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Abstract—Failure prognostics is the process of predicting the
remaining useful life (RUL) of machine components, which is vital
for the predictive maintenance of industrial machinery. This
paper presents a new deep learning approach for failure
prognostics of rolling element bearings based on a Long Short-
Term Memory (LSTM) predictor trained simultaneously within a
Generative Adversarial Network (GAN) architecture. The LSTM
predictor takes the current and past observations of a well-defined
health index as an input, uses those to forecast the future
degradation trajectory, and then derives the RUL. Our proposed
approach has three unique features: (1) Defining the bearing
failure threshold by adopting an International Organization of
Standardization (ISO) standard, making the approach industry-
relevant; (2) Employing a GAN-based data augmentation
technique to improve the accuracy and robustness of RUL
prediction in cases where the deep learning model has access to
only a small amount of training data; (3) Integrating the training
process of the LSTM predictor within the GAN architecture. A
joint training approach is utilized to ensure that the LSTM
predictor model learns both the original and artificially generated
data to capture the degradation trajectories. We utilize a publicly
available accelerated run-to-failure dataset of rolling element
bearings to assess the performance of the proposed approach.
Results of a five-fold cross-validation study show that the
integration of the LSTM predictor with GAN helps to decrease the
average RUL prediction error by 29% over a simple LSTM model
without GAN implementation.

Keywords—bearing, remaining useful life, prognostics and
health management, generative adversarial network

I. INTRODUCTION

Predicting the remaining useful life (RUL) of mechanical
components and industrial systems prior to catastrophic failure
is vital for predictive maintenance. In an industrial environment,

the failure of rolling element bearings is among the foremost
causes of machinery failures [1]. The bearing failure may
severely affect not only the bearing but also other connected
components, leading to catastrophic machine failure [2]. Thus,
the ability to accurately predict the RUL of a bearing is
practically vital to ensuring the continuous and safe operation of
machinery, minimizing unexpected machine downtime, and
reducing maintenance costs. However, the bearing degradation
is highly non-linear, making accurate prognostics a challenge.

There has been extensive research in the field of bearing
prognostics. In general, existing bearing prognostics approaches
can be classified into two categories: (a) model-based
approaches and (b) data-driven approaches.

The model-based approaches attempt to capture the
degradation process of a machine component by constructing
mathematical models based on the component’s failure
mechanisms [3]. The commonly used models include the Paris-
Erdogan model, Bailey-Norton model, and exponential
degradation model [4]. These approaches require extensive
comprehension of the failure mechanisms and accurate
calibration of model parameters. However, in most cases, it is
challenging to develop an accurate mathematical model for a
specific bearing under different operating conditions. If the
operating conditions of a bearing change, the prediction result
of these approaches tends to be less accurate due to their poor
adaptability [5].

The data-driven approaches employ machine learning
techniques to capture the bearing degradation pattern without
making any assumptions on the underlying damage mechanisms
[6]. In recent years, deep learning techniques, such as
convolutional neural networks [7-9] and recurrent neural
networks [10-12], have become the mainstream techniques for
machinery prognostics. Zhu et al. [7] combined wavelet



transform analysis with a convolutional neural network (CNN)
to predict the RUL of bearings. In their approach, wavelet
transform was first used to extract a time-frequency
representation of each sample, which was then fed into a multi-
scale CNN for RUL prediction. Ren et al. [8] used the short-time
Fourier transform to extract the time-frequency representation
of each sample, then calculated the maximum amplitudes at
predefined frequency sub-bands, finally fed these amplitudes
into a deep CNN for RUL prediction. Wu et al. [10] proposed a
vanilla LSTM model for bearing RUL prediction. To enhance
the LSTM model’s cognitive ability in estimating and predicting
degradation, a dynamic differential feature extraction method
was utilized that enabled capturing the changes of features under
different operating conditions. Guo et al. [11] constructed a
health index for bearing RUL prediction by fusing multiple
features using a recurrent neural network. Other variants of
CNN or LSTM are also applied to predict the RUL of bearings.
For example, Yang et al.[9] proposed a double-CNN model for
bearing RUL prediction. Zhang et al. [12] combined a multi-
layer LSTM network with an attention mechanism to improve
the accuracy and robustness in RUL prediction.

Although many data-driven approaches can achieve
satisfactory accuracy in bearing RUL predictions, they often
face one or more of the following challenges:

1) Extensive research has shown that a bearing’s
degradation often does not follow a linear trend
[13,14]. Prior to the formation of a bearing fault, no
clear degradation trend can be revealed from collected
data. Soon after the onset of a bearing fault, the
degradation may start to accelerate, and the bearing
may approach failure in a very short time. The non-
linear degradation trend makes correlation/mapping of
extracted features directly to RUL a challenge and can
yield non-physical results.

2) The performance of existing data-driven approaches
depends heavily on the quality and quantity of the
available training data used to optimize the parameters
of deep learning models [15]. However, gathering large
amounts of run-to-failure training data can be very
costly and time-consuming, and insufficient available
training data may lead to issues such as overfitting.

To address the aforementioned challenges, this study
proposes a GAN-based LSTM predictor training method for
RUL prediction of rolling element bearings. The main
contributions of the proposed approach are summarized as
follows:

1) The root mean square (RMS) features in the velocity
domain were extracted and used to determine the first
prediction time (FPT). A threshold is defined based on
ISO standard 10816 [16-17] to determine the end of life
(EOL) for bearings, as opposed to traditional heuristic
approaches of using the maximum or mean vibration
amplitude in the acceleration domain.

2) A GAN-based LSTM framework for bearing
degradation data augmentation is developed to enhance
the model's prediction accuracy and robustness in

forecasting future degradation trajectories.

3) A joint training strategy is developed by integrating the
training of LSTM predictor into the training of GAN.

The proposed approach implements the following two steps
in the offline process: (1) Data Preparation extracts segments of
a degradation feature from the collected vibration data in the
velocity domain; and (2) Model Training first pre-trains the
GAN-LSTM predictor based on the original training data, then
pre-trains the generator and discriminator using the proposed
GAN-LSTM network, and finally jointly trains the GAN-LSTM
predictor, generator, and discriminator. After the GAN-LSTM
network has been fully trained, the GAN-LSTM predictor can
be used for online tests to predict the RUL of test bearings. The
remainder of the paper is organized as follows: Section II
introduces the methodology, including the data preparation, the
GAN-LSTM predictor training, and RUL prediction. The
performance of the proposed approach is evaluated in Section
III through a five-fold cross-validation study on a publicly
available dataset. Finally, several concluding remarks are given
in Section I'V.

II. METHODOLOGY

Figure 1 shows a flowchart of the proposed approach. In our
methodology, run-to-failure vibration data is first transformed to
velocity domain v(t) by numerical integration of the
acceleration vibration signal a(t). Then, feature extraction is
conducted on the velocity data. The root mean square (RMS) in
the velocity domain is calculated in the range of 0.2 times the
shaft frequency, 0.2w, to the end of frequency spectrum (which
is one-half the sampling frequency sf for a single-sided fast
Fourier transform spectrum) and is used as the health index of a
bearing. The extracted features (Voo £/2) are analyzed to

determine the FPT using the 20 method [21]. The ISO standard-
based threshold is used to determine the EOL [16]. The
calculations of FPT and EOL are described in section 2.1. After
determining the FPT and EOL, data segmentation is performed
to generate training data through a moving window
segmentation function where a moving window with a
predetermined length takes segments in sequential order. A
GAN-LSTM architecture is used to train the GAN-LSTM
degradation pattern predictor. Through joint training, the GAN-
LSTM predictor is trained using both the real training data and
the generated data obtained from the generator network. The
following sections present the details of each step.

A. Data Preparation

The data pre-processing is composed of two parts: (1) feature
extraction and (2) determination of FPT and EOL.

Most lab-based accelerated bearing run-to-failure datasets
provide vibration data in the acceleration domain [18]-[19].
However, the industry-relevant ISO standards for defining the
EOL or alarm amplitudes are defined in the velocity domain
[16]. This is because the amplitude of the acceleration signal
increases with the shaft frequency, whereas the amplitude of the
signal in the velocity domain provides a more stable
representation [17]. To obtain degradation patterns reflecting the
bearing damage severity, the velocity RMS in the frequency
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Figure 1. A flowchart of the proposed approach
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range of 0.2w — sf /2 Hz is used as a degrading feature for the
sampling frequency sf = 25.6 kHz with operating shaft
frequency w. The extracted run to failure feature is a sequence
of velocity-RMS values VEMS__ f/2 defined using the Parseval’s
theorem as [20]:

2
PRMS sf/z V(DR 0

02w-sf/2 — f=02w 5

where V(f) is the single-sided frequency spectrum for v(t). A
larger value of VEMS /2 Tepresents a more severely damaged
state. At the beginning of the run-to-failure tests, bearings are
often healthy and no clear degradation trend can be revealed,
resulting in an approximately flat RMS sequence. FPT and EOL
were defined to obtain the degradation curve between where the
bearing starts to experience damage up to its EOL. In this paper,
the 20 method, which was proposed in Ref. [21], was used to
determine the FPT. The RMS values are used to employ the 20
criterion in the velocity domain VOI?ZI\’[&,S_Sf /2~ The mean i, rms
and standard deviation o,rms were calculated using the data
collected at the beginning of the experiment, then the FPT was
obtained when V03yaf_sf /2 crosses the threshold of prms +
20, rus for two consecutive observations.

Based on the ISO standard, the EOL of the bearing is defined
when the velocity RMS reaches a given threshold. Here, the
threshold was set at 0.27 ips reflecting the ISO standard alarm
state for medium-sized motors. For bearing prognostics, the true
RUL of a bearing was defined to decrease linearly with a unit
slope from the FPT to EOL. The development of VO'_‘%S_Sf /218

depicted in Figure 2 for a sample bearing.

B. The GAN-LSTM predictor

There are two approaches to performing bearing RUL
prediction using deep learning techniques: direct mapping
approach and trajectory prediction approach. The direct
mapping approach takes the extracted features as input and
produces an RUL estimate as output [22-23]. The trajectory
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Figure 2. Evolution of VRMS /2 and identification of FPT, EOL

prediction approach takes the historical measurements of a
feature as the input, forecasts the future trajectory of this feature,
then calculates the RUL as the time at which the trajectory
crosses a failure threshold [24]. The proposed method adopts the
second approach. Specifically, a one-step ahead predictor, called
GAN-LSTM predictor, is proposed to forecast the degradation
of a bearing. The predictor’s performance is enhanced by
augmenting real training data with synthetic data generated by a
GAN. To obtain a complete forecast up to the failure threshold,
the GAN-LSTM predictor is repeatedly evaluated by marching
in time, treating predicted values as new data points.

The GAN-LSTM predictor is composed of an LSTM layer
and a fully connected layer. LSTM is a special type of recurrent
neural network (RNN). It utilizes memory cells to retain useful
information within both long and short periods often with no
issue of vanishing gradients [22]. Each LSTM unit has three
gates: input gate, forget gate, and output gate. The input gate
determines what new information should be stored in the
memory cell, the forget gate determines what information
should be discarded from the previous cell state, and the output
gate determines what the hidden state at the next time step
should be based on the previous cell state, the current input, the
current cell state. A more detailed introduction to LSTM can be
found in Ref. [25].

Given training time-series data, the GAN-LSTM predictor
takes the features at the current and previous (k — 1) time steps
as the input, and predicts the feature value at the next time step.
The LSTM layer extracts temporal degradation information,
which will then be used to determine the feature value at the next
step by using a fully connected layer.

The GAN-LSTM predictor is a deep learning model, and its
performance highly depends on the quantity and quality of the
training data. Data augmentation techniques are commonly used
to cope with the lack of available training data. Some of the most
common data augmentation techniques used for bearing RUL
prediction include adding noise and shrinking or extending the
training data [26]. Recent research has also shown the promise
of performing data augmentation using GANs [27-28]. Here, a
GAN-based framework for degradation data augmentation is
proposed.



In its basic form, a GAN comprises two separate networks
working with opposing goals: (1) a generator network and (2) a
discriminator network. The principle of a generator is to create
synthetic sequences with a similar probability distribution to that
of the real data while the discriminator tries to distinguish
between the real and synthetic sequences. The competition
between the two networks enhances the quality of the generated
data when the fully-trained discriminator fails to distinguish the
real and the synthetic data. The training of the GAN involves
alternate optimizations of the generator and the discriminator.
The objective function of the discriminator consists of two parts.
The first part is the probability that real data is classified as real
data, and the second objective is the probability that the
generated data is classified as synthetic data. The objective
function of the discriminator is written as:

max (V) = ~ X1, [logD (x;) + log(1 = D(G(z)))] (2)

where x; is the real degradation data, z; is the random noise,
D(x;) denotes the output given by the discriminator when the
input is x;, and G(z;) represents the generated sample. The
training process of the discriminator tries to maximize the
objective function Vj, so that the well-trained discriminator
could identify data correctly.

For each training epoch, after the discriminator is trained, the
generator is trained by keeping the discriminator’s weights
constant. The generator takes random noise as input and
generates synthetic data. The object of the generator is to
confuse the discriminator. The objective function of the
generator can be written as:

min (V;) = % i=1log (1 = D(G(z)) (3)

The training of GAN involves the optimization of V, and V;
iteratively. Conceptually, the training of GAN can correspond to
a minimax two-player game [29] written as:

min max 1
G D V(D,G) = ~ X [logD(x;) +log (1 -

D(G(z)))] )

The ideal objective for GAN is that the discriminator cannot
distinguish the generated data from the real data. The generated
data from a well-trained generator will mimic the distribution of
the training data. A straightforward way to perform GAN-based
data augmentation is to train the GAN based on the training
dataset, then combine generated data with training data to train
the deep learning model. In our proposed method, we integrate
the training of the GAN-LSTM predictor into the training of the
GAN architecture for a more robust and direct implementation.

The architecture of the GAN-LSTM network is illustrated in
Figure 3. The generator takes a random sequence of length / and
outputs a vector of synthetically generated data of the same
length. The LSTM predictor takes the output and predicts the
feature at the next step in the sequence. The one-step ahead
prediction is then appended to the generated data and is fed into
the discriminator to be labeled as real or generated data. The
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Figure 3. A flowchart depicting the essential elements of the GAN-
LSTM network

network is trained by back-propagating error through time and
the standard gradient descent optimization method [29].

Here, the GAN-LSTM predictor is pre-trained on the limited
available data. The architecture shown in Figure 3 is then used
to enhance the prediction accuracy by generating augmented
sequences. The training of the GAN-LSTM predictor is
composed of three steps:

1)  Pre-training of the GAN-LSTM predictor: The GAN-
LSTM predictor is pre-trained using the real data.

2)  Pre-training of the generator and discriminator: The
generator and discriminator are trained iteratively by
following the structure proposed in Figure 3, while the
GAN-LSTM predictor’s parameters are frozen.

3) Joint training of the generator, GAN-LSTM predictor,
and discriminator: The generator, GAN-LSTM
predictor, and discriminator are all trained in this step.
Each joint training epoch is composed of two sub-steps.
Firstly, the GAN-LSTM predictor, the generator, and
the discriminator are jointly trained following the
structure proposed in Figure 3. Then, the GAN-LSTM
predictor is fine-tuned using the real data.

C. RUL Prediction

The one-step ahead GAN-LSTM predictor is used to predict
the trajectory of the degradation feature up to the EOL. An input
sequence of length / is fed into the trained LSTM predictor with
the time step of the last element marked as tipspection- Each
next-step prediction value is used as a new data point, and the
prediction is performed until the predicted value crosses the
predefined threshold of EOL and marking the time as Tgqy,.
Then, the RUL is computed as:

RUL(t) = TgoL — tlnspection (5)
The RUL prediction procedure is specified in TABLE L.



TABLE L. THE PROCEDURE OF RUL PREDICTION PROCEDURE

Algorithm: RUL prediction
Inputs: Real run-to-failure feature series F = F,
Inspection time tipspections
LSTM predictor ®p,
Failure threshold Vo
Output:  RUL
Initialize &; = tipspection VRMS = F(t),
While (ViRMS < chtoff):
Set the input Flnput = Fti—l+1:ti;
Next step prediction: Vi‘}“{ls = 0p (Finput)s
Update Fy 4y = Vilﬂ[s;
ti=t;+1
end while

OIS N AW =

TeoL = t;
Output: return RUL = Tgoy, — Einspection

III. EXPERIMENTAL VALIDATION

The run-to-failure bearing dataset from XJTU-SY was
utilized to evaluate the proposed method’s performance [14].
The XJTU-SY bearing dataset consisted of run-to-failure
vibration data of 15 rolling element bearings (LDK UER 204)
divided into three groups of five bearings. Each group was
subjected to a certain operating condition. Two PCB 352C33
accelerometers were mounted perpendicularly along the radial
direction. Data were collected for 1.28 sec every minute with a
sampling frequency of 25.6 kHz. The operating conditions for
the entire bearing dataset are shown in TABLE II. The extracted
VRS £/2 features (from FPT to EOL) are shown in Figure 4.

A five-fold cross-validation study was conducted on the set
of 15 bearings. 15 bearings were divided into five folds as:

Fold 1: Bearing 1-1, Bearing 2-1, Bearing 3-1
Fold 2: Bearing 1-2, Bearing 2-2, Bearing 3-2
Fold 3: Bearing 1-3, Bearing 2-3, Bearing 3-3
Fold 4: Bearing 1-4, Bearing 2-4, Bearing 3-4
Fold 5: Bearing 1-5, Bearing 2-5, Bearing 3-5
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Figure 4. RMS features of each bearing

While evaluating the model, one fold was chosen to be the
test set, and the other four folds were used for training the
models. For example, if fold 1 served as the test set (Bearing 1-
1, Bearing 2-1, and Bearing 3-1 are test bearings), then the data
collected from the other 12 bearings served as the training set.
The length of the network input, [, the learning rate of the GAN-
LSTM predictor, and the learning rate of both the generator and
discriminator were heuristically set as 20, 0.001, and 0.0001,
respectively. As mentioned in section 2, the GAN-LSTM
predictor, generator, and the discriminator were pre-trained
using the available datasets for 60, 1000, and 1000 epochs,
respectively. During the joint training, the GAN-LSTM
predictor, generator, and discriminator were trained for 60
epochs. The architecture of the GAN-LSTM network is shown
in TABLE III.

TABLE IIL THE SPECIFIC CONFIGURATION OF THE PROPOSED GAN-
TABLE II. XJTU-SY BEARING DATASET. LSTM NETWORK.
Operating condition Module name layer Parameters
Condition 1 Condition 2 Condition 3 Fully connected layer Output shape = (Samples, 64),
Radial load 12 kN 11kN 10 kN Activation = Linear
adial loa
Output shape = (Samples, 32),
Speed 35Hz 37.5Hz 40 Hz Generator Fully connected layer Activation = Linear
Bearing 1-1 Bearing 2-1 Bearing 3-1 Fully connected layer Output shape = (Samples, 20),
Activation = ReLU
Bearing 1-2 Bearing 2-2 Bearing 3-2 =
) ] & ] & ] € Fully connected layer Output ?haE° . (Samples, 64),
Bearing ID Bearing 1-3 Bearing 2-3 Bearing 3-3 Activation = Linear
. . . Output shape = (Samples, 128),
Bearing 1-4 Bearing 2-4 Bearing 3-4 Fully connected layer . Rl U
Diserimi
Bearing 1-5 Bearing 2-5 Bearing 3-5 iseriminator Output shape = (Samples, 64),

Fully connected layer Activation = ReLU

Output shape = (Samples, 1),

Fully connected layer Activation = Sigmoid

LSTM layer Number of LSTM Units = 60

Output shape = (Samples, 1),
Activation = Linear

GAN-LSTM

predictor Fully connected layer




To evaluate the performance of the proposed approach, the
LSTM model without being trained jointly with GAN network
was used as a baseline model, named as LSTM predictor. The
LSTM predictor + noise model was also included for
benchmarking the proposed method; this model was trained with
the real training data and the training data synthetically
generated by adding Gaussian noise to the real training data.

In addition to deep learning models, a quadratic regression
model was also included. The regression fitting was performed
on features at the current and previous 19 time steps. The model
used to capture the bearing degradation trend is defined as:

VRMS(£) = m t? + myt + my (6)

where VRMS(t) represents the feature value at time t, and
my,m, and m are the unknown model parameters which were
determined by the ordinary least square method. Similar to the
GAN-LSTM predictor, after model parameters m,,m, and m,
are determined, the feature at the next time step, VRMS (¢ + 1),
will be predicted, and this next-step prediction will be used as a
new data point. This process of quadratic regression is repeated
until the predicted value crosses the predefined threshold. The
regression model focuses on capturing a local quadratic trend.
However, if the feature does not change significantly within the
previous 19 steps, the model cannot provide reliable prediction
results. In this paper, if the predicted values do not reach the
threshold for the next 100 steps, the model’s RUL prediction at
that inspection time point will be deemed unreliable and the
model will take the most recent reliable prediction result as the
predicted RUL.

To evaluate the performance of the generator network and
the quality of the synthetic data, the t-Distributed Stochastic
Neighbor Embedding (t-SNE) analysis [31] was conducted to
visualize how well the generated distribution resembles the
distribution of real data. The t-SNE analysis reduces the data
dimensionality by mapping from high-dimensional to lower-
dimensional spaces. Error! Reference source not found.
shows the distributions of the real and generated data for cross-
validation run fold 1. This graphical comparison shows the
ability of the generator network in mimicking the distribution of
the real data, hence producing high-quality synthetic data which
helps deal with the challenge of limited training data.

The root-mean-square error (RMSE) of RUL prediction was
used to evaluate the performance of the selected methods in
predicting the trajectory of the degradation feature, written as:

zeeot (RUL(6) ~ RUL()) ()

t=tppT

RMSE = \/7

(tgoL—trpT+1)
where tgpr is the time when prognostics starts, RUL(t) and
RUL(t) are the true RUL and predicted RUL at time step ¢,
respectively. RMSE is a measure of the error in RUL
prediction during the period of bearing prognostics (from
tepr to tgor). The RUL prediction results for all 15 bearings
are summarized in TABLE IV where the bearings are
arranged in an ascending order of length of prognostic time

period AT, defined as AT = tgor, — tgpr + 1. The model
which provides the least RMSE error for each bearing is
highlighted in bold. Overall, on average, the proposed GAN-
LSTM predictor produced more accurate results with 45%,
29%, and 27% improvement in RMSE value compared to the
quadratic regression model, baseline LSTM predictor model,
and LSTM predictor + noise model. Note that for bearings 2-
4, 3-5, 3-3, 1-5, and 1-4, the number of time steps in the
prognostic time period is smaller than the selected input
length of the LSTM predictor. For these bearings, some data
before tppr Were used as input, and these data do not provide
enough degradation information for making accurate
predictions. Also, with the exception of bearings 2-1, 3-4, and
2-5, the proposed model performed significantly better for
bearings with longer prognostic time periods..
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Figure 5. t-SNE plot of real data and generated data

Figure 6 shows the predicted RUL and degradation curves for
test bearing 3-2. During the early stage of bearing degradation
(from time t = 0 to t = 14 min), the proposed GAN-LSTM
predictor produced more accurate results. As the degradation
progressed, the extracted feature became closer to the predefined
failure threshold and easier to predict, making the RUL
predictions by the three approaches look more similar. Also,
note that the quadratic regression model produced the least
accurate results at the beginning of degradation but converged
to the LSTM predictor with occasional peaks in error. The
degradation trajectories predicted by the four models at three
different inspection times are plotted in Figure 7. The GAN-
LSTM predictor yielded more accurate predictions of the
degradation trend, especially at the early stage of degradation,
which resulted in the better RUL estimations depicted in Figure
6, and listed in TABLE IV. Moreover, at time t = 20 min, the
degradation trend became relatively flat. The quadratic model
provided unreliable results while the future trajectory generated
by the GAN-LSTM predictor still captured the global trend.
Given the ability of LSTM to learn long-term dependencies, it
was able to capture the global trend, whereas the quadratic
regression model focused more on capturing a local quadratic
trend. The peaks in RUL prediction at times around 29 min and
42 min in Figure 6 are also attributed to this characteristic of the
quadratic regression model, where changes in local trends
resulted in inaccurate predictions.



TABLEIV. RUL PREDICTION RESULTS BY THE GAN-LSTM PREDICTOR AND OTHER APPROACHES (SORTED BY ASCENDING ORDER OF PROGNOSTIC
DURATION)
RMSE
Bearing ID tFl-)T tE(-JL AT Quadratic LSTM predictor GAN-LSTM
(min) (min) (min) . LSTM predictor pri .
regression + noise predictor
Bearing 2-4 32 35 9.94 13.26 4.74 24.39
Bearing 3-5 20 25 147.51 13.47 4.18 10.89
Bearing 3-3 343 352 10 7.96 14.91 7.35 21.99
Bearing 1-5 26 41 16 5221 22.97 13.49 30.93
Bearing 1-4" 106 122 17 62.46 42.66 22.05 48.43
Bearing 2-1 456 489 34 6.31 5.34 10.14 42.59
Bearing 1-2 55 96 42 15.32 13.91 13.21 12.83
Bearing 1-1 79 121 43 14.16 15.71 14.4 9.04
Bearing 3-2 2450 2495 46 34.19 12.2 10.9 4.89
Bearing 3-4 1420 1479 60 13.42 8.23 12.99 12.6
Bearing 2-5 123 199 77 40.46 11.72 13.36 17.41
Bearing 2-3 316 398 83 271 15.74 25.12 9.93
Bearing 1-3 60 150 91 61.07 25.59 31.12 20.37
Bearing 2-2 50 154 105 45.38 43.99 43.56 29.69
Bearing 3-1 2404 2527 124 31.54 53.84 47.29 21.25
Cumulative® 39.7 31 29.91 21.9
“Bearing 1_4 undergoes catastrophic failure and is therefore very difficult for prediction.
*Cumulative represents the RMSE among all the bearings weighted by the prognostic time duration AT.
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Figure 6. (a) RUL prediction result for bearing 3-2 and (b) the degradation 1

curve of bearing 3-2

IV. CONCLUSION

In this paper, we proposed a long short-term memory
(LSTM) predictor trained within a generative adversarial
network (GAN) architecture for the failure prognostics of rolling
element bearings. The ISO standards are adopted in defining the
bearing failure threshold, making the proposed approach
industry-relevant. By integrating the training of LSTM predictor
within the GAN architecture, the LSTM predictor utilizes the
prognostic information from both the original, real data and the
generated data to better capture the degradation trajectories.

0 10 20 30 40 50
Time after FPT (min)
Figure 7. The predicted trajectories at three inspection times for
bearing 3 2

Using a publicly available bearing run-to-failure dataset
(XJTU-SY), we show the superiority of our approach when
compared to the quadratic regression model, LSTM predictor
model, and LSTM predictor trained with data augmented by
adding noise. The proposed GAN-LSTM predictor better
captures the degradation trajectory, thus leading to a more
accurate RUL prediction with a reduction of RMSE error in
RUL prediction by 29% when compared with the LSTM
predictor model in a five-fold cross-validation study.



ACKNOWLEDGMENT

This work was supported in part by the U.S. National
Science Foundation under Grant IIP-1919265, the Regents
Innovation Fund that is part of the Proof-of-Concept Initiative at
Iowa State University, and Grace Technologies. Any opinions,
findings, or conclusions in this paper are those of the authors and
do not necessarily reflect the views of the sponsors.

REFERENCES

[1] Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L. and Siegel, D., 2014.
Prognostics and health management design for rotary machinery
systems—Reviews, methodology and applications. Mechanical
systems and signal processing, 42(1-2), pp.314-334.

[2] Atamuradov, V., Medjaher, K., Dersin, P., Lamoureux, B. and
Zerhouni, N., 2017. Prognostics and health management for
maintenance  practitioners-review, implementation and tools
evaluation. International Journal of Prognostics and Health
Management, 8(060), pp.1-31.

[3] Cubillo, A., Perinpanayagam, S. and Esperon-Miguez, M., 2016. A
review of physics-based models in prognostics: Application to gears
and bearings of rotating machinery. Advances in Mechanical
Engineering, 8(8), p.1687814016664660.

[4] Wang, T., Liu, Z. and Mrad, N., 2020. A Probabilistic Framework for
Remaining Useful Life Prediction of Bearings. [EEE Transactions on
Instrumentation and Measurement, 70, pp.1-12.

[5] Liu, L., Song, X., Chen, K., Hou, B., Chai, X. and Ning, H., 2021. An
enhanced encoder—decoder framework for bearing remaining useful life
prediction. Measurement, 170, p.108753.

[6] Wu,J., Hu, K., Cheng, Y., Zhu, H., Shao, X. and Wang, Y., 2020. Data-
driven remaining useful life prediction via multiple sensor signals and
deep long short-term memory neural network. ISA transactions, 97,
pp.241-250.

[7] Zhu,J., Chen, N. and Peng, W., 2018. Estimation of bearing remaining
useful life based on multi-scale convolutional neural network. /EEE
Transactions on Industrial Electronics, 66(4), pp.3208-3216.

[8] Ren, L., Sun, Y., Wang, H. and Zhang, L., 2018. Prediction of bearing
remaining useful life with deep convolution neural network. /EEE
Access, 6, pp.13041-13049.

[9] Yang, B., Liu, R. and Zio, E., 2019. Remaining useful life prediction
based on a double-convolutional neural network architecture. [EEE
Transactions on Industrial Electronics, 66(12), pp.9521-9530.

[10] Wu, Y., Yuan, M., Dong, S., Lin, L. and Liu, Y., 2018. Remaining
useful life estimation of engineered systems using vanilla LSTM neural
networks. Neurocomputing, 275, pp.167-179.

[11]Guo, L., Li, N., Jia, F., Lei, Y. and Lin, J., 2017. A recurrent neural
network based health indicator for remaining useful life prediction of
bearings. Neurocomputing, 240, pp.98-109.

[12] Zhang, H., Zhang, Q., Shao, S., Niu, T. and Yang, X., 2020. Attention-
based LSTM network for rotatory machine remaining useful life
prediction. JEEE Access, 8, pp.132188-132199.

[13] Wang, Y., Xiang, J., Markert, R. and Liang, M., 2016. Spectral kurtosis
for fault detection, diagnosis and prognostics of rotating machines: A
review with  applications. Mechanical  Systems and  Signal
Processing, 66, pp.679-698.

[14] M. Sadoughi, H. Lu and C. Hu, “A Deep Learning Approach for Failure
Prognostics of Rolling Element Bearings,” 2019 IEEE International
Conference on Prognostics and Health Management (ICPHM), San

Francisco, CA4, USA, 2019, Pp- 1-7, doi:
10.1109/ICPHM.2019.8819442.

[15]Yaguo Lei, Naipeng Li, Liang Guo, Ningbo Li, Tao Yan, Jing
Lin,Machinery health prognostics: A systematic review from data
acquisition to RUL prediction,Mechanical Systems and Signal
Processing, Volume 104,2018,Pages 799-834, ISSN 0888-3270,
https://doi.org/10.1016/j.ymssp.2017.11.016.

[16] 14:00-17:00, “ISO 10816-3:2009,” ISO.
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/stan
dard/05/05/50528.html (accessed Oct. 28, 2020).

[17]R. L. Eshleman, Basic Machinery Vibrations: An Introduction to
Machine Testing, Analysis, and Monitoring. VIPress, 1999.

[18] Wang, B., Lei, Y., Li, N. and Li, N., 2018. A hybrid prognostics
approach for estimating remaining useful life of rolling element
bearings. IEEE Transactions on Reliability, 69(1), pp.401-412.

[19] Nectoux, P., Gouriveau, R., Medjaher, K., Ramasso, E., Chebel-
Morello, B., Zerhouni, N. and Varnier, C., 2012, June. PRONOSTIA:
An experimental platform for bearings accelerated degradation tests. In
IEEE  International Conference on Prognostics and Health
Management, PHM’12. (pp. 1-8). IEEE Catalog Number: CPF12PHM-
CDR.

[20]1H. J. Nussbaumer, “The Fast Fourier Transform,” in Fast Fourier
Transform and Convolution Algorithms, H. J. Nussbaumer, Ed. Berlin,
Heidelberg: Springer, 1981, pp. 80-111.

[21]Li, X., Zhang, W. and Ding, Q., 2019. Deep learning-based remaining
useful life estimation of bearings using multi-scale feature
extraction. Reliability Engineering & System Safety, 182, pp.208-218.

[22]Ren, L., Sun, Y., Cui, J. and Zhang, L., 2018. Bearing remaining useful
life prediction based on deep autoencoder and deep neural networks.
Journal of Manufacturing Systems, 48, pp.71-77.

[23] Shi, Z. and Chehade, A., 2021. A dual-LSTM framework combining
change point detection and remaining useful life prediction. Reliability
Engineering & System Safety, 205, p.107257.

[24]Yu, Y., Hu, C., Si, X., Zheng, J. and Zhang, J., 2020. Averaged Bi-
LSTM networks for RUL prognostics with non-life-cycle labeled
dataset. Neurocomputing, 402, pp.134-147.

[25] Barzegar, V., Laflamme, S., Hu, C. and Dodson, J., 2021. Multi-time
resolution ensemble Istms for enhanced feature extraction in high-rate
time series. Sensors, 21(6), p.1954.

[26] Yu, K., Lin, T.R., Ma, H., Li, X. and Li, X., 2021. A multi-stage semi-
supervised learning approach for intelligent fault diagnosis of rolling
bearing using data augmentation and metric learning. Mechanical
Systems and Signal Processing, 146, p.107043.

[27]X. Zhang, Y. Qin, C. Yuen, L. Jayasinghe and X. Liu, “Time-Series
Regeneration with Convolutional Recurrent Generative Adversarial
Network for Remaining Useful Life Estimation,” in IEEE Transactions
on Industrial Informatics, doi: 10.1109/TI1.2020.3046036.

[28]Y. Huang, Y. Tang and J. Vanzwieten, “Prognostics with Variational
Autoencoder by Generative Adversarial Learning,” in [EEE
Transactions on Industrial Electronics, doi:
10.1109/TIE.2021.3053882.

[29]Ruder, S., 2016. An overview of gradient descent optimization
algorithms. arXiv preprint arXiv:1609.04747.

[30] Goodfellow, 1.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley,
D., Ozair, S., Courville, A. and Bengio, Y., 2014. Generative
adversarial networks. arXiv preprint arXiv:1406.2661.

[31] Van der Maaten, L. and Hinton, G., 2008. Visualizing data using t-
SNE. Journal of machine learning research, 9(11).



https://doi.org/10.1016/j.ymssp.2017.11.016

