The best theoretical performance, however, is not achieved

automatically within the commonly adopted ways to implement

machines based on synchronized networks. As the dynamical

model describing these machines, we consider a network of os-

cillators with identical natural frequencies. In the rotating frame,

the network is governed by [37,42]

θ̇m = K
∑

n

Am,n sin(θn − θm) + Ks sin(2θm), (1)

where θm is the mth oscillator phase, Am,n is the network adja-

cency matrix, K is the coupling strength, and Ks is the strength of

the phase injection [43345], which facilitates aligning individual

oscillator phases. To distinguish from the model with variable

frequencies, we will refer to (1) as the quasistatic Kuramoto

model (QKM).

The relation with the Ising model is often suggested along

the following lines. QKM can be considered as induced by the

Lyapunov function (a function monotonously decreasing with

time with evolution of the system) [42]

H
(QKM) = K

2

∑

m,n

Am,n cos(θm − θn) + Ks

2

∑

m

cos2(θm). (2)

When the phase distribution is binary, θm = σmπ/2 with σm =
±1, H

(QKM) turns into an Ising Hamiltonian. Since H
(QKM) de-

creases with time, the arrival at a state with clustered phases can

be expected to deliver an approximation to the ground state.

There are difficulties with such arguments: there is no guar-

antee that the system will converge to a binary-like state, nor

that the resultant state will deliver the optimum solution. These

difficulties manifest themselves even on small graphs, like shown

in Fig. 1(a) (the same graph was considered in [16]). Depending

on Ks/K , the phase evolution governed by Eqs. (1) can be in any

of three regimes:

1. well-defined clusters do not form;

2. clusters form and yield the maximal cut;

3. clusters form but do not yield the maximal cut.

It may appear as if QKM-based machines are unreliable if Ks

does not ensure operating in regime 2. Moreover, as we will show,

regimes 1 and 3 can be regarded as generic.

However, this is regime 1, without well formed phase clusters,

which delivers the solution. It suffices that the network admits

the binary state without necessarily settling in it. Consequently,

obtaining a steady state of a dynamic Ising machine must be

followed by rounding: finding the best phase reference point.

Forcing phases to form well-defined clusters does not achieve

this. This is supported by Fig. 1(e) showing that when Ks is too

large, the probability of success reduces to random guessing.

2. Ising model and the max-cut problem

Let G = {V , E } be an undirected graph on the sets of nodes V

and edges E . We will denote the number of nodes and edges by

N = |V | and M = |E |, respectively. The spin configurations are

described by binary functions on the graph: σ : V → {−1, 1}.
In other words, to each node, we assign a binary variable σm ∈
{−1, 1}.

With each configuration, an energy is associated

H(σ) =
∑

(m,n)∈E

Am,nσmσn = 1

2
σ · Â · σ = 1

2
Tr[̂A Ξ̂ ], (3)

where Â is the graph adjacency matrix, and Ξ̂ = σ ¹ σ, so that

Ξm,n = σmσn. In general, a weight function Ĵ : E → R can also be

provided. We will focus on the simpler case described above and

only briefly discuss what changes in the general case.

Each configuration σ naturally defines partitioning V = V+ ∪
V−, with V+ and V− being sets, where σ takes values +1 and −1,

respectively. Conversely, any partitioning, V = V+ ∪ V−, defines
a configuration and, thereby, can be characterized by the energy,

which is related to the cut of G induced by the partitioning. A cut,

C (V+, V−) is a set of edges with one of the ends in V+ and another

in V−. The cut size, C(σ) = |C |, can be found by summing over all

edges a function equal to 1 on edges from C , and to 0 elsewhere.

In terms of σ, the value of this function on edge (m, n) can be

written as (1 − σmσn)/2 leading to [3]

C(σ) = 1

2

∑

(m,n)∈E

Am,n (1 − σmσn) = M

2
− 1

2
H(σ). (4)

Thus, finding the maximal cut, C̄G = maxσ∈{−1,1}N C(σ) is equiv-

alent to finding the ground state energy.

Owing to Am,m = 0, finding the maximal cut amounts to

finding a maximal value of a linear function on the vertices of

hypercube [−1, 1]N . In turn, any linear function on a convex

polyhedron reaches its extrema on the vertices. This yields a

2
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continuous representation of the max-cut problem [46], when
instead of binary functions σ one considers ξ : V → [−1, 1]N :
C̄G = max

ξ∈[−1,1]N
C(ξ). (5)

Let us briefly consider a dynamical Ising machine utilizing this
representation. Away from the extreme points (ξm = σm = ±1),
the machine’s equations of motion are

ξ̇m = ∂C(ξ)

∂ξm
= −

∑

n

Am,nξn. (6)

Solutions obtained with the help of this machine are determined
by the machine’s final state. It is easy to show that these are
binary configurations (ξm = σm = ±1) characterized by the
majority rule: for each node at least half of the incident edges
are cut. Or, equivalently, Fm g 0, where

Fm = −
∑

n

Am,nσmσn. (7)

We limit ourselves to the case of graphs without nodes with
even degrees (the number of incident edges). In this case, any
state satisfying the majority rule is stable and has the basin of
attraction of finite volume. Thus, such Ising machine finds the
same configurations as a simple local search algorithm with the
respective consequences for performance.

In view of this consideration, it must be emphasized that
the dynamical Ising machines based on synchronized oscillator
networks implement a different operational principle and are not
bound by the performance limitations typical for the local search.

3. QKM, XY model, and rank-2 SDP

An extension of the Ising model, the XY model, is obtained by
considering vector-valued functions on the graph: ξ : V → S

2,
where S

2 is the set of unit vectors on a 2D Euclidean plane, R2.
The configuration energy is given by

H
(XY )(ξ) = 1

2
Tr[̂A Ξ̂ (XY )] − Ks

2

∑

m∈V

ξ⃗m·
´
l ·ξ⃗m, (8)

where Ξ
(XY )
m,n = ξ⃗m · ξ⃗n,

´
l = l⃗ ¹ l⃗ is the anisotropy tensor, l⃗ is

the anisotropy axis, and Ks is the anisotropy constant. Depending
on whether Ks = 0 or Ks ̸= 0, the XY model is called isotropic or
anisotropic. Since ξ⃗m are 2D vectors (rather than, say, 3D), the sign
of Ks plays no role. We assume that Ks g 0 so that the anisotropy
aligns the spins along the line defined by l⃗.

Treating H
(XY )(ξ) as a Lyapunov function, the dynamics is

defined by
˙⃗
ξm = −∂H(XY )/∂ξ⃗m = gm(ξ)γ⃗m, where γ⃗m is any of

the two unit vectors orthogonal to ξ⃗m, and

gm(ξ) = −
∑

n

Am,nγ⃗m · ξ⃗n + Ksγ⃗m·
´
l ·ξ⃗m. (9)

Equations of motion in this form ensure that |ξ⃗m| is an integral
of motion. Alternatively, this can be enforced by representing
ξ⃗m = (cos(θ ) sin(θ ))T in terms of the angle θm, say, with respect
to l⃗. Using this in Eq. (8), we obtain Eq. (2).

Thus, QKM describes the dynamics of vector spins in the XY
model [42]. This relationship provides a convenient phenomenol-
ogy for discussing the dynamic Ising machines implementing
QKM as it abstracts from the challenges of physical realizations of
oscillator networks. Therefore, for brevity, we will refer to these
networks as XY machines.

The equivalence QKM ´ XY implies that the network evolu-
tion realizes the gradient descent for the XY model. Generally, the
outcome of the evolution is a configuration with an unconstrained
mutual orientation of vector spins. This poses two questions:

1. What is the relation between the final state of the XY
model and the ground state of the Ising model?

2. How to reconstruct a feasible binary distribution from the
ensemble of arbitrarily oriented spins?

Finding the maximal cut (or the ground state of the Ising
model) can be formulated as an integer program:

C̄G = M

2
− min

Ξ̂

1

4
Tr[̂A Ξ̂ ] (10)

with constraints Ξm,m = 1, and rank(Ξ ) = 1. This problem
is APX-hard [26,27] meaning that, unless P = NP, there is no
polynomial-time algorithm providing arbitrarily good approxima-
tion. For such problems, the algorithms are characterized by the
approximation ratio: ρ = CG (ξg )/C̄G , where CG (ξg ) is the best
solution the algorithm is guaranteed to produce in polynomial
time. For example, for local search algorithms one has ρ ≳

0.5 [47]. In particular, this holds for the example of a dynamical
machine driven by Eq. (6). Of course, due to the special form of
the respective worst-case Hamiltonians (see, for instance, [48]),
this does not preclude local search algorithms from performing
very well on some classes of graphs, which may be of practical
relevance.

Other approaches to solving (10) are based on simplifying the
problem by relaxing constraints and, subsequently, reconstruct-
ing a feasible (satisfying the original constraints) configuration
by rounding. Importantly, since the relaxation cannot change the
problem complexity class, the complexity is delegated to the
rounding stage, which therefore requires special attention (see
e.g. [49,50]).

It was discovered in [51,52] that semidefinite programming
(SDP) relaxation is uniquely efficient in solving the max-cut
problem. This relaxation requires that Ξ̂ is symmetric positive
semidefinite with rank[Ξ ] = k > 1 (rank-k relaxation). This
is equivalent to considering configurations ξ : V → S

k and
minimizing H

(k)(ξ) = ∑
E
Am,nξ⃗m · ξ⃗n. Given the solution of

the relaxed problem, the feasible configuration is obtained as
σm = sign(ξ⃗ (m) · t⃗), where t⃗ ∈ S

k. Averaging the obtained cuts
over randomly chosen t⃗ results in [52,53]

ïCG (ξ)ðt⃗ g ρGWC̄G , (11)

where ρGW = minθ>0 θ/(π sin2(θ/2)) ≳ 0.878.
The significance of this result is two-fold. First of all, it estab-

lishes a rounding procedure recovering the solution in polynomial
time. Second, Eq. (11) estimates (not necessarily tightly) the so-
called integrality gap [38,54] and exhibits a relation between the
solutions of the relaxed and integer problems. This result holds
for a weighted Ising model with weights of the uniform sign. For
models with variable signs, the standard argument fails, but a
guaranteed approximation ratio can still be proven [55357].

To put this estimate into perspective, if P ̸= NP, the best
classically possible approximation ratio for the max-cut problem
is 16/17 ≳ 0.941 [28]. However, assuming additionally the
unique games conjecture [58,59], it can be shown that ρGW is the
best approximation achievable in polynomial time [27,39341].

Importantly, we have the equivalence XY ´ SDP2, where SDP2

is the rank-2 SDP relaxation [60]. Indeed, for such relaxation, one

has Ξ̂ = s(1)¹s(1)+s(2)¹s(2) and hence Ξm,n = s
(1)
n s

(1)
m +s

(2)
n s

(2)
m =

ξ⃗n · ξ⃗m, where ξ⃗m = (s
(1)
m , s

(2)
m )T are unit (because of the constraint

Ξm,m = 1) vectors.
This identifies the origin of the computational capabilities of

XY machines and, hence, Ising machines based on synchroniz-
ing oscillator networks. Their dynamics implements the gradient
descent minimization of a rank-2 relaxation of the Ising ground
state problem. Instead of exploring the configuration space, as,
say, is done in the Ising machine described by Eq. (6), the XY
machines solve a different but tightly related problem.

3
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Fig. 2. Performance of a QKM-based dynamical Ising machine. (a) Discrepancy

between the Ising machine and Circut results. (b) Scaling of the running wall-

time with the number of edges in the graph (black circles) vs. the true linear

scaling (cyan squares).

Fig. 2 illustrates the performance of the dynamical Ising ma-
chine implementing QKM. The dynamics of the machine was
taken to be governed by Eq. (1) with KS = 0 and solved using
the first order Euler approximation. The machine ran on a series
of Erdős-Rényi graphs GN,p, where p is the probability for an
edge to present, with 50 f N f 2000 and 0.1 f p f 0.3.
For each graph, the machine ran for 350 time-steps each 20K/N

long. After each run, the final configuration was rounded using
the same algorithm as in Circut [60] and post-processed as
described below. This procedure was repeated 300 times from
independently chosen random configurations, and the best value
of cut was recorded. The obtained cut values were compared with
Circut results, which remains one of the best max-cut heuristic
solvers [61]. Except for a single instance, the results obtained by
the Ising machine were within 0.5 percent of Circut’s.

As an estimate of running time, the wall-time, T , was mea-
sured (Fig. 2). It must be noted that, by design, the number of
elementary operations in simulating the machine dynamics is
O(M). The observed deviation from this scaling is due to the
rounding procedure, which, as implemented, scales at worst as
O(NM).

The post-rounding processing consisted of two steps based
on the observation that rounding does not necessarily respect
the majority rule. The first step implemented the local search
ensuring that all nodes obey Fm g 0. The second step, relevant for
nodes with Fm = 0, ensured that for each cut edge at least half
adjacent edges should be cut (otherwise, the cut can be increased
by reverting spins at the incident nodes).

4. The detrimental effect of forced binarization

It must be emphasized that the chain of equivalences

QKM ´ XY ´ SDP2

concerns only the dynamics of the Ising machines. The principal
part of accessing the computational resource associated with SDP

is to properly recover a feasible binary state from the configura-
tion of unit vectors of the XY model or relative oscillator phases in
a synchronized network. Rounding the state of the Ising machines
remains an under-explored problem since the existing implemen-
tations pursue dynamics collapsing the machine to a binary state.
This can be achieved when the anisotropy is sufficiently strong.
At the same time, as demonstrated by Fig. 1e, strong anisotropy
may disrupt finding the configuration delivering the maximal cut.
Here, we show that such detrimental effect of strong anisotropy
is generic.

The equilibrium configurations of the oscillator networks im-
plementing QKM are determined by gm(ξ

(0)) = 0. The dynamics

of weak excitations is obtained by representing ξ⃗m = ξ⃗
(0)
m +xmγ⃗

(0)
m ,

with xm j 1, so that

ẋm =
∑

n

Am,nξ⃗
(0)
m · ξ⃗ (0)

m (xm − xn)

− Ks

(
2ξ⃗ (0)

m ·
´
l ·ξ⃗ (0)

m − 1
)
xn,

(12)

or ẋ =
[̂
L(ξ(0)) − K̂ (ξ(0))

]
x.

The dynamics is attracted to (Lyapunov) stable equilibria, that
is with negative semidefinite L̂(ξ(0)) − K̂ (ξ(0)). We note that the
Laplacian structure of L̂(ξ(0)) implies that it always has a zero
eigenvalue. As a result, in the isotropic case, weak perturbations
of stable configurations exponentially converge to their projec-
tion on the homogeneous displacement, xm ≡ x, which reflects
the rotational symmetry of the XY model.

It must be emphasized, that because of the nonlinear coupling
between oscillators in QKM, matrix L̂(ξ(0)) coincides with the
graph Laplacian only when all ξ⃗ (0) have the same orientation.
For other configurations, the spectral properties of the graph
Laplacian and L̂(ξ(0)) are drastically different.

It follows from (9), that gm(ξ) vanishes on Ising-like configu-

rations ξ(I) with ξ⃗
(I)
m = σm l⃗. It is straightforward to show that in

the isotropic case, all configurations σ that do not produce the
maximal cut are unstable [60]. In turn, maximal cut configura-
tions are stable only on bipartite graphs and selected families of
non-bipartite graphs. As a result, anisotropy plays the major role
in the emergence of Ising-like configurations in the dynamics of
XY machines.

A complete framework describing the effect of anisotropy on
the convergence properties of XY machines is yet to be developed.
In the present paper, we limit ourselves to an analysis of the
structure of the binary configurations enabled by anisotropy.

Since the effect of anisotropy on binary configurations reduces
to a simple displacing the spectrum of L̂(σ) by −Ks, any such
configuration can be stable provided

Ks g κ(σ) = λ1 (̂L(σ)), (13)

where we have introduced κ(σ), the instability of σ, which is
defined by λ1 (̂L(σ)), the maximal eigenvalue of L̂(σ). Thus, except
for special graphs, the instability of binary configurations of the
XY model is positive.

Based on this, we can identify characteristic values of anisotr-
opy, when the significant impact on the computational capabili-
ties can be expected. The condition L̂(σ) − K̂ (σ) ≼ 0 implies that
for any unit u ∈ R

N , one has Ks − u · L̂(σ) · u g 0, or that

Ks +
∑

m

u2
mFm +

∑

m,n

Am,numun g 0, (14)

where Fm are given by Eq. (7).

This yields the first characteristic value of anisotropy, K
(1)
s =

|µN (̂A)|, where µN (̂A) is the smallest eigenvalue of the graph ad-

jacency matrix. When Ks reaches K
(1)
s , any binary states satisfying

the majority rule Fm g 0 become stable. Using a simple bound

4
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Fig. 3. (a) The instability of the ground (max-cut) state, (b) the maximal cut, and (c) the spectral separation δG for 104 connected Erdős-Rényi graphs G17,0.7 . The

samples are arranged according to the instability. (d) The empirical probability distribution function of δG .

|µN (̂A)| f ∆G , where ∆G is the graph maximal degree, the

following rule can be formulated. When Ks = ∆G , the structure

of binary configurations produced by the anisotropic XY machine

is, at best, the same as obtained by simple local search.

Clearly, when anisotropy increases further, binary configura-

tions that do not satisfy the majority rule (and, hence, cannot

maximize cut) also belong to the set of stable configurations. In

other words, the quality of the solutions may become worse than

that of the local search. Finally, when anisotropy is too strong,

Ks g K
(2)
s = λ1 (̂L), where λ1 (̂L) is the maximal eigenvalue of the

graph Laplacian, all binary configurations are stable. For instance,

this is the case when Ks g 2∆G .

While identifying ‘‘dangerous’’ values of the anisotropy, this

consideration leaves open the question whether moderate

anisotropy Ks < ∆G can be used to arrive at a maximal-cut binary

configuration.

A parameter characterizing how widely one can vary Ks with-

out introducing sub-optimal configurations is the difference be-

tween instabilities of the least unstable maximal cut and non-

max-cut configurations

δG = min
σ∈MG

κ(σ) − min
ξ /∈MG

κ(σ), (15)

where MG is the set of max-cut configurations. Importantly,

neither the magnitude of δG nor even its sign are bounded on a

sufficiently rich set of graphs. As an example of such set we have

considered 104 connected random (Erdős-Rényi) graphs G17,0.7.

Fig. 3 shows the instability of the max-cut configuration together

with the max-cut values (Fig. 3b) and spectral separations δG

(Fig. 3c). It reveals that there is only a weak correlation between

the instabilities of the max-cut and non-max-cut configurations.

This is summarized in Fig. 3d depicting the distribution function

of δG . It shows that the probability that in a randomly chosen

graph the max-cut-state will become stable at the lowest value

of anisotropy is rather moderate (0.2 for the considered set).

These simulation results show that the probability to have

a graph admitting anisotropy governed selection of the ground

state is small, which supports our statement that regimes 1 and

3 in Fig. 1 should be regarded as generic.

5. Conclusion

We have shown that the computational resource of dynamic

Ising machines based on synchronizing networks of nonlinear os-

cillators originates from the factual realization of rank-2 semidef-

inite programming relaxation of the max-cut problem. In con-

trast to approaches aiming at direct exploration of the Ising

model space state, these relaxations deliver the best (if P ̸= NP)

approximation achievable in polynomial time. This shows that

Ising machines based on synchronizing networks are capable of

providing good heuristics for a wide class of NP-hard problems.

At the same time, this relation shows that to reach theo-

retically possible performance, a rounding procedure must be

supplied. An attempt to force the system to evolve towards an

Ising-like state may disrupt the computational capabilities up

to their complete invalidation when the dynamic Ising machine

effectively acts as a random generator of configurations. For the

Ising machines utilizing an effective anisotropy for ensuring final

binary states, we have estimated the critical values of anisotropy

corresponding to the loss of quality of solutions obtained by the

collapsed state.

Finally, our consideration demonstrates that a quantitative

evaluation of dynamic Ising machines requires an accurate de-

scription of their dynamics. The ability to yield the Ising Hamil-

tonian is not enough because of the wide variability of the ap-

proximation ratios: from the best classically possible to that of a

random generator.
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