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Abstract

We introduce a rare-event sampling scheme, named Markovian Weighted Ensemble
Milestoning (M-WEM), which inlays a weighted ensemble framework within a
Markovian milestoning theory to efficiently calculate thermodynamic and kinetic
properties of long-timescale biomolecular processes from short atomistic molecular
dynamics simulations. M-WEM is tested on the Mu'ller-Brown potential model, the
conformational switching in alanine dipeptide, and the millisecond timescale protein-
ligand unbinding in a trypsin-benzamidine complex. Not only can M-WEM predict the
kinetics of these processes with quantitative accuracy, but it also allows for a scheme to
reconstruct a multidimensional free energy landscape along additional degrees of
freedom which are not part of the milestoning progress coordinate. For the ligand-
receptor system, the experimental residence time, association and dissociation kinetics,
and binding free energy could be reproduced using M-WEM within a simulation time of
a few hundreds of nanoseconds, which is a fraction of the computational cost of other
currently available methods, and close to four orders of magnitude less than the
experimental residence time. Due to the high accuracy and low computational cost, the
M-WEM approach can find potential application in kinetics and free-energy based

computational drug design.

Introduction

It is a challenge to quantify with accuracy the kinetics of rare events in molecular biophysics
via computational means. Molecular dynamics (MD) simulations provide atomistically
detailed movies of the structural and functional dynamics of biological macro-molecules.
However, the majority of important dynamic processes in the cell involve broad length and
time scales. A large fraction of such processes are rare over the timescale of the simulation.
Energy barriers higher than thermal energy trap the simulated system in conformational

basins of attraction, impeding proper sampling of all relevant states. Examples of rare



processes include protein folding, conformational transitions, ligand binding and unbinding
etc., which in most cases involve ~ 10% -10% atoms including the natural solution
environment. Despite phenomenal advances in computing hardware, atomistic MD
simulations of such large systems still go, typically, up to multiple microseconds only. This is
many orders of magnitude smaller than the timescale relevant to biological function, which
is often in the range of seconds to hours.

The current study focuses on protein-ligand interactions; its adequate sampling is pivotal
to computer-aided drug design. Molecular dynamics (MD) simulations provide mechanistic
insights into such interactions at atomistic detail, and is one of the essential tools in the
repertoire of the pharmaceutical research community. A wide range of alchemical free
energy
calculation methods!-3 and enhanced sampling methods (involving external biasing force)#*-
7 have been developed over the past few decades to calculate the binding free energy of a
protein-ligand complex. Although the virtual screening of potential inhibitors is currently
based on the binding free energy, the efficacy of a drug molecule is often dependent on the
binding and unbinding kinetics or the residence time.8? It is difficult to compute the kinetic
properties from traditional enhanced sampling simulations, as the dynamics become
nonphysical due to the application of artificial biases (although there are methods to recover
kinetics from simple constant force or constant velocity steered molecular dynamics0-13).
On the other hand, using brute force MD simulation, one needs to sample multiple binding
and unbinding events to obtain converged results for kinetic properties. This requires a
simulation time many times higher than the timescale of one event, which itself is beyond
the reach of even the most powerful supercomputers. This results in a dire need to develop
theoretical methods and computational algorithms to make quantitative predictions about
the kinetics of long timescale processes such as rare events from short timescale trajectories.

A category of methods involves transition path sampling (TPS), a concept introduced by



Prattl4 and later developed by Chandler and co-workers,>16 to simulate transitions across
energy barriers. Instead of applying external bias, path sampling methods utilize the
statistical properties of the unbiased trajectory ensemble to compute experimental
observables such as the kinetics of conformational transition or ligand unbinding, as well as
molecular scale properties like ligand release pathways and mechanism.” A different path
sampling approach is the weighted ensemble (WE) method of Huber and Kim,!® which
belongs to a broader category of variance-reduction algorithms that use “splitting” in the
framework of Monte Carlo sampling (see, e.g., Kahn!®). The WE method was further
developed by Zuckerman, Chong and collaborators (see e.g., Ref.29); it also was established
that the weighted ensemble is statistically exact.?! In this approach, the conformational space
between the initial and final state is discretized into multiple bins and a number of short
trajectories are propagated from the starting bin. Trajectory segments are split or merged
when they enter a new bin to keep an equal number of trajectories in each bin. Appropriate
weights are assigned to the new set of trajectories to conserve the total probability. It allows
for the sampling of fast moving but low-weight trajectories that reach the final state well
before the mean first passage time; this facilitates the calculation of converged kinetics, free
energy and pathways at a relatively low computational cost. With the implementation in the
open source software WESTPA,?? the weighted ensemble method has seen a wide range

of applications including folding and conformational transitions in proteins,?3-2> formation
of host-guest complexes,?¢ protein-peptide?” and protein-protein binding,?8 ion permeation
through protein channels,?° viral capsid assembly3? and many others. Many new variants, as
well as new analysis schemes for the traditional WE approach, have emerged in recent years,
including WExplore,3! resampling of ensembles by variation optimization (REVO),32 history
augmented Markov State Modeling (haMSM),33 the RED scheme,?* minimal adaptive binning
(MAB),3> and micro-bin analysis.3¢ Particularly, the WExplore and REVO algorithms have

been successfully applied to study the pathways and kinetics of protein-ligand



dissociation,32:37.38 even for systems with residence times as high as seconds to minutes.3940

Another popular approach to study the kinetics of biophysical rare events is mileston-
ing,#1-43 which belongs to the larger category of trajectory stratification.*4-47 In milestoning,
multiple interfaces are placed along a reaction coordinate, and short MD trajectories are
propagated in between the interfaces, which thus serve as milestones for the progress of the
transition of interest. Analyzing the milestone-to-milestone transition statistics via a
statistical framework,*3 the kinetics and free energy profile are estimated. This method has
also been implemented in the software tools miles,*8 ScMile*? and SEEKR,>° and has been
used to study a variety of complex biological problems including protein allosteric
transitions,>?!

membrane permeation by small molecules,>2-55 protein small molecule interaction,50.56-58

simple ligand-receptor binding,>® peptide transport through protein channels,t%61 DNA
protein interaction,®? protein conformational dynamics®3 etc. Apart from the necessity of
having a predefined reaction coordinate, the milestones need to be placed far apart to
preserve the assumption of Markovianity.*? This itself increases the computational cost
significantly, leaving aside the fact that two independent studies have shown that the
majority of the total computational effort in milestoning simulation is spent on sampling
along the milestone in-
terfaces to generate starting structures in accordance with the equilibrium distribution.60.64
A different variant of the milestoning approach has been developed: Markovian Mile-
stoning with Voronoi Tesselation (MMVT),>>65 which removes the necessity of performing
additional sampling along milestone interface, reducing the overall computational cost to a
large extent. The application of MMVT remained rather limited, being used primar-
ily for studying small molecule transport through transmembrane proteins,%0-%° substrate
translocation through ATPase motor,’? and the CO entry in myoglobin.”? Only recently, the

Markovian milestoning approach has been tested on ligand-receptor binding for crownether



host-guest complexes and for the dissociation of a benzamidine ligand from the trypsin
protein.®* Despite cutting down the computational cost in sampling at the milestone interface,
this approach still suffers from the Markovian assumption and can be significantly expensive
for complex systems.%4

In our previous work, we attempted to improve the milestoning scheme by accelerating
transitions between distant milestones via the application of directed wind forces.”? This
technique did increase the number of energetically uphill transitions, but the statistical
properties of the computed observables were not significantly better.”3 More recently, we
proposed the combined Weighted Ensemble Milestoning (WEM) scheme, where we
performed WE simulations in between milestones to accelerate the convergence of the
transition between adequately spaced milestones.”* The WEM method not only produced
accurate prediction of kinetics, free energy and time correlation function for small molecular
systems like alanine dipeptide,’* but we could also reproduce protein-ligand binding and
unbinding rate constants and binding affinity, previously obtained from 30 us equilibrium
simulation,’5 in less than 100 ns of WEM simulation.”¢

Yet, the current methodology and the implementation of WEM have a few drawbacks.
First, the sampling of the degrees of freedom perpendicular to the reaction coordinate (RC)
is significantly poor, particularly in situations where slow conformational changes of the
protein are coupled to the ligand unbinding.”® This can potentially be rectified by using
multiple starting states on the milestone interface sampled from long umbrella-sampling
simulations at the expense of a manifold increase in the computational cost similar to
traditional milestoning. Second, the choice of the milestoning reaction coordinate (RC) is
arbitrary and can possibly impact the quality of the results, depending on the complexity of
the underlying free energy landscape. Moreover, a major hindrance of the large scale
application of WEM technique is the complexity of the simulation protocol, which requires

propagating many short trajectories and stopping them upon reaching a nearby milestone.”®



It requires frequent monitoring of the trajectory as well as frequent communication to the
dynamics engine to stop the propagation if the progress coordinate reaches a particular value;
this makes the WEM algorithm particularly inefficient to implement in Graphical Processing
Unit (GPU) hardware.

We, thereby, present a novel Markovian Weighted Ensemble Milestoning (M-WEM)
approach, in which we combine weighted ensemble with soft-wall®> based Markovian
Milestoning, in an attempt to mitigate the deficiencies and improve the performance of the
weighted ensemble milestoning technique. We first provide a detailed description of the
theory of Markovian milestoning and the M-WEM approach. We then show the application of
this method to the two-dimensional Mu’ller-Brown potential, the conformational transition
of alanine dipeptide, and the dissociation and association of the trypsin-benzamidine
complex, a protein ligand system with a residence time beyond millisecond. The choice of the
trypsin-benzamidine complex is inspired by the fact that many existing path sampling and
enhanced sampling methods have been applied on this system, including Markov State Mod-
eling (MSM),7778 Metadynamics,’® Adaptive Multilevel Splitting (AMS),80 Milestoning,>?
MMVT,%* WExplore,?® and REV0.32 So, we compare the accuracy of the results and the
performance of M-WEM with these existing techniques, as well as with the experimental rate
constants and free energy values obtained by Guillian and Thusius.81 We also discuss a new
approach to construct multidimensional free energy landscapes via post-analysis of MMVT
and M-WEM trajectories obtained using a one-dimensional reaction coordinate, with a
potential application in systems were orthogonal degrees of freedom are strongly coupled

with the reaction coordinate.



Theory

Markovian Milestoning

The theoretical details of the Markovian milestoning with Voronoi tessellation (MMVT)

approach is described elsewhere.>>6465 Here, we provide only a brief description relevant to

the current work.

In MMVT, the configurational space is discretized into Voronoi cells. A flat bottom

potential is applied to each cell with half-harmonic walls placed at each milestone interface,

preventing the trajectories from escaping out of the Voronoi cells. For a 1-dimensional

reaction coordinate, used here, the flat bottom potential has the expression:
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where « is the cell index, x%; is the value of the reaction coordinate at the milestone i at the

boundary of the cell a, and k~ is the force constant; the total number of cells is A and the total

number of milestones is M. One or more unbiased trajectories are propagated in each cell.

The trajectories which cross the milestone interface are reflected back into the cell by the

half harmonic restraint. As a result, the trajectories remain confined into one cell and

perform many transitions between the milestones interfaces constituting the boundaries of

the cell. The portions of the trajectory outside the cell are to be discarded before performing

further analysis. This protocol is referred to as the soft wall restraint®>66 which we adopt in

the current work. Alternatively, a hard wall restraint>>64 can also be used where the direction

of velocity is switched when a trajectory crosses a milestone.



From these confined trajectories, the transition counts between milestones are recorded.

A flux matrix k € RAis constructed whose elements are given by:

kop =
T (2)

where Nggis the number of transitions from cell a to cell f recorded from a trajectory
propagated for time Ty in the cell a. The equilibrium probability for each cell (m,) is the
obtained by iteratively solving the linear equation (Eq. 3) in a self-consistent manner under

the constraint of a constant total probability of one:
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The free energy profile at each cell is then computed as:

Ga= —kpT In(14) (4)

For calculating kinetics, the transition matrix N € R”*™ and the lifetime vector R € R are

constructed, whose elements are computed as follows:
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«
where Vi is the number of times a trajectory in cell a collides with milestone j after having

last visited milestone % 1% is the cumulative time the trajectory spends in cell a visiting
milestone i and before reaching any other milestone. T is a constant for dimensional

consistency, which is not necessary to compute because it cancels out at a later stage. A rate

matrix Q € RM*Mjs then defined as:



Qii = -XQjj

i6=j

Considering milestone M is the target milestone, the mean first passage time of the process

can be computed as:

Qr =-1 7)

Qb € RM-1xM-1ig the matrix obtained by deleting the last row and column of Q. 1 is a unit

vector with M - 1 elements, and ™ € RM-1is the vector with entries ;¥ that are the MFPTs

from milestone i to milestone M.
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Figure 1: A schematic representation of the M-WEM simulation protocol. The thick lines
indicate milestones (labeled as milestone index i and i+1). The dotted lines indicate a WE bin
boundaries (which are adapted during the simulation but in this figure we show fixed bins
for clarity). Trajectories for different WE iteration is shown in different color scheme:
[teration 1: blue, iteration 2: green, iteration 3: red, and iteration 4: pink. (a) First, WE
simulation is performed with harmonic walls placed at the milestone interfaces allowing for
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the trajectory to bounce back and forth. (b) The propagation history of individual trajectories
are traced back from the last iteration (an example trace is highlighted with gray dashed line).
(c) The milestone crossing events (gray circles) are recorded from each trace, and are used
in subsequent analysis.

In the current work we introduce the Markovian Weighted Ensemble Milestoning
(MWEM) approach, where the conventional MD trajectories in the Markovian milestoning
framework are replaced by weighted ensemble simulation. A schematic representation of the
M-WEM protocol is depicted in Fig. 1. WE bins are placed along the reaction coordinate in-
between the milestone interfaces, as well as along a different coordinate to accelerate
sampling along the milestone interface. The additional non-RC coordinate should ideally be
locally orthogonal to the RC, but this is not a necessary condition. WE simulation is performed
in this 2D progress coordinate space using the recently developed minimal adaptive binning
(MAB) scheme.3> As opposed to the traditional fixed binning scheme, the MAB approach
adaptively changes the bin boundaries during the course of simulation, avoiding the
requirement of an arbitrarily chosen predefined set of bins. It also provides an increased
sampling of the conformational space. As the total number of occupied bins remains virtually
unchanged throughout the simulation, the maximum amount of computational resources
needed for the simulation can be easily estimated beforehand.35 A stochastic integrator, e.g.,
for the Langevin equation, is needed to propagate the dynamics to ensure that the new set of
trajectories, generated after a splitting event, follow different paths despite emerging from a
single parent trajectory.

Unlike the MMVT approach with conventional MD, the WE trajectories hitting the
milestones will have different weights. To properly take into account this effect, we take all
the trajectory segments at the last iteration and trace them back to the first iteration to obtain
separate trajectory traces. The weight of each trajectory trace is set equal to the weight of

the corresponding trajectory segment in the last iteration.
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The total number of trajectory traces in cell a (M) is equal to the number of occupied bins
x the number of trajectories per bin in the final iteration. The elements of the flux matrix k
in this formalism are given by:

Mea

aﬁ_ZwJ ijkaﬁ

(8)

J
Noss Ta, and kg have similar definitions as

where wyis the weight of the Jth trajectory trace.
in Eq. 2 except that they are computed just from the jth trace. The equilibrium probability
distribution and the free energy profile are computed from the elements of the flux matrix
obtained from Eq. 8 using Eq. 3 and 4, respectively.

For calculating kinetics, the N;jand the R; matrix elements are to be constructed taking

into account the different weights of the trajectory traces. The new transition matrix element

becomes:
Mg, a,J A M, a,J
w—TzwaszNw —TY Y wym
a=1 a=1 J=1 O‘ (9)

where N;%/ has the same definition as N;%in Eq. 5 except it is for the Jth trajectory trace.

Now we define a pseudo transition matrix Ne ¢/, which is identical to the transition matrix

N but computed only from one (Jth) trajectory trace in the cell a. Its elements are given by:

_ N
Niq"] = Ty—2
! T . (10)

Now the total transition matrix N can be obtained as
A M.N=T

XXw)Ne o/ (11)
a=1J=1

Similarly, the lifetime vector R is given by:

A Ma

R =T XXwjRe «
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a=1 J=1 (12)

and R/%/is equivalent to R but computed only for the Jth trajectory segment. Using the N and

R, the rate matrix Q is computed using Eqs. 6 and 7.

Error Analysis

Error analysis of milestoning-based simulations can be performed in a few different ways,
primarily by generating an ensemble of rate matrices (Q). Then the desired properties (such
as the MFPT) are calculated from many sample matrices and the uncertainty is estimated.
When working with transition matrices (as in traditional milestoning), the kernels can be
sampled from a beta distribution.®? Similar to our previous work,”#76 we generated the
ensemble of rate matrices by sampling from a Bayesian type conditional probability,>6.8283
given by

PQIN;RY) =YY Q¥yrexp(-QiNiR)P(Q) (13)

i j6=i

where p(Q) is a uniform prior, Njis the number of trajectories transiting from milestone i to

jand N;= P Njj, where M is the set of all milestones. We sampled the Q matrices from

jeM
the distribution in Eq. 13 using a non-reversible element exchange Monte-Carlo scheme.84

One randomly chosen off-diagonal element and the diagonal element of the corresponding

row of Q are updated to generate a new rate matrix Q°.

@y=0s+d  (i6=))
(14) Qoii= Qii— A.
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where A is arandom number sampled from an exponential distribution of range [-Q;;,o0) with

mean zero. The new matrix Qis accepted with a probability equal to min(1,paccept) where:

_ pP(Q'{Ny, Ri}) _ (QU + A
paccept p(QHNzg,RZ}) Qij

N
) exXp (—ANZRZ
) (15)

As each step modifies only one element, the sampled matrices are highly correlated.84 So
we only considered the matrices sampled every 50 steps for uncertainty estimation. We
recomputed the MFPT obtained from them using Eq. 7 and calculated mean and 95%
confidence intervals for all MMVT simulations.

For M-WEM simulations, estimating errors using non-reversible element exchange
MonteCarlo can be difficult. The expression for paccept (Eq. 15) has exponential dependence
on the number of transitions N;jand number of trajectories reflected from milestone i (N;). In
the case of MMVT simulations all such transitions have equal weight, unlike in M-WEM where
the weights of transiting trajectories can vary to a large extent, often over many orders of
magnitude. So using the expression in Eq. 15, which counts all transitions with equal
importance, one is unable to sample the ensemble of transition matrices accurately in our M-
WEM approach. For each observable (MFPT, free energy, etc.), we computed its estimate over
an M-WEM simulation of increasing number of total iterations for each cell. We then compute
the mean and 95% confidence interval of the sampled observables after the simulation is
converged. The uncertainties obtained using this procedure capture the effect of the
fluctuations of an observable around the mean after the simulation has converged. Such
approach is commonly used in the literature to compute the error estimates of free energy
profiles, as discussed, for example, in our previous work Ref.8> A more elaborate version of
this technique is called block averaging,8 which is a statistically rigorous way to compute
error estimates in molecular dynamics simulations.8”

Specific details of error analysis for each test system is mentioned in the Computational

Methods section. For the M-WEM technique, the derivation of a more rigorous approach for
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error analysis, similar to the one described in Eqgs. (13) - (15) will be addressed in future

work.

Efficiency Analysis

Because of the difference in the uncertainties of the measured values from different methods,
a direct comparison between the simulation time or convergence time may not always
correctly represent the relative efficiency between different approaches. To address this
issue, we used the algorithmic efficiency metric, , which takes into account the variance of

the data apart from the total simulation time.”4 This metric is evaluated as:

A 2
=(-—) N
! (AA) ’ (16)

where A is the measured quantity and AA is the uncertainty of the measurement. Nsis the
number of force evaluations performed to calculate A (although it can be thought of as the
simulation time if expressed in units of time instead of time steps). In brief, n=1is the number
of force evaluations required to measure our observable A with an uncertainty equal to its
mean.!® The lower the value of 71, the better the efficiency. For the first two systems, the
Muller-Brown potential and the alanine dipeptide, we reported the value of -1 where we
calculated the error bars from multiple runs. We did not report n-1! for each individual run
because the error of MMVT calculations, computed using Bayesian analysis, and the error
bars of the M-WEM approach computed from averaging over iterations are not directly
comparable. For the same reason, we do not report an algorithmic efficiency for the trypsin-

benzamidine system, for which n will also depend on the quantity we are measuring.
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Calculation of kefrand kon

For the protein-ligand binding problem considered in this paper, we computed the unbinding

rate constant (Kotf) as

ko = —
= (17)

where 7 is the ligand residence time, which is equivalent to the MFPT of transitioning from
the bound state milestone to the unbound state milestone, and which, in turn, can be
computed from the milestoning or M-WEM framework described above.

We noted in our previous work that the ligand-binding kinetics is often diffusion
dominant.”® So the rate determining step can be the arrival of the ligand on the outermost
milestone surface, rather than going from the outermost milestone to the binding pocket.
(Whether this is true, for a specific system, should be carefully evaluated on a case-by-case
basis.) In our previous work, we delineated an analytical method to combine diffusion theory
with milestoning transition kernel integration to compute the binding rate constant kon.”® We
begin with the expression of the diffusion-dependent arrival rate of a small molecule on the

surface of a sphere of radius r:88

k(r) = 4nDr (18)

where D is the diffusion constant of the ligand in water. We make two modifications to this
expression. First, we assume that the only conformations that can lead to binding are in the
space explored by the ligand in the outermost milestone. So we scale the rate by the surface
coverage factor a. The concept of coverage factor has been described more elaborately in our
previous work.”¢ To mention it only briefly here, a is the fraction of the surface area of the
outermost milestone interface that is accessible to the ligand. Details of the calculation of a

in this work are slightly different from our previous work. Instead of performing a
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MonteCarlo simulation, here we create a 2D grid on the interface of the outermost milestone
based on the solid angles. Then we calculate how many of those bins are occupied by the
center of mass of the ligand in the outermost milestoning cell. The coverage factor a is then

computed as

B Z A9A¢ sin 95000(97 Qb)
o= i (19)

where 60cc(6,¢) = 1, if the surface element AGA¢ contains the angular coordinate of the ligand,
and zero otherwise.

Second, we consider that a ligand can only reach the bound state if it moves towards the
protein from the outermost milestone surface. So we further scale the arrival rate by Ky u-1,
the transition probability of going from the last (Mth) milestone to the previous milestone.
But as the transitional kernel is not directly available in the current Markovian milestoning
framework, we compute this inward transition probability from the N matrix.

N
Nuyv—1 + Naarga (20)

Kyp—1 =

As Nuu+1becomes undefined when M is the last milestone, we perform this analysis with the
last but one milestone. Including these factors, the flux of binding trajectories through that

milestone becomes

k(r) = 4nDraKuu-1, (21)

from which kon is calculated in M-1s-1 units by multiplying the flux with Avogadro’s number

Nav

kon = 47TDT'Q’KM,M—1Nav
(22)
=7.569 x 1013DraKmm-1
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In the last step we used the diffusion constant of small molecule in cm? s~ unit and the ris

provided in °A.

Reconstruction of free energy landscape

The trajectories confined in the different Voronoi cells can be used to construct a higher
dimensional free energy landscape, both for Markovian milestoning and M-WEM simulations.
The trajectory data is first histogrammed in appropriate collective variables to obtain
different independent histograms for each individual cell A. A weighted sum of these
histograms are then performed to obtain the equilibrium high dimensional probability

distribution

A
p(R) = Zﬂ'apa(R)
a=1 , (23)

where p(R) is the probability density along the collective variable space R, and p*(R) is the
same obtained from the histogram only in the cell a. In case of M-WEM the p?(R) is obtained

from multiple (M) trajectories of different weights as:

M« p*(R) =
Xwips(R)
J=1
(24)
A Me

p(R) = X X wypy(R), =1 =1

where p%(R) is the histogram of the Jth trajectory in cell a in the CV space R. The free energy

landscape is then reconstructed using,

G(R) = —ksT In(p(R)). (25)
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We demonstrate this approach for alanine dipeptide in the Results section.

Committor

The committor of a point in a conformational space is the probability of a trajectory starting

from that point to reach the final state before visiting the initial state.8? Recent work by

Elberetal. established that it is possible to calculate the committor at the milestone
interfaces.#® But, to the best of our knowledge, such approach has not been applied to
Markovian milestoning techniques so far. We performed the committor calculation in the
following way. First, we constructed a transition kernel (K), equivalent to conventional

milestoning, from the N matrix:

7 (26)
The transition kernel K is then modified with a boundary condition which ensures that the
flux through the final state will remain “absorbed” there and will not return to the previous
milestones. This is achieved by replacing the last row of the K matrix with zeros, except
for the element corresponding to the last milestone for which the value is one.#320For a three-

milestone model, this can be illustrated as:

0 Kiz O 0 Kz O
K=00K2z1 0 K@l ->Kc=00Kx 0 K300 (27)
0 Kz O 0 0 1

The vector containing the committor values of each milestone, C, is then calculated as:

C=1lim (Kc)"ep (28) n—oo
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where ep is a unit vector, all elements of which, are zero except for the one corresponding to
the final milestone. Multiple powers of K¢ are computed numerically until the committor
converges. The results are considered to be converged when the change in the norm of the C

vector to be less than 10-3.

Computational Methods

We tested the Markovian Weighted Ensemble Milestoning approach on a toy model system
of 2D Mu'ller-Brown potential, conformational transition in alanine dipeptide and on the
millisecond timescale protein-ligand unbinding in the trypsin-benzamidine system. In the
first two systems, we performed long equilibrium simulation and Markovian milestoning

simulation to compare with our M-WEM results.

Mu'ller-Brown Potential

The two-dimensional Mu'ller-Brown potential®! is defined as

4
Ulz,y) =h Z A explai(z — 20,)* + bi(x — 20.:)(y — yo.1) + iy — yoa)?
i=1 ] (29)

where 4 € {-200,-100,-170,15}, a € {-1,-1,-6.5,0.7}, b € {0,0,11,0.6}, c € {-10,-10,-6.5,0.7}, xo €
{1,0,-0.5,-1}, yo € {0,0.5,1.5,1}, and h = 0.04. This system has a non-linear transition path with barrier
height about 4.5 kgT. For the purpose of this model, we set kzT = 1.

To obtain a benchmark of the kinetics, a long overdamped Langevin dynamics simulation
was propagated starting from (x,y) = (-0.5,1.5), which corresponds to the minimum A4 in
Figure 2. The minimum B is chosen to be the target state. The simulation was propagated for

107 time steps, capturing 347 back and forth transitions. The free energy landscape obtained
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from this equilibrium trajectory is depicted in Figure 2. The mean first passage time (MFPT)
to go from minima A to B is depicted in Table 1.

For milestoning simulations, 8 milestones are placed at y = {-0.3,0.0,0.3,0.6,0.9,1.2,1.5,1.8} at
equal intervals. The reaction coordinate is chosen to be parallel to the y axis. This poor choice of
RC was made intentionally to represent realistic situations where the arbitrarily chosen empirical
RCs are used to study complex biomolecular processes with many coupled degrees of freedom.
MFPTs were computed for transition from y = 1.5 to y = 0.0 for both the milestoning based
methods.

For Markovian milestoning (MMVT) simulations, an overdamped Langevin dynamics
simulation is propagated in 2D in all the seven cells in the spacing between 8 milestones.

A half-harmonic wall is applied at both ends of the cell (milestones) with a force constant
ek = 1000, to confine the trajectories within the cell. Each simulation is propagated for 1.5 x
106 steps in each cell. Transition statistics between each milestone pair is computed using
the method described in theory section, and the MFPT has been computed.

For the M-WEM method, the procedure remained identical to the MMVT approach, except
weighted ensemble simulation was performed in between the milestone interfaces as
opposed to conventional dynamics. The 2D adaptive binning (MAB)35 was employed along x
and y directions with 5 bins per dimension with 4 trajectory segments per bin. This led to 33
bins in total, including the additional bins in each direction for the most forward, backward
and the bottleneck trajectories.3> A total of 300 iterations of WE simulation are performed in
each cell, with a recycling interval of 10 steps. The transition rate matrices and
MFPTs were computed every 10 iterations of WE simulation in each cell between iteration
260 and 300. The mean and error estimates were performed on the 5 sampled data points

for the MFPT values between iteration 260 and 300.
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Alanine Dipeptide

The conformational transition of alanine dipeptide was simulated in the gas phase. The
system was set up following the protocol described by Wei and Elber.#° The 22-atom system
is modelled using the CHARMM22 force field®2 with a 10 °A cut-off distance for the inter-
atomic interactions. A time step of 0.5 fs was used and all the bonds between heavy atoms
and hydrogen were constrained using the SHAKE algorithm.?3 All simulations were
performed using the NAMD 2.13 package®* with the colvars?> module. The conformational
change can be described adequately in the 2D coarse space of two backbone torsion angles
@ and W. Half harmonic walls with a mild force constant (0.04 kcal mol-1deg-2) are placed at
the value of +175 for both the ® and W angles to avoid transitions along the edges of the free
energy surface (i.e., to remove periodicity).#° This will ensure that we observe the transition
along the center of the free energy map.
The barrier height for the conformational transition of gas-phase alanine dipeptide is very
high (> 10 kcal/mol) and it is very difficult to observe direct transitions at room
temperature. Following the earlier work#*® we performed the simulations at 600K
temperature which allowed us to sample 285 transitions between the two free energy
minima in 500 ns equilibrium simulation.
For both MMVT and M-WEM simulation, the reaction coordinate was chosen to be the ®
dihedral angle and milestones were placed at ® = -80¢, -60°, -40°, -20¢, 0°, 20, 40°, 60°, and
809. The initial and final states were chosen to be the milestones at @ = -80°and ® = 60°. In
case of MMVT simulation, 5 ns of conventional MD simulation was propagated in each cell
confined between the two consecutive milestones, leading to a total computational effort of
40 ns. (The trajectories were extended to 10 ns with no difference in results. So the
result of 5 ns simulation is reported). A force constant of 4 kcal mol-1 deg-2 were applied in
the harmonic walls placed at the milestones, to confine the trajectories in between the

milestones. The portion of the trajectories outside the cell has been removed prior to further
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analysis.

In case of M-WEM simulations, 5 WE bins were placed for each cell in ® and ¥ coordinates
leading up to 33 bins in total including separate bins for the forward, backward and the
bottleneck trajectories. Four trajectory segments were propagated in each occupied bin. The
progress coordinate values were recorded at very frequent interval (10 fs) to record the time
of milestone crossings as accurately as possible. A total of 100 iterations of WE simulation
are performed in each cell, with a recycling time of 1 ps. The transition rate matrices and
MFPTs were computed every 2 iterations of WE simulation in each cell between iteration 2
and 10 and every 10 iterations between iteration 10 and 100, to monitor the convergence of
the results. The convergence plots and related discussion is provided in the supporting
information. The mean and error estimates were performed on the 5 sampled data points for

the MFPT values between iteration 60 and 100.

Trypsin-Benzamidine Complex

The system setup for the trypsin-benzamidine complex is identical to the work by Votapka
etal.50 The structure, parameter and topology files were obtained from the authors of Ref. 50.
We point the reader to their original publication®? for more details. To mention briefly, the
atomic coordinates of the protein-ligand complex were obtained from Protein Data Bank
(PBD) PDB ID: 3PTB.%¢ The protonation states of ASP, GLU and HIS residues were determined
at pH 7.7 which was used in this study to replicate the experimental condition.81 The protein
was modelled using AMBER ff14SB force field°” and Generalized Amber Force Field (GAFF)%8
parameters were used for the ligand. The structure was solvated in a truncated octahedron
box of TIP4Pew?®® water molecules and 8 Cl-ions were added to neutralize the system. Overall
the system contains ~23000 atoms. All MD simulations were performed using NAMD 2.14b2
package®* with a time step of 2 fs. A Langevin integrator with a damping coefficient of 5 ps-1
was used to keep the temperature constant at 298 K. A Langevin piston was used to maintain

the pressure at 1 atm.
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The bound state structure was equilibrated for 10 ns in NPT ensemble. From the end
point of this simulation, the ligand was pulled out of the binding pocket using a 10 ns steered
molecular dynamics (SMD) simulation. The reaction coordinate (RC) description is identical
to previous work,>%i.e. the center of mass distance between the benzamidine ligand and the
Cqatoms of the following residues near the binding pocket: 190,191,192, 195, 213, 215, 216,
219, 220, 224, and 228 (numbered according to PDB: 3PTB). During the SMD simulation, a
moving harmonic restraint of 1 kcal mol-1"A-2 was applied on the RC with a pulling velocity
of ~ 1.5 A/ns. The collective variables were biased and monitored using the colvars
module.?> Representative structures for seeding the milestoning simulations were sampled
from the SMD trajectory.

Concentric spherical milestones were placed at the following values of the RC: 1.0, 1.5,
2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, and 13.0 °A. These values are similar to
previous studies>%64 except for a few additional milestones, as we were unable to observe
energetically uphill transitions otherwise. The separation between milestones should be
such that the transition timescales between one milestone to the other should be larger than
the decay time of the velocity auto-correlation function of the RC. We checked this condition
in our system, as discussed in detail in the Supporting Information.

The following distinction is worth noting at this point. As in Markov State Modeling
(which assumes the formalism of continuous-time Markov chains) the transitions between
conformational macrostates!? are to be Markovian. However, the dynamics inside the
macrostates delimited by the milestones may not necessarily be Markovian, and it is for that
dynamics that we check for the decay of velocity autocorrelation. Milestoning theory is built
upon two key assumptions: the reaction channels are localized and the committor can be
represented as a function of the reaction coordinate only. A sufficient condition to make these
assumptions valid is that the dynamics be overdamped. To ensure this condition, milestones

need to be placed sufficiently far from each other such that the timescale of transitions
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between milestones is higher than the decorrelation time of the velocity along the reaction
coordinate.83

A total of 12 cells were constructed in the spacing between 13 milestones.  For each
cell, a flat bottom potential (Eqn. 1) is applied with a force constant of 100 kcal mol-1
°A-2 for the harmonic walls present at the milestones. First, the representative structure
(sampled from SMD) is equilibrated at the center of the cell for 1 ns by restraining the RC
via a harmonic potential. The force constant was gradually increased to 500 kcal mol-1°A-2
over the first 500 ps and kept constant over the last 500 ps. From the end point of the 1 ns
equilibration Weighted ensemble (WE) simulations were propagated for 300 iterations with
arecycle time 6t of 2 ps. A two-dimensional MAB scheme was used for the binning. The two
progress coordinates were the RC and the RMSD of the ligand with respect to the
representative structure (sampled from SMD) corresponding to the specific cell. The
progress coordinates were recorded using the colvars module.?> The total computational
cost of the M-WEM simulation was approximately 734 ns. The simulation was stopped at
multiple points, at an interval of 10 WE iterations between 30 and 300 iterations for each
cell. For each set, the trajectory traces were computed using which equilibrium probabilities,
free energy profiles and MFPTs between the first milestone (at 1 °A) and the last milestone
(at 13 “A) (residence time) was computed. This allowed us to monitor the convergence of
residence time over the course of the simulation. The unbinding rate constant ko was
calculated as the inverse of residence time. Free energy profile, binding rate constant ko, and
committors were calculated following the procedure described in the Theory section. The
error bars for all quantities were calculated from the last five iterations sampled (i.e.
iteration 160-200 for values reported at iteration 200 and iteration 260-300 for values
reported at iteration 300). Before any calculation, the probabilities of the voronoi cells are
modified (. = 1) to take e into account the Jacobian factor appearing due to the different

surface area of milestones
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~ 2 A 2 . ) .
with different radius: Ta = Tals/ Za TaTo where rqis the radius of the cell @ which we

choose to be the radius of a sphere equidistant from the two milestones surrounding the cell.

Results

Mu'ller-Brown Potential

For the two-dimensional toy model of Mu'ller Brown potential, we performed three
independent trials for both MMVT and M-WEM simulations and the results are presented in
Table 1. The MFPT of the transition from milestone at y = 1.5 to y = 0.0, computed using
MWEM approach, shows quantitative agreement with MFPT of the transition from minimum
A to minimum B in regular overdamped Langevin simulation. The results of MMVT
simulation are off by a factor of ~ 2. Although the simulation time for MMVT and regular MD
were comparable, the M-WEM simulations produced converged results with ~ 4 times less
computational expense. The algorithmic efficiency of M-WEM, on the contrary, is poorer
compared to the MMVT approach because of the larger variance of the MFPTs obtained from

the M-WEM method. Although the computational gain is not significant in case of this
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Figure 2: The free energy landscape of the Mu’ller Brown potential explored using 107 steps
of over-damped Langevin dynamics simulation. The position of the milestones, used in
MMVT and M-WEM calculations, are shown in black lines. The two minima relevant to this
study are marked as A and B.

low dimensional model system, these results serve as a proof of concept of our method in
rare event sampling problem. It also indicates that despite the choice of a poor and simplistic

RC, accurate MFPTs can be calculated using M-WEM method.

Table 1: Results of conventional Langevin dynamics, MMVT and M-WEM simulations for the
Mu’ller Brown potential

Method MFPT Simulation time n1
(x103 steps)
Regular over-damped LD 25.2+2.9 10 0.13
MMVT (trial 1) 12.310.4 10.5 - (x106 steps)
MMVT (trial 2) 13.140.3 10.5 -
(x10° MMVT (trial 3) 13.240.5 10.5 - steps)
M-WEM (trial 1) 2224322 2.6 -
M-WEM (trial 2) 17.3+1.6 2.6 -
M-WEM (trial 3) 28.244.6 2.6 -
M-WEM (average)® 22.6+13.6 - 0.94

aComputed from the three independent trials
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Figure 3: The free energy landscape of the gas phase Alanine dipeptide along the ® and W
torsion angles, from 500ns equilibrium MD simulation. The position of the milestones, used
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in MMVT and M-WEM calculations, are shown in black lines. The two conformations relevant
to this study are marked as A and B.
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Figure 4: The committor values as a function of the milestoning coordinate @ for the Alanine
dipeptide system.

Alanine Dipeptide

Next, we tested the performance of MMVT and M-WEM methods on the conformational
transition of Alanine dipeptide. The results were compared to a 500 ns conventional MD
simulation. The free energy landscape along the @ and W torsion angles for the gas phase
Alanine dipeptide (obtained from equilibrium MD simulation) is shown in Fig. 3. The mean
first passage time (MFPT) of transition from milestone ® = -80° to milestone @ = 60°is in
agreement with the MFPT of transition from free energy minima A to B obtained from long
equilibrium MD simulation (Table 2). The M-WEM results show slightly better agreement,
but the difference is not very significant; in fact, the error bars of the MMVT and M-WEM
simulations obtained from independent runs overlap with each other. Both these methods
produced accurate results within one order of magnitude less computational cost in
comparison to the equilibrium MD. Although the M-WEM simulations took about twice as

much computational effort as the MMVT simulation for full 100 iterations, the MFPT results
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converged as early as in 20-30 iterations (See Supporting Information). Moreover, going
from the 2D model of the Muller potential to the molecular model of alanine dipeptide, we
see a significant improvement of the algorithmic efficiency as the n-! of M-WEM is now
slightly lower than that of MMVT. Nonetheless, both have poorer efficiency than regular; the
latter yields a tighter confidence interval from ~300 transitions, whereas MMVT or M-WEM
uncertainties are estimated from three independent runs.

The committor values at milestone interfaces for all three trials of M-WEM calculation are
depicted in figure 4. The results from different trials are in excellent agreement with each
other and all of them shows a committor value of ~ 0.5 for the milestone at ® = 0°. A
committor value of 0.5 indicates the transition state (TS). The milestone at ® = 0°is indeed
present on top of the free energy barrier aka TS as evident from the free energy landscape in
Fig. 3.

We applied our free energy reconstruction protocol to recover the free energy landscape
along the @ and V¥ degrees of freedom. The crude probability distribution for each cell is

Table 2: Results of conventional MD, MMVT and M-WEM simulations for the Alanine

MMVT trial 2

dipeptide.
Method MFPT Simulation time 71
(ps) (ns) (ns)
Regular MD* 1583+£188 500 7.05
MMVT trial 1 1465+167 40 -
951+13
. MMVT (average)®
M-WEM trial 1 1690+£112 86.4 -
984+8 40 -
11334715 - 15.93
M-WEM trial 2 1290469 84.4 -
M-WEM trial 3 12864123 83.2 -
M-WEM (average)? 1422+576 - 13.78
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?From state A to B in figure 3, not from milestone to milestone.
bComputed from the three independent trials

obtained by histogramming the M-WEM and MMVT simulation data projected on those two
degrees of freedom. This unscaled distribution for individual cells (p*(®,¥)) as obtained
from the M-WEM calculation is shown in figure 5a. Then the true probability distribution
(p(P,¥)) is computed by re-scaling the distributions corresponding to each cell with the

weight of their probabilities obtained using Eq. 3 (Fig. 5b).

A
p(2, W) = map (@,
a=1 ¥) (30)

The summation is over all A cells and 7. is the equilibrium probability of each cell.

a 0.0018 b
150 150
0.0016
>
100 0.0014 =2 100
n
50 0.0012 G 56
o 0.0010 O —~
S o ’ > 2 o
> 0.0008 = =
o)
-50 S -50
0.0006 ©
100 0.0004 8 100
' o
0.0002
-150 -150
0.0000

-100 -75 -50 -25 O 25 50 75 100 -100 -75 -50 -25 O 25 50 75 100
() ()

0.00072

0.00064

ty

0.00056 -

0.00048

0.00040

bility dens

o
o
o
o
w
N

©
0.00024 A
0.00016 ~

Pro

0.00008

0.00000

Figure 5: Reconstruction of equilibrium probability distribution (b) from raw unscaled
probability distribution from M-WEM trajectories in each cell (a).

This rescaled probability distribution is the used to reconstruct the free energy landscape

(G(®P,¥)) for the conformational transition of alanine dipeptide

A
G(P,¥) = —kgTIn Top* (P, U
(@, V) (; P (P, P) 1)

The reconstructed free energy surface for both MMVT and M-WEM simulations are in
excellent agreement with one obtained from 500 ns conventional MD simulation, but

confined only between the initial and final milestone i.e. -80° < ® < 80°. This provides a way
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to study the free energy landscape of orthogonal degrees of freedom, which are coupled with
the RC, but are not taken into consideration while devising the milestoning progress

coordinate.
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Figure 6: (a) Free energy landscape of gas phase alanine dipeptide obtained from equilibrium
MD simulation. (b) Reconstructed free energy landscape from MMVT simulation. (c)
Reconstructed free energy landscape from M-WEM simulation (trial 1). (For a better
comparison the free energy landscape is constructed from M-WEM iteration 40 with
approximately equal amount of total computational cost in comparison to the MMVT
calculation.)

Trypsin-Benzamidine Complex

Finally, we applied the M-WEM approach to calculate the kinetics and free energy for a
protein ligand binding and unbinding problem. We chose the system of trypsin-benzamidine
complex because of primarily two reasons. First, this system is studied extensively using MD
simulations with various enhanced sampling and path sampling methods. Moreover, the
residence time of the ligand is in the millisecond regime, which is beyond the reach of
currently available computational power. Benzamidine is also a very potent ligand, with an
experimental binding affinity (Ks) of 1.2 + 0.1 x 10-5> M.81 This is a challenging enough test
system for the M-WEM method, and can also determine the utility of our approach in

computer aided drug design.

31



The ligand residence time, unbinding rate constant (koff), binding rate constant (kon), and
the binding free energy (AGp) have been computed from M-WEM simulation, and the results
are compared with the SEEKR>0and MMVT SEEKR®*results (which used identical simulation
condition as our work) and also with the experimental data®! (Table 3). All values obtained
from M-WEM are in quantitative agreement with the experimental data.

(We reported two sets of results for M-WEM, one after 200 iterations and another after 300
iterations). The koff value, predicted from M-WEM simulation, is within the error bars of the
experiment and within one order of magnitude of the SEEKR and MMVT SEEKR results. The
same holds for residence time, which is the inverse of kofr. Our kon results are different from
experimental value by a factor of ~ 4-5, while the results of MMVT SEEKR are approximately
one order of magnitude higher. The AG, value computed from M-WEM, as kgT In(Kkott/kon), is
also in excellent agreement with the experimental number (within 1.5 kcal/mol). The error
bars of the M-WEM results and the SEEKR and MMVT SEEKR are not directly comparable
because the are computed differently, as described in the Theory

section.

Table 3: Comparison of the results of the different milestoning based methods for the
trypsinbenzamidine complex. (Number of iterations of M-WEM simulation are shown in
parenthe-

ses.)
Experiment
SEEKR
MMVT SEEKR
MMVT SEEKR
M-WEM (200)“ 1.26+0.32 7914197 0.53+0.08 -5.240.16 ~0.48
M-WEM (300)“ 1.30£0.44 7691261 0.76+0.38 -5.540.37 ~0.73
Method Residence time Kot kon AGp Simulation time
(ms) (s-1) (x107 M-15s-1) (kcal/mol) (us)

811.7 600+300 2.9 -6.7+0.055012 83+14 2.1+0.3 -7.4+0.10 ~19
645.6 174+9 12+£0.5 -7.9+0.04 ~4.4 6416 626 17+1.0 -8.8+0.07 ~2.9
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aError bars are computed from the last 5 iterations sampled.

The convergence patterns of the residence time and kofrare depicted in Fig. 7. Both these
values converged after about 150 iterations (~ 360 ns of total simulation time) except for
small fluctuations. The koffis computed indirectly as the inverse of residence time, which is
directly obtained from M-WEM. So small fluctuations in the residence time get amplified in
the kofrresults in Fig. 7a. The computational cost of the M-WEM simulation is ~ 1 order of
magnitude less than the other milestoning-based approaches®%¢4and the results are in better
agreement with the experiment. Our kogfresults are also closer to the experimental numbers
in comparison to other methods used by Buch et al. ((9.5+£3.3)x10% s-1),77 Plattner et al.
((1.31+1.09)x10%s1),78 Tiwary et al. (9.1+2.5 s71),7° Brotzakis et al. (4176+324 s~1)101 and
Teo et al. (260+240 s71);80 all these studies required multiple microseconds of simulation
with some in the range of 50 us - 100 us.””78 A weighted ensemble-based approach has also
been used to calculate the kinetics of this system by Dickson and Lotz (kotr= 5555 s71)3% and
Donyapour et al. (koft= 266 s~1and 840 s-1).32 But, unlike M-WEM, that method could only
calculate the unbinding rate constant and dissociation pathways due to the use of non-
equilibrium steady state. To their credit, the authors could distinguish multiple ligand
release pathways,38 which is difficult to achieve using milestoning-based simulations with
discontinuous trajectories. Nevertheless, we tried to identify some key intermediates in the
unbinding mechanism; we discuss them later in this paper.

A one-dimensional free energy profile as a function of the milestoning reaction coordinate
is constructed from the equilibrium probabilities (7,) obtained from the M-WEM simulation
using Eq. 4. Alongside, a one dimensional free energy profile is reconstructed from the
MWEM trajectories following as described in the Theory section. Error bars in the free energy
landscape are computed as the 95% confidence interval of the free energy profiles obtained
between iteration 160 and 200 with an interval of 10 iterations. The two free energy profiles

obtained from M-WEM using the two different techniques agree with each other and both
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are in reasonable agreement with the free energy surface obtained using well tempered

metaeABF (WTM-eABF) simulation192103 (see Supporting Information for details).
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Figure 7: The convergence of (a) kofrand (b) ligand residence time for trypsin-benzamidine
complex, as a function of M-WEM iterations. In figure (b) a linear scale is used for a better
idea of the quality of the convergence.
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Figure 8: Free energy profile of the dissociation of the trypsin-benzamidine complex as a
function of the milestoning reaction coordinate (the center of mass distance between the
binding pocket residues and the benzamidine ligand. See Computational Methods section for
details.) The results are compared between WTM-eABF simulation and the M-WEM
calculation after iteration 200.

The committor values as a function of the milestoning reaction coordinate were
computed and are indicated in Fig. 9. The results do not show much variation between 200
iterations and 300 iterations, both of which indicate that the transition state (committor =

0.5) is located between the milestones at 6 °A and 8 °A.
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Figure 9: Committor values computed as a function of the milestoning reaction coordinate
for the M-WEM simulation of the trypsin-benzamidine complex.

The distribution of the ligand around the protein for three cells (bound state, unbound
state and the cell containing the TS) is depicted in Fig. 10. It shows the amount of
threedimensional space explored by the ligand during the unbinding process. A two-
dimensional projection of the ligand distribution for all cells is shown in Fig. 11. The fraction
of the spherical surface covered by the ligand in the outermost cell (a) is used for the
calculation of kon, as described in the Theory section. The increase in the exploration of the
configuration space after 300 iterations in comparison to 200 iterations is small.

To get an idea of the intermediate states involved in the protein-ligand interaction, we
clustered all the trajectory frames corresponding to each cell based on heavy-atom RMSD.

The number of frames in each cell ranged between ~ 26,000-30,000, with one frame every
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rF=10—15A r=6.0—8.0A r=12.0—-13.0A
committor ~ 0.0 committor =~ 0.4 — 0.7 committor ~ 1.0

Figure 10: The distribution of the benzamidine ligand around the trypsin protein for three
cells of the M-WEM simulations which, respectively, include : (a) the bound state, (b) an
apparent transition state with committor value ~ 0.5, and (c) the unbound state.

Figure 11: Two dimensional projection of the distribution of the ligands around the trypsin
protein for (a) after M-WEM iteration 200 and (b) after iteration 300. The different colors
represents structures from M-WEM simulations confined in different cells. The surface
coverage a, used in the kon calculation is also depicted in figure (a). For kon calculation we
assumed that the green trajectories can lead to binding events but the red trajectories cannot.
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2 ps (the length of each WE segment). The clustering of the structures was performed using
the GROMOS clustering algorithm%4 implemented in GROMACS v2018.110> with an RMSD
cutoff of 0.9 °A. The cut-off was chosen such that the total number of clusters is between 10
and 40. All the cluster centers obtained from different cells were combined together and a
second round of clustering is performed with an RMSD cutoff of 1.1 °A. This resulted in 14
clusters, some of which are depicted in Fig. 12. The structures are in qualitative agreement
with the meta-stable states observed by Tiwary et al.”? and Brotzakis et al., 101 despite their
use of a different enhanced sampling method and of a different version of the AMBER force
field in the former study. Particularly, both our study and the work of Tiwary et al. show the
presence of a meta-stable state in which the benzamidine is aligned in a reverse direction
(the charged groups facing the aqueous environment and the hydrophobic ring facing the

protein). A PDB file with all the clusters is provided in the Supporting Information.

Discussions and Conclusions

We developed a new path sampling approach which combines Markovian milestoning with
a weighted ensemble scheme to efficiently calculate the kinetics and free energy of rare
events using atomistic MD simulations. This method, which we call Markovian Weighted
Ensemble Milestoning (M-WEM), has been applied to study the barrier crossing in a 2D toy
system using the Mu’ller-Brown potential, a conformational transition in alanine dipeptide,
and, most importantly, to the dissociation and association of the trypsin-benzamidine
complex, which has a millisecond scale residence time. For the Mu'ller-Brown potential and
the alanine dipeptide systems, the mean first passage time (MFPT) of conformational
transition obtained from long equilibrium simulation was quantitatively reproduced by the
M-WEM method at significantly lower computational cost. In the case of alanine dipeptide,

we showed how one can also reproduce the two-dimensional free energy landscape as a
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function of two backbone torsion angles from one dimensional M-WEM and Markovian

milestoning simulation, using a

C191

Figure 12: Representative structures sampled from clustering of the M-WEM trajectories of
the binding/unbinding of trypsin-benzamidine complex. The ligand and the residues
interacting with the ligand are shown in licorice. Hydrogen bonds between protein and
ligand are shown in dashed line.

free energy re-scaling strategy based on the equilibrium probabilities of each milestone. This
approach can be generalized to any other collective variables other than the milestoning
coordinate, and can potentially elucidate the role of coupled orthogonal degrees of freedom
in complex biophysical systems.

For the trypsin-benzamidine complex, the ligand residence time, koft, kon, and the binding

free energy could be computed using the M-WEM method in about one order of magnitude
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less computational cost than the Markovian Milestoning based MMVT simulation, and 1-3
orders of magnitude less computational effort compared to other approaches previously
used to study this system such as Markov state modeling, metadynamics, adaptive multilevel
splitting, weighted ensemble, and traditional milestoning. Our results are in good agreement
with the experimental data available for this system.

A key advantage of the M-WEM method is its simple workflow, which essentially requires
the user to perform weighted ensemble simulation under flat bottom restraints. This is easy
to implement in any simulation engine using an open-access weighted ensemble code such
as WESTPA. We implemented M-WEM using the NAMD simulation engine and the WESTPA
toolkit. Our implementation uses a minimal adaptive binning (MAB) scheme, which allows
for the adaptation of the WE bins throughout the simulation to increase sampling in high
energy regions. Consequently, it does not require preexisting knowledge of the energy
landscape and can efficiently sample all possible transitions between milestone interfaces.
Moreover, in contrast to traditional milestoning approaches, M-WEM (or Markovian
milestoning in general) it does not require additional simulation (e.g. umbrella sampling)
along the milestone interface to sample starting structures, a process which accounts for the
majority of the total computational effort. In our previous work, we attempted to replace this
expensive additional step using a weighted ensemble restrain-and-release scheme.’® The
Markovian milestoning technique completely removes this step as the trajectory, confined
between two milestones, explores by itself the configurational space orthogonal to the
milestoning coordinate. In the M-WEM approach, we accelerated this “orthogonal sampling”,
by using 2D WE bins along two progress coordinates: the milestoning reaction coordinate
(to accelerate milestone-to-milestone transitions) and also in another coordinate along the
milestone interface. Due to dimensionality scaling, the advantage of the M-WEM over
traditional Markovian milestoning is more pronounced in the case of trypsin-benzamidine

complex, where results, in better agreement with the experiment, could be obtained using

40



M-WEM simulation within a fraction of the computational cost of MMVT SEEKR calculations
on the same system. Also, the M-WEM protocol does not need to stop the trajectory at
milestone interfaces, avoiding frequent intervention to the dynamics engine, and therefore
making it more efficient to implement in GPU-based hardware.

Apart from these unique achievements, M-WEM also shares some common advantages
with our previously-developed WEM methodology. They include the possibility of massively
parallelizing the simulations over each milestone, which will be even more pronounced in
the current implementation, as MAB binning has been shown to utilize GPU-based hardware
more efficiently than the traditional fixed-binning scheme we used in our earlier work. The
convergence of the transition statistics in-between milestones is also quicker in M-WEM in
comparison to MMVT, as evident from the results for the trypsin-benzamidine complex. We
also show that a relatively crude reaction coordinate is capable of producing accurate
kinetics, particularly in the cases of the Mu'ller-Brown potential and the alanine dipeptide
model.

The M-WEM approach, being a combination of two fairly complex path sampling methods,
inherits all the assumption from each of the individual techniques. Similar to MMVT, M-WEM
also requires the milestones to be sufficiently far apart so that the transitions be-
tween them are independent of the transitions from other milestones.#283 [t also assumes a
complete exploration of the configurational space in the milestone hypersurface. Although
the weighted ensemble approach is invoked to satisfy these assumptions at a lower
computational cost, it comes with additional assumptions inherited from the WE scheme. For
example, each individual trajectory trace contributes independently towards the transition
statistics despite sharing a significant portion of its propagation history.?0 Additionally, due
to the use of a stochastic integrator the timscales obtained from the M-WEM simulations can

be dependent on the damping coefficent (y) of the Langevin dynamics.?4#1% However, Hall et
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al. have shown that y has little effect on ligand residence times obtained from explicit solvent
simulation as long as y > 0.1 ps~1.196 Qur choice of y = 5 ps~! was motivated by
previous milestoning and MMVT work on trypsin-benzamidine,>%¢4 and also by the fact that

ayof 5 ps~1reproduces the experimental diffusion constant of water most accurately.107

A recent study using the MMVT SEEKR approach has predicted the ko of
trypsinbenzamidine complex to be 990+70 s-1,108 3 value that is relatively closer to the
experimental number compared to the previous result of 62+6 s-1 (Table 3). However, the
fact that a virtually identical simulation scheme can produce results that are more than one
order of magnitude apart clearly shows the high level of uncertainty involved in the
milestoning approach. So, despite having a better agreement with the experimental value
compared to some previous studies, the order-of-magnitude agreement of koff remains the
key achievement of the M-WEM approach.

One of the limitations of the current implementation of M-WEM is the use of an analytical
approach to compute the binding rate constant. The alternative is to use a multiscale
Brownian dynamics (BD) approach,59°664 which is more rigorous but more computationally
expensive. However, BD methods allow us to include the effect of position-dependent
variation of the diffusion constant, as well as of the ionic strength of the solution, both of
which are absent in our current implementation.

Our M-WEM method can find application in studying the kinetics and free energy of
biomolecular rare events not only for the purpose of fundamental understanding of
biological processes, but also for kinetics-driven computer aided drug design. Evidence has
emerged over the past decade showing that the efficacy of a small molecule therapeutic drug
is more
correlated with the residence time than with the binding affinity.8° Yet, the majority of the
drug design effort in the pharmaceutical industry is based on binding free energy; among

other things, this is because it is easier to compute than kinetics. The M-WEM approach is a
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cheap alternative to computationally expensive traditional enhanced sampling and to path
sampling methods, and can be included in a computational drug design pipeline using both
binding free energy and kinetics. In the future, we plan to test this method on proteinligand
systems with longer residence time, e.g.,in the range of minutes to hours, a time frame more
characteristic of the drug molecules used in practical application. The increased sampling of
orthogonal coordinates in M-WEM can also facilitate the study of systems where a protein
conformational change is coupled to a ligand-binding coordinate. Overall, our novel
Markovian Weighted Ensemble Milestoning approach is expected to be successful in
predicting the free energy and kinetics of biophysical rare events with quantitative accuracy,
and it holds the potential of becoming a useful tool in the large-scale computational screening

of therapeutic drugs.
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