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Abstract—We provide a practical implementation of the rubber
method of Ahlswede et al. for binary channels. The idea is to
create the “skeleton” sequence therein via an arithmetic decoder
designed for a particular k-th order Markov chain. For the
stochastic binary symmetric channel, we show that the scheme
is nearly optimal in a strong sense for certain parameters. A
byproduct of the analysis is a strict enlargement of the rates for
which the sphere-packing bound is known to be achievable with
feedback for this channel.

I. INTRODUCTION

We consider the binary symmteric channel with ideal feed-

back, both in its stochastic- and adversarial-noise forms. In the

former, each bit is flipped independently with some probability

p. In the latter, an omniscient adversary can flip up to a fraction

f of the bits in order to disrupt the communication.

The information-theoretic limits for both forms of the

channel, assuming perfect feedback, are well-known. In the

adversarial case, the capacity as a function of f was de-

termined by Zigangirov [1], building on earlier results of

Berlekamp [2], [3]. For the stochastic version, the capacity

equals that of the non-feedback version (e.g., [4], [5]) and

likewise the high-rate error exponent, normal approximation,

and moderate deviations performance are all unimproved by

feedback. In fact, the third-order coding rate is unimproved

by feedback [6], as is the order of the optimal “pre-factor” in

front of the error exponent at high rates. Thus, at least for the

stochastic version of the channel, feedback offers very little

improvement in coding performance.

In general, feedback is known to simplify the coding prob-

lem even if it does not provide for improved performance. The

erasure (e.g., [7, Section 17.1]), Gaussian channels [8], [9]

provide striking examples of this phenomenon. For the BSC,

see [10], [11] for classical and [12], [13] for recent work on

devising implementable schemes using feedback.

For the adversarial symmetric channel with feedback (and

arbitrary, finite alphabet size), Ahlswede et al. [14] proposed

an explicit scheme called the rubber method. In the binary

case, for a fixed ℓ > 2, the message is encoded as a “skeleton”

string containing no substring of ℓ consecutive zeros. The

encoder then transmits this string, sending ℓ consecutive

zeros to indicate that an error has occurred. For each ℓ, this

scheme achieves the capacity of the adversarial channel for

a certain choice of f . This scheme simplifies significantly

the original achievability argument of Berlekamp [2]. For

ternary and larger alphabets, the scheme is even simpler.

The rubber method has since been generalized [15]–[17]. See

the survey [18] for applications and different versions of the

rubber method. However, the rubber coding method does not

specify an explicit way to map the message sequences to

skeleton sequences, which makes it unimplementable. The

classical schemes of Berlekamp [2] and Schalkwijk [11] are

not amenable to direct implementation, either.

Our Contribution We only consider the binary case in this

paper, and we make three contributions. The first is to propose

the use of arithmetic coding applied to a particular Markov

chain in order to efficiently encode the message sequence into

the corresponding skeleton string. This results in a practically-

implementable end-to-end scheme, with only a negligible rate

penalty. Our coding scheme is universal, i.e., the encoder

does not require knowledge of the cross-over probability p.

Moreover, it works in a streaming manner: the encoder does

not need the entire message to begin encoding. The second

contribution is showing that, for each ℓ, there is a special

rate R∗
ℓ and crossover probability pℓ such that the resulting

scheme is optimal with respect to the second-order coding

rate and moderate deviations performance for the channel with

crossover probability pℓ and error-exponent optimal at rate R∗
ℓ

for all channels with crossover probability less than pℓ. We

also consider the third-order coding rate and the “pre-factor”

of the error exponent of the scheme. These turn out to be

nearly, but not exactly optimal. See Section V for details.Our

scheme has stronger optimality guarantees than Horstein [10]

and Li and El Gamal [19], although these schemes are more

general. The third contribution is that we strictly enlarge the

set of rates for which the sphere-packing bound is known to

be achievable for the BSC with feedback.

Technical Overview. We implement the rubber coding

method by using arithmetic decoding to construct skeleton

sequences from the message bits. This is accomplished by

characterizing a Markov chain that places a uniform distribu-

tion over the set of skeleton sequences. We then characterize

the performance of this scheme in the error exponent, moderate

deviations, and normal approximation regimes.

In Section II we introduce our notation and provide various

preliminaries. In Section III we characterize the relevant

Markov chain. In Section IV we describe our coding scheme.

In Section V we present our main results. The proofs are

omitted due to space constraints, but are available in the full

version [20].
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II. NOTATION AND PRELIMINARIES

Capital letters such as X or Y denote random variables. We

use xn to denote the first n bits of the sequence x1, . . . , xn,

and we use z‖z′ to denote the concatenation of two strings

z and z′. In addition, ⌊xN⌋L denotes the truncation of xN to

the first L bits.

We use Bin(n, p) to denote the binomial distribution with

size n and success probability p and N (µ, σ2) to denote the

normal distribution with mean µ and variance σ2. Moreover,

B(p) denotes the Bernoulli distribution with success prob-

ability p. We use D(P‖Q) to denote the Kullback-Leibler

divergence between distribution P and Q.

A. The Channel Model

Let BSC(p) denote a binary symmetric channel with cross-

over probability p ∈ (0, 1
2 ) without feedback. That is, BSC(p)

has input alphabet X = {0, 1} and output alphabet Y = {0, 1},

and probability transition matrix

p(y|x) =
(
1− p p
p 1− p

)
.

Suppose that an encoder wishes to send a message m in a

message space M through BSC(p). It first encodes the mes-

sage m using an encoding function f , and sends xN = f(m)
through the channel. The decoder, upon receiving yN from the

channel, runs a decoding function g on yN to obtain m′. The

pair (f, g) is called a code CN,R with block length N and rate

R = log |M|
N

. The (average) error probability of a code CN,R

is defined as Pe(CN,R) :=
1

|M|
∑

m∈M Pr[m′ 6= m].
The capacity of BSC(p) is well-known to be

C(BSC(p)) = 1− h(p),

where h(·) = −p log p−(1−p) log(1−p) is the binary entropy

function, and the log is base-2 throughout.

We will also consider the adversarial binary symmetric

channel BSCadv(f) in which at most f fraction of transmitted

bits can be adversarially flipped.

Feedback allows the encoder to see exactly what the decoder

receives after each transmission and update its next transmis-

sion accordingly. In the BSC with feedback, which we denote

as BSC
fb(p), the encoding function f consists of a sequence

of maps {fi}Ni=1. Each fi takes as input m, y1, . . . , yi−1, and

outputs xi, the next bit to send. The decoder then runs g(yN )
to obtain m′.

It is well-known that feedback does not improve the channel

capacity:

C(BSCfb(p)) = 1− h(p).

For the adversarial feedback BSC channel BSC
fb
adv(f), an

upper bound on the capacity was first shown by Berlekamp

[2]. He also gives a lower bound that coincides with the upper

bound when f ≥ 3−
√
5

4 . A lower bound that coincides with

the upper bound for f < 3−
√
5

4 was given by Zigangirov [1],

thus determining the capacity for BSC
fb
adv(f):

C(BSCfb
adv(f)) =

{
1− h(f) if 0 ≤ f ≤ 3−

√
5

4 ,

(1− 3f) log 1+
√
5

2 if 3−
√
5

4 < f ≤ 1.

0 3−
√
5

4

1
3

1
2

1

p

R

Capacity for BSCfb(p)

Capacity for BSC
fb
adv(p)

Fig. 1: Capacity for BSC with feedback and adversarial BSC

with feedback.

We say that a code C for the BSC
fb
adv(f) is admissible if

C can correct any error pattern with error fraction at most f .

We say that a sequence of codes {CN,R}N for BSC
fb(p) is

admissible if the error probability Pe(CN,R) tends to 0 as N
goes to infinity.

B. Markov Chains

Definition 1. A discrete stochastic process {Xi} is said to be

an (ℓ− 1)-th order Markov chain if for any i,

Pr[Xi = xi|X1 = x1, . . . , Xi−1 = xi−1]

=Pr[Xi = xi|Xi−ℓ+1 = xi−ℓ+1, . . . , Xi−1 = xi−1],

for all x1, . . . , xi ∈ X .

C. Rubber Method

Here we briefly present the rubber method for BSC
fb
adv(f)

[14]. Let AN ′

ℓ denote the set of binary sequences of length

N ′ with no ℓ consecutive zeros. Such sequences are called

skeleton sequences. The sender chooses a skeleton sequence

xN ′ ∈ AN ′

ℓ and the decoder’s goal is to recover that sequence

correctly. The idea is that the encoder can use ℓ consecutive

zeros to signal an error. Specifically, we have

• Decoding gR: the decoder maintains a stack of received

bits, which begins empty. Whenever the decoder receives

a bit, it inserts the received bit onto the stack and checks

if there are consecutive ℓ zeros in the stack. If yes, it

removes these ℓ zeros as well as the bit before these

consecutive ℓ zeros from the stack. Finally, it truncates

the output to N ′ bits.

• Encoding fR: if the decoder’s current stack is a prefix of

xN ′

, then send the next bit in xN ′

. Otherwise send a 0.

If xN ′

has been sent in its entirety, then send 1 for all

remaining time steps.
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Example 9. Consider the case ℓ = 2. That is, we forbid

two consecutive zeros in the skeleton sequence. Then the

characteristic polynomial is λ2−λ−1 = 0. The two roots are

λ1 = 1+
√
5

2 and λ2 = 1−
√
5

2 respectively. The initial condition

is Aℓ(1) = 2, Aℓ(2) = 3. Therefore Aℓ(N) = k1λ
N
1 + k2λ

N
2

where k1 = 3+
√
5

2
√
5

, k2 =
√
5−3
2
√
5

. See also [4, Ex. 4.7]

IV. A PRACTICAL CODING SCHEME

In this section we combine arithmetic coding and the rubber

method to give an efficient feedback code for BSC
fb
adv(f) and

BSC
fb(p). First we describe a modified version of arithmetic

coding that will be used in our scheme. Consider the following

pair of algorithms (Decomℓ,Comℓ):

Algorithm 10. (Decomℓ,Comℓ)
Let L = ⌈log |AN

ℓ |⌉. Let {Xi}Ni=1 be a stochastic pro-

cess that is uniformly distributed over AN
ℓ . Let (AC , AD)

where AC : AN
ℓ 7→ {0, 1}L+1 and AD : {0, 1}L+1 7→

AN
ℓ ∪ {⊥} be the compression and decompression algo-

rithms for arithmetic coding applied to {Xi}Ni=1, where

the decompressor outputs ⊥ if its input is not a valid

codeword. Let L′ be any integer such that L′ ≤ L− 3.

Decomℓ(m) : {0, 1}L′ 7→ AN
ℓ

1) Run the decompress algorithm AD(m‖m′) for all

possible m′ ∈ {0, 1}L+1−L′

. Let the first non-⊥
output be AD(m‖m′) = xN . If there’s no such xN ,

set xN to be a random sequence in AN
ℓ .

2) Output xN .

Comℓ(x
N ) : AN

ℓ 7→ {0, 1}L′

:

1) Output ⌊AC(x
N )⌋L′ .

Lemma 11. The pair of algorithms (Decomℓ,Comℓ) de-

scribed in Algorithm 10 satisfies

Comℓ(Decomℓ(m)) = m, ∀m ∈ {0, 1}L′

.

Now we describe the construction of our overall scheme:

Construction 12. The encoding and decoding of Cℓ,N,R

are as follows:

Encoding:

• Let mNR be a message source of length NR.

Find the minimum natural number N ′ such that

⌈log |AN ′

ℓ |⌉ ≥ NR+ 3.

• Run Decomℓ(m) and denote the output as xN ′

. Let

xN ′

be the skeleton sequence and send it through

the feedback channel using the rubber method.

Decoding:

• Let yN be the sequence received from the feedback

channel. Run the decoding algorithm of the rubber

method on y to get x̃N ′

. If x̃N ′

/∈ AN
ℓ , set x̃N ′

to

be a random skeleton sequences in AN ′

ℓ .

• Otherwise, output m′ = Comℓ(x̃
N ′

).

Proposition 13. The code Cℓ,N,R in Construction 12 is ad-

missible for the BSC
fb
adv(f) if N ′ ≤ (1− (ℓ+ 1)f)N .

ℓ log λ∗

ℓ
pℓ R∗

ℓ

2 0.6942 0.1910 0.2965
3 0.8791 0.0804 0.5965
4 0.9468 0.0362 0.7754

TABLE I: Numerical results of log λ∗
ℓ , tangent points pℓ and

tangent rates R∗
ℓ

Note that in the first step of encoding, we can find N ′ simply

by computing AÑ
ℓ for Ñ = NR + 3, . . . , 2NR + 6 since

2
Ñ
2 ≤ |AÑ

ℓ | ≤ 2Ñ .

We further note that the above coding scheme also works

for stochastic feedback BSC channel BSCfb(p):

Proposition 14. The sequence of codes {Cℓ,N,R}N , each of

which is constructed as in Construction 12, is admissible for

the BSC
fb(p) if R < Rℓ(p) = (1− (ℓ+ 1)p) log λ∗

ℓ .

V. MAIN RESULTS

We now show that, for certain parameters, our codes achieve

the capacity and the optimal error-exponent, second-order rate,

and moderate deviations constant for certain parameters.

A. Capacity

Theorem 15. For any integer ℓ ≥ 2, Rℓ(p) is tangent to

C(BSCfb(p)). For pℓ =
1

1+2(ℓ+1) log λ∗

ℓ
,

Rℓ(pℓ) = C(BSCfb(pℓ)).

That is, for any ǫ > 0, the sequence of codes {Cℓ,N,R}N as

constructed in Construction 12 is admissible for BSC
fb(pℓ)

with R = C(BSCfb(pℓ))− ǫ.

We call pℓ the tangent points and R∗
ℓ = Rℓ(pℓ) the tangent

rates. The tangent points pℓ, tangent rates R∗
ℓ , and log λ∗

ℓ

values for different ℓ are listed in Table I.

The function Rℓ(p) for different ℓ is plotted in Figure 3.

That the rubber method would achieve the capacity of the

BSC
fb(pℓ) is implicit in [21]. We consider three more-refined

performance measures.

B. Error-exponent

Lemma 16 (Sphere-packing bound with pre-factor [6], [25]).

Let {CN,R}N be a sequence of codes for the BSC
fb(p), each

with rate R < C(BSCfb(p)). Let q ∈ (0, 1
2 ) s.t. R = 1−h(q).

Let Esp(R) = D(B(q)‖B(p)) and E′
sp(R) be the slope of this

function at R. Then the error probability Pe(CN,R) satisfies

Pe(CN,R) ≥
K1

N
1
2 (1+|E′

sp(R)|) e
−NEsp(R),

where K1 is a positive constant depending on R.

Theorem 17. For any fixed ℓ ≥ 2, consider the sequence

of codes {Cℓ,N,R∗

ℓ
}N at the tangent rate R∗

ℓ . That is, R∗
ℓ =

Rℓ(pℓ) = 1 − h(pℓ). Then for the BSC
fb(p) with p < pℓ,

{Cℓ,N,R∗

ℓ
}N at rate R∗

ℓ achieves optimal error exponent

Pe(Cℓ,N,R∗

ℓ
) ≤ O

(
1√
N

)
e−N ·Esp(R).
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