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Abstract—We provide a practical implementation of the rubber
method of Ahlswede et al. for binary channels. The idea is to
create the ‘“‘skeleton” sequence therein via an arithmetic decoder
designed for a particular k-th order Markov chain. For the
stochastic binary symmetric channel, we show that the scheme
is nearly optimal in a strong sense for certain parameters. A
byproduct of the analysis is a strict enlargement of the rates for
which the sphere-packing bound is known to be achievable with
feedback for this channel.

I. INTRODUCTION

We consider the binary symmteric channel with ideal feed-
back, both in its stochastic- and adversarial-noise forms. In the
former, each bit is flipped independently with some probability
p. In the latter, an omniscient adversary can flip up to a fraction
f of the bits in order to disrupt the communication.

The information-theoretic limits for both forms of the
channel, assuming perfect feedback, are well-known. In the
adversarial case, the capacity as a function of f was de-
termined by Zigangirov [1], building on earlier results of
Berlekamp [2], [3]. For the stochastic version, the capacity
equals that of the non-feedback version (e.g., [4], [5]) and
likewise the high-rate error exponent, normal approximation,
and moderate deviations performance are all unimproved by
feedback. In fact, the third-order coding rate is unimproved
by feedback [6], as is the order of the optimal “pre-factor” in
front of the error exponent at high rates. Thus, at least for the
stochastic version of the channel, feedback offers very little
improvement in coding performance.

In general, feedback is known to simplify the coding prob-
lem even if it does not provide for improved performance. The
erasure (e.g., [7, Section 17.1]), Gaussian channels [8], [9]
provide striking examples of this phenomenon. For the BSC,
see [10], [11] for classical and [12], [13] for recent work on
devising implementable schemes using feedback.

For the adversarial symmetric channel with feedback (and
arbitrary, finite alphabet size), Ahlswede et al. [14] proposed
an explicit scheme called the rubber method. In the binary
case, for a fixed ¢ > 2, the message is encoded as a “skeleton”
string containing no substring of ¢ consecutive zeros. The
encoder then transmits this string, sending ¢ consecutive
zeros to indicate that an error has occurred. For each ¢, this
scheme achieves the capacity of the adversarial channel for
a certain choice of f. This scheme simplifies significantly
the original achievability argument of Berlekamp [2]. For
ternary and larger alphabets, the scheme is even simpler.

The rubber method has since been generalized [15]-[17]. See
the survey [18] for applications and different versions of the
rubber method. However, the rubber coding method does not
specify an explicit way to map the message sequences to
skeleton sequences, which makes it unimplementable. The
classical schemes of Berlekamp [2] and Schalkwijk [11] are
not amenable to direct implementation, either.

Our Contribution We only consider the binary case in this
paper, and we make three contributions. The first is to propose
the use of arithmetic coding applied to a particular Markov
chain in order to efficiently encode the message sequence into
the corresponding skeleton string. This results in a practically-
implementable end-to-end scheme, with only a negligible rate
penalty. Our coding scheme is universal, i.e., the encoder
does not require knowledge of the cross-over probability p.
Moreover, it works in a streaming manner: the encoder does
not need the entire message to begin encoding. The second
contribution is showing that, for each /¢, there is a special
rate I2; and crossover probability p, such that the resulting
scheme is optimal with respect to the second-order coding
rate and moderate deviations performance for the channel with
crossover probability p, and error-exponent optimal at rate I2;
for all channels with crossover probability less than p,. We
also consider the third-order coding rate and the “pre-factor”
of the error exponent of the scheme. These turn out to be
nearly, but not exactly optimal. See Section V for details.Our
scheme has stronger optimality guarantees than Horstein [10]
and Li and El Gamal [19], although these schemes are more
general. The third contribution is that we strictly enlarge the
set of rates for which the sphere-packing bound is known to
be achievable for the BSC with feedback.

Technical Overview. We implement the rubber coding
method by using arithmetic decoding to construct skeleton
sequences from the message bits. This is accomplished by
characterizing a Markov chain that places a uniform distribu-
tion over the set of skeleton sequences. We then characterize
the performance of this scheme in the error exponent, moderate
deviations, and normal approximation regimes.

In Section II we introduce our notation and provide various
preliminaries. In Section III we characterize the relevant
Markov chain. In Section IV we describe our coding scheme.
In Section V we present our main results. The proofs are
omitted due to space constraints, but are available in the full
version [20].
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II. NOTATION AND PRELIMINARIES

Capital letters such as X or Y denote random variables. We
use =" to denote the first n bits of the sequence z1,...,Z,,
and we use z||z’ to denote the concatenation of two strings
z and 2. In addition, |2V | denotes the truncation of z to
the first L bits.

We use Bin(n,p) to denote the binomial distribution with
size n and success probability p and N(u,0?) to denote the
normal distribution with mean y and variance o2. Moreover,
B(p) denotes the Bernoulli distribution with success prob-
ability p. We use D(P||@Q) to denote the Kullback-Leibler
divergence between distribution P and Q).

A. The Channel Model

Let BSC(p) denote a binary symmetric channel with cross-
over probability p € (0, 3) without feedback. That is, BSC(p)
has input alphabet X = {0, 1} and output alphabet ) = {0, 1},

and probability transition matrix

plylz) = (1pp 1fp>-

Suppose that an encoder wishes to send a message m in a
message space M through BSC(p). It first encodes the mes-
sage m using an encoding function f, and sends z%V = f(m)
through the channel. The decoder, upon receiving y* from the
channel, runs a decoding function g on 3" to obtain m/. The
pair (f, g) is called a code Cn r with block length N and rate
R = %. The (average) error probability of a code Cn g
is defined as Pe(Cn,r) == [aq Lmenm Prim’ # m].

The capacity of BSC(p) is well-known to be

C(BSC(p)) =1 = h(p),

where h(-) = —plog p—(1—p) log(1—p) is the binary entropy
function, and the log is base-2 throughout.

We will also consider the adversarial binary symmetric
channel BSC,q4, (f) in which at most f fraction of transmitted
bits can be adversarially flipped.

Feedback allows the encoder to see exactly what the decoder
receives after each transmission and update its next transmis-
sion accordingly. In the BSC with feedback, which we denote
as BSC/ b(p), the encoding function f consists of a sequence
of maps {f;}¥,. Each f; takes as input m,yi,...,y;_1, and
outputs z;, the next bit to send. The decoder then runs g(y™)
to obtain m/'.

It is well-known that feedback does not improve the channel
capacity:

C(BSC'*(p)) = 1 — h(p).

For the adversarial feedback BSC channel BSC/" (f), an
upper bound on the capacity was first shown by Berlekamp
[2]. He also gives a lower bound that coincides with the upper
bound when f > 377‘6. A lower bound that coincides with
the upper bound for f < 3_4\/5
thus determining the capacity for BS

was given by Zigangirov [1],

o (f):

1 : :
-~ - Capacity for BSC'®(p)
— Capacity for BSC/® (p)

adv

Fig. 1: Capacity for BSC with feedback and adversarial BSC
with feedback.

We say that a code C for the BSCin(f) is admissible if
C can correct any error pattern with error fraction at most f.
We say that a sequence of codes {Cy g} for BSC'’(p) is
admissible if the error probability P.(Cn g) tends to 0 as N

goes to infinity.

B. Markov Chains

Definition 1. A discrete stochastic process {X;} is said to be
an (¢ — 1)-th order Markov chain if for any i,

PT[X7 = I’7|X1 = T1y---
=Pr[X; = 24| Xi_o41 = Tizpy1, - -

s Xio1 =21
yXic1 = xi-1),

for all x1,...,x; € X.

C. Rubber Method

Here we briefly present the rubber method for BSC!® (f)
[14]. Let Aév " denote the set of binary sequences of length
N’ with no ¢ consecutive zeros. Such sequences are called
skeleton sequences. The sender chooses a skeleton sequence
N e Aé\’ " and the decoder’s goal is to recover that sequence
correctly. The idea is that the encoder can use ¢ consecutive
zeros to signal an error. Specifically, we have

o Decoding gg: the decoder maintains a stack of received
bits, which begins empty. Whenever the decoder receives
a bit, it inserts the received bit onto the stack and checks
if there are consecutive ¢ zeros in the stack. If yes, it
removes these ¢ zeros as well as the bit before these
consecutive ¢ zeros from the stack. Finally, it truncates
the output to N’ bits.

o Encoding fg: if the decoder’s current stack is a prefix of
2, then send the next bit in 2. Otherwise send a 0.
If V' has been sent in its entirety, then send 1 for all
remaining time steps.

1— h(f) 1f0§f§37\/5
C(BSC’® = ‘1
(BSCa, (f)) {(1 —3f)log 5 if 325 < f <1
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=]
=l k=1 k=]

Remove consecutive 0’s After removal

and the bit before them

Insert received
bit 0 into the stack

Fig. 2: The decoder’s stack with ¢ = 2.

Proposition 2. For skeleton sequence set A} " and block
length N, a code constructed using the rubber method is
admissible for BSC‘SZU(f) if

N +({+1)fN < N. (D)
Proof. See Section 2.2 of [21]. O

Example 3. Suppose the encoder chooses x = 011010 € A$
and the maximum fraction of adversarial errors is f = 1/3.
Suppose the first three bits the decoder receives are 010,
which is not a prefix of x. The encoder then sends 0 and
suppose decoder sees 0100. The decoder then erases the last
three bits (the consecutive zeros and the one before them) and
its stack becomes 0. This is now a prefix of = and the encoder
would thus resend the second bit in z, which is 1. See Figure 2.

D. Shannon—Fano-Elias Code and Arithmetic Coding

The Shannon-Fano-Elias code compresses a source se-
quence with known distribution to near-optimal length. It uses
the cumulative distribution function F'(z) to allot codewords.
For a random variable X € {1,2,..., M} with distribution p,
the codeword is | F'(z)];(,) where

F(r) = 3 pla) + 3(a),

a<z

lies between F(x) and F(z + 1) and I(z) = [log ﬁ} + 1.
In addition, the Shannon-Fano-Elias code is prefix-free. That
is, no codeword is a prefix of any other.

Arithmetic coding is an algorithm for efficiently computing
the Shannon—Fano-Elias codeword for sequences given a
method for computing the probability of the next symbol given
the past (e.g., [22, Ch. 4]).

E. Constant Recursive Sequences and the Perron—Frobenius
Theorem

Lemma 4 (Theorem 2.3.6, [23]). A sequence A(n) is an
order-d constant-recursive sequence if for all n > d + 1,

An) =cA(n— 1)+ c2A(n —2) 4+ -+ - + c4A(n — d).
The n-th term A(n) in the sequence must be of the form
A(n) = k1(m)AT + ka(n)AS + -+ + kar (n) AN,
where \; is a root with multiplicity d; of the polynomial
PR kg

and k;(n) is a polynomial with degree d; — 1.

Definition 5 ((8.3.16), [24]). A matrix M is a positive (non-
negative) matrix if every entry of M is positive (non-negative).

A non-negative square matrix M is primitive if its k-th
power is positive for some natural number k.

Lemma 6 (Perron—Frobenius Theorem, Page 674, [24]). If M
is a primitive matrix, then M has a positive real eigenvalue
A* such that all other eigenvalues \; have absolute value
[Ai| < |A*|. Moreover, \* is a simple eigenvalue and its
corresponding column and row eigenvectors are positive .

See [24, Ch. 8] for further detail about the Perron-Frobenius
Theorem.

III. A KEY MARKOV CHAIN

In this section we show that the stochastic process that is
uniformly distributed over .Aév is a Markov Chain and that we
can efficiently compute the distribution of this Markov Chain.

Recall that Aév denotes the set of binary sequences of length
N with no consecutive ¢ zeros. Let A,(N) = |AYN| and let
Ay(z) denote the number of allowable sequences in A} that
begin with z for any binary sequence z.

Lemma 7. Let A} be the unique real solution that lies in (1,2)

of

MN= g 241 )

N
Then impy_, oo ‘ﬁ‘}vl exists and is positive and finite.
4

Note that Lemma 7 implies that
. 1 X
Jim - log |AN| = log \.

Lemma 8. The stochastic process that is uniformly distributed
over AY is an (¢ — 1)-th order Markov Chain.

The resulting Markov Chain is:
o For any z € {0,1}*71,

AN —(+1+a)

PI‘[,XVl7 e ,X[,1 = LL'} =

Ag(N) 7
if x ends with « consecutive zeros.
o For i > ¢, for any z € {0,1}°1,
PI‘[Xz = 1|Xi_g+1, P aXi—l = Z]

B Ae(N —1)
AN —i+a+1) =0 AN —i+k+1)

if z ends with « consecutive zeros.

To compute the probability of the next symbol in the string
given the past, we only need to compute Ay(N) for various
values of N. This can be computed using Ap(N) = kAN +
ko(N)AY 4+ -4 ke (N)A) where \; are the roots of equation
(2) and ¢1,k1(N), ..., ke (N) can be determined by the initial
conditions A,(1) =2,..., Ap(£ — 1) =271 Ay(0) =2 — 1.

Note that when N is large, A;(N) is well-approximated as
Ap(N) =~ ks )\jN. Under this approximation the Markov Chain
becomes time-invariant.
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Example 9. Consider the case ¢ = 2. That is, we forbid
two consecutive zeros in the skeleton sequence. Then the
characteristic polynomial is A> — A\ —1 = 0. The two roots are
AL = % and Ay = 1_7‘/5 respectively. The initial condition
is Ag(1) = 2, Ay(2) = 3. Therefore Ay(N) = ki AN + koA

where k; = 3;\%5, ko = \ég\/’;’ See also [4, Ex. 4.7]

IV. A PRACTICAL CODING SCHEME

In this section we combine arithmetic coding and the rubber
method to give an efficient feedback code for BSC/" (f) and
BSC/®(p). First we describe a modified version of arithmetic
coding that will be used in our scheme. Consider the following

pair of algorithms (Decomy, Comy):

Algorithm 10. (Decom,, Comy)

Let L = [log |AN|]. Let {X;}¥, be a stochastic pro-
cess that is uniformly distributed over AY. Let (Ac, Ap)
where Ac @ AY — {0,1}1 and Ap : {0,1}1F! —
AN U{L} be the compression and decompression algo-
rithms for arithmetic coding applied to {X;}Y |, where
the decompressor outputs L if its input is not a valid
codeword. Let L’ be any integer such that L' < L — 3.
Decomy(m) : {0, 1} s AN

1) Run the decompress algorithm Ap(m/|m’) for all

possible m/ € {0,1}2T1L", Let the first non-L
output be Ap(mljm’) = 2. If there’s no such =%,
set ¥ to be a random sequence in A} .
2) Output z™V.
Comy(zN) : AN s {0,1}2":
1) Output [Ac(z™)] 1.

Lemma 11. The pair of algorithms (Decom,, Com,) de-
scribed in Algorithm 10 satisfies

Comy(Decomg(m)) = m,¥m € {0,1}%

Now we describe the construction of our overall scheme:

Construction 12. The encoding and decoding of C; v r
are as follows:
Encoding:

o Let m™® be a message source of length NR.
Find the minimum natural number N’ such that
Mog |AN'[] > NR + 3.

o Run Decomy(m) and denote the output as 2V Let
2N’ be the skeleton sequence and send it through
the feedback channel using the rubber method.

Decoding:

o Let yV be the sequence received from the feedback
channel. Run the decoding algorithm of the rubber
method on y to get V. If ¥ ¢ AN, set TV to
be a random skeleton sequences in ALY .

« Otherwise, output m’ = Com,(ZV").

Proposition 13. The code Cy v r in Construction 12 is ad-
missible for the BSCIY (f) if N/ < (1 — (£+1)f)N.

| logX; | pe | R

2 | 0.6942 | 0.1910 | 0.2965
3 | 0.8791 | 0.0804 | 0.5965
4 | 09468 | 0.0362 | 0.7754

TABLE I: Numerical results of log A, tangent points p; and
tangent rates I}

Note that in the first step of encoding, we can find N’ simply
by computing A} for N = NR+3,...,2NR + 6 since
2% < |AN| <2V,

We further note that the above coding scheme also works
for stochastic feedback BSC channel BSC/(p):

Proposition 14. The sequence of codes {Co N r}N, each of

which is constructed as in Construction 12, is admissible for
the BSC™'(p) if R < Ry(p) = (1 — (£ + 1)p) log A}

V. MAIN RESULTS

We now show that, for certain parameters, our codes achieve
the capacity and the optimal error-exponent, second-order rate,
and moderate deviations constant for certain parameters.

A. Capacity

Theorem 15. For any integer ¢ > 2, Ry(p) is tangent to
b
C(Bscf (p)) For py = 1+2(z+11)1og Y

Ry(pe) = C(BSC " (py)).

That is, for any € > 0, the sequence of codes {C; n r}N as
constructed in Construction 12 is admissible for BSC/ b(pg)
with R = C(BSC'(py)) — e.

We call p, the tangent points and R; = Ry(py) the tangent
rates. The tangent points p,, tangent rates Rj, and log A}
values for different ¢ are listed in Table I.

The function Ry(p) for different ¢ is plotted in Figure 3.
That the rubber method would achieve the capacity of the
BSC/ b(pg) is implicit in [21]. We consider three more-refined
performance measures.

B. Error-exponent

Lemma 16 (Sphere-packing bound with pre-factor [6], [25]).
Let {Cn r}n be a sequence of codes for the BSC'®(p), each
with rate R < C(BSC'®(p)). Let q € (0, 3) s.t. R=1-h(q).
Let Es,(R) = D(B(q)||B(p)) and E,(R) be the slope of this
function at R. Then the error probability P.(Cn r) satisfies

Ky

- _NESP(R)
N LB (R))

€ )

Pe(CN,R) Z

where K1 is a positive constant depending on R.

Theorem 17. For any fixed ¢ > 2, consider the sequence
of codes {Cqy n, Ry }n at the tangent rate Rj. That is, R} =
Re(pe) = 1 — h(pe). Then for the BSC®(p) with p < py,
{Ce,n, Ry YN at rate R} achieves optimal error exponent

1
P.(C N)<O(—=)e NERR),
.(Ce,nR;) < <\/N>
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Fig. 3: Ry(p) for different .

In particular,

Jim —1og Py (Con ) = Bup(R).
Remark 18. The “pre-factor” order achieved by our scheme
is O(LN), which is slightly worse than the optimal order of

(m) in Theorem 16. Interestingly, for the binary
erasure channel (BEC), both with and without feedback, the
optimal pre-factor is O( [6, Theorem 2]. Rubber coding
attempts to emulate a {C using the BSC, which might
explain this connection. A similar gap from strict optimality
occurs in the second-order coding rate results to follow.
Making the connection between rubber coding and the BEC
more precise is an interesting topic for future study.

Theorem 17 indicates that our coding scheme Ca n, R; at the
tangent rate achieves the sphere-packing bound for BSC/ b(p)
for any p < pa. Previously the sphere-packing bound was only
known to be achievable with feedback for rates above critical
rate with feedback [26]. We note that R = Ra(p2) is below
the critical rate with feedback for some cross-over probabilities
p (see Fig. 4). Thus a byproduct of this work is that we strictly
enlarge the set of rates for which the sphere-packing bound is
known to be achievable for the BSC with feedback.

C. Second-order Rate

Lemma 19 (Second-order coding rate: Theorem 15, [27]).
Given a block length N and an € such that 0 < € < 1, the
largest possible rate of a code for the BSCfb(p) with error
probability less than or equal to € is

C——\/ 1—p log S Py

where ® denotes the standard Gaussian distribution.

Theorem 20. For any fixed ¢ > 2, consider the BSCfb(p) with
cross-over probability p = py. Fix € € (0, 1), and let R(N )

log N

1—e)+ o

+o(1),

— RerAp)

o8 \ - Ry
0.6
o<
0.4
0.2
0.0

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

p

Fig. 4: The critical rate with feedback R, ; compared to the
tangent rate R5 = Ra(p2), as a function of the crossover
probability p.

denote the largest possible rate R such that Cy N r(N.c) has
error probability at most €, and let C' denote the capacity of
the BSCfb(p). Then for large N,

R(N,e¢)

co- L b e g0 (2L)

Remark 21. Note the log N, /N term is “missing” from the
expansion in Theorem 20. See Remark 18.

D. Moderate Deviations
Lemma 22 (Moderate deviations, Corollary 1, [28]). For any

sequence of real numbers e€n s.t. ey — 0 as N — oo

and eN\/N — 00 as N — o0, for any sequence of codes
{Cn.ry } N for the BSCfb(p) such that Ry > C’(BSCfb(p))—
€N, we have

1
2p(1 — p)log® 152

lim inf
N—o00

5 10g Po(CNn,Ry) > —
N

Theorem 23. Fix any ¢ > 2. Let C be the capacity of the
BSCfb(pg). For any sequence of real numbers € s.t. ey — 0
as N — oo and EN\/N — o0 as N — oo, consider the
sequence of codes {Co. N ry }N such that Ry = C — en. Let
P.(C¢,N Ry ) denote the average error probability of Cy N Ry
over the BSC'®(py). Then

1
2p(1 —p)log” =2
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