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Abstract—Failure prognostics is the process of predicting the 

remaining useful life (RUL) of machine components, which is vital 

for the predictive maintenance of industrial machinery. This 

paper presents a new deep learning approach for failure 

prognostics of rolling element bearings based on a Long Short-

Term Memory (LSTM) predictor trained simultaneously within a 

Generative Adversarial Network (GAN) architecture. The LSTM 

predictor takes the current and past observations of a well-defined 

health index as an input, uses those to forecast the future 

degradation trajectory, and then derives the RUL. Our proposed 

approach has three unique features: (1) Defining the bearing 

failure threshold by adopting an International Organization of 

Standardization (ISO) standard, making the approach industry-

relevant; (2) Employing a GAN-based data augmentation 

technique to improve the accuracy and robustness of RUL 

prediction in cases where the deep learning model has access to 

only a small amount of training data; (3) Integrating the training 

process of the LSTM predictor within the GAN architecture. A 

joint training approach is utilized to ensure that the LSTM 

predictor model learns both the original and artificially generated 

data to capture the degradation trajectories. We utilize a publicly 

available accelerated run-to-failure dataset of rolling element 

bearings to assess the performance of the proposed approach. 

Results of a five-fold cross-validation study show that the 

integration of the LSTM predictor with GAN helps to decrease the 

average RUL prediction error by 29% over a simple LSTM model 

without GAN implementation. 

Keywords—bearing, remaining useful life, prognostics and 

health management, generative adversarial network 

I. INTRODUCTION 

Predicting the remaining useful life (RUL) of mechanical 
components and industrial systems prior to catastrophic failure 
is vital for predictive maintenance. In an industrial environment, 

the failure of rolling element bearings is among the foremost 
causes of machinery failures [1]. The bearing failure may 
severely affect not only the bearing but also other connected 
components, leading to catastrophic machine failure [2]. Thus, 
the ability to accurately predict the RUL of a bearing is 
practically vital to ensuring the continuous and safe operation of 
machinery, minimizing unexpected machine downtime, and 
reducing maintenance costs. However, the bearing degradation 
is highly non-linear, making accurate prognostics a challenge. 

There has been extensive research in the field of bearing 
prognostics. In general, existing bearing prognostics approaches 
can be classified into two categories: (a) model-based 
approaches and (b) data-driven approaches.  

The model-based approaches attempt to capture the 
degradation process of a machine component by constructing 
mathematical models based on the component’s failure 
mechanisms [3]. The commonly used models include the Paris-
Erdogan model, Bailey-Norton model, and exponential 
degradation model [4]. These approaches require extensive 
comprehension of the failure mechanisms and accurate 
calibration of model parameters. However, in most cases, it is 
challenging to develop an accurate mathematical model for a 
specific bearing under different operating conditions. If the 
operating conditions of a bearing change, the prediction result 
of these approaches tends to be less accurate due to their poor 
adaptability [5]. 

The data-driven approaches employ machine learning 
techniques to capture the bearing degradation pattern without 
making any assumptions on the underlying damage mechanisms 
[6]. In recent years, deep learning techniques, such as 
convolutional neural networks [7-9] and recurrent neural 
networks [10-12], have become the mainstream techniques for 
machinery prognostics. Zhu et al. [7] combined wavelet 



transform analysis with a convolutional neural network (CNN) 
to predict the RUL of bearings. In their approach, wavelet 
transform was first used to extract a time-frequency 
representation of each sample, which was then fed into a multi-
scale CNN for RUL prediction. Ren et al. [8] used the short-time 
Fourier transform to extract the time-frequency representation 
of each sample, then calculated the maximum amplitudes at 
predefined frequency sub-bands, finally fed these amplitudes 
into a deep CNN for RUL prediction. Wu et al. [10] proposed a 
vanilla LSTM model for bearing RUL prediction. To enhance 
the LSTM model’s cognitive ability in estimating and predicting 
degradation, a dynamic differential feature extraction method 
was utilized that enabled capturing the changes of features under 
different operating conditions. Guo et al. [11] constructed a 
health index for bearing RUL prediction by fusing multiple 
features using a recurrent neural network. Other variants of 
CNN or LSTM are also applied to predict the RUL of bearings. 
For example, Yang et al.[9] proposed a double-CNN model for 
bearing RUL prediction. Zhang et al. [12] combined a multi-
layer LSTM network with an attention mechanism to improve 
the accuracy and robustness in RUL prediction. 

Although many data-driven approaches can achieve 
satisfactory accuracy in bearing RUL predictions, they often 
face one or more of the following challenges: 

1) Extensive research has shown that a bearing’s 
degradation often does not follow a linear trend 
[13,14]. Prior to the formation of a bearing fault, no 
clear degradation trend can be revealed from collected 
data. Soon after the onset of a bearing fault, the 
degradation may start to accelerate, and the bearing 
may approach failure in a very short time. The non-
linear degradation trend makes correlation/mapping of 
extracted features directly to RUL a challenge and can 
yield non-physical results.  

2) The performance of existing data-driven approaches 
depends heavily on the quality and quantity of the 
available training data used to optimize the parameters 
of deep learning models [15]. However, gathering large 
amounts of run-to-failure training data can be very 
costly and time-consuming, and insufficient available 
training data may lead to issues such as overfitting. 

To address the aforementioned challenges, this study 
proposes a GAN-based LSTM predictor training method for 
RUL prediction of rolling element bearings. The main 
contributions of the proposed approach are summarized as 
follows: 

1) The root mean square (RMS) features in the velocity 
domain were extracted and used to determine the first 
prediction time (FPT). A threshold is defined based on 
ISO standard 10816 [16-17] to determine the end of life 
(EOL) for bearings, as opposed to traditional heuristic 
approaches of using the maximum or mean vibration 
amplitude in the acceleration domain. 

2) A GAN-based LSTM framework for bearing 
degradation data augmentation is developed to enhance 
the model’s prediction accuracy and robustness in 

forecasting future degradation trajectories. 

3) A joint training strategy is developed by integrating the 
training of LSTM predictor into the training of GAN.  

The proposed approach implements the following two steps 
in the offline process: (1) Data Preparation extracts segments of 
a degradation feature from the collected vibration data in the 
velocity domain; and (2) Model Training first pre-trains the 
GAN-LSTM predictor based on the original training data, then 
pre-trains the generator and discriminator using the proposed 
GAN-LSTM network, and finally jointly trains the GAN-LSTM 
predictor, generator, and discriminator. After the GAN-LSTM 
network has been fully trained, the GAN-LSTM predictor can 
be used for online tests to predict the RUL of test bearings. The 
remainder of the paper is organized as follows: Section II 
introduces the methodology, including the data preparation, the 
GAN-LSTM predictor training, and RUL prediction. The 
performance of the proposed approach is evaluated in Section 
III through a five-fold cross-validation study on a publicly 
available dataset. Finally, several concluding remarks are given 
in Section IV. 

II. METHODOLOGY 

Figure 1 shows a flowchart of the proposed approach. In our 
methodology, run-to-failure vibration data is first transformed to 
velocity domain 𝑣(𝑡)  by numerical integration of the 
acceleration vibration signal 𝑎(𝑡). Then, feature extraction is 
conducted on the velocity data. The root mean square (RMS) in 
the velocity domain is calculated in the range of 0.2 times the 
shaft frequency, 0.2𝜔, to the end of frequency spectrum (which 
is one-half the sampling frequency 𝑠𝑓  for a single-sided fast 
Fourier transform spectrum) and is used as the health index of a 

bearing. The extracted features (𝑉0.2𝜔−𝑠𝑓/2
RMS ) are analyzed to 

determine the FPT using the 2𝜎 method [21]. The ISO standard-
based threshold is used to determine the EOL [16]. The 
calculations of FPT and EOL are described in section 2.1. After 
determining the FPT and EOL, data segmentation is performed 
to generate training data through a moving window 
segmentation function where a moving window with a 
predetermined length takes segments in sequential order. A 
GAN-LSTM architecture is used to train the GAN-LSTM 
degradation pattern predictor. Through joint training, the GAN-
LSTM predictor is trained using both the real training data and 
the generated data obtained from the generator network. The 
following sections present the details of each step.   

A. Data Preparation 

The data pre-processing is composed of two parts: (1) feature 
extraction and (2) determination of FPT and EOL.  

Most lab-based accelerated bearing run-to-failure datasets 
provide vibration data in the acceleration domain [18]-[19]. 
However, the industry-relevant ISO standards for defining the 
EOL or alarm amplitudes are defined in the velocity domain 
[16]. This is because the amplitude of the acceleration signal 
increases with the shaft frequency, whereas the amplitude of the 
signal in the velocity domain provides a more stable 
representation [17]. To obtain degradation patterns reflecting the 
bearing damage severity, the velocity RMS in the frequency  
 



range of 0.2𝜔 − 𝑠𝑓/2 Hz is used as a degrading feature for the 
sampling frequency 𝑠𝑓 = 25.6 kHz  with operating shaft 
frequency 𝜔. The extracted run to failure feature is a sequence 

of velocity-RMS values 𝑉0.2𝜔−𝑠𝑓/2
RMS  defined using the Parseval’s 

theorem as [20]: 

 𝑉0.2𝜔−𝑠𝑓 2⁄
RMS  = √∑

|𝑉(𝑓)|2

2

𝑠𝑓 2⁄
𝑓=0.2𝜔

 () 

where 𝑉(𝑓) is the single-sided frequency spectrum for 𝑣(𝑡). A 

larger value of 𝑉0.2𝜔−𝑠𝑓/2
RMS  represents a more severely damaged 

state. At the beginning of the run-to-failure tests, bearings are 
often healthy and no clear degradation trend can be revealed, 
resulting in an approximately flat RMS sequence. FPT and EOL 
were defined to obtain the degradation curve between where the 
bearing starts to experience damage up to its EOL. In this paper, 
the 2𝜎 method, which was proposed in Ref. [21], was used to 
determine the FPT. The RMS values are used to employ the 2𝜎 

criterion in the velocity domain 𝑉0.2𝜔−𝑠𝑓/2
RMS . The mean 𝜇𝑉RMS 

and standard deviation 𝜎𝑉RMS  were calculated using the data 

collected at the beginning of the experiment, then the FPT was 

obtained when 𝑉0.2𝜔−𝑠𝑓/2
RMS  crosses the threshold of  𝜇𝑉RMS +

2𝜎𝑉RMS for two consecutive observations. 

Based on the ISO standard, the EOL of the bearing is defined 
when the velocity RMS reaches a given threshold. Here, the 
threshold was set at 0.27 ips reflecting the ISO standard alarm 
state for medium-sized motors. For bearing prognostics, the true 
RUL of a bearing was defined to decrease linearly with a unit 

slope from the FPT to EOL. The development of 𝑉0.2𝜔−𝑠𝑓/2
RMS  is 

depicted in Figure 2 for a sample bearing. 

B. The GAN-LSTM predictor 

There are two approaches to performing bearing RUL 
prediction using deep learning techniques: direct mapping 
approach and trajectory prediction approach. The direct 
mapping approach takes the extracted features as input and 
produces an RUL estimate as output [22-23]. The trajectory  
 

 
 

Figure 2. Evolution of 𝑉0.2𝜔−𝑠𝑓/2
RMS  and identification of FPT, EOL 

prediction approach takes the historical measurements of a 
feature as the input, forecasts the future trajectory of this feature, 
then calculates the RUL as the time at which the trajectory 
crosses a failure threshold [24]. The proposed method adopts the 
second approach. Specifically, a one-step ahead predictor, called 
GAN-LSTM predictor, is proposed to forecast the degradation 
of a bearing. The predictor’s performance is enhanced by 
augmenting real training data with synthetic data generated by a 
GAN. To obtain a complete forecast up to the failure threshold, 
the GAN-LSTM predictor is repeatedly evaluated by marching 
in time, treating predicted values as new data points. 

The GAN-LSTM predictor is composed of an LSTM layer 
and a fully connected layer. LSTM is a special type of recurrent 
neural network (RNN). It utilizes memory cells to retain useful 
information within both long and short periods often with no 
issue of vanishing gradients [22]. Each LSTM unit has three 
gates: input gate, forget gate, and output gate. The input gate 
determines what new information should be stored in the 
memory cell, the forget gate determines what information 
should be discarded from the previous cell state, and the output 
gate determines what the hidden state at the next time step 
should be based on the previous cell state, the current input, the 
current cell state. A more detailed introduction to LSTM can be 
found in Ref. [25]. 

Given training time-series data, the GAN-LSTM predictor 
takes the features at the current and previous (𝑘 − 1) time steps 
as the input, and predicts the feature value at the next time step. 
The LSTM layer extracts temporal degradation information, 
which will then be used to determine the feature value at the next 
step by using a fully connected layer.        

The GAN-LSTM predictor is a deep learning model, and its 
performance highly depends on the quantity and quality of the 
training data. Data augmentation techniques are commonly used 
to cope with the lack of available training data. Some of the most 
common data augmentation techniques used for bearing RUL 
prediction include adding noise and shrinking or extending the 
training data [26]. Recent research has also shown the promise 
of performing data augmentation using GANs [27-28]. Here, a 
GAN-based framework for degradation data augmentation is 
proposed. 

 
 

Figure 1. A flowchart of the proposed approach 



In its basic form, a GAN comprises two separate networks 
working with opposing goals: (1) a generator network and (2) a 
discriminator network. The principle of a generator is to create 
synthetic sequences with a similar probability distribution to that 
of the real data while the discriminator tries to distinguish 
between the real and synthetic sequences. The competition 
between the two networks enhances the quality of the generated 
data when the fully-trained discriminator fails to distinguish the 
real and the synthetic data. The training of the GAN involves 
alternate optimizations of the generator and the discriminator. 
The objective function of the discriminator consists of two parts. 
The first part is the probability that real data is classified as real 
data, and the second objective is the probability that the 
generated data is classified as synthetic data. The objective 
function of the discriminator is written as: 

 max (𝑉𝐷) =
1

𝑛
∑ [log𝐷(𝑥𝑖) + log(1 − 𝐷(𝐺(𝑧𝑖)))]𝑛

𝑖=1  ()  

where 𝑥𝑖  is the real degradation data, 𝑧𝑖  is the random noise, 
𝐷(𝑥𝑖) denotes the output given by the discriminator when the 
input is 𝑥𝑖 , and 𝐺(𝑧𝑖)  represents the generated sample. The 
training process of the discriminator tries to maximize the 
objective function 𝑉𝐷  so that the well-trained discriminator 
could identify data correctly.  

For each training epoch, after the discriminator is trained, the 
generator is trained by keeping the discriminator’s weights 
constant. The generator takes random noise as input and 
generates synthetic data. The object of the generator is to 
confuse the discriminator. The objective function of the 
generator can be written as: 

 min (𝑉𝐺) =
1

𝑛
∑ log (1 − 𝐷(𝐺(𝑧𝑖))𝑛

𝑖=1  () 

The training of GAN involves the optimization of 𝑉𝐷 and 𝑉𝐺 
iteratively. Conceptually, the training of GAN can correspond to 
a minimax two-player game [29] written as: 

min max
𝐺 𝐷

    V(𝐷, 𝐺) =
1

𝑛
∑ [log𝐷(𝑥𝑖) + log (1 −𝑛

𝑖=1

𝐷(𝐺(𝑧𝑖)))]                                                                             () 

The ideal objective for GAN is that the discriminator cannot 
distinguish the generated data from the real data. The generated 
data from a well-trained generator will mimic the distribution of 
the training data. A straightforward way to perform GAN-based 
data augmentation is to train the GAN based on the training 
dataset, then combine generated data with training data to train 
the deep learning model. In our proposed method, we integrate 
the training of the GAN-LSTM predictor into the training of the 
GAN architecture for a more robust and direct implementation.  

The architecture of the GAN-LSTM network is illustrated in 
Figure 3. The generator takes a random sequence of length l and 
outputs a vector of synthetically generated data of the same 
length. The LSTM predictor takes the output and predicts the 
feature at the next step in the sequence. The one-step ahead 
prediction is then appended to the generated data and is fed into 
the discriminator to be labeled as real or generated data. The  

 
 

Figure 3. A flowchart depicting the essential elements of the GAN-

LSTM network 

network is trained by back-propagating error through time and 
the standard gradient descent optimization method [29]. 

Here, the GAN-LSTM predictor is pre-trained on the limited 
available data. The architecture shown in Figure 3 is then used 
to enhance the prediction accuracy by generating augmented 
sequences. The training of the GAN-LSTM predictor is 
composed of three steps: 

1) Pre-training of the GAN-LSTM predictor: The GAN-
LSTM predictor is pre-trained using the real data. 

2) Pre-training of the generator and discriminator: The 
generator and discriminator are trained iteratively by 
following the structure proposed in Figure 3, while the 
GAN-LSTM predictor’s parameters are frozen.  

3) Joint training of the generator, GAN-LSTM predictor, 
and discriminator: The generator, GAN-LSTM 
predictor, and discriminator are all trained in this step. 
Each joint training epoch is composed of two sub-steps. 
Firstly, the GAN-LSTM predictor, the generator, and 
the discriminator are jointly trained following the 
structure proposed in Figure 3. Then, the GAN-LSTM 
predictor is fine-tuned using the real data. 

C. RUL Prediction 

The one-step ahead GAN-LSTM predictor is used to predict 
the trajectory of the degradation feature up to the EOL. An input 
sequence of length l is fed into the trained LSTM predictor with 
the time step of the last element marked as 𝑡Inspection . Each 

next-step prediction value is used as a new data point, and the 
prediction is performed until the predicted value crosses the 
predefined threshold of EOL and marking the time as 𝑇EOL . 
Then, the RUL is computed as:  

 RUL(𝑡) = 𝑇EOL − 𝑡Inspection () 

The RUL prediction procedure is specified in TABLE I.  

 

 

 



TABLE I.  THE PROCEDURE OF RUL PREDICTION PROCEDURE 

Algorithm: RUL prediction 

Inputs: Real run-to-failure feature series 𝐹 = 𝐹𝑡, 

 Inspection time 𝑡Inspection,  

 LSTM predictor  Θ𝑝,  

 Failure threshold 𝑉cutoff 

Output:  RUL  

1 Initialize   𝑡𝑖 = 𝑡Inspection, 𝑉𝑖
RMS  = 𝐹(𝑡𝑖), 

2 While  (𝑉𝑖
RMS ≤ 𝑉cutoff): 

3     Set the input 𝐹Input = 𝐹𝑡𝑖−𝑙+1:𝑡𝑖
;  

4     Next step prediction: 𝑉𝑖+1
RMS = Θ𝑝(𝐹Input); 

5     Update 𝐹𝑡𝑖+1 = 𝑉𝑖+1
RMS; 

6     𝑡𝑖 = 𝑡𝑖 + 1 

7 end while 

8 𝑇EOL = 𝑡𝑖 

Output: return RUL = 𝑇EOL − 𝑡Inspection 
 

 

III. EXPERIMENTAL VALIDATION 

The run-to-failure bearing dataset from XJTU-SY was 
utilized to evaluate the proposed method’s performance [14]. 
The XJTU-SY bearing dataset consisted of run-to-failure 
vibration data of 15 rolling element bearings (LDK UER 204) 
divided into three groups of five bearings. Each group was 
subjected to a certain operating condition. Two PCB 352C33 
accelerometers were mounted perpendicularly along the radial 
direction. Data were collected for 1.28 sec every minute with a 
sampling frequency of 25.6 kHz. The operating conditions for 
the entire bearing dataset are shown in TABLE II. The extracted 

V0.2𝜔−𝑠𝑓/2
RMS  features (from FPT to EOL) are shown in Figure 4. 

A five-fold cross-validation study was conducted on the set 
of 15 bearings. 15 bearings were divided into five folds as: 

Fold 1: Bearing 1-1, Bearing 2-1, Bearing 3-1 

Fold 2: Bearing 1-2, Bearing 2-2, Bearing 3-2 

Fold 3: Bearing 1-3, Bearing 2-3, Bearing 3-3 

Fold 4: Bearing 1-4, Bearing 2-4, Bearing 3-4 

Fold 5: Bearing 1-5, Bearing 2-5, Bearing 3-5 

TABLE II.  XJTU-SY BEARING DATASET. 

 Operating condition 

 Condition 1 Condition 2 Condition 3 

Radial load 12 kN 11 kN 10 kN 

Speed 35 Hz 37.5 Hz 40 Hz 

Bearing ID 

Bearing 1-1 Bearing 2-1 Bearing 3-1 

Bearing 1-2 Bearing 2-2 Bearing 3-2 

Bearing 1-3 Bearing 2-3 Bearing 3-3 

Bearing 1-4 Bearing 2-4 Bearing 3-4 

Bearing 1-5 Bearing 2-5 Bearing 3-5 

 

 
Figure 4. RMS features of each bearing 

While evaluating the model, one fold was chosen to be the 
test set, and the other four folds were used for training the 
models. For example, if fold 1 served as the test set (Bearing 1-
1, Bearing 2-1, and Bearing 3-1 are test bearings), then the data 
collected from the other 12 bearings served as the training set. 
The length of the network input, 𝑙, the learning rate of the GAN-
LSTM predictor, and the learning rate of both the generator and 
discriminator were heuristically set as 20, 0.001, and 0.0001, 
respectively. As mentioned in section 2, the GAN-LSTM 
predictor, generator, and the discriminator were pre-trained 
using the available datasets for 60, 1000, and 1000 epochs, 
respectively. During the joint training, the GAN-LSTM 
predictor, generator, and discriminator were trained for 60 
epochs. The architecture of the GAN-LSTM network is shown 
in TABLE III.  

TABLE III.  THE SPECIFIC CONFIGURATION OF THE PROPOSED GAN-
LSTM NETWORK. 

Module name layer Parameters 

Generator 

Fully connected layer 
Output shape = (Samples, 64), 

Activation = Linear 

Fully connected layer 
Output shape = (Samples, 32), 
Activation = Linear 

Fully connected layer 
Output shape = (Samples, 20), 

Activation = ReLU 

Discriminator 

Fully connected layer 
Output shape = (Samples, 64), 
Activation = Linear 

Fully connected layer 
Output shape = (Samples, 128), 

Activation = ReLU 

Fully connected layer 
Output shape = (Samples, 64), 

Activation = ReLU 

Fully connected layer 
Output shape = (Samples, 1), 
Activation = Sigmoid 

GAN-LSTM 
predictor 

LSTM layer Number of LSTM Units = 60 

Fully connected layer 
Output shape = (Samples, 1), 

Activation = Linear 

 



To evaluate the performance of the proposed approach, the 
LSTM model without being trained jointly with GAN network 
was used as a baseline model, named as LSTM predictor. The 
LSTM predictor + noise model was also included for 
benchmarking the proposed method; this model was trained with 
the real training data and the training data synthetically 
generated by adding Gaussian noise to the real training data. 

In addition to deep learning models, a quadratic regression 
model was also included. The regression fitting was performed 
on features at the current and previous 19 time steps. The model 
used to capture the bearing degradation trend is defined as: 

 𝑉RMS(𝑡) = 𝑚1𝑡2 + 𝑚2𝑡 + 𝑚3 () 

where 𝑉RMS(𝑡)  represents the feature value at time 𝑡 , and 
𝑚1,𝑚2 and 𝑚3 are the unknown model parameters which were 
determined by the ordinary least square method. Similar to the 
GAN-LSTM predictor, after model parameters 𝑚1,𝑚2 and 𝑚3 

are determined, the feature at the next time step, 𝑉RMS(𝑡 + 1), 
will be predicted, and this next-step prediction will be used as a 
new data point. This process of quadratic regression is repeated 
until the predicted value crosses the predefined threshold. The 
regression model focuses on capturing a local quadratic trend. 
However, if the feature does not change significantly within the 
previous 19 steps, the model cannot provide reliable prediction 
results. In this paper, if the predicted values do not reach the 
threshold for the next 100 steps, the model’s RUL prediction at 
that inspection time point will be deemed unreliable and the 
model will take the most recent reliable prediction result as the 
predicted RUL.  

To evaluate the performance of the generator network and 
the quality of the synthetic data, the t-Distributed Stochastic 
Neighbor Embedding (t-SNE) analysis [31] was conducted to 
visualize how well the generated distribution resembles the 
distribution of real data. The t-SNE analysis reduces the data 
dimensionality by mapping from high-dimensional to lower-
dimensional spaces. Error! Reference source not found. 
shows the distributions of the real and generated data for cross-
validation run fold 1. This graphical comparison shows the 
ability of the generator network in mimicking the distribution of 
the real data, hence producing high-quality synthetic data which 
helps deal with the challenge of limited training data. 

The root-mean-square error (RMSE) of RUL prediction was 
used to evaluate the performance of the selected methods in 
predicting the trajectory of the degradation feature, written as: 

 RMSE = √
1

(𝑡EOL−𝑡FPT+1)
∑ (RULt(𝑡) − RUL̂(𝑡))

2𝑡EOL
𝑡=𝑡FPT

 () 

where 𝑡FPT is the time when prognostics starts, RULt(𝑡) and 

RUL̂(𝑡) are the true RUL and predicted RUL at time step 𝑡, 
respectively. RMSE  is a measure of the error in RUL 
prediction during the period of bearing prognostics (from 
𝑡FPT to 𝑡EOL). The RUL prediction results for all 15 bearings 
are summarized in TABLE IV where the bearings are 
arranged in an ascending order of length of prognostic time 

period Δ𝑇 , defined as Δ𝑇 = 𝑡EOL − 𝑡FPT + 1 . The model 
which provides the least RMSE error for each bearing is 
highlighted in bold. Overall, on average, the proposed GAN-
LSTM predictor produced more accurate results with 45%, 
29%, and 27% improvement in RMSE value compared to the 
quadratic regression model, baseline LSTM predictor model, 
and LSTM predictor + noise model. Note that for bearings 2-
4, 3-5, 3-3, 1-5, and 1-4, the number of time steps in the 
prognostic time period is smaller than the selected input 
length of the LSTM predictor. For these bearings, some data 
before 𝑡FPT were used as input, and these data do not provide 
enough degradation information for making accurate 
predictions. Also, with the exception of bearings 2-1, 3-4, and 
2-5, the proposed model performed significantly better for 
bearings with longer prognostic time periods.. 

 

Figure 5. t-SNE plot of real data and generated data 

Figure 6 shows the predicted RUL and degradation curves for 
test bearing 3-2. During the early stage of bearing degradation 
(from time 𝑡 = 0  to  𝑡 = 14 min), the proposed GAN-LSTM 
predictor produced more accurate results. As the degradation 
progressed, the extracted feature became closer to the predefined 
failure threshold and easier to predict, making the RUL 
predictions by the three approaches look more similar. Also, 
note that the quadratic regression model produced the least 
accurate results at the beginning of degradation but converged 
to the LSTM predictor with occasional peaks in error. The 
degradation trajectories predicted by the four models at three 
different inspection times are plotted in Figure 7. The GAN-
LSTM predictor yielded more accurate predictions of the 
degradation trend, especially at the early stage of degradation, 
which resulted in the better RUL estimations depicted in Figure 
6, and listed in TABLE IV. Moreover, at time 𝑡 = 20 min, the 
degradation trend became relatively flat. The quadratic model 
provided unreliable results while the future trajectory generated 
by the GAN-LSTM predictor still captured the global trend. 
Given the ability of LSTM to learn long-term dependencies, it 
was able to capture the global trend, whereas the quadratic 
regression model focused more on capturing a local quadratic 
trend. The peaks in RUL prediction at times around 29 min and 
42 min in Figure 6 are also attributed to this characteristic of the 
quadratic regression model, where changes in local trends 
resulted in inaccurate predictions.

 

 

 



TABLE IV.  RUL PREDICTION RESULTS BY THE GAN-LSTM PREDICTOR AND OTHER APPROACHES  (SORTED BY ASCENDING ORDER OF PROGNOSTIC 

DURATION) 

Bearing ID 
𝑡FPT 

(min) 

𝑡EOL 

(min) 

Δ𝑇 

(min) 

RMSE 

Quadratic 

regression 
LSTM predictor 

LSTM predictor 

+ noise 

GAN-LSTM 

predictor 

Bearing 2-4 32 35 4 9.94 13.26 4.74 24.39 

Bearing 3-5 20 25 6 147.51 13.47 4.18 10.89 

Bearing 3-3 343 352 10 7.96 14.91 7.35 21.99 

Bearing 1-5 26 41 16 52.21 22.97 13.49 30.93 

Bearing 1-4* 106 122 17 62.46 42.66 22.05 48.43 

Bearing 2-1 456 489 34 6.31 5.34 10.14 42.59 

Bearing 1-2 55 96 42 15.32 13.91 13.21 12.83 

Bearing 1-1 79 121 43 14.16 15.71 14.4 9.04 

Bearing 3-2 2450 2495 46 34.19 12.2 10.9 4.89 

Bearing 3-4 1420 1479 60 13.42 8.23 12.99 12.6 

Bearing 2-5 123 199 77 40.46 11.72 13.36 17.41 

Bearing 2-3 316 398 83 27.71 15.74 25.12 9.93 

Bearing 1-3 60 150 91 61.07 25.59 31.12 20.37 

Bearing 2-2 50 154 105 45.38 43.99 43.56 29.69 

Bearing 3-1 2404 2527 124 31.54 53.84 47.29 21.25 

Cumulative#    39.7 31 29.91 21.9 
*Bearing 1_4 undergoes catastrophic failure and is therefore very difficult for prediction. 
#Cumulative represents the RMSE among all the bearings weighted by the prognostic time duration Δ𝑇. 

 

 
Figure 6. (a) RUL prediction result for bearing 3-2 and (b) the degradation 

curve of bearing 3-2 

IV. CONCLUSION 

In this paper, we proposed a long short-term memory 
(LSTM) predictor trained within a generative adversarial 
network (GAN) architecture for the failure prognostics of rolling 
element bearings. The ISO standards are adopted in defining the 
bearing failure threshold, making the proposed approach 
industry-relevant. By integrating the training of LSTM predictor 
within the GAN architecture, the LSTM predictor utilizes the 
prognostic information from both the original, real data and the 
generated data to better capture the degradation trajectories. 

  
Figure 7. The predicted trajectories at three inspection times for 

bearing 3_2 

 
 Using a publicly available bearing run-to-failure dataset 
(XJTU-SY), we show the superiority of our approach when 
compared to the quadratic regression model, LSTM predictor 
model, and LSTM predictor trained with data augmented by 
adding noise. The proposed GAN-LSTM predictor better 
captures the degradation trajectory, thus leading to a more 
accurate RUL prediction with a reduction of RMSE error in 
RUL prediction by 29% when compared with the LSTM 
predictor model in a five-fold cross-validation study. 
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