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Abstract	

We	 introduce	 a	 rare-event	 sampling	 scheme,	 named	Markovian	Weighted	 Ensemble	

Milestoning	 (M-WEM),	 which	 inlays	 a	 weighted	 ensemble	 framework	 within	 a	

Markovian	 milestoning	 theory	 to	 efficiently	 calculate	 thermodynamic	 and	 kinetic	

properties	 of	 long-timescale	 biomolecular	 processes	 from	 short	 atomistic	 molecular	

dynamics	 simulations.	 M-WEM	 is	 tested	 on	 the	 Mu¨ller-Brown	 potential	 model,	 the	

conformational	switching	in	alanine	dipeptide,	and	the	millisecond	timescale	protein-

ligand	unbinding	in	a	trypsin-benzamidine	complex.	Not	only	can	M-WEM	predict	the	

kinetics	of	these	processes	with	quantitative	accuracy,	but	it	also	allows	for	a	scheme	to	

reconstruct	 a	 multidimensional	 free	 energy	 landscape	 along	 additional	 degrees	 of	

freedom	which	 are	 not	 part	 of	 the	milestoning	 progress	 coordinate.	 For	 the	 ligand-

receptor	system,	the	experimental	residence	time,	association	and	dissociation	kinetics,	

and	binding	free	energy	could	be	reproduced	using	M-WEM	within	a	simulation	time	of	

a	few	hundreds	of	nanoseconds,	which	is	a	fraction	of	the	computational	cost	of	other	

currently	 available	 methods,	 and	 close	 to	 four	 orders	 of	 magnitude	 less	 than	 the	

experimental	residence	time.	Due	to	the	high	accuracy	and	low	computational	cost,	the	

M-WEM	 approach	 can	 find	 potential	 application	 in	 kinetics	 and	 free-energy	 based	

computational	drug	design.	

Introduction	

It	is	a	challenge	to	quantify	with	accuracy	the	kinetics	of	rare	events	in	molecular	biophysics	

via	 computational	 means.	 Molecular	 dynamics	 (MD)	 simulations	 provide	 atomistically	

detailed	movies	 of	 the	 structural	 and	 functional	 dynamics	 of	 biological	macro-molecules.	

However,	the	majority	of	important	dynamic	processes	in	the	cell	involve	broad	length	and	

time	scales.	A	large	fraction	of	such	processes	are	rare	over	the	timescale	of	the	simulation.	

Energy	barriers	higher	 than	 thermal	energy	 trap	 the	 simulated	system	 in	 conformational	

basins	 of	 attraction,	 impeding	 proper	 sampling	 of	 all	 relevant	 states.	 Examples	 of	 rare	
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processes	include	protein	folding,	conformational	transitions,	ligand	binding	and	unbinding	

etc.,	 which	 in	 most	 cases	 involve	 ∼	 104	 −106	 atoms	 including	 the	 natural	 solution	

environment.	 Despite	 phenomenal	 advances	 in	 computing	 hardware,	 atomistic	 MD	

simulations	of	such	large	systems	still	go,	typically,	up	to	multiple	microseconds	only.	This	is	

many	orders	of	magnitude	smaller	than	the	timescale	relevant	to	biological	function,	which	

is	often	in	the	range	of	seconds	to	hours.	

The	current	study	focuses	on	protein-ligand	interactions;	its	adequate	sampling	is	pivotal	

to	computer-aided	drug	design.	Molecular	dynamics	(MD)	simulations	provide	mechanistic	

insights	 into	 such	 interactions	 at	 atomistic	 detail,	 and	 is	 one	 of	 the	 essential	 tools	 in	 the	

repertoire	 of	 the	 pharmaceutical	 research	 community.	 A	 wide	 range	 of	 alchemical	 free	

energy	

calculation	methods1–3	and	enhanced	sampling	methods	(involving	external	biasing	force)4–

7	have	been	developed	over	the	past	few	decades	to	calculate	the	binding	free	energy	of	a	

protein-ligand	complex.	Although	 the	virtual	screening	of	potential	 inhibitors	 is	currently	

based	on	the	binding	free	energy,	the	efficacy	of	a	drug	molecule	is	often	dependent	on	the	

binding	and	unbinding	kinetics	or	the	residence	time.8,9	It	is	difficult	to	compute	the	kinetic	

properties	 from	 traditional	 enhanced	 sampling	 simulations,	 as	 the	 dynamics	 become	

nonphysical	due	to	the	application	of	artificial	biases	(although	there	are	methods	to	recover	

kinetics	from	simple	constant	force	or	constant	velocity	steered	molecular	dynamics10–13).	

On	the	other	hand,	using	brute	force	MD	simulation,	one	needs	to	sample	multiple	binding	

and	 unbinding	 events	 to	 obtain	 converged	 results	 for	 kinetic	 properties.	 This	 requires	 a	

simulation	time	many	times	higher	than	the	timescale	of	one	event,	which	itself	is	beyond	

the	reach	of	even	the	most	powerful	supercomputers.	This	results	in	a	dire	need	to	develop	

theoretical	methods	and	computational	algorithms	to	make	quantitative	predictions	about	

the	kinetics	of	long	timescale	processes	such	as	rare	events	from	short	timescale	trajectories.	

A	 category	 of	methods	 involves	 transition	 path	 sampling	 (TPS),	 a	 concept	 introduced	 by	
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Pratt14	and	later	developed	by	Chandler	and	co-workers,15,16	to	simulate	transitions	across	

energy	 barriers.	 Instead	 of	 applying	 external	 bias,	 path	 sampling	 methods	 utilize	 the	

statistical	 properties	 of	 the	 unbiased	 trajectory	 ensemble	 to	 compute	 experimental	

observables	such	as	the	kinetics	of	conformational	transition	or	ligand	unbinding,	as	well	as	

molecular	scale	properties	like	ligand	release	pathways	and	mechanism.17	A	different	path	

sampling	 approach	 is	 the	 weighted	 ensemble	 (WE)	 method	 of	 Huber	 and	 Kim,18	which	

belongs	 to	a	broader	category	of	variance-reduction	algorithms	 that	use	 “splitting”	 in	 the	

framework	 of	 Monte	 Carlo	 sampling	 (see,	 e.g.,	 Kahn19).	 The	 WE	 method	 was	 further	

developed	by	Zuckerman,	Chong	and	collaborators	(see	e.g.,	Ref.20);	it	also	was	established	

that	the	weighted	ensemble	is	statistically	exact.21	In	this	approach,	the	conformational	space	

between	the	 initial	and	 final	state	 is	discretized	 into	multiple	bins	and	a	number	of	short	

trajectories	are	propagated	from	the	starting	bin.	Trajectory	segments	are	split	or	merged	

when	they	enter	a	new	bin	to	keep	an	equal	number	of	trajectories	in	each	bin.	Appropriate	

weights	are	assigned	to	the	new	set	of	trajectories	to	conserve	the	total	probability.	It	allows	

for	 the	sampling	of	 fast	moving	but	 low-weight	 trajectories	 that	reach	the	 final	state	well	

before	the	mean	first	passage	time;	this	facilitates	the	calculation	of	converged	kinetics,	free	

energy	and	pathways	at	a	relatively	low	computational	cost.	With	the	implementation	in	the	

open	source	software	WESTPA,22	the	weighted	ensemble	method	has	seen	a	wide	range	

of	applications	including	folding	and	conformational	transitions	in	proteins,23–25	formation	

of	host-guest	complexes,26	protein-peptide27	and	protein-protein	binding,28	ion	permeation	

through	protein	channels,29	viral	capsid	assembly30	and	many	others.	Many	new	variants,	as	

well	as	new	analysis	schemes	for	the	traditional	WE	approach,	have	emerged	in	recent	years,	

including	WExplore,31	resampling	of	ensembles	by	variation	optimization	(REVO),32	history	

augmented	Markov	State	Modeling	(haMSM),33	the	RED	scheme,34	minimal	adaptive	binning	

(MAB),35	and	micro-bin	 analysis.36	Particularly,	 the	WExplore	 and	 REVO	 algorithms	 have	

been	successfully	applied	to	study	the	pathways	and	kinetics	of	protein-ligand	
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dissociation,32,37,38	even	for	systems	with	residence	times	as	high	as	seconds	to	minutes.39,40	

Another	popular	approach	to	study	the	kinetics	of	biophysical	rare	events	is	mileston-	

ing,41–43	which	belongs	to	the	larger	category	of	trajectory	stratification.44–47	In	milestoning,	

multiple	 interfaces	 are	 placed	 along	 a	 reaction	 coordinate,	 and	 short	MD	 trajectories	 are	

propagated	in	between	the	interfaces,	which	thus	serve	as	milestones	for	the	progress	of	the	

transition	 of	 interest.	 Analyzing	 the	 milestone-to-milestone	 transition	 statistics	 via	 a	

statistical	framework,43	the	kinetics	and	free	energy	profile	are	estimated.	This	method	has	

also	been	 implemented	 in	 the	 software	 tools	miles,48	ScMile49	and	SEEKR,50	and	has	been	

used	 to	 study	 a	 variety	 of	 complex	 biological	 problems	 including	 protein	 allosteric	

transitions,51	

membrane	permeation	by	small	molecules,52–55	protein	small	molecule	interaction,50,56–58	

simple	 ligand-receptor	 binding,59	 peptide	 transport	 through	 protein	 channels,60,61	 DNA	

protein	 interaction,62	protein	 conformational	 dynamics63	etc.	 Apart	 from	 the	 necessity	 of	

having	 a	 predefined	 reaction	 coordinate,	 the	 milestones	 need	 to	 be	 placed	 far	 apart	 to	

preserve	 the	 assumption	 of	 Markovianity.42	This	 itself	 increases	 the	 computational	 cost	

significantly,	 leaving	 aside	 the	 fact	 that	 two	 independent	 studies	 have	 shown	 that	 the	

majority	of	 the	 total	 computational	 effort	 in	milestoning	 simulation	 is	 spent	on	 sampling	

along	the	milestone	in-	

terfaces	to	generate	starting	structures	in	accordance	with	the	equilibrium	distribution.60,64	

A	different	variant	of	the	milestoning	approach	has	been	developed:	Markovian	Mile-	

stoning	with	Voronoi	Tesselation	(MMVT),55,65	which	removes	the	necessity	of	performing	

additional	sampling	along	milestone	interface,	reducing	the	overall	computational	cost	to	a	

large	extent.	The	application	of	MMVT	remained	rather	limited,	being	used	primar-	

ily	 for	 studying	 small	molecule	 transport	 through	 transmembrane	proteins,66–69	substrate	

translocation	through	ATPase	motor,70	and	the	CO	entry	in	myoglobin.71	Only	recently,	the	

Markovian	milestoning	approach	has	been	tested	on	ligand-receptor	binding	for	crownether	
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host-guest	 complexes	 and	 for	 the	 dissociation	 of	 a	 benzamidine	 ligand	 from	 the	 trypsin	

protein.64	Despite	cutting	down	the	computational	cost	in	sampling	at	the	milestone	interface,	

this	approach	still	suffers	from	the	Markovian	assumption	and	can	be	significantly	expensive	

for	complex	systems.64	

In	our	previous	work,	we	attempted	to	improve	the	milestoning	scheme	by	accelerating	

transitions	 between	distant	milestones	 via	 the	 application	 of	 directed	wind	 forces.72	This	

technique	 did	 increase	 the	 number	 of	 energetically	 uphill	 transitions,	 but	 the	 statistical	

properties	of	 the	computed	observables	were	not	significantly	better.73	More	recently,	we	

proposed	 the	 combined	 Weighted	 Ensemble	 Milestoning	 (WEM)	 scheme,	 where	 we	

performed	 WE	 simulations	 in	 between	 milestones	 to	 accelerate	 the	 convergence	 of	 the	

transition	between	adequately	 spaced	milestones.74	The	WEM	method	not	only	produced	

accurate	prediction	of	kinetics,	free	energy	and	time	correlation	function	for	small	molecular	

systems	 like	 alanine	dipeptide,74	but	we	 could	 also	 reproduce	protein-ligand	binding	 and	

unbinding	rate	constants	and	binding	affinity,	previously	obtained	from	30	µs	equilibrium	

simulation,75	in	less	than	100	ns	of	WEM	simulation.76	

Yet,	 the	current	methodology	and	 the	 implementation	of	WEM	have	a	 few	drawbacks.	

First,	the	sampling	of	the	degrees	of	freedom	perpendicular	to	the	reaction	coordinate	(RC)	

is	 significantly	 poor,	 particularly	 in	 situations	where	 slow	 conformational	 changes	 of	 the	

protein	 are	 coupled	 to	 the	 ligand	 unbinding.76	This	 can	 potentially	 be	 rectified	 by	 using	

multiple	 starting	 states	 on	 the	milestone	 interface	 sampled	 from	 long	umbrella-sampling	

simulations	 at	 the	 expense	 of	 a	 manifold	 increase	 in	 the	 computational	 cost	 similar	 to	

traditional	milestoning.	 Second,	 the	 choice	 of	 the	milestoning	 reaction	 coordinate	 (RC)	 is	

arbitrary	and	can	possibly	impact	the	quality	of	the	results,	depending	on	the	complexity	of	

the	 underlying	 free	 energy	 landscape.	 Moreover,	 a	 major	 hindrance	 of	 the	 large	 scale	

application	of	WEM	technique	is	the	complexity	of	the	simulation	protocol,	which	requires	

propagating	many	short	trajectories	and	stopping	them	upon	reaching	a	nearby	milestone.76	
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It	requires	frequent	monitoring	of	the	trajectory	as	well	as	frequent	communication	to	the	

dynamics	engine	to	stop	the	propagation	if	the	progress	coordinate	reaches	a	particular	value;	

this	makes	the	WEM	algorithm	particularly	inefficient	to	implement	in	Graphical	Processing	

Unit	(GPU)	hardware.	

We,	 thereby,	 present	 a	 novel	 Markovian	 Weighted	 Ensemble	 Milestoning	 (M-WEM)	

approach,	 in	 which	 we	 combine	 weighted	 ensemble	 with	 soft-wall65	 based	 Markovian	

Milestoning,	in	an	attempt	to	mitigate	the	deficiencies	and	improve	the	performance	of	the	

weighted	 ensemble	milestoning	 technique.	We	 first	 provide	 a	 detailed	 description	 of	 the	

theory	of	Markovian	milestoning	and	the	M-WEM	approach.	We	then	show	the	application	of	

this	method	to	the	two-dimensional	Mu¨ller-Brown	potential,	the	conformational	transition	

of	 alanine	 dipeptide,	 and	 the	 dissociation	 and	 association	 of	 the	 trypsin-benzamidine	

complex,	a	protein	ligand	system	with	a	residence	time	beyond	millisecond.	The	choice	of	the	

trypsin-benzamidine	complex	is	inspired	by	the	fact	that	many	existing	path	sampling	and	

enhanced	sampling	methods	have	been	applied	on	this	system,	including	Markov	State	Mod-	

eling	 (MSM),77,78	 Metadynamics,79	 Adaptive	 Multilevel	 Splitting	 (AMS),80	 Milestoning,50	

MMVT,64	WExplore,38	 and	 REVO.32	 So,	 we	 compare	 the	 accuracy	 of	 the	 results	 and	 the	

performance	of	M-WEM	with	these	existing	techniques,	as	well	as	with	the	experimental	rate	

constants	and	free	energy	values	obtained	by	Guillian	and	Thusius.81	We	also	discuss	a	new	

approach	to	construct	multidimensional	free	energy	landscapes	via	post-analysis	of	MMVT	

and	 M-WEM	 trajectories	 obtained	 using	 a	 one-dimensional	 reaction	 coordinate,	 with	 a	

potential	application	in	systems	were	orthogonal	degrees	of	freedom	are	strongly	coupled	

with	the	reaction	coordinate.	
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Theory	

Markovian	Milestoning	

The	theoretical	details	of	the	Markovian	milestoning	with	Voronoi	tessellation	(MMVT)	

approach	is	described	elsewhere.55,64,65	Here,	we	provide	only	a	brief	description	relevant	to	

the	current	work.	

In	 MMVT,	 the	 configurational	 space	 is	 discretized	 into	 Voronoi	 cells.	 A	 flat	 bottom	

potential	is	applied	to	each	cell	with	half-harmonic	walls	placed	at	each	milestone	interface,	

preventing	 the	 trajectories	 from	 escaping	 out	 of	 the	 Voronoi	 cells.	 For	 a	 1-dimensional	

reaction	coordinate,	used	here,	the	flat	bottom	potential	has	the	expression:	

if	 	

 0	 if	 	(1)	

if	 	

where	α	is	the	cell	index,	xαi	is	the	value	of	the	reaction	coordinate	at	the	milestone	i	at	the	

boundary	of	the	cell	α,	and	k˜	is	the	force	constant;	the	total	number	of	cells	is	Λ	and	the	total	

number	of	milestones	is	M.	One	or	more	unbiased	trajectories	are	propagated	in	each	cell.	

The	trajectories	which	cross	the	milestone	interface	are	reflected	back	into	the	cell	by	the	

half	 harmonic	 restraint.	 As	 a	 result,	 the	 trajectories	 remain	 confined	 into	 one	 cell	 and	

perform	many	transitions	between	the	milestones	interfaces	constituting	the	boundaries	of	

the	cell.	The	portions	of	the	trajectory	outside	the	cell	are	to	be	discarded	before	performing	

further	analysis.	This	protocol	is	referred	to	as	the	soft	wall	restraint65,66	which	we	adopt	in	

the	current	work.	Alternatively,	a	hard	wall	restraint55,64	can	also	be	used	where	the	direction	

of	velocity	is	switched	when	a	trajectory	crosses	a	milestone.	
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From	these	confined	trajectories,	the	transition	counts	between	milestones	are	recorded.	

A	flux	matrix	k	∈	RΛ	is	constructed	whose	elements	are	given	by:	

 	 (2)	

where	Nα,β	 is	 the	 number	 of	 transitions	 from	 cell	 α	 to	 cell	 β	 recorded	 from	 a	 trajectory	

propagated	 for	 time	Tα	 in	 the	 cell	α.	 The	 equilibrium	probability	 for	 each	 cell	 (πα)	 is	 the	

obtained	by	iteratively	solving	the	linear	equation	(Eq.	3)	in	a	self-consistent	manner	under	

the	constraint	of	a	constant	total	probability	of	one:	

 ;	 =	1	 (3)	

The	free	energy	profile	at	each	cell	is	then	computed	as:	

 Gα	=	−kBT	ln(πα)	 (4)	

For	calculating	kinetics,	 the	 transition	matrix	N	∈	RM×M	and	 the	 lifetime	vector	R	∈	RM	are	

constructed,	whose	elements	are	computed	as	follows:	

 	 (5)	

where	 	is	the	number	of	times	a	trajectory	in	cell	α	collides	with	milestone	j	after	having	

last	 visited	milestone	 	is	 the	 cumulative	 time	 the	 trajectory	 spends	 in	 cell	α	visiting	

milestone	 i	 and	 before	 reaching	 any	 other	 milestone.	 T	 is	 a	 constant	 for	 dimensional	

consistency,	which	is	not	necessary	to	compute	because	it	cancels	out	at	a	later	stage.	A	rate	

matrix	Q	∈	RM×M	is	then	defined	as:	
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 if	 Ri	6=	0;	 i	6=	j	

 0	 if	 Ri	=	0;	 i	6=	j	 (6)	

Qii	=	−XQij	

i6=j	

Considering	milestone	M	is	the	target	milestone,	the	mean	first	passage	time	of	the	process	

can	be	computed	as:	

 	 (7)	

Qb	∈	RM−1×M−1	is	the	matrix	obtained	by	deleting	the	last	row	and	column	of	Q.	1	is	a	unit	

vector	with	M	−	1	elements,	and	τM	∈	RM−1	is	the	vector	with	entries	τiM	that	are	the	MFPTs	

from	milestone	i	to	milestone	M.	

Markovian	Weighted	Ensemble	Milestoning	(M-WEM)	a

	

 RC RC RC	

Figure	 1:	 A	 schematic	 representation	 of	 the	M-WEM	 simulation	 protocol.	 The	 thick	 lines	

indicate	milestones	(labeled	as	milestone	index	i	and	i+1).	The	dotted	lines	indicate	a	WE	bin	

boundaries	(which	are	adapted	during	the	simulation	but	in	this	figure	we	show	fixed	bins	

for	 clarity).	 Trajectories	 for	 different	 WE	 iteration	 is	 shown	 in	 different	 color	 scheme:	

Iteration	 1:	 blue,	 iteration	 2:	 green,	 iteration	 3:	 red,	 and	 iteration	 4:	 pink.	 (a)	 First,	WE	

simulation	is	performed	with	harmonic	walls	placed	at	the	milestone	interfaces	allowing	for	
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the	trajectory	to	bounce	back	and	forth.	(b)	The	propagation	history	of	individual	trajectories	

are	traced	back	from	the	last	iteration	(an	example	trace	is	highlighted	with	gray	dashed	line).	

(c)	The	milestone	crossing	events	(gray	circles)	are	recorded	from	each	trace,	and	are	used	

in	subsequent	analysis.	

In	 the	 current	 work	 we	 introduce	 the	 Markovian	 Weighted	 Ensemble	 Milestoning	

(MWEM)	approach,	where	the	conventional	MD	trajectories	 in	the	Markovian	milestoning	

framework	are	replaced	by	weighted	ensemble	simulation.	A	schematic	representation	of	the	

M-WEM	protocol	is	depicted	in	Fig.	1.	WE	bins	are	placed	along	the	reaction	coordinate	in-

between	 the	 milestone	 interfaces,	 as	 well	 as	 along	 a	 different	 coordinate	 to	 accelerate	

sampling	along	the	milestone	interface.	The	additional	non-RC	coordinate	should	ideally	be	

locally	orthogonal	to	the	RC,	but	this	is	not	a	necessary	condition.	WE	simulation	is	performed	

in	this	2D	progress	coordinate	space	using	the	recently	developed	minimal	adaptive	binning	

(MAB)	 scheme.35	As	 opposed	 to	 the	 traditional	 fixed	 binning	 scheme,	 the	MAB	 approach	

adaptively	 changes	 the	 bin	 boundaries	 during	 the	 course	 of	 simulation,	 avoiding	 the	

requirement	of	an	arbitrarily	chosen	predefined	set	of	bins.	 It	also	provides	an	 increased	

sampling	of	the	conformational	space.	As	the	total	number	of	occupied	bins	remains	virtually	

unchanged	 throughout	 the	 simulation,	 the	maximum	amount	 of	 computational	 resources	

needed	for	the	simulation	can	be	easily	estimated	beforehand.35	A	stochastic	integrator,	e.g.,	

for	the	Langevin	equation,	is	needed	to	propagate	the	dynamics	to	ensure	that	the	new	set	of	

trajectories,	generated	after	a	splitting	event,	follow	different	paths	despite	emerging	from	a	

single	parent	trajectory.	

Unlike	 the	 MMVT	 approach	 with	 conventional	 MD,	 the	 WE	 trajectories	 hitting	 the	

milestones	will	have	different	weights.	To	properly	take	into	account	this	effect,	we	take	all	

the	trajectory	segments	at	the	last	iteration	and	trace	them	back	to	the	first	iteration	to	obtain	

separate	trajectory	traces.	The	weight	of	each	trajectory	trace	is	set	equal	to	the	weight	of	

the	corresponding	trajectory	segment	in	the	last	iteration.	
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The	total	number	of	trajectory	traces	in	cell	α	(Mα)	is	equal	to	the	number	of	occupied	bins	

×	the	number	of	trajectories	per	bin	in	the	final	iteration.	The	elements	of	the	flux	matrix	k	

in	this	formalism	are	given	by:	

 	 (8)	

where	wJ	is	the	weight	of	the	Jth	trajectory	trace. ,	and	kα,βJ	have	similar	definitions	as	

in	Eq.	2	except	that	they	are	computed	just	from	the	Jth	trace.	The	equilibrium	probability	

distribution	and	the	free	energy	profile	are	computed	from	the	elements	of	the	flux	matrix	

obtained	from	Eq.	8	using	Eq.	3	and	4,	respectively.	

For	calculating	kinetics,	the	Ni,j	and	the	Ri	matrix	elements	are	to	be	constructed	taking	

into	account	the	different	weights	of	the	trajectory	traces.	The	new	transition	matrix	element	

becomes:	

 	 (9)	

where	Nijα,J	has	the	same	definition	as	Nijα	in	Eq.	5	except	it	is	for	the	Jth	trajectory	trace.	

Now	we	define	a	pseudo	transition	matrix	Ne	α,J,	which	is	identical	to	the	transition	matrix	

N	but	computed	only	from	one	(Jth)	trajectory	trace	in	the	cell	α.	Its	elements	are	given	by:	

 .	 (10)	

Now	the	total	transition	matrix	N	can	be	obtained	as	 	

Λ	 Mα	N	=	T	

XXwJNe	α,J	 (11)	
α=1	J=1	

Similarly,	the	lifetime	vector	R	is	given	by:	

 Λ	 Mα	

R	=	T	XXwJRe	α,J	
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(12)	

where	

and	Riα,J	is	equivalent	to	Riα	but	computed	only	for	the	Jth	trajectory	segment.	Using	the	N	and	

R,	the	rate	matrix	Q	is	computed	using	Eqs.	6	and	7.	

Error	Analysis	

Error	analysis	of	milestoning-based	simulations	can	be	performed	in	a	few	different	ways,	

primarily	by	generating	an	ensemble	of	rate	matrices	(Q).	Then	the	desired	properties	(such	

as	the	MFPT)	are	calculated	from	many	sample	matrices	and	the	uncertainty	is	estimated.	

When	working	with	transition	matrices	(as	in	traditional	milestoning),	the	kernels	can	be	

sampled	from	a	beta	distribution.60	Similar	to	our	previous	work,74,76	we	generated	the	

ensemble	of	rate	matrices	by	sampling	from	a	Bayesian	type	conditional	probability,56,82,83	

given	by	

 p(Q|{Nij,Ri})	=	YYQNijij	exp(−QijNiRi)P(Q)	 (13)	

 i	 j6=i	

where	p(Q)	is	a	uniform	prior,	Nij	is	the	number	of	trajectories	transiting	from	milestone	i	to	

j	and	Ni	=	P	Nij,	where	M is	the	set	of	all	milestones.	We	sampled	the	Q	matrices	from	

j∈M	

the	distribution	in	Eq.	13	using	a	non-reversible	element	exchange	Monte-Carlo	scheme.84	

One	randomly	chosen	off-diagonal	element	and	the	diagonal	element	of	the	corresponding	

row	of	Q	are	updated	to	generate	a	new	rate	matrix	Q0.	

 Q0ij	=	Qij	+	∆	 (i	6=	j)	

(14)	Q0ii	=	Qii	−	∆.	
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where	∆	is	a	random	number	sampled	from	an	exponential	distribution	of	range	[−Qij,∞)	with	

mean	zero.	The	new	matrix	Q0	is	accepted	with	a	probability	equal	to	min(1,paccept)	where:	

 paccept	 )	 (15)	

As	each	step	modifies	only	one	element,	the	sampled	matrices	are	highly	correlated.84	So	

we	 only	 considered	 the	matrices	 sampled	 every	 50	 steps	 for	 uncertainty	 estimation.	We	

recomputed	the	MFPT	obtained	from	them	using	Eq.	7	and	calculated	mean	and	95%	

confidence	intervals	for	all	MMVT	simulations.	

For	 M-WEM	 simulations,	 estimating	 errors	 using	 non-reversible	 element	 exchange	

MonteCarlo	can	be	difficult.	The	expression	for	paccept	(Eq.	15)	has	exponential	dependence	

on	the	number	of	transitions	Nij	and	number	of	trajectories	reflected	from	milestone	i	(Ni).	In	

the	case	of	MMVT	simulations	all	such	transitions	have	equal	weight,	unlike	in	M-WEM	where	

the	weights	of	transiting	trajectories	can	vary	to	a	large	extent,	often	over	many	orders	of	

magnitude.	 So	 using	 the	 expression	 in	 Eq.	 15,	 which	 counts	 all	 transitions	 with	 equal	

importance,	one	is	unable	to	sample	the	ensemble	of	transition	matrices	accurately	in	our	M-

WEM	approach.	For	each	observable	(MFPT,	free	energy,	etc.),	we	computed	its	estimate	over	

an	M-WEM	simulation	of	increasing	number	of	total	iterations	for	each	cell.	We	then	compute	

the	mean	and	95%	confidence	 interval	of	 the	sampled	observables	after	 the	simulation	 is	

converged.	 The	 uncertainties	 obtained	 using	 this	 procedure	 capture	 the	 effect	 of	 the	

fluctuations	 of	 an	 observable	 around	 the	mean	 after	 the	 simulation	 has	 converged.	 Such	

approach	is	commonly	used	in	the	literature	to	compute	the	error	estimates	of	free	energy	

profiles,	as	discussed,	for	example,	in	our	previous	work	Ref.85	A	more	elaborate	version	of	

this	technique	is	called	block	averaging,86	which	is	a	statistically	rigorous	way	to	compute	

error	estimates	in	molecular	dynamics	simulations.87	

Specific	details	of	error	analysis	for	each	test	system	is	mentioned	in	the	Computational	

Methods	section.	For	the	M-WEM	technique,	the	derivation	of	a	more	rigorous	approach	for	
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error	analysis,	similar	to	the	one	described	in	Eqs.	(13)	-	(15)	will	be	addressed	in	future	

work.	

Efficiency	Analysis	

Because	of	the	difference	in	the	uncertainties	of	the	measured	values	from	different	methods,	

a	 direct	 comparison	 between	 the	 simulation	 time	 or	 convergence	 time	 may	 not	 always	

correctly	 represent	 the	 relative	 efficiency	 between	 different	 approaches.	 To	 address	 this	

issue,	we	used	the	algorithmic	efficiency	metric,	η,	which	takes	into	account	the	variance	of	

the	data	apart	from	the	total	simulation	time.74	This	metric	is	evaluated	as:	

 	 (16)	

where	A	is	the	measured	quantity	and	∆A	is	the	uncertainty	of	the	measurement.	Ns	is	the	

number	of	force	evaluations	performed	to	calculate	A	(although	it	can	be	thought	of	as	the	

simulation	time	if	expressed	in	units	of	time	instead	of	time	steps).	In	brief,	η−1	is	the	number	

of	force	evaluations	required	to	measure	our	observable	A	with	an	uncertainty	equal	to	its	

mean.18	The	lower	the	value	of	η−1,	the	better	the	efficiency.	For	the	first	two	systems,	the	

Muller-Brown	potential	and	the	alanine	dipeptide,	we	reported	the	value	of	η−1	where	we	

calculated	the	error	bars	from	multiple	runs.	We	did	not	report	η−1	for	each	individual	run	

because	the	error	of	MMVT	calculations,	computed	using	Bayesian	analysis,	and	the	error	

bars	 of	 the	 M-WEM	 approach	 computed	 from	 averaging	 over	 iterations	 are	 not	 directly	

comparable.	For	the	same	reason,	we	do	not	report	an	algorithmic	efficiency	for	the	trypsin-

benzamidine	system,	for	which	η	will	also	depend	on	the	quantity	we	are	measuring.	
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Calculation	of	koff	and	kon	

For	the	protein-ligand	binding	problem	considered	in	this	paper,	we	computed	the	unbinding	

rate	constant	(koff)	as	

 ,	 (17)	

where	τ	is	the	ligand	residence	time,	which	is	equivalent	to	the	MFPT	of	transitioning	from	

the	 bound	 state	 milestone	 to	 the	 unbound	 state	 milestone,	 and	 which,	 in	 turn,	 can	 be	

computed	from	the	milestoning	or	M-WEM	framework	described	above.	

We	 noted	 in	 our	 previous	 work	 that	 the	 ligand-binding	 kinetics	 is	 often	 diffusion	

dominant.76	So	the	rate	determining	step	can	be	the	arrival	of	the	ligand	on	the	outermost	

milestone	surface,	rather	 than	going	 from	the	outermost	milestone	to	 the	binding	pocket.	

(Whether	this	is	true,	for	a	specific	system,	should	be	carefully	evaluated	on	a	case-by-case	

basis.)	In	our	previous	work,	we	delineated	an	analytical	method	to	combine	diffusion	theory	

with	milestoning	transition	kernel	integration	to	compute	the	binding	rate	constant	kon.76	We	

begin	with	the	expression	of	the	diffusion-dependent	arrival	rate	of	a	small	molecule	on	the	

surface	of	a	sphere	of	radius	r:88	

 k(r)	=	4πDr	 (18)	

where	D	is	the	diffusion	constant	of	the	ligand	in	water.	We	make	two	modifications	to	this	

expression.	First,	we	assume	that	the	only	conformations	that	can	lead	to	binding	are	in	the	

space	explored	by	the	ligand	in	the	outermost	milestone.	So	we	scale	the	rate	by	the	surface	

coverage	factor	α.	The	concept	of	coverage	factor	has	been	described	more	elaborately	in	our	

previous	work.76	To	mention	it	only	briefly	here,	α	is	the	fraction	of	the	surface	area	of	the	

outermost	milestone	interface	that	is	accessible	to	the	ligand.	Details	of	the	calculation	of	α	

in	 this	 work	 are	 slightly	 different	 from	 our	 previous	 work.	 Instead	 of	 performing	 a	
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MonteCarlo	simulation,	here	we	create	a	2D	grid	on	the	interface	of	the	outermost	milestone	

based	on	the	solid	angles.	Then	we	calculate	how	many	of	those	bins	are	occupied	by	the	

center	of	mass	of	the	ligand	in	the	outermost	milestoning	cell.	The	coverage	factor	α	is	then	

computed	as	

 	 (19)	

where	δocc(θ,φ)	=	1,	if	the	surface	element	∆θ∆φ	contains	the	angular	coordinate	of	the	ligand,	

and	zero	otherwise.	

Second,	we	consider	that	a	ligand	can	only	reach	the	bound	state	if	it	moves	towards	the	

protein	from	the	outermost	milestone	surface.	So	we	further	scale	the	arrival	rate	by	KM,M−1,	

the	transition	probability	of	going	from	the	last	(Mth)	milestone	to	the	previous	milestone.	

But	as	the	transitional	kernel	is	not	directly	available	in	the	current	Markovian	milestoning	

framework,	we	compute	this	inward	transition	probability	from	the	N	matrix.	

 	 (20)	

As	NM,M+1	becomes	undefined	when	M	is	the	last	milestone,	we	perform	this	analysis	with	the	

last	but	one	milestone.	Including	these	factors,	the	flux	of	binding	trajectories	through	that	

milestone	becomes	

 k(r)	=	4πDrαKM,M−1,	 (21)	

from	which	kon	is	calculated	in	M−1s−1	units	by	multiplying	the	flux	with	Avogadro’s	number	

Nav	

kon	=	4πDrαKM,M−1Nav	

(22)	

=	7.569	×	1013DrαKM,M−1	
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In	the	last	step	we	used	the	diffusion	constant	of	small	molecule	in	cm2	s−1	unit	and	the	r	is	

provided	in	˚A.	

Reconstruction	of	free	energy	landscape	

The	 trajectories	 confined	 in	 the	different	Voronoi	 cells	 can	be	used	 to	 construct	 a	higher	

dimensional	free	energy	landscape,	both	for	Markovian	milestoning	and	M-WEM	simulations.	

The	 trajectory	 data	 is	 first	 histogrammed	 in	 appropriate	 collective	 variables	 to	 obtain	

different	 independent	 histograms	 for	 each	 individual	 cell	 Λ.	 A	 weighted	 sum	 of	 these	

histograms	 are	 then	 performed	 to	 obtain	 the	 equilibrium	 high	 dimensional	 probability	

distribution	

 ,	 (23)	

where	p(R)	is	the	probability	density	along	the	collective	variable	space	R,	and	pα(R)	is	the	

same	obtained	from	the	histogram	only	in	the	cell	α.	In	case	of	M-WEM	the	pα(R)	is	obtained	

from	multiple	(Mα)	trajectories	of	different	weights	as:	

Mα	 pα(R)	 =	
XwJpαJ(R)	

J=1	

(24)	
 Λ	 Mα	

p(R)	=	Xπα	XwJpαJ(R),	α=1	J=1	

where	pαJ(R)	is	the	histogram	of	the	Jth	trajectory	in	cell	α	in	the	CV	space	R.	The	free	energy	

landscape	is	then	reconstructed	using,	

 G(R)	=	−kBT	ln(p(R)).	 (25)	
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We	demonstrate	this	approach	for	alanine	dipeptide	in	the	Results	section.	

Committor	

The	committor	of	a	point	in	a	conformational	space	is	the	probability	of	a	trajectory	starting	

from	that	point	to	reach	the	final	state	before	visiting	the	initial	state.89	Recent	work	by	

Elber	et	al.	 established	 that	 it	 is	 possible	 to	 calculate	 the	 committor	 at	 the	 milestone	

interfaces.48	But,	 to	 the	 best	 of	 our	 knowledge,	 such	 approach	 has	 not	 been	 applied	 to	

Markovian	milestoning	 techniques	so	 far.	We	performed	the	committor	calculation	 in	 the	

following	 way.	 First,	 we	 constructed	 a	 transition	 kernel	 (K),	 equivalent	 to	 conventional	

milestoning,	from	the	N	matrix:	

 	 (26)	

The	transition	kernel	K	is	then	modified	with	a	boundary	condition	which	ensures	that	the	

flux	through	the	final	state	will	remain	“absorbed”	there	and	will	not	return	to	the	previous	

milestones.	This	is	achieved	by	replacing	the	last	row	of	the	K	matrix	with	zeros,	except	

for	the	element	corresponding	to	the	last	milestone	for	which	the	value	is	one.48,90	For	a	three-

milestone	model,	this	can	be	illustrated	as:	

 	 	 	 	

 0	 K12	 0	 0	 K12	 0	

 	 	 	 	

 K	=	 K21	 0	 K23 	→	KC	=	 K21	 0	 K23 	 (27)	

 	 	 	 	

 	 	 	 	

 0	 K32	 0	 0	 0	 1	

The	vector	containing	the	committor	values	of	each	milestone,	C,	is	then	calculated	as:	

C	=	lim	(KC)nep	 (28)	n→∞	
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where	ep	is	a	unit	vector,	all	elements	of	which,	are	zero	except	for	the	one	corresponding	to	

the	 final	milestone.	Multiple	powers	of	KC	are	 computed	numerically	until	 the	 committor	

converges.	The	results	are	considered	to	be	converged	when	the	change	in	the	norm	of	the	C	

vector	to	be	less	than	10−3.	

Computational	Methods	

We	tested	the	Markovian	Weighted	Ensemble	Milestoning	approach	on	a	toy	model	system	

of	2D	Mu¨ller-Brown	potential,	 conformational	 transition	 in	 alanine	dipeptide	and	on	 the	

millisecond	timescale	protein-ligand	unbinding	 in	 the	 trypsin-benzamidine	system.	 In	 the	

first	 two	 systems,	we	performed	 long	 equilibrium	simulation	 and	Markovian	milestoning	

simulation	to	compare	with	our	M-WEM	results.	

Mu¨ller-Brown	Potential	

The	two-dimensional	Mu¨ller-Brown	potential91	is	defined	as	

 ]	 (29)	

where	A	∈	{−200,−100,−170,15},	a	∈	{−1,−1,−6.5,0.7},	b	∈	{0,0,11,0.6},	c	∈	{−10,−10,−6.5,0.7},	x0	∈	

{1,0,−0.5,−1},	y0	∈	{0,0.5,1.5,1},	and	h	=	0.04.	This	system	has	a	non-linear	transition	path	with	barrier	

height	about	4.5	kBT.	For	the	purpose	of	this	model,	we	set	kBT	=	1.	

To	obtain	a	benchmark	of	the	kinetics,	a	long	overdamped	Langevin	dynamics	simulation	

was	propagated	 starting	 from	 (x,y)	 =	 (−0.5,1.5),	which	 corresponds	 to	 the	minimum	A	 in	

Figure	2.	The	minimum	B	is	chosen	to	be	the	target	state.	The	simulation	was	propagated	for	

107	time	steps,	capturing	347	back	and	forth	transitions.	The	free	energy	landscape	obtained	
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from	this	equilibrium	trajectory	is	depicted	in	Figure	2.	The	mean	first	passage	time	(MFPT)	

to	go	from	minima	A	to	B	is	depicted	in	Table	1.	

For	milestoning	simulations,	8	milestones	are	placed	at	y	=	{−0.3,0.0,0.3,0.6,0.9,1.2,1.5,1.8}	at	

equal	intervals.	The	reaction	coordinate	is	chosen	to	be	parallel	to	the	y	axis.	This	poor	choice	of	

RC	was	made	intentionally	to	represent	realistic	situations	where	the	arbitrarily	chosen	empirical	

RCs	are	used	to	study	complex	biomolecular	processes	with	many	coupled	degrees	of	freedom.	

MFPTs	were	 computed	 for	 transition	 from	 y	=	 1.5	 to	 y	=	 0.0	 for	 both	 the	milestoning	 based	

methods.	

For	 Markovian	 milestoning	 (MMVT)	 simulations,	 an	 overdamped	 Langevin	 dynamics	

simulation	is	propagated	in	2D	in	all	the	seven	cells	in	the	spacing	between	8	milestones.	

A	half-harmonic	wall	is	applied	at	both	ends	of	the	cell	(milestones)	with	a	force	constant	

ek	=	1000,	to	confine	the	trajectories	within	the	cell.	Each	simulation	is	propagated	for	1.5	×	

106	steps	in	each	cell.	Transition	statistics	between	each	milestone	pair	is	computed	using	

the	method	described	in	theory	section,	and	the	MFPT	has	been	computed.	

For	the	M-WEM	method,	the	procedure	remained	identical	to	the	MMVT	approach,	except	

weighted	 ensemble	 simulation	 was	 performed	 in	 between	 the	 milestone	 interfaces	 as	

opposed	to	conventional	dynamics.	The	2D	adaptive	binning	(MAB)35	was	employed	along	x	

and	y	directions	with	5	bins	per	dimension	with	4	trajectory	segments	per	bin.	This	led	to	33	

bins	in	total,	including	the	additional	bins	in	each	direction	for	the	most	forward,	backward	

and	the	bottleneck	trajectories.35	A	total	of	300	iterations	of	WE	simulation	are	performed	in	

each	cell,	with	a	recycling	interval	of	10	steps.	The	transition	rate	matrices	and	

MFPTs	were	computed	every	10	iterations	of	WE	simulation	in	each	cell	between	iteration	

260	and	300.	The	mean	and	error	estimates	were	performed	on	the	5	sampled	data	points	

for	the	MFPT	values	between	iteration	260	and	300.	
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Alanine	Dipeptide	

The	 conformational	 transition	 of	 alanine	 dipeptide	 was	 simulated	 in	 the	 gas	 phase.	 The	

system	was	set	up	following	the	protocol	described	by	Wei	and	Elber.49	The	22-atom	system	

is	modelled	using	 the	CHARMM22	force	 field92	with	a	10	 ˚A	cut-off	distance	 for	 the	 inter-

atomic	interactions.	A	time	step	of	0.5	fs	was	used	and	all	the	bonds	between	heavy	atoms	

and	 hydrogen	 were	 constrained	 using	 the	 SHAKE	 algorithm.93	 All	 simulations	 were	

performed	using	the	NAMD	2.13	package94	with	the	colvars95	module.	The	conformational	

change	can	be	described	adequately	in	the	2D	coarse	space	of	two	backbone	torsion	angles	

Φ	and	Ψ.	Half	harmonic	walls	with	a	mild	force	constant	(0.04	kcal	mol−1	deg−2)	are	placed	at	

the	value	of	±175	for	both	the	Φ	and	Ψ	angles	to	avoid	transitions	along	the	edges	of	the	free	

energy	surface	(i.e.,	to	remove	periodicity).49	This	will	ensure	that	we	observe	the	transition	

along	the	center	of	the	free	energy	map.	

The	barrier	height	for	the	conformational	transition	of	gas-phase	alanine	dipeptide	is	very	

high	(>	10	kcal/mol)	and	it	is	very	difficult	to	observe	direct	transitions	at	room	

temperature.	Following	the	earlier	work49	we	performed	the	simulations	at	600K	

temperature	which	allowed	us	to	sample	285	transitions	between	the	two	free	energy	

minima	in	500	ns	equilibrium	simulation.	

For	both	MMVT	and	M-WEM	simulation,	the	reaction	coordinate	was	chosen	to	be	the	Φ	

dihedral	angle	and	milestones	were	placed	at	Φ	=	−80o,	−60o,	−40o,	−20o,	0o,	20o,	40o,	60o,	and	

80o.	The	initial	and	final	states	were	chosen	to	be	the	milestones	at	Φ	=	−80o	and	Φ	=	60o.	In	

case	of	MMVT	simulation,	5	ns	of	conventional	MD	simulation	was	propagated	in	each	cell	

confined	between	the	two	consecutive	milestones,	leading	to	a	total	computational	effort	of	

40	ns.	(The	trajectories	were	extended	to	10	ns	with	no	difference	in	results.	So	the	

result	of	5	ns	simulation	is	reported).	A	force	constant	of	4	kcal	mol−1	deg−2	were	applied	in	

the	 harmonic	 walls	 placed	 at	 the	 milestones,	 to	 confine	 the	 trajectories	 in	 between	 the	

milestones.	The	portion	of	the	trajectories	outside	the	cell	has	been	removed	prior	to	further	
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analysis.	

In	case	of	M-WEM	simulations,	5	WE	bins	were	placed	for	each	cell	in	Φ	and	Ψ	coordinates	

leading	up	 to	33	bins	 in	 total	 including	 separate	 bins	 for	 the	 forward,	 backward	 and	 the	

bottleneck	trajectories.	Four	trajectory	segments	were	propagated	in	each	occupied	bin.	The	

progress	coordinate	values	were	recorded	at	very	frequent	interval	(10	fs)	to	record	the	time	

of	milestone	crossings	as	accurately	as	possible.	A	total	of	100	iterations	of	WE	simulation	

are	performed	in	each	cell,	with	a	recycling	time	of	1	ps.	The	transition	rate	matrices	and	

MFPTs	were	computed	every	2	iterations	of	WE	simulation	in	each	cell	between	iteration	2	

and	10	and	every	10	iterations	between	iteration	10	and	100,	to	monitor	the	convergence	of	

the	 results.	 The	 convergence	 plots	 and	 related	 discussion	 is	 provided	 in	 the	 supporting	

information.	The	mean	and	error	estimates	were	performed	on	the	5	sampled	data	points	for	

the	MFPT	values	between	iteration	60	and	100.	

Trypsin-Benzamidine	Complex	

The	system	setup	for	the	trypsin-benzamidine	complex	is	identical	to	the	work	by	Votapka	

et	al.50	The	structure,	parameter	and	topology	files	were	obtained	from	the	authors	of	Ref.	50.	

We	point	the	reader	to	their	original	publication50	for	more	details.	To	mention	briefly,	the	

atomic	 coordinates	of	 the	protein-ligand	 complex	were	obtained	 from	Protein	Data	Bank	

(PBD)	PDB	ID:	3PTB.96	The	protonation	states	of	ASP,	GLU	and	HIS	residues	were	determined	

at	pH	7.7	which	was	used	in	this	study	to	replicate	the	experimental	condition.81	The	protein	

was	modelled	using	AMBER	ff14SB	force	field97	and	Generalized	Amber	Force	Field	(GAFF)98	

parameters	were	used	for	the	ligand.	The	structure	was	solvated	in	a	truncated	octahedron	

box	of	TIP4Pew99	water	molecules	and	8	Cl−	ions	were	added	to	neutralize	the	system.	Overall	

the	system	contains	∼23000	atoms.	All	MD	simulations	were	performed	using	NAMD	2.14b2	

package94	with	a	time	step	of	2	fs.	A	Langevin	integrator	with	a	damping	coefficient	of	5	ps−1	

was	used	to	keep	the	temperature	constant	at	298	K.	A	Langevin	piston	was	used	to	maintain	

the	pressure	at	1	atm.	
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The	bound	state	 structure	was	equilibrated	 for	10	ns	 in	NPT	ensemble.	From	the	end	

point	of	this	simulation,	the	ligand	was	pulled	out	of	the	binding	pocket	using	a	10	ns	steered	

molecular	dynamics	(SMD)	simulation.	The	reaction	coordinate	(RC)	description	is	identical	

to	previous	work,50	i.e.	the	center	of	mass	distance	between	the	benzamidine	ligand	and	the	

Cα	atoms	of	the	following	residues	near	the	binding	pocket:	190,	191,192,	195,	213,	215,	216,	

219,	220,	224,	and	228	(numbered	according	to	PDB:	3PTB).	During	the	SMD	simulation,	a	

moving	harmonic	restraint	of	1	kcal	mol−1	˚A−2	was	applied	on	the	RC	with	a	pulling	velocity	

of	 ∼	 1.5	 ˚A/ns.	 The	 collective	 variables	 were	 biased	 and	 monitored	 using	 the	 colvars	

module.95	Representative	structures	for	seeding	the	milestoning	simulations	were	sampled	

from	the	SMD	trajectory.	

Concentric	spherical	milestones	were	placed	at	the	following	values	of	the	RC:	1.0,	1.5,	

2.0,	2.5,	3.0,	3.5,	4.0,	5.0,	6.0,	8.0,	10.0,	12.0,	and	13.0	˚A.	These	values	are	similar	to	

previous	studies50,64	except	for	a	few	additional	milestones,	as	we	were	unable	to	observe	

energetically	 uphill	 transitions	 otherwise.	 The	 separation	 between	milestones	 should	 be	

such	that	the	transition	timescales	between	one	milestone	to	the	other	should	be	larger	than	

the	decay	time	of	the	velocity	auto-correlation	function	of	the	RC.	We	checked	this	condition	

in	our	system,	as	discussed	in	detail	in	the	Supporting	Information.	

The	 following	 distinction	 is	 worth	 noting	 at	 this	 point.	 As	 in	 Markov	 State	 Modeling	

(which	assumes	the	formalism	of	continuous-time	Markov	chains)	the	transitions	between	

conformational	 macrostates100	 are	 to	 be	 Markovian.	 However,	 the	 dynamics	 inside	 the	

macrostates	delimited	by	the	milestones	may	not	necessarily	be	Markovian,	and	it	is	for	that	

dynamics	that	we	check	for	the	decay	of	velocity	autocorrelation.	Milestoning	theory	is	built	

upon	two	key	assumptions:	 the	reaction	channels	are	 localized	and	the	committor	can	be	

represented	as	a	function	of	the	reaction	coordinate	only.	A	sufficient	condition	to	make	these	

assumptions	valid	is	that	the	dynamics	be	overdamped.	To	ensure	this	condition,	milestones	

need	 to	 be	 placed	 sufficiently	 far	 from	 each	 other	 such	 that	 the	 timescale	 of	 transitions	
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between	milestones	is	higher	than	the	decorrelation	time	of	the	velocity	along	the	reaction	

coordinate.83	

 A	total	of	12	cells	were	constructed	in	the	spacing	between	13	milestones.	 For	each	

cell,	a	flat	bottom	potential	(Eqn.	1)	is	applied	with	a	force	constant	of	100	kcal	mol−1	

˚A−2	 for	 the	 harmonic	walls	 present	 at	 the	milestones.	 First,	 the	 representative	 structure	

(sampled	from	SMD)	is	equilibrated	at	the	center	of	the	cell	for	1	ns	by	restraining	the	RC	

via	a	harmonic	potential.	The	force	constant	was	gradually	increased	to	500	kcal	mol−1	˚A−2	

over	the	first	500	ps	and	kept	constant	over	the	last	500	ps.	From	the	end	point	of	the	1	ns	

equilibration	Weighted	ensemble	(WE)	simulations	were	propagated	for	300	iterations	with	

a	recycle	time	δt	of	2	ps.	A	two-dimensional	MAB	scheme	was	used	for	the	binning.	The	two	

progress	 coordinates	 were	 the	 RC	 and	 the	 RMSD	 of	 the	 ligand	 with	 respect	 to	 the	

representative	 structure	 (sampled	 from	 SMD)	 corresponding	 to	 the	 specific	 cell.	 The	

progress	 coordinates	were	 recorded	 using	 the	 colvars	module.95	The	 total	 computational	

cost	of	 the	M-WEM	simulation	was	approximately	734	ns.	The	simulation	was	stopped	at	

multiple	points,	at	an	interval	of	10	WE	iterations	between	30	and	300	iterations	for	each	

cell.	For	each	set,	the	trajectory	traces	were	computed	using	which	equilibrium	probabilities,	

free	energy	profiles	and	MFPTs	between	the	first	milestone	(at	1	˚A)	and	the	last	milestone	

(at	13	˚A)	(residence	time)	was	computed.	This	allowed	us	to	monitor	the	convergence	of	

residence	 time	 over	 the	 course	 of	 the	 simulation.	 The	 unbinding	 rate	 constant	 koff	was	

calculated	as	the	inverse	of	residence	time.	Free	energy	profile,	binding	rate	constant	kon	and	

committors	were	calculated	following	the	procedure	described	in	the	Theory	section.	The	

error	 bars	 for	 all	 quantities	 were	 calculated	 from	 the	 last	 five	 iterations	 sampled	 (i.e.	

iteration	 160-200	 for	 values	 reported	 at	 iteration	 200	 and	 iteration	 260-300	 for	 values	

reported	at	iteration	300).	Before	any	calculation,	the	probabilities	of	the	voronoi	cells	are	

modified	(πα	→	πα)	to	take	e	into	account	the	Jacobian	factor	appearing	due	to	the	different	

surface	area	of	milestones	
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with	different	radius:	 	where	rα	is	the	radius	of	the	cell	α	which	we	

choose	to	be	the	radius	of	a	sphere	equidistant	from	the	two	milestones	surrounding	the	cell.	

Results	

Mu¨ller-Brown	Potential	

For	 the	 two-dimensional	 toy	 model	 of	 Mu¨ller	 Brown	 potential,	 we	 performed	 three	

independent	trials	for	both	MMVT	and	M-WEM	simulations	and	the	results	are	presented	in	

Table	1.	The	MFPT	of	 the	 transition	 from	milestone	at	y	=	1.5	 to	y	=	0.0,	computed	using	

MWEM	approach,	shows	quantitative	agreement	with	MFPT	of	the	transition	from	minimum	

A	 to	 minimum	 B	 in	 regular	 overdamped	 Langevin	 simulation.	 The	 results	 of	 MMVT	

simulation	are	off	by	a	factor	of	∼	2.	Although	the	simulation	time	for	MMVT	and	regular	MD	

were	comparable,	the	M-WEM	simulations	produced	converged	results	with	∼	4	times	less	

computational	 expense.	 The	 algorithmic	 efficiency	 of	M-WEM,	 on	 the	 contrary,	 is	 poorer	

compared	to	the	MMVT	approach	because	of	the	larger	variance	of	the	MFPTs	obtained	from	

the	M-WEM	method.	Although	the	computational	gain	is	not	significant	in	case	of	this	
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Figure	2:	The	free	energy	landscape	of	the	Mu¨ller	Brown	potential	explored	using	107	steps	

of	 over-damped	 Langevin	 dynamics	 simulation.	 The	 position	 of	 the	 milestones,	 used	 in	

MMVT	and	M-WEM	calculations,	are	shown	in	black	lines.	The	two	minima	relevant	to	this	

study	are	marked	as	A	and	B.	

low	dimensional	model	system,	these	results	serve	as	a	proof	of	concept	of	our	method	in	

rare	event	sampling	problem.	It	also	indicates	that	despite	the	choice	of	a	poor	and	simplistic	

RC,	accurate	MFPTs	can	be	calculated	using	M-WEM	method.	

Table	1:	Results	of	conventional	Langevin	dynamics,	MMVT	and	M-WEM	simulations	for	the	

Mu¨ller	Brown	potential	

 Method	 MFPT	 Simulation	time	 η−1	

 (×103	steps)

	 (×106	steps)

	(×106	 steps)	

aComputed	from	the	three	independent	trials	

	

Figure	3:	The	free	energy	landscape	of	the	gas	phase	Alanine	dipeptide	along	the	Φ	and	Ψ	

torsion	angles,	from	500ns	equilibrium	MD	simulation.	The	position	of	the	milestones,	used	
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in	MMVT	and	M-WEM	calculations,	are	shown	in	black	lines.	The	two	conformations	relevant	

to	this	study	are	marked	as	A	and	B.	

	

Figure	4:	The	committor	values	as	a	function	of	the	milestoning	coordinate	Φ	for	the	Alanine	

dipeptide	system.	

Alanine	Dipeptide	

Next,	 we	 tested	 the	 performance	 of	 MMVT	 and	M-WEM	methods	 on	 the	 conformational	

transition	of	Alanine	dipeptide.	The	 results	were	 compared	 to	a	500	ns	 conventional	MD	

simulation.	The	free	energy	landscape	along	the	Φ	and	Ψ	torsion	angles	for	the	gas	phase	

Alanine	dipeptide	(obtained	from	equilibrium	MD	simulation)	is	shown	in	Fig.	3.	The	mean	

first	passage	time	(MFPT)	of	transition	from	milestone	Φ	=	−80o	to	milestone	Φ	=	60o	is	in	

agreement	with	the	MFPT	of	transition	from	free	energy	minima	A	to	B	obtained	from	long	

equilibrium	MD	simulation	(Table	2).	The	M-WEM	results	show	slightly	better	agreement,	

but	the	difference	is	not	very	significant;	 in	fact,	 the	error	bars	of	the	MMVT	and	M-WEM	

simulations	obtained	from	independent	runs	overlap	with	each	other.	Both	these	methods	

produced	 accurate	 results	 within	 one	 order	 of	 magnitude	 less	 computational	 cost	 in	

comparison	to	the	equilibrium	MD.	Although	the	M-WEM	simulations	took	about	twice	as	

much	computational	effort	as	the	MMVT	simulation	for	full	100	iterations,	the	MFPT	results	
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converged	 as	 early	 as	 in	 20-30	 iterations	 (See	 Supporting	 Information).	Moreover,	 going	

from	the	2D	model	of	the	Muller	potential	to	the	molecular	model	of	alanine	dipeptide,	we	

see	 a	 significant	 improvement	 of	 the	 algorithmic	 efficiency	 as	 the	 η−1	of	M-WEM	 is	 now	

slightly	lower	than	that	of	MMVT.	Nonetheless,	both	have	poorer	efficiency	than	regular;	the	

latter	yields	a	tighter	confidence	interval	from	∼300	transitions,	whereas	MMVT	or	M-WEM	

uncertainties	are	estimated	from	three	independent	runs.	

The	committor	values	at	milestone	interfaces	for	all	three	trials	of	M-WEM	calculation	are	

depicted	in	figure	4.	The	results	from	different	trials	are	in	excellent	agreement	with	each	

other	 and	 all	 of	 them	 shows	 a	 committor	 value	 of	 ∼	 0.5	 for	 the	 milestone	 at	 Φ	 =	 0◦.	 A	

committor	value	of	0.5	indicates	the	transition	state	(TS).	The	milestone	at	Φ	=	0◦	is	indeed	

present	on	top	of	the	free	energy	barrier	aka	TS	as	evident	from	the	free	energy	landscape	in	

Fig.	3.	

We	applied	our	free	energy	reconstruction	protocol	to	recover	the	free	energy	landscape	

along	 the	Φ	and	Ψ	degrees	of	 freedom.	The	crude	probability	distribution	 for	each	cell	 is	

Table	 2:	 Results	 of	 conventional	 MD,	 MMVT	 and	 M-WEM	 simulations	 for	 the	 Alanine	

dipeptide.	

 Method	 MFPT	 Simulation	time	 η−1	

 MMVT	trial	2

	 951±13	 40

	 -	

 MMVT	trial	3

	 984±8	 40	 -	

 1133±715	 -	 15.93	

 M-WEM	trial	2	 1290±69	 84.4	 -	

 M-WEM	trial	3	 1286±123	 83.2	 -	

 M-WEM	(average)b	 1422±576	 -	 13.78	
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aFrom	state	A	to	B	in	figure	3,	not	from	milestone	to	milestone.	
bComputed	from	the	three	independent	trials	

obtained	by	histogramming	the	M-WEM	and	MMVT	simulation	data	projected	on	those	two	

degrees	 of	 freedom.	 This	 unscaled	 distribution	 for	 individual	 cells	 (pα(Φ,Ψ))	 as	 obtained	

from	the	M-WEM	calculation	 is	shown	in	 figure	5a.	Then	the	true	probability	distribution	

(p(Φ,Ψ))	 is	 computed	by	 re-scaling	 the	distributions	 corresponding	 to	 each	 cell	with	 the	

weight	of	their	probabilities	obtained	using	Eq.	3	(Fig.	5b).	

 Ψ)	 (30)	

The	summation	is	over	all	Λ	cells	and	πα	is	the	equilibrium	probability	of	each	cell.	

	

Figure	 5:	 Reconstruction	 of	 equilibrium	 probability	 distribution	 (b)	 from	 raw	 unscaled	

probability	distribution	from	M-WEM	trajectories	in	each	cell	(a).	

This	rescaled	probability	distribution	is	the	used	to	reconstruct	the	free	energy	landscape	

(G(Φ,Ψ))	for	the	conformational	transition	of	alanine	dipeptide	

!	

(31)	

The	 reconstructed	 free	 energy	 surface	 for	 both	 MMVT	 and	 M-WEM	 simulations	 are	 in	

excellent	 agreement	 with	 one	 obtained	 from	 500	 ns	 conventional	 MD	 simulation,	 but	

confined	only	between	the	initial	and	final	milestone	i.e.	−80o	<	Φ	<	80o.	This	provides	a	way	
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to	study	the	free	energy	landscape	of	orthogonal	degrees	of	freedom,	which	are	coupled	with	

the	 RC,	 but	 are	 not	 taken	 into	 consideration	 while	 devising	 the	 milestoning	 progress	

coordinate.	

a b c	

	

Figure	6:	(a)	Free	energy	landscape	of	gas	phase	alanine	dipeptide	obtained	from	equilibrium	

MD	 simulation.	 (b)	 Reconstructed	 free	 energy	 landscape	 from	 MMVT	 simulation.	 (c)	

Reconstructed	 free	 energy	 landscape	 from	 M-WEM	 simulation	 (trial	 1).	 (For	 a	 better	

comparison	 the	 free	 energy	 landscape	 is	 constructed	 from	 M-WEM	 iteration	 40	 with	

approximately	 equal	 amount	 of	 total	 computational	 cost	 in	 comparison	 to	 the	 MMVT	

calculation.)	

Trypsin-Benzamidine	Complex	

Finally,	 we	 applied	 the	M-WEM	 approach	 to	 calculate	 the	 kinetics	 and	 free	 energy	 for	 a	

protein	ligand	binding	and	unbinding	problem.	We	chose	the	system	of	trypsin-benzamidine	

complex	because	of	primarily	two	reasons.	First,	this	system	is	studied	extensively	using	MD	

simulations	with	 various	 enhanced	 sampling	 and	 path	 sampling	methods.	Moreover,	 the	

residence	 time	 of	 the	 ligand	 is	 in	 the	 millisecond	 regime,	 which	 is	 beyond	 the	 reach	 of	

currently	available	computational	power.	Benzamidine	is	also	a	very	potent	ligand,	with	an	

experimental	binding	affinity	(Kd)	of	1.2	±	0.1	×	10−5	M.81	This	is	a	challenging	enough	test	

system	 for	 the	 M-WEM	 method,	 and	 can	 also	 determine	 the	 utility	 of	 our	 approach	 in	

computer	aided	drug	design.	
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The	ligand	residence	time,	unbinding	rate	constant	(koff),	binding	rate	constant	(kon),	and	

the	binding	free	energy	(∆Gb)	have	been	computed	from	M-WEM	simulation,	and	the	results	

are	compared	with	the	SEEKR50	and	MMVT	SEEKR64	results	(which	used	identical	simulation	

condition	as	our	work)	and	also	with	the	experimental	data81	(Table	3).	All	values	obtained	

from	M-WEM	are	in	quantitative	agreement	with	the	experimental	data.	

(We	reported	two	sets	of	results	for	M-WEM,	one	after	200	iterations	and	another	after	300	

iterations).	The	koff	value,	predicted	from	M-WEM	simulation,	is	within	the	error	bars	of	the	

experiment	and	within	one	order	of	magnitude	of	the	SEEKR	and	MMVT	SEEKR	results.	The	

same	holds	for	residence	time,	which	is	the	inverse	of	koff.	Our	kon	results	are	different	from	

experimental	value	by	a	factor	of	∼	4-5,	while	the	results	of	MMVT	SEEKR	are	approximately	

one	order	of	magnitude	higher.	The	∆Gb	value	computed	from	M-WEM,	as	kBT	ln(koff/kon),	is	

also	in	excellent	agreement	with	the	experimental	number	(within	1.5	kcal/mol).	The	error	

bars	of	the	M-WEM	results	and	the	SEEKR	and	MMVT	SEEKR	are	not	directly	comparable	

because	the	are	computed	differently,	as	described	in	the	Theory	

section.	

Table	 3:	 Comparison	 of	 the	 results	 of	 the	 different	 milestoning	 based	 methods	 for	 the	

trypsinbenzamidine	 complex.	 (Number	 of	 iterations	 of	 M-WEM	 simulation	 are	 shown	 in	

parenthe-	

ses.)	

	

Method	 Residence	time	 koff	 kon	 ∆Gb	 Simulation	time	

	 (ms)	 (s−1)	 (×107	M−1	s−1)	 (kcal/mol)	 (µs)	

81	1.7	600±300	2.9	-6.7±0.05	50	12	83±14	2.1±0.3	-7.4±0.10	∼19	

64	5.6	174±9	12±0.5	-7.9±0.04	∼4.4	64	16	62±6	17±1.0	-8.8±0.07	∼2.9	
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aError	bars	are	computed	from	the	last	5	iterations	sampled.	

The	convergence	patterns	of	the	residence	time	and	koff	are	depicted	in	Fig.	7.	Both	these	

values	converged	after	about	150	iterations	(∼	360	ns	of	total	simulation	time)	except	for	

small	fluctuations.	The	koff	is	computed	indirectly	as	the	inverse	of	residence	time,	which	is	

directly	obtained	from	M-WEM.	So	small	fluctuations	in	the	residence	time	get	amplified	in	

the	koff	results	in	Fig.	7a.	The	computational	cost	of	the	M-WEM	simulation	is	∼	1	order	of	

magnitude	less	than	the	other	milestoning-based	approaches50,64	and	the	results	are	in	better	

agreement	with	the	experiment.	Our	koff	results	are	also	closer	to	the	experimental	numbers	

in	 comparison	 to	 other	methods	 used	 by	 Buch	 et	 al.	 ((9.5±3.3)×104	s−1),77	Plattner	 et	 al.	

((1.31±1.09)×104	s−1),78	Tiwary	et	al.	(9.1±2.5	s−1),79	Brotzakis	et	al.	(4176±324	s−1)101	and	

Teo	et	al.	 (260±240	s−1);80	all	 these	studies	required	multiple	microseconds	of	simulation	

with	some	in	the	range	of	50	µs	-	100	µs.77,78	A	weighted	ensemble-based	approach	has	also	

been	used	to	calculate	the	kinetics	of	this	system	by	Dickson	and	Lotz	(koff	=	5555	s−1)38	and	

Donyapour	et	al.	(koff	=	266	s−1	and	840	s−1).32	But,	unlike	M-WEM,	that	method	could	only	

calculate	 the	 unbinding	 rate	 constant	 and	 dissociation	 pathways	 due	 to	 the	 use	 of	 non-

equilibrium	 steady	 state.	 To	 their	 credit,	 the	 authors	 could	 distinguish	 multiple	 ligand	

release	pathways,38	which	 is	difficult	 to	achieve	using	milestoning-based	simulations	with	

discontinuous	trajectories.	Nevertheless,	we	tried	to	identify	some	key	intermediates	in	the	

unbinding	mechanism;	we	discuss	them	later	in	this	paper.	

A	one-dimensional	free	energy	profile	as	a	function	of	the	milestoning	reaction	coordinate	

is	constructed	from	the	equilibrium	probabilities	(πα)	obtained	from	the	M-WEM	simulation	

using	 Eq.	 4.	 Alongside,	 a	 one	 dimensional	 free	 energy	 profile	 is	 reconstructed	 from	 the	

MWEM	trajectories	following	as	described	in	the	Theory	section.	Error	bars	in	the	free	energy	

landscape	are	computed	as	the	95%	confidence	interval	of	the	free	energy	profiles	obtained	

between	iteration	160	and	200	with	an	interval	of	10	iterations.	The	two	free	energy	profiles	

obtained	from	M-WEM	using	the	two	different	techniques	agree	with	each	other	and	both	



34	

are	 in	 reasonable	 agreement	with	 the	 free	 energy	 surface	 obtained	 using	well	 tempered	

metaeABF	(WTM-eABF)	simulation102,103	(see	Supporting	Information	for	details).	

	

 b Number of iterations	

	

Figure	7:	The	convergence	of	(a)	koff	and	(b)	ligand	residence	time	for	trypsin-benzamidine	

complex,	as	a	function	of	M-WEM	iterations.	In	figure	(b)	a	linear	scale	is	used	for	a	better	

idea	of	the	quality	of	the	convergence.	
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Figure	8:	Free	energy	profile	of	 the	dissociation	of	 the	 trypsin-benzamidine	complex	as	a	

function	of	 the	milestoning	reaction	coordinate	 (the	center	of	mass	distance	between	 the	

binding	pocket	residues	and	the	benzamidine	ligand.	See	Computational	Methods	section	for	

details.)	 The	 results	 are	 compared	 between	 WTM-eABF	 simulation	 and	 the	 M-WEM	

calculation	after	iteration	200.	

The	 committor	 values	 as	 a	 function	 of	 the	 milestoning	 reaction	 coordinate	 were	

computed	and	are	indicated	in	Fig.	9.	The	results	do	not	show	much	variation	between	200	

iterations	and	300	iterations,	both	of	which	indicate	that	the	transition	state	(committor	=	

0.5)	is	located	between	the	milestones	at	6	˚A	and	8	˚A.	
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Figure	9:	Committor	values	computed	as	a	function	of	the	milestoning	reaction	coordinate	

for	the	M-WEM	simulation	of	the	trypsin-benzamidine	complex.	

The	distribution	of	the	ligand	around	the	protein	for	three	cells	(bound	state,	unbound	

state	 and	 the	 cell	 containing	 the	 TS)	 is	 depicted	 in	 Fig.	 10.	 It	 shows	 the	 amount	 of	

threedimensional	 space	 explored	 by	 the	 ligand	 during	 the	 unbinding	 process.	 A	 two-

dimensional	projection	of	the	ligand	distribution	for	all	cells	is	shown	in	Fig.	11.	The	fraction	

of	 the	 spherical	 surface	 covered	 by	 the	 ligand	 in	 the	 outermost	 cell	 (α)	 is	 used	 for	 the	

calculation	of	kon,	as	described	in	the	Theory	section.	The	increase	in	the	exploration	of	the	

configuration	space	after	300	iterations	in	comparison	to	200	iterations	is	small.	

To	get	an	idea	of	the	intermediate	states	involved	in	the	protein-ligand	interaction,	we	

clustered	all	the	trajectory	frames	corresponding	to	each	cell	based	on	heavy-atom	RMSD.	

The	number	of	frames	in	each	cell	ranged	between	∼	26,000−30,000,	with	one	frame	every	
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Figure	10:	The	distribution	of	the	benzamidine	ligand	around	the	trypsin	protein	for	three	

cells	 of	 the	M-WEM	simulations	which,	 respectively,	 include	 :	 (a)	 the	bound	 state,	 (b)	 an	

apparent	transition	state	with	committor	value	∼	0.5,	and	(c)	the	unbound	state.	

	

Figure	11:	Two	dimensional	projection	of	the	distribution	of	the	ligands	around	the	trypsin	

protein	for	(a)	after	M-WEM	iteration	200	and	(b)	after	iteration	300.	The	different	colors	

represents	 structures	 from	 M-WEM	 simulations	 confined	 in	 different	 cells.	 The	 surface	

coverage	α,	used	in	the	kon	calculation	is	also	depicted	in	figure	(a).	For	kon	calculation	we	

assumed	that	the	green	trajectories	can	lead	to	binding	events	but	the	red	trajectories	cannot.	
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2	ps	(the	length	of	each	WE	segment).	The	clustering	of	the	structures	was	performed	using	

the	GROMOS	clustering	algorithm104	 implemented	 in	GROMACS	v2018.1105	with	an	RMSD	

cutoff	of	0.9	˚A.	The	cut-off	was	chosen	such	that	the	total	number	of	clusters	is	between	10	

and	40.	All	the	cluster	centers	obtained	from	different	cells	were	combined	together	and	a	

second	round	of	clustering	is	performed	with	an	RMSD	cutoff	of	1.1	˚A.	This	resulted	in	14	

clusters,	some	of	which	are	depicted	in	Fig.	12.	The	structures	are	in	qualitative	agreement	

with	the	meta-stable	states	observed	by	Tiwary	et	al.79	and	Brotzakis	et	al.,101	despite	their	

use	of	a	different	enhanced	sampling	method	and	of	a	different	version	of	the	AMBER	force	

field	in	the	former	study.	Particularly,	both	our	study	and	the	work	of	Tiwary	et	al.	show	the	

presence	of	a	meta-stable	state	in	which	the	benzamidine	is	aligned	in	a	reverse	direction	

(the	charged	groups	facing	the	aqueous	environment	and	the	hydrophobic	ring	facing	the	

protein).	A	PDB	file	with	all	the	clusters	is	provided	in	the	Supporting	Information.	

Discussions	and	Conclusions	

We	developed	a	new	path	sampling	approach	which	combines	Markovian	milestoning	with	

a	weighted	 ensemble	 scheme	 to	 efficiently	 calculate	 the	 kinetics	 and	 free	 energy	 of	 rare	

events	 using	 atomistic	MD	 simulations.	 This	method,	which	we	 call	Markovian	Weighted	

Ensemble	Milestoning	(M-WEM),	has	been	applied	to	study	the	barrier	crossing	in	a	2D	toy	

system	using	the	Mu¨ller-Brown	potential,	a	conformational	transition	in	alanine	dipeptide,	

and,	 most	 importantly,	 to	 the	 dissociation	 and	 association	 of	 the	 trypsin-benzamidine	

complex,	which	has	a	millisecond	scale	residence	time.	For	the	Mu¨ller-Brown	potential	and	

the	 alanine	 dipeptide	 systems,	 the	 mean	 first	 passage	 time	 (MFPT)	 of	 conformational	

transition	obtained	from	long	equilibrium	simulation	was	quantitatively	reproduced	by	the	

M-WEM	method	at	significantly	lower	computational	cost.	In	the	case	of	alanine	dipeptide,	

we	 showed	how	one	 can	also	 reproduce	 the	 two-dimensional	 free	 energy	 landscape	as	 a	
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function	 of	 two	 backbone	 torsion	 angles	 from	 one	 dimensional	 M-WEM	 and	 Markovian	

milestoning	simulation,	using	a	

	

Figure	12:	Representative	structures	sampled	from	clustering	of	the	M-WEM	trajectories	of	

the	 binding/unbinding	 of	 trypsin-benzamidine	 complex.	 The	 ligand	 and	 the	 residues	

interacting	 with	 the	 ligand	 are	 shown	 in	 licorice.	 Hydrogen	 bonds	 between	 protein	 and	

ligand	are	shown	in	dashed	line.	

free	energy	re-scaling	strategy	based	on	the	equilibrium	probabilities	of	each	milestone.	This	

approach	 can	be	 generalized	 to	 any	other	 collective	 variables	other	 than	 the	milestoning	

coordinate,	and	can	potentially	elucidate	the	role	of	coupled	orthogonal	degrees	of	freedom	

in	complex	biophysical	systems.	

For	the	trypsin-benzamidine	complex,	the	ligand	residence	time,	koff,	kon,	and	the	binding	

free	energy	could	be	computed	using	the	M-WEM	method	in	about	one	order	of	magnitude	
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less	computational	cost	than	the	Markovian	Milestoning	based	MMVT	simulation,	and	1-3	

orders	 of	magnitude	 less	 computational	 effort	 compared	 to	 other	 approaches	 previously	

used	to	study	this	system	such	as	Markov	state	modeling,	metadynamics,	adaptive	multilevel	

splitting,	weighted	ensemble,	and	traditional	milestoning.	Our	results	are	in	good	agreement	

with	the	experimental	data	available	for	this	system.	

A	key	advantage	of	the	M-WEM	method	is	its	simple	workflow,	which	essentially	requires	

the	user	to	perform	weighted	ensemble	simulation	under	flat	bottom	restraints.	This	is	easy	

to	implement	in	any	simulation	engine	using	an	open-access	weighted	ensemble	code	such	

as	WESTPA.	We	implemented	M-WEM	using	the	NAMD	simulation	engine	and	the	WESTPA	

toolkit.	Our	implementation	uses	a	minimal	adaptive	binning	(MAB)	scheme,	which	allows	

for	 the	adaptation	of	 the	WE	bins	 throughout	 the	simulation	to	 increase	sampling	 in	high	

energy	 regions.	 Consequently,	 it	 does	 not	 require	 preexisting	 knowledge	 of	 the	 energy	

landscape	and	can	efficiently	sample	all	possible	transitions	between	milestone	interfaces.	

Moreover,	 in	 contrast	 to	 traditional	 milestoning	 approaches,	 M-WEM	 (or	 Markovian	

milestoning	 in	general)	 it	does	not	require	additional	simulation	(e.g.	umbrella	sampling)	

along	the	milestone	interface	to	sample	starting	structures,	a	process	which	accounts	for	the	

majority	of	the	total	computational	effort.	In	our	previous	work,	we	attempted	to	replace	this	

expensive	 additional	 step	 using	 a	weighted	 ensemble	 restrain-and-release	 scheme.76	The	

Markovian	milestoning	technique	completely	removes	this	step	as	the	trajectory,	confined	

between	 two	 milestones,	 explores	 by	 itself	 the	 configurational	 space	 orthogonal	 to	 the	

milestoning	coordinate.	In	the	M-WEM	approach,	we	accelerated	this	“orthogonal	sampling”,	

by	using	2D	WE	bins	along	two	progress	coordinates:	the	milestoning	reaction	coordinate	

(to	accelerate	milestone-to-milestone	transitions)	and	also	in	another	coordinate	along	the	

milestone	 interface.	 Due	 to	 dimensionality	 scaling,	 the	 advantage	 of	 the	 M-WEM	 over	

traditional	Markovian	milestoning	is	more	pronounced	in	the	case	of	trypsin-benzamidine	

complex,	where	results,	in	better	agreement	with	the	experiment,	could	be	obtained	using	
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M-WEM	simulation	within	a	fraction	of	the	computational	cost	of	MMVT	SEEKR	calculations	

on	 the	 same	 system.	 Also,	 the	 M-WEM	 protocol	 does	 not	 need	 to	 stop	 the	 trajectory	 at	

milestone	interfaces,	avoiding	frequent	intervention	to	the	dynamics	engine,	and	therefore	

making	it	more	efficient	to	implement	in	GPU-based	hardware.	

Apart	from	these	unique	achievements,	M-WEM	also	shares	some	common	advantages	

with	our	previously-developed	WEM	methodology.	They	include	the	possibility	of	massively	

parallelizing	the	simulations	over	each	milestone,	which	will	be	even	more	pronounced	in	

the	current	implementation,	as	MAB	binning	has	been	shown	to	utilize	GPU-based	hardware	

more	efficiently	than	the	traditional	fixed-binning	scheme	we	used	in	our	earlier	work.	The	

convergence	of	the	transition	statistics	in-between	milestones	is	also	quicker	in	M-WEM	in	

comparison	to	MMVT,	as	evident	from	the	results	for	the	trypsin-benzamidine	complex.	We	

also	 show	 that	 a	 relatively	 crude	 reaction	 coordinate	 is	 capable	 of	 producing	 accurate	

kinetics,	particularly	in	the	cases	of	the	Mu¨ller-Brown	potential	and	the	alanine	dipeptide	

model.	

The	M-WEM	approach,	being	a	combination	of	two	fairly	complex	path	sampling	methods,	

inherits	all	the	assumption	from	each	of	the	individual	techniques.	Similar	to	MMVT,	M-WEM	

also	requires	the	milestones	to	be	sufficiently	far	apart	so	that	the	transitions	be-	

tween	them	are	independent	of	the	transitions	from	other	milestones.42,83	It	also	assumes	a	

complete	exploration	of	the	configurational	space	in	the	milestone	hypersurface.	Although	

the	 weighted	 ensemble	 approach	 is	 invoked	 to	 satisfy	 these	 assumptions	 at	 a	 lower	

computational	cost,	it	comes	with	additional	assumptions	inherited	from	the	WE	scheme.	For	

example,	each	individual	trajectory	trace	contributes	independently	towards	the	transition	

statistics	despite	sharing	a	significant	portion	of	its	propagation	history.20	Additionally,	due	

to	the	use	of	a	stochastic	integrator	the	timscales	obtained	from	the	M-WEM	simulations	can	

be	dependent	on	the	damping	coefficent	(γ)	of	the	Langevin	dynamics.24,106	However,	Hall	et	
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al.	have	shown	that	γ	has	little	effect	on	ligand	residence	times	obtained	from	explicit	solvent	

simulation	as	long	as	γ	>	0.1	ps−1.106	Our	choice	of	γ	=	5	ps−1	was	motivated	by	

previous	milestoning	and	MMVT	work	on	trypsin-benzamidine,50,64	and	also	by	the	fact	that	

a	γ	of	5	ps−1	reproduces	the	experimental	diffusion	constant	of	water	most	accurately.107	

A	 recent	 study	 using	 the	 MMVT	 SEEKR	 approach	 has	 predicted	 the	 koff	 of	

trypsinbenzamidine	 complex	 to	 be	 990±70	 s−1,108	 a	 value	 that	 is	 relatively	 closer	 to	 the	

experimental	number	compared	to	the	previous	result	of	62±6	s−1	(Table	3).	However,	the	

fact	that	a	virtually	identical	simulation	scheme	can	produce	results	that	are	more	than	one	

order	 of	 magnitude	 apart	 clearly	 shows	 the	 high	 level	 of	 uncertainty	 involved	 in	 the	

milestoning	approach.	So,	despite	having	a	better	agreement	with	 the	experimental	value	

compared	to	some	previous	studies,	the	order-of-magnitude	agreement	of	koff	remains	the	

key	achievement	of	the	M-WEM	approach.	

One	of	the	limitations	of	the	current	implementation	of	M-WEM	is	the	use	of	an	analytical	

approach	 to	 compute	 the	 binding	 rate	 constant.	 The	 alternative	 is	 to	 use	 a	 multiscale	

Brownian	dynamics	(BD)	approach,50,56,64	which	is	more	rigorous	but	more	computationally	

expensive.	 However,	 BD	 methods	 allow	 us	 to	 include	 the	 effect	 of	 position-dependent	

variation	of	 the	diffusion	constant,	as	well	as	of	 the	 ionic	strength	of	 the	solution,	both	of	

which	are	absent	in	our	current	implementation.	

Our	M-WEM	method	 can	 find	 application	 in	 studying	 the	 kinetics	 and	 free	 energy	 of	

biomolecular	 rare	 events	 not	 only	 for	 the	 purpose	 of	 fundamental	 understanding	 of	

biological	processes,	but	also	for	kinetics-driven	computer	aided	drug	design.	Evidence	has	

emerged	over	the	past	decade	showing	that	the	efficacy	of	a	small	molecule	therapeutic	drug	

is	more	

correlated	with	the	residence	time	than	with	the	binding	affinity.8,9	Yet,	the	majority	of	the	

drug	design	effort	 in	the	pharmaceutical	 industry	is	based	on	binding	free	energy;	among	

other	things,	this	is	because	it	is	easier	to	compute	than	kinetics.	The	M-WEM	approach	is	a	
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cheap	alternative	to	computationally	expensive	traditional	enhanced	sampling	and	to	path	

sampling	methods,	and	can	be	included	in	a	computational	drug	design	pipeline	using	both	

binding	free	energy	and	kinetics.	In	the	future,	we	plan	to	test	this	method	on	proteinligand	

systems	with	longer	residence	time,	e.g.,in	the	range	of	minutes	to	hours,	a	time	frame	more	

characteristic	of	the	drug	molecules	used	in	practical	application.	The	increased	sampling	of	

orthogonal	coordinates	in	M-WEM	can	also	facilitate	the	study	of	systems	where	a	protein	

conformational	 change	 is	 coupled	 to	 a	 ligand-binding	 coordinate.	 Overall,	 our	 novel	

Markovian	 Weighted	 Ensemble	 Milestoning	 approach	 is	 expected	 to	 be	 successful	 in	

predicting	the	free	energy	and	kinetics	of	biophysical	rare	events	with	quantitative	accuracy,	

and	it	holds	the	potential	of	becoming	a	useful	tool	in	the	large-scale	computational	screening	

of	therapeutic	drugs.	
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