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Abstract 

Probabilistic prediction of the remaining useful life (RUL) of bearings is critically important, 

especially in an industrial setting where unplanned maintenance needs, unscheduled equipment 

downtime, or catastrophic failures can cost a company millions of dollars and threaten worker 

safety. Current research in the field of bearing prognostics clearly shows the advantage of a deep 

learning-based solution, but the reliability of purely data-driven predictions is questionable in 

harsh industrial environments with varying operational conditions. To make this work industrially 

relevant, we adopt ISO guidelines to determine bearing failure thresholds (specifically ISO 10816), 

which are defined in the velocity domain, while considering characteristic bearing fault 

frequencies defined by the geometry of each bearing. We propose a two-stage Long Short-Term 

Memory (LSTM) model ensemble which includes: (1) a predictor step to forecast and (2) a 

corrector step to offset the RUL prediction. Each LSTM model within the ensemble is customized 

to include a Gaussian layer that captures the aleatoric uncertainty in the forecasted parameter, and 

the ensemble of all the individual LSTM models provides the epistemic uncertainty in the RUL 

prediction. We demonstrate the implementation of the proposed model on the publicly available 

Xi'an Jiaotong University and Changxing Sumyoung Technology Co., Ltd. (XJTU-SY) bearing 

dataset and establish the superiority of the model, both in terms of accuracy as well as uncertainty 

quantification, when compared against other commonly used techniques in the field of bearing 

prognostics. The ensemble model tends to explore multiple functional/forecast modes providing 

better uncertainty estimates when compared to Bayesian counterparts.  

 

Keywords: Bearing prognostics, LSTM, time series forecasting, probabilistic prediction, ensemble 

method.  

 

1. Introduction 

Prognostics and health management (PHM) technology has been receiving wide attention in recent 

years because of its potential to help reduce machine downtime, avoid catastrophic failure, and 

improve overall system reliability [1]–[3]. In the industrial environment, rolling element bearings 

are a predominant focus of PHM because of their presence in the rotating component of almost 

any critical piece of machinery [4]–[6]. The primary purpose of bearings is to reduce the rotational 

friction between multiple rotating parts while holding them in place. In an industrial setting, the 

bearings are often continuously operated under radial and/or axial loads and any catastrophic 

bearing failure may severely affect not just the bearing but also other connected components and/or 
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processed outputs, leading to costly downtime and equipment replacement. Therefore, detection 

of bearing faults [7], [8] and predicting the remaining useful life (RUL) of the bearings with a 

certain degree of confidence can empower the maintenance engineer to schedule maintenance well 

before bearing failure. 

 

Predicting the RUL of bearings has typically been approached in one of two ways: (1) by using a 

model-based approach where bearing failure mechanisms are modeled using mathematical 

constructs and (2) by using a data-driven approach where the failure data of a previous set of 

bearings will be used to train an offline model. In both cases, the generated model can be used to 

predict the RUL of a similar bearing at a given point in time.  

 

A micro-level model-based approach to RUL prediction requires prior knowledge of a bearing’s 

failure mechanisms and their explicit modeling [9]. This level of understanding of the physics of 

bearing degradation can lead to very accurate RUL estimates, but modeling extremely non-linear 

failure mechanisms, such as excessive loading, breakdown of lubrication, contamination, and 

bearing currents [10], along with the wide variation in bearing operating conditions, can severely 

limit the application of model-based approaches. On the other hand, a macro-level model-based 

prognostic approach includes simplification of the represented system by defining a certain 

relationship between the input variables, the state variables, and the system output. Previous 

research in this domain includes the use of the Kalman filter (and its derivatives) [11]–[17] and 

particle filter (PF) [18]–[20]. Notably, Singleton et al. [11] uses an exponential form state equation 

to predict the bearing RUL using extended Kalman filter. Li et al. [19] has proposed an improved 

exponential model where the first prediction time is adaptively determined, and the PF technique 

is used to reduce the errors associated with the stochastic noise. Qian et al. [20] combines two-

time scales by integrating phase space warping and a Paris crack growth model with PF to 

effectively predict the bearing RUL. 

 

Data-driven approaches do not require prior knowledge about bearing failure mechanisms and can 

provide an estimate of bearing RUL that grows in credibility as more learning data is collected. 

However, the accuracy of the data-driven approach is heavily dependent on the amount of failure 

data available and is subject to typical reliability issues (such as overfitting) that present 

themselves frequently in modern data science. Machine learning techniques such as artificial 

neural networks (ANNs) [21]–[24], support/relevance vector machine (S/RVM) [25]–[29] are a 

few data-driven approaches often used in this domain of research. Recently, deep learning 

techniques are becoming more prominent due to their learning capability at multiple levels [30]. 

Among these, convolutional neural networks (CNN) [31]–[35] and recurrent neural networks 

(RNN) [23], [24] are gaining increased popularity due to their ability to store temporal information, 

which can be particularly useful in predicting the bearing health condition. Guo et al. [24] was the 

first to construct a bearing health indicator based on a feature selection criterion and used the health 

indicator to train a recurrent neural network (RNN). Wang et al. [36] developed a new framework 

of recurrent convolutional neural networks (RCNN) combined with variational inference to 

determine probabilistic RUL prediction. Peng et al. [37] proposed a Bayesian deep-learning-based 

method for uncertainty quantification in the field of prognostics.  

 

The long short-term memory (LSTM) architecture is a special class of RNN that has the ability to 

store long-term feature dependencies, and it is also being explored for prognostic applications 
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[38]–[41]. Mao et al. [42] used CNN to extract bearing degradation features which are then fed 

into an LSTM model for RUL prediction. Although many of these deep learning methods show 

promising results, these models often consist of a large number of parameters, requiring extensive 

computational resources and time even for making predictions, particularly if Bayesian methods 

are involved for uncertainty quantification. The scalability of such models, especially in an 

embedded industrial internet of things (IIoT) platform or soft-sensor applications [43], is not clear. 

To this end, we attempt to advance the current state-of-the-art in bearing prognostics in the 

following ways: 

1) We use the International Organization of Standardization (ISO 10816) set standards for 

industrial machines to determine the end of life (EOL) for bearings as opposed to 

traditional heuristic approaches of using maximum or mean vibration amplitude. The ISO 

standards, which often evaluate excessive vibration in terms of velocity units like inches 

per second (ips), define “excessive” vibration from an industrial standpoint which could be 

quite different from what is seen in a lab-based experiment. Particularly, a lab-based 

experiment can allow for a catastrophic bearing failure but this is not the case in an 

industrial setting where a catastrophic failure can cost millions of dollars. 

2) We extract velocity domain root mean square (RMS) features while accounting for 

characteristic bearing fault frequencies. These features are then used to determine the first 

prediction time (FPT) and to train the proposed model. Simultaneously, we also extract 

features from both the time and frequency domains of acceleration, velocity, and jerk 

vibration signals, which are used to train other correlation-based models, such as CNNs, 

for comparison. Similar to the approach presented in Ref. [24], a total of twenty-four 

features are selected based on their Pearson correlation coefficient and monotonicity which 

indicates the variation of the bearing health condition with time.  

3) We develop a simple and scalable ensemble of lightweight deep LSTM networks 

(EnLSTM) that can provide a probabilistic prediction of RUL. As opposed to complex and 

heavy parameter deep learning models, our proposed model uses multiple lightweight 

models to enable embeddability on vibration measuring sensors for online prognostics of 

bearing failure. A simple data augmentation technique is used during the training phase of 

the LSTM networks to improve the accuracy and robustness of RUL prediction. 

4) We propose a two-step algorithm consisting of (a) a predictor step (EnPLSTM): which 

forecasts a selected feature to a certain threshold for an initial RUL prediction, (b) a 

corrector step (EnCLSTM): which corrects the prediction of the EnPLSTM, and (c) 

temporal fusion: which weighs in the predictions from the recent past to make a smoother 

final prediction. Each individual LSTM model provides aleatoric uncertainty of predictions 

through the use of a custom Gaussian layer. These LSTM models, when combined to form 

an ensemble, can help estimate the epistemic uncertainty in bearing health forecasts. This 

method ensures robust RUL predictions that are less sensitive to measurement noise and 

also provide consistent predictions that do not vary vastly between successive 

measurements. 

5) Several metrics for quantifying uncertainty are used to compare the proposed model with 

other probabilistic methods such as optimized PF and Bayesian-like Monte-Carlo (MC) 

Dropout [44]. We also investigate how the ensemble EnPLSTM model works by 

demonstrating that the training of each individual PLSTM model takes a different 

optimization route. We show how exploring the functional/forecast modes provides a better 

measure of uncertainty. 
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The rest of the paper is organized as follows. In section 2, we first formally introduce the overall 

methodology followed by a discussion on relevant feature extraction while considering 

characteristic bearing fault frequencies. Following this, we present an LSTM architecture with the 

inclusion of a Gaussian layer to account for aleatoric uncertainty in the feature forecast and use 

this to develop the EnPLSTM and EnCLSTM. In section 3, we implement the proposed model on 

a publicly available bearing dataset from accelerated degradation experiments and establish the 

superiority of our model when compared to other deterministic as well as probabilistic 

contemporary models. Particularly in section 3, we reason why the ensemble predictor and 

corrector work well for the bearing dataset by identifying scenarios where the model would fail.  

 

2. Methodology 

In the introduction, we established that probabilistic RUL prediction of rolling element bearings 

is critically important for scheduling maintenance. In this section, we describe the technical 

approach for achieving confident RUL predictions. We first describe the features extracted from 

the vibration signals and then detail the proposed EnP/CLSTM algorithm after which we briefly 

present model-based approaches like particle filter, similarity, and exponential/quadratic 

regression, and a CNN data-driven approach. The detailed flow chart of the proposed bearing 

prognostic algorithm is shown in Figure 1 for the proposed architecture. In a later section, we show 

the advantage of the proposed method by using a case study of a run-to-failure bearing dataset. 

 
Figure 1: Schematic of the proposed bearing prognostic algorithm 
 

The state of bearing health is often captured through vibration measurements collected in the radial 

direction. Bearing defects can usually be classified as either (1) single-point defects or (2) 

generalized roughness [45]. The former type of defect is localized, such as a spall or a pit, on an 

otherwise smooth bearing surface, producing four different characteristic fault frequencies. 
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Generalized roughness arises when larger areas of the bearing component surfaces become coarse, 

irregular, or deformed.  

 

In this study, we limit our observations to single/multi-point defects, where the characteristic fault 

frequencies [46], [47] are functions of rotational speed and can be obtained for flaws in the outer 
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speed in Hz, 𝐵 is the ball diameter, 𝑃 is the pitch diameter, 𝜙 is the contact angle, and 𝑁 is the 

number of balls. A bearing with a particular defect shows harmonics of the corresponding fault 

frequency, and discrepancies arise whenever there is slippage. Moreover, when the fault is 

sufficiently pronounced, the vibrations are accompanied by sidebands around these characteristic 

frequencies. We, therefore, consider a frequency band around each fault frequency (see Figure 5) 

to capture the fault signatures. 

 

2.1 Feature Extraction in Velocity Domain 

 

Most academic bearing run-to-failure datasets provide vibration data in the acceleration domain 

whereas the ISO standards for defining end-of-life or alarm amplitudes are in the velocity domain 

[48]–[50]. This is because the magnitude of a signal in the acceleration domain increases with the 

frequency of that signal, whereas velocity provides a more stable representation of energy that is 

independent of shaft or rotational speed. Moreover, the vibration in the velocity domain is less 

susceptible to amplifier overloads that typically show up in the high-frequency domain which can 

compromise the fidelity of low-frequency signals [51]. To this end, we propose the bearing be 

considered unusable or require immediate maintenance if the overall velocity RMS in the 

frequency range of 0.2𝜔 − 12.8 kHz (for a sampling frequency of 𝑠𝑓 = 25.6 kHz) for a single-

sided fast Fourier transform (FFT) spectrum exceeds a certain threshold. According to the ISO 

standards [50], the threshold value varies with the type of application, but we choose a statistical 

value of 0.3 ips assuming a medium-sized motor [48]. In situations where vibration sensors are 

mounted both horizontally and vertically along the radial direction (see Figure 2), we define the 

bearing to reach its end-of-life when the RMSs of both the horizontal and vertical velocities exceed 

0.3 ips.  

 

In addition to the velocity and acceleration domains, studying the jerk domain, which is the 

differential of the acceleration vibration signal, can be important to detect abnormal vibration 

signals, particularly at low rotational speeds [52], [53]. Although the case study which we present 

later employs a moderate operating speed, we nevertheless find and show later in section 2.2 that 

the features extracted from the jerk domain show good correlations with RUL for the bearings.  

 

In practice, accelerometers are widely used due to their availability, small form factor, and low 

cost as opposed to velocity sensors which are expensive and bulky. Unless directly measured, the 

velocity vibration 𝑣(𝑡) can be obtained by numerical integration of the acceleration vibration 

signal, 𝑣(𝑡) = ∫ 𝑎(𝑡)𝑑𝑡
𝑡

0
, and the jerk signal can be obtained by differentiating the same, 𝑗(𝑡) =

𝑑𝑎(𝑡)

𝑑𝑡
 . After integration, the vibration signal will be modulated with a low-frequency signal as a 

numerical artifact stemming from the assumption that the initial condition for integration is 
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𝑣(𝑡 = 0) = 0. To avoid this effect, we consider the frequency signal beyond 0.2𝜔. One can use a 

high-pass filter or just extract the RMS values from the frequency domain (for all three signals 

𝑎(𝑡), 𝑣(𝑡) and 𝑗(𝑡)) within certain frequency ranges using Parseval’s theorem [54] which is based 

on the principle of energy conservation. In particular, the RMS of a signal 𝑥(𝑡) can be calculated 

both in the time domain and based on a single-sided frequency spectrum 𝑋(𝑓) with frequency 

resolution of 𝑑𝑓 as: 

𝑥RMS = √
1

𝑛𝑡
∑ 𝑥(𝑖)2

𝑛𝑡

𝑖=1

= √|𝑋(0)| + ∑
|𝑋(𝑓)|2

2

𝑠𝑓 2⁄

𝑓=𝑑𝑓

1 

where 𝑛𝑡 is the total number of points in the time domain signal during the sampling period of 𝑡𝑠 

and 𝑛𝑡 = 𝑡𝑠 × 𝑠𝑓. The RMS value between two frequencies 𝑓1 and 𝑓2 can therefore be calculated 

as  

𝑥𝑓1−𝑓2

RMS = √ ∑
|𝑋(𝑓)|2

2

𝑓2

𝑓=𝑓1

2 

Note that the summation is over the discrete 𝑋(𝑓) values between 𝑓1 and 𝑓2 and FFT hereafter 

refers to the single-sided FFT spectrum. In this study, we use two physics-based features extracted 

from the velocity domain: 𝑉𝐵𝐹𝐹−𝑠𝑓/2
RMS  and 𝑉0.2𝜔−𝑠𝑓/2

RMS , where 𝐵𝐹𝐹 refers to beginning of bearing 

fault frequencies 𝐵𝐹𝐹 = 0.9 min(𝐵𝑃𝐹𝑂, 𝐵𝑃𝐹𝐼, 𝐵𝑆𝐹) − 𝑠𝑓/2. The pre-factor of 0.9 ensures a 

10% frequency error margin for the onset of bearing degradation owing due to shaft speed 

variations. 𝑉𝐵𝐹𝐹−𝑠𝑓/2
RMS  is used to determine the FPT for bearing prognostics (see Appendix B) and 

𝑉0.2𝜔−𝑠𝑓/2
RMS  is used to determine whether a bearing has failed or requires immediate maintenance 

based on ISO standards, which is approximately 0.3 ips for a medium-sized electric motor [48].  

 
Figure 2: Sensor mounting in the radial direction 

2.2 Proposed Model 
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2.2.1 Fundamental LSTM architecture 

The proposed model utilizes LSTM networks for forecasting the bearing health condition. LSTMs 

utilize memory cells in addition to standard RNN units which help in retaining useful information 

for both long and short periods of time and do not face the issue of vanishing gradients common 

to RNNs.  The basic architecture of the proposed model is shown in Figure 3. The structure of an 

LSTM memory cell is shown in Figure 3(b) where each cell contains three gates (1) forget gate, 

(2) input gate, and (3) output gate. The equations for the gates within the memory cell can be 

described as 

Forget gate:  

𝑓𝑗 = 𝜎(𝑤𝑓[ℎ𝑗−1, 𝑋𝑗] + 𝑏𝑓) 3 

where the sigmoid layer takes the input 𝑋𝑗 and the output of the previous LSTM block ℎ𝑗−1 to 

determine which parts from the old output be removed and 𝑤𝑓 is the weight of the forget gate with 

bias 𝑏𝑓. 

Input gate:  

𝑖𝑗 = 𝜎(𝑤𝑖[ℎ𝑗−1, 𝑋𝑗] + 𝑏𝑖) 4 

𝑐𝑗̃ = tanh(𝑤𝑐[ℎ𝑗−1, 𝑋𝑗] + 𝑏𝑐) 5 

𝑐𝑗 = 𝑓𝑗⨂𝑐𝑗−1 + 𝑖𝑗⨂𝑐𝑗̃ 6 

where the sigmoid layer decides which of the new information be stored and tanh(∙) creates all 

possible values from the input 𝑋𝑗. These two are then multiplied to update the new cell state 𝑐𝑗̃. 

This new memory is added to the previous cell state 𝑐𝑗−1 after the forget gate. 𝑤𝑖 and 𝑤𝑐 are the 

respective weights of the input gate with corresponding biases 𝑏𝑖 and 𝑏𝑐. 

Output gate:  

𝑜𝑗 = 𝜎(𝑤𝑜[ℎ𝑗−1, 𝑋𝑗] + 𝑏𝑜) 7 

ℎ𝑗 = 𝑜𝑗⨂tanh (𝑐𝑗) 8 

where the sigmoid layer determines the output of the cell. tanh(∙) generates all possible values 

which when multiplied to the output 𝑜𝑗 becomes selective of the output. 𝑤𝑜 and 𝑏𝑜 are respectively 

the weight and bias of the output gate. One important thing to note is the use of tanh(∙) in the input 

and the output gates overcome the vanishing gradient problem where the second derivative of the 

internal state variables can sustain for a long range before becoming zero.  
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Figure 3: (a) Predictor LSTM architecture. (b) Fundamental LSTM unit. (c) Corrector LSTM 

schematic. 
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2.2.2 Gaussian Layer for Uncertainty Quantification 

Traditional deep neural networks (DNNs) like LSTMs are designed for a single output prediction 

(or a point prediction), which can be viewed as an overconfident prediction. For practical 

applications like bearing failure, overconfident RUL predictions are dangerous and costly as they 

might either lead to premature maintenance requests (due to an early prediction) or catastrophic 

failure of the bearing and connected equipment (due to a late prediction). On the other hand, 

models that quantify the uncertainty of RUL prediction allow the user to make risk-based 

maintenance decisions that balance out maintenance resource requirements while avoiding early 

maintenance triggers stemming from low confidence prediction models. Probabilistic DNNs are 

often achieved through Bayesian formalism [55] where the parameters of the DNN are subjected 

to a prior distribution and after training, the posterior distribution over the parameters is computed 

which can then be used to quantify predictive uncertainty. To make the Bayesian implementation 

tractable for DNNs, a variety of approximations such as Markov chain Monte Carlo (MCMC) are 

used. However, Bayesian methods are computationally more expensive and model training takes 

more time when compared to non-Bayesian methods. To address this issue in DNNs, Monte Carlo 

dropout was proposed by Gal et al. [44]. Also, Lakshminarayanan et al. proposed a simple and 

scalable technique for predictive uncertainty estimation by using a proper scoring rule during 

training combined with model ensembles [56], which we use in our work for estimating uncertainty 

in bearing prognostics. For input features 𝑥, we use an LSTM network to model the prediction 

distribution 𝑝𝜃(𝑦|𝑥) for real-valued output 𝑦 and 𝜃 are the parameters of the LSTM network. We 

first state the methodology for a single LSTM model and then later combine them to generate an 

ensemble of LSTM models. 

 

A scoring rule is used to measure the quality of the prediction 𝑝𝜃(𝑦|𝑥) giving a higher numerical 

score to better-calibrated predictions. Let the scoring rule be 𝑆(𝑝𝜃, (𝑦, 𝑥)) and the true distribution 

be 𝑞(𝑦, 𝑥). The expected scoring rule is 

𝑆(𝑝𝜃, 𝑞) = ∫ 𝑞(𝑦, 𝑥)𝑆(𝑝𝜃, (𝑦, 𝑥))𝑑𝑦𝑑𝑥 9 

𝑆(𝑝𝜃, 𝑞) ≤ 𝑆(𝑞, 𝑞);  𝑆(𝑝𝜃, 𝑞) = 𝑆(𝑞, 𝑞)   iff   𝑝𝜃(𝑦|𝑥) = 𝑞(𝑦|𝑥) 10  
Therefore, by minimizing the loss function ℒ(𝜃) = −𝑆(𝑝𝜃, 𝑞), 𝑝𝜃(𝑦|𝑥) can approach 𝑞(𝑦|𝑥). 

When maximizing the likelihood, the score function can be given as 𝑆(𝑝𝜃 (𝑦, 𝑥)) = log 𝑝𝜃(𝑦|𝑥) 

which satisfies the Gibbs inequality. Commonly used loss functions like mean squared error stated 

as 𝑀𝑆𝐸 = ∑ (𝑦𝑛 − 𝜇(𝑥𝑛))
2𝑁

𝑛=1  for a training dataset containing 𝑁 datapoints of (𝑥, 𝑦) do not 

capture predictive uncertainty. We, therefore, devise a Gaussian layer (see Figure 3(a)) which 

gives two outputs: the predicted mean 𝜇(𝑥) and variance 𝜎2(𝑥). By treating the sample values to 

obey the Gaussian distribution with the predicted mean and variance, we minimize the negative 

log-likelihood (NLL) criterion 

− log 𝑝𝜃(𝑦𝑛|𝑥𝑛) =
log 𝜎𝜃

2(𝑥)

2
+

(𝑦 − 𝜇𝜃(𝑥))
2

2𝜎𝜃
2(𝑥)

+ constant 11 

In other words, training the model using the scoring rule gives two outputs: mean 𝜇(𝑥) and 

variance 𝜎2(𝑥)  accounting for the aleatoric uncertainty, which is a measure of the variation within 

each prediction model. On the other hand, the accuracy of a deep learning model depends on the 

amount of data available, leading to epistemic uncertainty which we capture through an ensemble 

of LSTM networks. With the availability of more data, the predictions of the LSTM networks in 

the ensemble tend to merge, thereby reducing the epistemic uncertainty. Each LSTM network in 
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the ensemble is trained independently through different weight initializations and shuffling the 

input data. To that end, we train 𝑀 = 5 LSTM models on the same data that only differ through 

the learned parameters 𝜃𝑚. One could also change the number of LSTM unit cells among different 

LSTM networks and still obtain good uncertainty estimations. We then treat the ensemble as a 

uniformly-weighted mixture model and combine the predictions as 

𝑝(𝑦|𝑥) =
1

𝑀
∑ 𝑝𝜃𝑚

(𝑦|𝑥) 
𝑀

𝑚=1
12 

In our study, 𝑝𝜃𝑚
(𝑦|𝑥) refers to the Gaussian probability distribution of the forecast trajectory of 

𝑉0.2𝜔−𝑠𝑓/2
𝑅𝑀𝑆  of each of the 𝑀 LSTM models. We can further derive that the ensemble of all the 

LSTM models to also be Gaussian with the mean and variance taking the following forms  

𝜇∗(𝑥) =
1

𝑀
∑ 𝜇𝜃𝑚

(𝑥)
𝑀

𝑚=1
13 

𝜎∗
2(𝑥) =

1

𝑀
∑ (𝜎𝜃𝑚

2 (𝑥) + 𝜇𝜃𝑚

2 (𝑥))
𝑀

𝑚=1
− 𝜇∗

2(𝑥) 14 

 

2.2.3 Proposed Model Architecture  

The proposed model is an ensemble of multiple simple LSTMs with a Gaussian layer for 

uncertainty quantification. The proposed method involves three steps 

1) Predictor LSTM ensemble (EnPLSTM): where the feature (𝑉0.2𝜔−𝑠𝑓/2
RMS ) is forecasted to a 

certain alarm threshold and hence predict the RUL. 

2) Corrector LSTM ensemble (EnCLSTM): where the output of the EnPLSTM is used to 

determine the possible correction to the RUL. 

3) Temporal fusion: where the predictions from the recent past are considered to provide a 

final RUL prediction. 

 

Predictor LSTM ensemble (EnPLSTM):  

The EnPLSTM consists of individual predictor LSTM (PLSTM) models for which the input at any 

time 𝑡 consists of the feature values of the previous 𝑘 timesteps, 𝐹𝑡−𝑘+1, 𝐹𝑡−𝑘+2, … , 𝐹𝑡 (𝑘 is also 

called the lookback time step). The input has the form (#samples × 𝑘 × 𝑛features) with the output 

being the next-step feature prediction 𝐹𝑡+1 (here 𝑛features = 1 as we only forecast 𝐹 =
𝑉0.2𝜔−𝑠𝑓/2

RMS ). We then march forward in time until the cutoff is reached at 𝑇cutoff and determine the 

mean value of RUL as 𝜇𝑚
𝑅𝑈𝐿(𝑡) = 𝑇𝑐𝑢𝑡𝑜𝑓𝑓 − 𝑡. The use of a Gaussian layer for each PLSTM model 

provides information about the uncertainty in the forecast feature which can then be used to 

determine the uncertainty in the RUL prediction at every time instant 𝜎𝑚
𝑅𝑈𝐿(𝑡). After performing 

the ensemble of all the PLSTMs using eqns. 13 and 14, we obtain 𝑅𝑈𝐿(𝜇∗p, 𝜎∗p) as the final output 

of the EnPLSTM. The schematic in Figure 3(a) refers to just one PLSTM network and Table 1 

lists the various layers in each PLSTM model with 𝑘 = 20. The Gaussian layer in Table 1 has two 

outputs – the mean and standard deviation of the next step prediction. Each PLSTM model consists 

of 16,142 parameters which is at least two orders of magnitude smaller than some of the other 

contemporary deep learning models that quantify uncertainty [36]. 

 

Table 1: Architecture of a PLSTM network with Gaussian layer 

Layer Output shape # Parameters 

Input layer (Samples, 20, 1) 0 

LSTM (Samples, 60) 14,880 
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Dense (Samples, 20) 1,220 

Gaussian layer [(Samples, 1), (Samples, 1)] 42 

Total:  16,142 

 

Corrector LSTM ensemble (EnCLSTM):  

The input and output of the PLSTM model are respectively the features from the previous 𝑘 time 

steps and the next step prediction. We observe the RUL prediction of a trained EnPLSTM shows 

deviation from 𝑅𝑈𝐿true even for the training dataset. We note that our approach of forecasting is 

different from the commonly used bearing prognostic approach of directly mapping features to 

RUL, in which case we can expect a good RUL fit at least for the training dataset. In other words, 

RUL becomes a secondary outcome of the EnPLSTM method unlike a primary output when 

developing feature-RUL mapping models. Therefore, the EnPLSTM is used to evaluate the error 

in RUL prediction on the training dataset. The error in forecasting for each bearing can be 

quantified as Δ𝑅𝑈𝐿(𝑡) = 𝑅𝑈𝐿true(𝑡) − 𝑅𝑈𝐿(𝑡). 

 

A shown in Figure 3(c), the architecture of the CLSTM model is similar to that of the PLSTM 

model with two differences: (1) the input now includes 𝑅𝑈𝐿(𝜇∗p) from the EnPLSTM model, in 

addition to the input to the predictor step, and (2) the output is now Δ𝑅𝑈𝐿(𝑡), rather than the next-

step feature prediction. Unlike the EnPLSTM (which is a one-step-ahead prediction), the 

EnCLSTM attempts to map the RUL prediction error. The architecture of a single CLSTM model 

is shown in Table 2 with the LSTM layer having 80 hidden units. The shape of the input layer is 

(samples, 20, 2) with a lookback of 20-time steps with two features: 𝑅𝑈𝐿(𝜇∗p) and 𝑉0.2𝜔−𝑠𝑓/2
RMS . 

The final output from the Gaussian layer is the mean and standard deviation of the error correction 

Δ𝑅𝑈𝐿(𝜇c, 𝜎c). After training, the CLSTM model gives an estimate of the mean and standard 

deviation of the error Δ𝑅𝑈𝐿(𝜇c, 𝜎c), which after ensemble (following the same logic as in eqns. 

13 − 14) becomes Δ𝑅𝑈𝐿(𝜇∗c, 𝜎∗c). 

 

Table 2: Architecture of the CLSTM model with Gaussian layer 

Layer Output shape # Parameters 

Input layer (Samples, 20, 2) 0 

LSTM (Samples, 80) 26,560 

Dense (Samples, 20) 1,620 

Gaussian layer [(Samples, 1), (Samples, 1)] 42 

Total:  28,222 

 

The correction term Δ𝑅𝑈𝐿(𝜇∗c, 𝜎∗c) can be positive or negative, however, in our experience, we 

find that the PLSTM model, generally, underpredicts the RUL during the early stage of bearing 

degradation but converges to actual RUL in the second half of the bearing life. In other words, at 

the beginning of bearing degradation, the CLSTM model plays a significant role but loses 

importance as the bearing approaches EOL. To this end, we combine 𝑅𝑈𝐿(𝜇∗p, 𝜎∗p) and 

Δ𝑅𝑈𝐿(𝜇∗c, 𝜎∗c) through a weight which is a function of the feature value 𝑊(𝐹 = 𝑉0.2𝜔−𝑠𝑓/2
RMS ). The 

net RUL prediction 𝑅𝑈𝐿(𝜇final, 𝜎final) can be stated as  

𝑅𝑈𝐿(𝜇net, 𝜎net) = 𝑅𝑈𝐿(𝜇∗p, 𝜎∗p) + 𝑊(𝐹 = 𝑉0.2𝜔−𝑠𝑓 2⁄
RMS ) × Δ𝑅𝑈𝐿(𝜇∗c, 𝜎∗c) 15 

A logistic sigmoidal function is used as the weight function 𝑊(𝐹 = 𝑉0.2𝜔−𝑠𝑓 2⁄
RMS ) with the sigmoid 

midpoint 𝐹0 pinned at 1.25 times the feature value at FPT.  
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𝑊(𝐹) = 1 −
1

1 + 𝑒−𝛼(𝐹−𝐹0)
16 

where 𝛼 determines the growth rate/ steepness of the sigmoidal curve and 𝐹0 = 1.25 × 𝐹(𝑡 =

𝑡FPT) = 1.25 × 𝑉0.2𝜔−𝑠𝑓 2⁄
RMS (𝑡 = 𝑡FPT).  

 

Temporal Fusion:  

Rapid changes in the vibration measurements can often lead to highly time-varying RUL 

predictions, especially when using data mapping models like the CLSTM. Sudden changes in the 

RUL predictions are not physically meaningful from a maintenance perspective. We, therefore, 

devise a simple technique where the RUL predictions in the recent past are weighed in to make a 

final prediction. A simple half-normal weighting function is used to determine the importance of 

the RUL predictions where the predictions closest to the current time get more weight than those 

in the distant past. At a time 𝑡, the RUL prediction after temporal fusion 𝑅𝑈𝐿 (𝜇𝑡𝑓(𝑡)) can be 

stated as 

𝑅𝑈𝐿 (𝜇𝑓(𝑡)) = ∑ 𝑤𝑡𝑓,𝑖̅̅ ̅̅ ̅̅ × (𝑅𝑈𝐿(𝜇net(𝑡 − 𝑖)) − 𝑖)

𝐿

𝑖=0

17 

𝑤𝑡𝑓,𝑖 =
1

𝜎𝑡𝑓
𝑒

(−(
𝑖Δ𝑡

2𝜎𝑡𝑓
)

2

)
18 

𝑤𝑡𝑓,𝑖̅̅ ̅̅ ̅̅ =
𝑤𝑡𝑓,𝑖

∑ 𝑤𝑡𝑓,𝑖
𝐿
𝑖=0

19 

where 𝐿 is the number of discrete past RUL predictions the user wants to consider, Δ𝑡 is the time 

interval between two consecutive RUL predictions and 𝜎𝑡𝑓 is a user-defined parameter that 

accounts for the spread of the half-normal curve. A larger value of 𝜎𝑡𝑓 would give more similar 

weights to recent RUL predictions whereas a smaller value of 𝜎𝑡𝑓 gives more importance to the 

current RUL prediction at time 𝑡. The weights across the (𝐿 + 1) RUL predictions are normalized 

in eqn. 19. We observe that performing temporal fusion provides smoother RUL prediction curves 

while also reducing the RMSE error.  The entire algorithm is presented in Table 3. 

 

Table 3: Algorithm for the proposed predictor-corrector LSTM model for bearing prognostics 
Algorithm: Probabilistic RUL prediction for bearing prognostics (test dataset) 

Inputs: Accelerometer vibration signal 𝑎(𝑡) over the past 𝑘 time steps 

 Lookback time 𝑘: 20 time steps 

 Cutoff: 0.3 ips 

 𝑀 = 5 trained PLSTMs and CLSTMs 

Output: Probabilistic remaining useful life 𝑅𝑈𝐿(𝜇final, 𝜎final) at time 𝑡 

1 Calculate the velocity vibration 𝑣(𝑡) = ∫ 𝑎(𝑡)𝑑𝑡 
𝑡

0
and the corresponding FFT in frequency domain 

𝑉(𝑓). Calculate 𝑉𝐵𝐹𝐹−𝑠𝑓 2⁄
RMS (𝑡) and 𝑉0.2𝜔−𝑠𝑓 2⁄

RMS (𝑡).  

  Predictor LSTM model 

2  Reshape input feature 𝐹 = 𝑉0.2𝜔−𝑠𝑓 2⁄
RMS (𝑡 − 𝑘 + 1 → 𝑡) into shape 𝑋p = (1, lookback, 1). The input 

sample at a given time 𝑡 is of the form 𝐹(𝑡 − 𝑘 + 1 → 𝑡) with the corresponding output will be 

𝐹(𝑡 + 1). 

3  Use 𝑉𝐵𝐹𝐹−𝑠𝑓 2⁄
RMS (𝑡) in eqn. 𝐵. 1 to determine if FPT is reached. Proceed iff 𝑡 ≥ 𝑡FPT. 

4 for each PLSTM 𝑚 = 1: 𝑀 
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5  Initialize: forecast time 𝑡𝑓 = 1, 𝑓 = 𝐹(𝑡) 

6  while (𝑓 ≤ 0.3 ips): 

7   Next step prediction: (𝑓, 𝜎𝑓) = 𝑃𝐿𝑆𝑇𝑀(𝑋p) 

8   Modify 𝑋 = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑋, 𝑓) 

9   Update 𝑋p = 𝑋p(𝑡 + 𝑡𝑓 − 𝑘 + 1 → 𝑡 + 𝑡𝑓) 

10   𝑡𝑓 = 𝑡𝑓 + 1 

11  end while 

12  𝜇𝑚
𝑅𝑈𝐿(𝑡) = 𝑡𝑓. Calculate aleatoric uncertainty 𝜎𝑚

𝑅𝑈𝐿(𝑡) using 𝜎𝑓. 

13     end for (line 7) 

14    Calculate ensemble mean and variance 𝑅𝑈𝐿(𝜇∗p, 𝜎∗p) as 𝜇∗p(𝑡) =
1

𝑀
∑ 𝜇𝑚

𝑅𝑈𝐿(𝑡)𝑀
𝑚=1  and 𝜎∗p

2 (𝑡) =

1

𝑀
∑ (𝜎𝑚

𝑅𝑈𝐿2
(𝑡) + 𝜇𝑚

𝑅𝑈𝐿2
(𝑡))𝑀

𝑚=1 − 𝜇∗p
2 (𝑡). This is the final output of EnPLSTM. 

  Corrector LSTM model 

15  Reshape input features 𝑉0.2𝜔−𝑠𝑓 2⁄
RMS (𝑡 − 𝑘 + 1 → 𝑡) and 𝑅𝑈𝐿 (𝜇∗p(𝑡 − 𝑘 + 1 → 𝑡)) into shape 𝑋c =

(1, lookback, 2).  

16 Determine the error correction Δ𝑅𝑈𝐿(𝜇c, 𝜎c) = CLSTM(𝑋c) for each CLTM and calculate 

ensemble correction Δ𝑅𝑈𝐿(𝜇∗c, 𝜎∗c) similar to line 14.  

17 Calculate the final RUL prediction using eqn. 15. 

18 Temporal fusion: Use eqn. 17 for smoothing the RUL prediction. 

 

2.3 Models for Comparison 

In this section, we briefly present three data-driven approaches, which are (1) CNN-based feature-

RUL mapping, (2) similarity-based interpolation, (3) Monte Carlo (MC) Dropout (see Appendix 

C), and two model-based approaches, (1) optimized particle filter and (2) regression fitting (see 

Appendix D for quadratic and double exponential regression fitting). In a later section, we compare 

the performance of the proposed model against these four benchmark models typically employed 

in prognostic literature. 

 

2.3.1 CNN 

Traditionally, CNN was used for image processing to capture spatial and temporal dependencies 

of image features by application of several filters [57]–[59]. Many bearing prognostic models were 

built upon a CNN framework [31]–[33] and we, therefore, adopt a basic CNN architecture in our 

study to compare against our proposed method. Each input sample at a given time 𝑡 of the CNN 

model is the set of 24 features (see Appendix A) for the previous 20-time steps and the output is 

the corresponding RUL of the bearing.  

 

The CNN model consists of six convolution blocks, a dropout layer, and two fully connected layers 

(see Appendix C for the model architecture). The convolution blocks contain three layers, namely, 

1-D convolution, 1-D batch normalization, and a Leaky ReLU non-linear activation function. The 

dropout layer serves to prevent overfitting of the training data. The two fully connected layers 

further reduce the features generated by the convolution blocks to a single output, the estimated 

RUL. The CNN model was implemented using PyTorch in a Python environment configured to 

run on a single Nvidia RTX-2070 video card with 8 Gb of onboard graphics memory. The model 

was trained for 100 epochs using AdamW optimizer with beta 1 of 0.5, beta 2 of 0.999, weight 

decay of 0.01, and initial learning rate of 0.001. The training was performed with mean squared 
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error as the loss function. The learning curve of CNN and PLSTM model are shown in Appendix 

G. 

 

2.3.2 Similarity-based Interpolation 

Similarity-based interpolation is a data-driven prognostic approach where a portion of the bearing 

health data, such as the feature development 𝐹test from a test bearing is compared against similar 

feature(s) from the training dataset 𝐹train. The hypothesis of this method is that the partial 𝐹𝑡𝑒𝑠𝑡 is 

similar to an equal-sized portion from 𝐹train, the time-scale of which is determined by optimizing 

the difference between the two data [60]–[63]. To predict the RUL of a test bearing at time 𝑡, the 

test feature 𝐹test in our study will be the 𝑉0.2𝜔−𝑠𝑓 2⁄
RMS (𝑡 − 𝑘 + 1 → 𝑡) with a lookback of 𝑘 time 

steps. To determine the optimal fit with respect to each training bearing, 𝐹test is displaced along 

the time axis and the time instant 𝑇0 at which the sum of squared differences (SSD) between 𝐹test 

and 𝐹train is minimum is determined. Figure 4 depicts the procedure for determining 𝑇0. 

Mathematically, this can be stated as 

min 𝑆𝑆𝐷 = ∑(𝐹test(𝑡 − 𝑗 + 1) − 𝐹train(𝑇0 + 𝑘 − 𝑗))

𝑘

𝑗=1

2 20 

subject to 𝑇0 ∈ [0, 𝐿 − 𝑘] where 𝐿 is the total life of the training bearing dataset. 𝑇0 determined 

from eqn. 20 is then used to calculate RUL based on the training dataset given as 
𝑅𝑈𝐿 = 𝐿 − 𝑘 − 𝑇0 21 

In many cases, the training dataset consists of run-to-failure vibration data from multiple bearings 

(say 𝑛train in number) and RUL determined from eqn. 21 for each of the bearings in the training 

dataset can be added using a simple weight function which is the inverse of SSD. In other words, 

a smaller value of SSD indicates greater similarity, and the appropriate RUL is given greater 

importance. This can be stated as 

𝑅𝑈𝐿net =
1

𝑊
∑ 𝑊𝑖 × 𝑅𝑈𝐿𝑖

𝑛train

𝑖=1

22 

𝑊 = ∑ 𝑊𝑖

𝑛train

𝑖=1

23 

𝑊𝑖 =
1

𝑆𝑆𝐷𝑖
24 

A major advantage of this method is the non-requirement of defining failure. However, this method 

cannot guarantee that the RUL prediction converges to true RUL as the bearing is close to EOL.   
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Figure 4: (a) Depiction of similarity-based interpolation for RUL prediction and (b) variation of 

𝑆𝑆𝐷 and determination of 𝑇0. 
 

 

2.3.3 Optimized Particle Filter 

Particle filter (PF) is based on the concepts of Bayesian inference and the sequential Monte Carlo 

method and excels in modeling dynamic non-linear systems [64]. PF has been found to be 

successful in other bearing prognostics studies [65]–[67]. A set of random particles approximately 

satisfying the model equations are used for estimating the potential RUL with uncertainty. 

However, this method is very sensitive to the initial guess of the system state and resampling 

strategies and improper selection of the same often leads to degeneracy or leading to loss of particle 

diversity [68]. The fundamentals of PF are described in Appendix D and in this section, we briefly 

describe our implementation of PF with optimized initial states utilizing Latin-hypercube 

sampling.  

 

Modeling the state and measurement equations for bearings can be quite complex as the failure 

modes are quite diverse and we, therefore, use a combination of exponential and linear terms in 

describing the development of bearing features over time. Mathematically, we use the following 

equations: 

State transition equation: 
𝑎𝑡 = 𝑎𝑡−1 + 𝑢1,𝑡,   𝑏𝑡 = 𝑏𝑡−1 + 𝑢2,𝑡,   𝑐𝑡 = 𝑐𝑡−1 + 𝑢3,𝑡 25 
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Measurement equation: 

𝑦𝑡 = 𝑎𝑡𝑒𝑏𝑡(𝑡−FPT) + 𝑐𝑡(𝑡 − 𝑡FPT) + 𝜈𝑡 26 

where 𝑦𝑡 is the feature measurement (obtained from vibration data) at time 𝑡, 𝑢1, 𝑢2, 𝑢3, 𝜈 are the 

Gaussian noise variables with a certain standard deviation (and zero mean). Proper execution of 

PF involves the following steps (1) particle initialization, (2) state update, (3) particle weight 

update, (4) resampling, and (5) state estimation (which we describe in Table D.1).  

 

As measurements are collected in real-time, the system parameters of the particles are trained to 

start from the initial guess, and the updated state of the particles is used to forecast the features 

until a threshold is reached and hence obtain the 𝑅𝑈𝐿𝑗  for the 𝑗𝑡ℎ particle. The effective 𝑅𝑈𝐿 is 

obtained by a weighted sum of 𝑅𝑈𝐿𝑗 . This can be mathematically expressed as 

𝑅𝑈𝐿𝑗(𝑡) = Solve
𝑡∗

(𝑎𝑡
𝑗
𝑒𝑏𝑡

𝑗
𝑡∗

+ 𝑐𝑡
𝑗
𝑡∗ = cutoff) − (𝑡 − 𝑡FPT) 27 

𝑅𝑈𝐿(𝑡) = ∑ 𝑤𝑡
𝑗

× 𝑅𝑈𝐿𝑗(𝑡)

𝑁𝑝

𝑗=1

28 

Often the selection of the initial state values (which can be considered as hyperparameters) is 

heuristic and can change from bearing to bearing which defeats the purpose of a generalized PF 

model. To this end, we develop the PF algorithm by optimizing the initial state parameters 
{𝑎0, 𝑏0, 𝑐0} on the training bearing dataset by minimizing an RUL prediction error metric and using 

the same initial state for the test bearings.  

 

3. Case Study Using the XJTU-SY Dataset 

In this section, we demonstrate the advantage of our proposed prognostic method utilizing the run-

to-failure vibration data provided by Ref. [29]. We also compare our proposed method against the 

methods described in section 2.3.  

 

3.1 Dataset 

The XJTU-SY bearing dataset consists of run-to-failure vibration data of 15 roller element 

bearings (LDK UER204). The failure of these bearings is accelerated by applying a radial load. 

The 15 bearings are divided into three groups of 5 bearings and each group is subject to a certain 

radial load and rotational speed (see Table 4). Two PCB 352C33 accelerometers are mounted 

perpendicularly along the radial direction, which the authors of Ref. [29] refer to as horizontal and 

vertical directions. We refer to the same as vibrations in the 𝑥 and 𝑦 directions consistent with the 

schematic shown in Figure 2. Data is collected for 1.28 sec every minute at a sampling frequency 

of 25.6 kHz. For further details regarding the experimental setup, we refer the readers to Ref. [29]. 

 

Table 4: Summary of bearings from XJTU-SY dataset [29] 

Operating condition Bearing ID Rotating speed (rpm) Radial force (kN) 

Condition 1 

Bearing 1_1 

Bearing 1_2 

Bearing 1_3 

Bearing 1_4 

Bearing 1_5 

2100 12 

Condition 2 
Bearing 2_1 

Bearing 2_2 
2250 11 
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Bearing 2_3 

Bearing 2_4 

Bearing 2_5 

Condition 3 

Bearing 3_1 

Bearing 3_2 

Bearing 3_3 

Bearing 3_4 

Bearing 3_5 

2400 10 

 

Figure 5(a) shows the run-to-failure vibration data obtained from the accelerometer mounted in 

the 𝑥 direction for Bearing 1_1. The reported total life of the bearing is 123 min with vibration 

measurements taken at every minute. For purposes of illustration, we highlight the vibration data 

obtained at 𝑡 = 100 min in Figure 5(a) and also show the corresponding FFT of this signal in 

Figure 5(c). Since the provided data is obtained from accelerometers whereas our proposed method 

is primarily aimed at bearing prognostics using ISO standards, we first convert the acceleration 

signal into the velocity domain by integration (see section 2).  The result of integration is shown 

in Figure 5(b) and the corresponding FFT of 𝑣(𝑡 = 100) is presented in Figure 5(d). Numerical 

integration of the acceleration signal introduces low-frequency component as can be seen by a 

wavy nature of 𝑣(𝑡). This can also be seen in the FFT of 𝑣(𝑡) in Figure 5(d) where we can observe 

large amplitudes in the very low-frequency domain of < 0.2𝜔. This numerical artifact is taken 

care of by considering the RMS value calculated from 𝑓 ≥ 0.2𝜔. The fault frequencies for this 

bearing are determined to be 𝐵𝑃𝐹𝑂 = 3.08𝜔 and 𝐵𝑃𝐹𝐼 = 4.92𝜔. In Figure 5(c) and (d), we also 

show 1 ×, 2 × and 3 × 𝐵𝑃𝐹𝑂 ± 5% Hz bands, and 1 × and 2 × 𝐵𝑃𝐹𝐼 ± 5% Hz bands (as defined 

in section 2.1). One can observe peaks in BPFO bands indicating an outer race fault which is also 

confirmed in Ref. [29]. Also, the process of integration into the velocity domain preserves the 

peaks at characteristic fault frequencies. 
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Figure 5: (a) Run-to-failure vibration data for Bearing 1_1 with a snapshot of the vibration signal 

collected at 𝑡 = 100 min. (b) Corresponding velocity signal at 𝑡 = 100 min. The FFT spectra of 

the acceleration and velocity signals along with BPFO and BPFI are shown in (c) and (d) 

respectively. 

 

3.2 FPT Determination 

The bearing prognostic algorithm is triggered at FPT as this marks the beginning of bearing 

degradation. Before we present the results of FPT on this dataset, we first show a waterfall plot 

revealing the development of a bearing fault in the frequency domain. Figure 6 shows the FFT 

waterfall plot of Bearing 1_1 within the first ten orders of shaft frequency. One can observe the 

advent of an outer race defect at around 80 min which is accompanied by an increase in FFT 

amplitudes in the BPFO characteristic frequency range (and its harmonics). We have suppressed 

the DC component (𝑓 = 0 Hz) of the FFT for presentation purposes.  
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Figure 6: Waterfall plot of the FFT for Bearing 1_1 with characteristic fault frequency bands 
 

As stated in section 2.3, FPT is determined by the 2𝜎 method [35] applied on 𝑉𝐵𝐹𝐹−𝑠𝑓/2
RMS  where 

𝐵𝐹𝐹 refers to the bearing fault frequencies 𝐵𝐹𝐹 = 0.9 min(𝐵𝑃𝐹𝑂, 𝐵𝑃𝐹𝐼, 𝐵𝑆𝐹). In this study, we 

neglect 𝐵𝑆𝐹, and hence we get 𝐵𝐹𝐹 ≅ 2.75𝜔. We mark this frequency in Figure 5(c) and (d). In 

Figure 7 we show the variation of 𝑉0.2𝜔−𝑠𝑓/2
RMS  and 𝑉2.75𝜔−𝑠𝑓/2

RMS  for two candidate bearings, Bearing 

1_1 and Bearing 2_3, in both the 𝑥 and 𝑦 directions.  Several observations can be made from 

Figure 7. First, 𝑉0.2𝜔−𝑠𝑓/2
RMS  which is a measure of the overall health of the bearing assembly is 

always greater than 𝑉2.75𝜔−𝑠𝑓/2
RMS  which primarily measures the bearing health condition. This stems 

from the fact that the energy within the frequency range of 0.2𝜔 − 𝑠𝑓/2 already contains the 

energy associated with 2.75𝜔 − 𝑠𝑓/2. As a corollary, a large difference between 𝑉0.2𝜔−𝑠𝑓/2
RMS  and 

𝑉2.75𝜔−𝑠𝑓/2
RMS  is indicative of synchronous defects such as shaft unbalance, misalignment and 

mechanical looseness. On the contrary, a smaller difference between the two RMS values indicates 

a good fit/assembly. As can be seen in Figure 7, Bearing 1_1 experiences a relatively larger degree 

of synchronous faults when compared to Bearing 2_3. Second, 𝑉2.75𝜔−𝑠𝑓/2
RMS  is much more stable 

than 𝑉0.2𝜔−𝑠𝑓/2
RMS  and is therefore a good metric to determine the FPT using the 2𝜎 method. On the 

other hand, 𝑉0.2𝜔−𝑠𝑓/2
RMS  is used to determine the EOL, based on the cutoff of 0.3 ips, as it reflects 

the overall vibration energy levels within the system. Third, the FPT and EOL vary in both 

directions for both bearings. We, therefore, determine the effective FPT conservatively by 

choosing the earlier occurrence of 𝑡FPT𝑥
 and 𝑡FPT𝑦

. 

𝑡FPT = min (𝑡FPT𝑥
, 𝑡FPT𝑦

) 29 

The effective EOL is determined when the overall RMS reaches the threshold value in both 𝑥 and 

𝑦 directions to ensure good utility of the bearing and avoiding early maintenance.  

𝑡EOL = max (𝑡EOL𝑥
, 𝑡EOL𝑦

) 30 
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Figure 7: Development of features 𝑉0.2𝜔−𝑠𝑓/2

𝑅𝑀𝑆  and 𝑉2.75𝜔−𝑠𝑓/2
𝑅𝑀𝑆  for Bearing 1_1 in (a) x-direction 

and (b) y-direction, and for Bearing 2_3 in (c) x-direction and (d) y-direction. FPT, EOL and 

2𝜎𝑉𝑅𝑀𝑆  are also plotted in each case. 

 

3.3 Development of the Proposed Model  

In this section, we first describe the test-train data for cross-validation followed by a parametric 

study, focused on the PLSTM model. We then depict the advantage of the proposed model when 

compared to other models discussed in section 2.6.  

 

3.3.1 Cross-Validation 

A 5-fold cross-validation study is conducted on the set of 15 bearings. The five folds are as follows: 

Fold-1: Bearing 1_1, Bearing 2_1, Bearing 3_1 

Fold-2: Bearing 1_2, Bearing 2_2, Bearing 3_2 

Fold-3: Bearing 1_3, Bearing 2_3, Bearing 3_3 

Fold-4: Bearing 1_4, Bearing 2_4, Bearing 3_4 

Fold-5: Bearing 1_5, Bearing 2_5, Bearing 3_5 

While performing the cross-validation study, one fold is chosen to be the test set while the other 

four folds are used for training the models. For example, for the first cross-validation trial, Fold-1 

serves as the test set whereas Folds 2, 3, 4, and 5 are used for training the model. Cross-validation 

ensures the generality of the model and any result of a bearing presented hereafter is obtained when 

the bearing is a part of the test set during the cross-validation study.  
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3.3.2 Evaluation Criteria 

Several evaluation criteria are used to evaluate and compare the performance of all the models in 

terms of prediction error as well as uncertainty quantification. First, the root mean squared error 

(𝑅𝑀𝑆𝐸) is calculated as 

𝑅𝑀𝑆𝐸 = √
1

(𝑇 − 𝑡FPT + 1)
∑ (𝑅𝑈𝐿true(𝑡) − 𝑅𝑈𝐿(𝑡))

2𝑇

𝑡=𝑡FPT

31 

where 𝑅𝑈𝐿true(𝑡) and 𝑅𝑈𝐿(𝑡) are respectively the true RUL and predicted RUL at time 𝑡 and 𝑇 

is the total duration of RUL prediction. 𝑅𝑀𝑆𝐸 is a measure of the error in RUL prediction from 

FPT to EOL. Another important feature of a good prediction model is the convergence to the true 

RUL as bearing approaches EOL. To assess this, we use a weighted RMSE which can be defined 

as 

𝑤𝑡𝑅𝑀𝑆𝐸 = √
1

(𝑇 − 𝑡FPT + 1)
∑ 𝑤(𝑡)̅̅ ̅̅ ̅̅  (𝑅𝑈𝐿true(𝑡) − 𝑅𝑈𝐿(𝑡))

2𝑇

𝑡=𝑡FPT

32 

where 𝑤(𝑡)̅̅ ̅̅ ̅̅  is the weight assigned to the squared prediction error at time t and this weight increases 

as the bearing approaches its EOL. To obtain 𝑤(𝑡)̅̅ ̅̅ ̅̅ , we first defined weight 𝑤(𝑡) as 𝑤(𝑡) = 𝑡 −
𝑡FPT and then normalize this weight as  𝑤(𝑡)̅̅ ̅̅ ̅̅ = 𝑤(𝑡) ∑ 𝑤(𝑡)𝑇

𝑡=𝑡FPT
⁄ .  

 
Figure 8: Uncertainty quantification metrics 

 

Uncertainty quantification metrics are adapted from Refs. [69], [70] with a schematic shown in 

Figure 8. A good prognostic model would have decreasing uncertainty when approaching EOL to 

provide more confident RUL predictions. To quantify this, an accuracy zone (see Figure 8), 

bounded by 𝑅𝑈𝐿true(𝑡)(1 ± 𝛼%), is used to determine several metrics: (1) 𝛼-accuracy, which is 

defined as the number of predicted 𝑅𝑈𝐿 points within the accuracy region with respect to the total 

number of predictions, (2) 𝛽-probability, which is the average of the probability mass of the 

𝑅𝑈𝐿(t) PDF within the accuracy region and (3) percentage of early predictions (PEP) which 

measures the number of 𝑅𝑈𝐿(t) prediction below 𝑅𝑈𝐿true(𝑡). It is preferred that 𝛼-accuracy 

approaches 100% where most RUL prediction points are within the accuracy zone. Ideally, 𝛽 

probability should be equal to 1 indicating a model to have a compact confidence interval which 
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also decreases as the bearing approaches EOL. The PEP metric provides insight into how 

conservative a given prognostic model is. 

 

3.3.3 LSTM Parametric Study 

A parametric study is important to optimize the model hyperparameters, such as the number of 

hidden units in the LSTM models, lookback 𝑘, the number of epochs (Appendix G), etc. For 

brevity, we only present the parametric study related to the number of hidden units in PLSTM. 

Figure 9(a) shows both the 𝑅𝑀𝑆𝐸 and 𝑤𝑡𝑅𝑀𝑆𝐸 of the PLSTM model on the training dataset for 

six different numbers of hidden units within the LSTM layer. By using a fewer number of hidden 

units (and hence fewer parameters), the deep learning model is too simple and becomes less 

sensitive to variation in the input data. On the other hand, using too many hidden units makes the 

model overly complex for the amount of data available tending towards overfitting. For the XJTU-

SY dataset, we find that using 60 hidden units provides minimum 𝑅𝑀𝑆𝐸 and 𝑤𝑡𝑅𝑀𝑆𝐸. 

 

Like any other prognostic model, LSTM-based architecture also has its limitations. Particularly in 

the bearing prognostic scenario, we find the following challenges: (1) very noisy feature data, (2) 

limited training data, and (3) most of the training data is in the domain pertaining to a healthy 

bearing suppressing learning from the bearing degradation domain. Although the third scenario 

can be tackled by considering only the bearing degradation data for training the LSTM network, 

this further accentuates the second problem of limited data. The use of data augmentation is 

particularly useful to address this aspect for a stable forecast. To demonstrate this, we use a simple 

toy example of linear degradation with noise to train and test an LSTM network as shown in Figure 

9(b). When very little data is available and is noisy, the LSTM forecast can almost be flat especially 

near the onset of bearing degradation. By using data augmentation of duplicating the training data 

with added Gaussian noise, we observe the forecast to be much more intuitive and stable. To this 

end, for the XJTU-SY bearing dataset, we add Gaussian noise to 𝑉0.2𝜔−𝑠𝑓/2
RMS  as a simple data 

augmentation technique similar to Refs. [71], [72]. 

 

 
Figure 9: (a) Performance of various PLSTM on the training dataset. (b) Demonstration of the 

effect of data augmentation on noisy feature forecasting using a toy problem. 
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3.3.4 RUL Prediction Results 

In this section, we first demonstrate the working of the EnP/CLSTM ensemble followed by 

depicting the RUL prediction results of certain bearings. Finally, we evaluate the various models 

in terms of accuracy and uncertainty quantification based on the metrics defined in section 2.4. 

 

The PLSTM model forecasts 𝑉0.2𝜔−𝑠𝑓/2
RMS  at a given instant in time till a cutoff of 0.3 ips is reached 

with uncertainty. Figure 10(a) shows the 𝑉0.2𝜔−𝑠𝑓/2
RMS  forecast of five PLSTM models at 𝑡 = 2470 

mins for Bearing 3_2 (cross-validation Fold-2). The use of the Gaussian layer provides information 

regarding the uncertainty of the forecast which translates to the uncertainty in RUL prediction for 

each PLSTM model in the form of 𝑅𝑈𝐿(𝜇𝑚, 𝜎𝑚)|𝑚=1:5. The mean RUL prediction by each 

PLSTM model, 𝑅𝑈𝐿(𝜇𝑚)|𝑚=1:5, is shown in Figure 10(b) (we suppress showing the uncertainty 

for clarity). An effective RUL, 𝑅𝑈𝐿(𝜇∗𝑃, 𝜎∗𝑃), is calculated using  𝜇∗p(𝑡) =
1

5
∑ 𝜇𝑚

𝑅𝑈𝐿(𝑡)5
𝑚=1  and 

𝜎∗p
2 (𝑡) =

1

5
∑ (𝜎𝑚

𝑅𝑈𝐿2
(𝑡) + 𝜇𝑚

𝑅𝑈𝐿2
(𝑡))5

𝑚=1 − 𝜇∗p
2 (𝑡). We observe from Figure 10(b) that the 

ensemble of the five PLSTM models underpredicts the RUL in the first half of the prediction 

period and approaches the true RUL in the second half. After implementing the EnCLSTM, the 

RUL prediction in the first half is increased closer to the true RUL as shown by the green line in 

Figure 10(b). However, the prediction sequences change drastically when there are sudden changes 

in the measurements. After implementing the temporal fusion step (section 2.5.3), the RUL 

prediction is smoothened. The 95% confidence interval around the RUL prediction accommodates 

most parts of the true RUL. Therefore, maintenance decisions can be confidently made according 

to the uncertainty in RUL prediction. 

 

In Figure 11, we compare the RUL prediction results from PF, similarity-based interpolation, 

CNN-RUL correlation, quadratic regression fitting, MC Dropout, and the proposed method for 

three representative bearings, each from a unique operating condition, viz. Bearing 1_3 (cross-

validation Fold-3), Bearing 2_1 (cross-validation Fold-1), Bearing 3_4 (cross-validation Fold-4). 

Figure 11 (a) and (b) show the RUL prediction of the different models and the corresponding 

V0.2𝜔−𝑠𝑓/2
RMS  for Bearing 1_3 respectively. Here, we can observe that the noisy feature data right 

from the start of FPT distracts the PF learning, similarity-based approach, and quadratic regression, 

thus drastically affecting the RUL prediction accuracy. In all the three bearings shown in Figure 

11, the proposed EnP/CLSTM model shows superior prognostic capability. Also, the similarity-

based approach is often observed to overpredict the RUL in the provided bearing dataset. This is 

because the similarity of the feature development in the test bearing is mapped to an early stage of 

the training bearings, which leads to overpredicting the RUL. Data mapping methods such as the 

CNN-RUL, which are not built on physics, have a good chance of predicting highly varying RUL 

depending on the input. 
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Figure 10: (a) Forecast of the feature 𝑉0.2𝜔−𝑠𝑓/2

𝑅𝑀𝑆  by the PLSTM and (b) RUL prediction results for 

Bearing 3_2. 
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Figure 11: RUL prediction results from various models for (a) Bearing 1_3, (c) Bearing 2_1 

and (e) Bearing 3_4, and their corresponding 𝑉0.2𝜔−𝑠𝑓/2
RMS  in (b), (d) and (f) respectively 
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In Table 5, we compare the proposed model to several probabilistic RUL prediction models, 

namely optimized particle filter (section 2.3.3) and Bayesian-like Monte-Carlo (MC) Dropout 

[44]. The models are evaluated using the metrics defined in section 3.3.2 with 𝛼 = 30% in addition 

to NLL (eqn. 11). Each entry of Table 5 is the t-distributed 95% confidence interval of all the test 

bearings. Each model is run independently for five times to ensure consistency. First, the non-

Bayesian EnPLSTM model performs at least as good if not better when compared to MC Dropout 

as also concluded by Refs. [56], [73]. Moreover, execution of MC Dropout for prognostics takes 

considerably longer time than EnP/CLSTM. For example, the execution of trained MC Dropout 

models on an Intel Core i5 processor with 16GB RAM, computing the entire prognostic curve for 

Bearing 3_2 (Figure 10), takes about 5 minutes whereas the EnP/CLSTM takes less than 30 

seconds. Also, MC Dropout is observed to over-predict the RUL and hence has a low PEP value 

(see Figure 11). On the other hand, both PLSTM and EnPLSTM models provide more conservative 

RUL estimates and hence have high PEP. Low 𝑤𝑡𝑅𝑀𝑆𝐸 values of both PLSTM and EnPLSTM 

models indicate that these models have better accuracy in predicting RUL close to EOL. However, 

the NLL of the PLSTM is larger as this model only accounts for the aleatoric uncertainty and fails 

to provide good RUL predictions especially at the onset of bearing degradation.  

 

Table 5: Evaluation metrics for various probabilistic models 

 
𝑅𝑀𝑆𝐸 

(min) 

𝑤𝑡𝑅𝑀𝑆𝐸 

(min) 

𝛼-accuracy 

% 

𝛽-probability 

-  

PEP 

% 

NLL 

-  

Particle Filter 34.0 ± 8.9 3.1 ± 0.6 15.2 ± 3.4 0.13 ± 0.04 𝟔𝟎. 𝟖 ± 𝟏𝟒. 𝟓 22.0 ± 10.5 

MC Dropout 31.8 ± 10.5 3.6 ± 2.3 23.9 ± 10.1 0.20 ± 0.11 35.5 ± 16.4 𝟒. 𝟖 ± 𝟏. 𝟒 

PLSTM 23.7 ± 9.2 1.8 ± 0.6 22.4 ± 15.1 0.24 ± 0.11 𝟔𝟖. 𝟑 ± 𝟏𝟏. 𝟔 7.5 ± 2.1 

EnPLSTM 21.2 ± 7.8 𝟏. 𝟔 ± 𝟎. 𝟓 26.6 ± 8.1 0.27 ± 0.09 𝟔𝟖. 𝟒 ± 𝟏𝟒. 𝟒 6.3 ± 1.9 

EnP/CLSTM 𝟏𝟓. 𝟗 ± 𝟓. 𝟐 𝟏. 𝟒 ± 𝟏. 𝟐 𝟒𝟔. 𝟏 ± 𝟏𝟒. 𝟎 𝟎. 𝟑𝟓 ± 𝟎. 𝟏𝟎 𝟔𝟐. 𝟒 ± 𝟏𝟎. 𝟕 𝟑. 𝟖 ± 𝟏. 𝟑 

 

 
Figure 12: Uncertainty quantification by each of the probabilistic prediction methods. (a) 

Reliability plot showing the variation of the observed confidence level against the expected 

confidence level (the black dashed line is the ideal case) and (b) variation of average RUL 

prediction error for points outside the confidence intervals against the expected confidence level 

(a consistent inverse relationship is desired). 



27 

 

 

In practice, it is desired to have accurate uncertainty estimates from a model, particularly in safety-

critical applications where the model is used in a decision-making framework. The reliability curve 

of a perfectly calibrated model will fall on the black dashed line in Figure 12(a), indicating that 

the observed confidence exactly matches the expected confidence. The PLSTM and PF models in 

Figure 12(a) exhibit an extreme level of overconfidence in their RUL predictions, i.e. for most of 

the reliability curve, the model is observed to provide much lower confidence than is asked, or 

“expected” of it. The low observed confidence of PF stems from large prediction errors whereas 

for PLSTM, the overconfidence is primarily due to low aleatoric uncertainty in the forecasts albeit 

lower prediction errors (see Figure 12(b)). The inclusion of the epistemic uncertainty in EnPLSTM 

leads to a better reliability curve closer to the ideal line. However, after correction, the proposed 

method is shown to have the best reliability curve of all the probabilistic models, with the least 

overall deviation from the ideal line. The average absolute prediction error |Δ𝑅𝑈𝐿|̅̅ ̅̅ ̅̅ ̅̅ ̅̅  in Figure 12(b) 

is calculated based on the RUL predictions outside the expected confidence intervals for all the 

bearings. The EnPLSTM and MC Dropout models also exhibit a high level of overconfidence with 

EnPLSTM having a lower |Δ𝑅𝑈𝐿|̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . In the limit of low confidence level, both PLSTM and 

EnLSTM have similar |Δ𝑅𝑈𝐿|̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . However, as EnPLSTM also accounts for epistemic uncertainty, 

|Δ𝑅𝑈𝐿|̅̅ ̅̅ ̅̅ ̅̅ ̅̅  of EnPLSTM decreases significantly with an increase in the expected confidence level 

diverging from the |Δ𝑅𝑈𝐿|̅̅ ̅̅ ̅̅ ̅̅ ̅̅  of PLSTM. The proposed method exhibits the lowest prediction error, 

indicating that the uncertainty estimates from the proposed model are better calibrated.  

 

Table 6 lists the FPT and EOL for all bearings while also listing the 𝑅𝑀𝑆𝐸 and 𝑤𝑡𝑅𝑀𝑆𝐸 values 

for all the methods used for comparison. The 𝑅𝑀𝑆𝐸 and 𝑤𝑡𝑅𝑀𝑆𝐸 entries are color-coded to 

clearly distinguish the prognostic methods that perform the best for each bearing. The greener the 

color, the higher the model’s prognostic accuracy. The proposed method gives minimum 𝑅𝑀𝑆𝐸 

and 𝑤𝑡𝑅𝑀𝑆𝐸 values for most of the bearings. The cumulative 𝑅𝑀𝑆𝐸 and 𝑤𝑡𝑅𝑀𝑆𝐸 values shown 

in Table 6 for the different models is calculated similar to eqn. 𝐷. 5 where more importance is 

given to bearings that have larger prognostic durations. To further compare the performance of all 

the models across all bearings (when treated as test bearings during cross-validation), we plot the 

predicted RUL and true RUL for all 741 test samples in Appendix Figure G.2.  

 

Table 6: Comparing the various prognostic methods for all bearings. The prognostic models that 

are more accurate are shaded Green. 

B 

ID 

FPT 

(min) 

EOL 

(min) 

Δ𝑇 

(min) 

RMSE 

Quadratic Similarity 
CNN-

RUL 
PF 

MC 

Dropout 
PLSTM 

En 

PLSTM 

EnP/ 

CLSTM 

1_1 79 121 43 13.5 13.8 7.5 20.1 29.2 13.0 13.0 10.9 

1_2 55 96 42 17.9 8.7 8.5 17.1 10.3 12.0 12.0 12.4 

1_3 60 150 91 91.6 26.9 23.3 39.4 25.8 23.5 23.5 12.2 

1_5 26 41 16 128.8 62.3 40.2 14.0 27.8 14.1 14.1 29.4 

2_1 456 489 34 12.1 19.7 16.5 16.2 90.0 6.0 5.9 6.9 

2_2 50 154 105 53.8 28.0 33.4 47.3 36.2 34.0 34.0 33.0 

2_3 316 398 83 15.2 19.0 20.8 30.1 24.7 14.1 14.1 11.1 

2_4 32 35 4 10.7 18.5 45.9 4.6 29.9 7.7 7.7 8.1 

2_5 123 199 77 42.7 20.5 33.6 38.4 15.8 16.5 16.4 11.3 
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3_1 2404 2527 124 62.4 32.7 36.9 56.4 38.0 39.8 39.8 26.0 

3_2 2450 2495 46 22.5 16.7 7.8 21.5 8.8 12.1 12.1 3.7 

3_3 343 352 10 31.8 25.6 41.4 4.9 35.2 8.4 8.4 7.9 

3_4 1420 1479 60 19.9 17.3 23.3 17.2 48.4 4.6 4.0 5.2 

3_5# 8(20) 25 6 3.3 21.0 1.2 7.9 46.9 5.5 5.5 5.8 

Net 741 44.1 23.6 25.3 34.4 31.6 21.0 20.9 16.1 

            

B 

ID 

FPT 

(min) 

EOL 

(min) 

Δ𝑇 

(min) 

wtRMSE 

Quadratic Similarity 
CNN-

RUL 
PF 

MC 

Dropout 
PLSTM 

En 

PLSTM 

EnP/ 

CLSTM 

1_1 79 121 43 1.6 1.7 1.1 2.6 4.4 1.4 1.4 1.5 

1_2 55 96 42 1.9 1.4 1.2 2.1 1.5 1.5 1.5 1.7 

1_3 60 150 91 10.7 2.7 2.9 3.3 3.1 1.6 1.6 1.0 

1_5 26 41 16 19.2 14.2 10.0 3.1 5.5 3.6 3.6 6.2 

2_1 456 489 34 1.0 2.4 2.7 2.7 11.4 0.8 0.8 0.9 

2_2 50 154 105 6.3 1.9 2.6 3.2 2.5 2.3 2.3 2.5 

2_3 316 398 83 1.4 1.6 1.5 2.5 2.0 1.2 1.2 1.0 

2_4 32 35 4 3.2 5.8 13.7 1.7 8.4 2.2 2.2 2.1 

2_5 123 199 77 4.8 2.6 4.0 4.1 1.0 1.1 1.1 0.8 

3_1 2404 2527 124 5.2 2.1 2.0 4.4 3.8 2.3 2.3 1.4 

3_2 2450 2495 46 1.6 1.4 0.8 2.9 1.0 1.2 1.2 0.4 

3_3 343 352 10 3.2 4.0 8.3 1.5 10.4 2.1 2.1 1.8 

3_4 1420 1479 60 2.0 1.6 2.7 1.8 4.8 0.5 0.5 0.6 

3_5# 8(20) 25 6# 2.4 7.4 0.6 1.4 15.2 2.6 2.6 2.6 

Net 741 4.7 2.3 2.6 3.1 3.5 1.6 1.6 1.4 

 
*Bearing 1_4 undergoes a sudden catastrophic failure and is therefore not shown. #Bearing 3_5: 

Although FPT is at 8 min mark, at least 20 data points are needed for prediction using the deep 

learning models 

 

3.3.5 Discussion on the Advantages of EnPLSTM 

While Bayesian-like techniques tend to provide uncertainty around a single-mode, deep ensemble 

models explore diverse modes within the same function space [73]. Typically, deep ensemble 

models are generated with random initializations which when trained on the same training dataset, 

take different optimization trajectories in trying to describe the function space. In this paper, the 

function space corresponds to feature forecasting for bearing prognostics. The PLSTMs trained 

with different initializations have vastly dissimilar weights, as shown by the cosine similarity plot 

in Figure 13(a), even though the NLL loss (eqn. 11) of each of these models is similar. Here, the 

cosine similarity of a pair of trained models with parameters 𝜃𝑖 and 𝜃𝑗  is defined as 

(𝜃𝑖 ∙ 𝜃𝑗) (||𝜃𝑖|| ||𝜃𝑗||)⁄ . Each individual PLSTM model can therefore be hypothesized to have 

obtained different but related optimum modes within the function space which is also the reason 

for obtaining different forecast trajectories in Figure 10(a). To show this, we plot the t-Distributed 

Stochastic Neighbor Embedding (t-SNE) [74]  of the 𝑉0.2𝜔−𝑠𝑓/2
RMS  forecasts on Bearing 2_1 (cross-

validation Fold-1) for three representative PLSTM models from Figure 13(a). Each datapoint on 
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the t-SNE plot in Figure 13(b) corresponds to forecasting forty time steps ahead of the current 

measurement. At the beginning of the training process (epoch = 0), all three PLSTM models have 

distinct weights, a result of the random weight initialization process. After training for 80 epochs, 

each of the PLSTM model forecasts is observed to approach the true forecast distribution through 

different optimization routes (see Figure 13(b)). The size of the squares in Figure 13(b) is 

proportional to the aleatoric uncertainty in the forecast of each of the PLSTM models. The origin 

of epistemic uncertainty is precisely what is observed in Figure 13(c). The different model weight 

initializations lead to different trained models which lead to slightly different RUL predictions. 

The model-to-model variation in model weights and hence forecasts/RUL predictions directly 

quantifies the epistemic uncertainty. For samples that are outside the distribution of the training 

data, each PLSTM model predicts high aleatoric uncertainty which, when combined into an 

ensemble, provides an even larger epistemic uncertainty (Figure 13(c)). When determining the 

RUL of bearings, if the time series describing the test bearing health condition is not seen during 

the training process, the proposed model would predict large uncertainties (both aleatoric and 

epistemic) indicating the model’s lack of confidence in such an RUL prediction. In the case of a 

single model, there is no way to determine whether or not it has obtained a best forecast/RUL 

prediction, and therefore no way to quantify the epistemic uncertainty in its prediction. This is why 

a single data-driven model for prognostics should not be trusted. 

 

 
Figure 13: (a) Cosine similarity of the weights of five PLSTM models trained for 80 epochs with 

different model weight initializations on the same training dataset. (b) t-SNE plot of forecasting 

40 time-steps of 𝑉0.2𝜔−𝑠𝑓/2
𝑅𝑀𝑆  by three representative PLSTM models at epochs 0 and 80 for Bearing 

2_1. The ground truth of 𝑉0.2𝜔−𝑠𝑓/2
𝑅𝑀𝑆  is also shown along with a sinusoidal out-of-distribution 

sample. The sizes of the squares and diamonds are proportional to the aleatoric uncertainty in 

forecast. (c) Forecasting of the three PLSTM models for a sample within the training data 

distribution and the sinusoidal out-of-distribution sample.  
  
3.3.6 Discussion on the Advantages of EnCLSTM 

The EnPLSTM model often underpredicts the true RUL, especially at the beginning of bearing 

failure. This is true even for the bearings used to train the PLSTM as described in section 2.5.3. 

The main purpose of the EnCLSTM model is to correct this error and provide a more accurate 

RUL estimate. Figure 14(a), shows the variation of the normalized RUL error prediction obtained 

from one PLSTM against the feature 𝑉0.2𝜔−𝑠𝑓/2
RMS  for both the training and testing datasets of a 

representative cross-validation fold, Fold-3. The circle symbol size in Figure 14(a) is proportional 

to the uncertainty in prediction. At low 𝑉0.2𝜔−𝑠𝑓/2
RMS  values, indicative of the onset of bearing 
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degradation, the predicted error and uncertainty are large. Ideally, the model error should not vary 

with time. However, in the case of RUL prediction, almost any model may exhibit high errors 

close to the FPT and then gradually increase in accuracy as the model is able to process more data 

over time. This is particularly true for LSTMs as they store relevant temporal information in their 

network architecture which is used at a later time to improve prediction accuracy. The errors in 

Figure 14(a) exhibit a relatively clear decreasing trend with 𝑉0.2𝜔−𝑠𝑓/2
RMS , and for this reason, the 

error can be learned by another model. Error correction, delta-learning, and residual learning [75], 

[76] are all names for these types of models which have been proposed for the same task of 

correcting model predictions using learned errors. Therefore, a data mapping based correction 

model CLSTM would help reduce the prediction error Δ𝑅𝑈𝐿 especially when combined with a 

weighting function 𝑊(𝐹 = 𝑉0.2𝜔−𝑠𝑓 2⁄
RMS ) as mentioned in eqn. 15. However, this approach would 

only work if the training dataset and the testing dataset have similar input/output distributions. As 

shown in Figure 14(a), the training dataset (black) and the test dataset (blue) are found to have 

similar error distributions (output of CLSTM). The error in RUL from EnPLSTM is due to the 

accumulated uncertainty when forecasting 𝑉0.2𝜔−𝑠𝑓/2
RMS . A t-SNE plot in Figure 14(b) reveals that 

the 𝑉0.2𝜔−𝑠𝑓/2
RMS  feature distributions of the training and testing datasets are also similar and the 

symbol size, which is proportional to the uncertainty of the next step prediction (𝜎p
𝑘+1 from Figure 

4), also indicate that the magnitude of aleatoric uncertainties at (𝑘 + 1) time step are similar across 

training and testing datasets. However, for samples that are out of distribution, like the artificially 

generated sinusoidal-like time series shown as red circles in Figure 14(b), the uncertainty is large 

at the (𝑘 + 1) time step even from a single PLSTM model (aleatoric uncertainty). When 

considering an ensemble, several PLSTM model disagreements in the forecast lead to an even 

larger epistemic uncertainty proving the effectiveness of the ensemble method in determining non-

confident predictions.  

 

The t-SNE plot in Figure 14(c) compares the train and test distributions of the EnCLSTM input 

which consists of 𝑘 = 20 lookback time steps of 𝑉0.2𝜔−𝑠𝑓/2
RMS  and RUL predictions from EnPLSTM 

(see Table 3). The symbol size in Figure 14(c) is proportional to the EnPLSTM RUL prediction 

error 𝑅𝑈𝐿true − 𝑅𝑈𝐿(𝜇∗p, 𝜎∗p) for the training dataset and predicted error correction 

Δ𝑅𝑈𝐿(𝜇∗c, 𝜎∗c) for the testing dataset. Figure 14(c) indicates that the EnCLSTM inputs as well the 

magnitude of RUL corrections of the testing dataset are similar to the training dataset. The 

overlapping of the two datasets in the t-SNE space is a good indication of their distribution 

similarity which makes the predictions from the EnCLSTM model trustworthy. We further 

compare the predicted Δ𝑅𝑈𝐿(𝜇∗c, 𝜎∗c) to that of true RUL errors of EnPLSTM in Figure 14(d), 

where, the horizontal and vertical error bars correspond to variation in RUL prediction errors from 

the EnPLSTM and EnCLSTM models for five independent runs, respectively. Ideally, EnCLSTM 

would predict the exact RUL error of EnPLSTM leading to a perfect RUL prediction model. 

However, the predictions from EnCLSTM deviate from the ideal line, indicating the model was 

not able to perfectly predict the RUL error. Regardless, when compared to the EnPLSTM model 

(i.e. without the correction term), the EnCLSTM model provides largely improved predictions of 

RUL error as evidenced by a significant improvement in the overall RUL evaluation metrics for 

EnP/CLSTM in Table 5. Even though the EnCLSTM model provides accurate predictions of RUL 

error, it is still susceptible to making errant predictions because of noise in the data. The 

implementation of weighted correction (eqn. 15) and temporal fusion (eqn. 17) restrict the 

influence of sudden noise spikes in the error correction predictions which are sometimes observed 
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for data-mapping models like CLSTM. Although the analysis pertaining to Figure 14 is described 

for Fold-3, we find similar observations for all the cross-validation folds giving confidence in the 

effectiveness of reducing the prediction error through the implementation of EnCLSTM. 

 

 
Figure 14: (a) Error in RUL prediction for representative training and testing bearings from Fold-

3 with the size of a circle proportional to the standard deviation of the RUL prediction, 𝜎𝑚, by one 

PLSTM model. (b) t-SNE plot of training and testing data for Fold-3, where each point corresponds 

to 𝑘-time steps of 𝑉0.2𝜔−𝑠𝑓/2
𝑅𝑀𝑆 . The symbol size is proportional to the standard deviation of the next-

step feature prediction 𝜎𝑝
𝑘+1 from the single PLSTM model used in (a). For the out-of-distribution 

samples, standard deviations of both single PLSTM and EnPLSTM are shown. (c) t-SNE plot of 

the input to the CLSTM model where the circle size is proportional to the RUL error. (d) 

Comparing EnCLSTM RUL prediction error to the true prediction error of EnPLSTM. The 

horizontal and vertical error bars represent the variation in RUL prediction error from EnPLSTM 

and EnCLSTM for five runs respectively.  

 

4. Conclusion 

High productivity demands on modern-day machinery require intelligent solutions to avoid 

machine downtime and prevent catastrophic failures. In this paper, we present an ensemble 

approach to bearing prognostics that not only provides probabilistic RUL predictions but is also 

lightweight, making it suitable for embedding on IIoT platforms. To make our work more 
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industrially relevant, we adopt the ISO standards for defining bearing failure, which is established 

in the velocity domain. We also incorporate physics by capturing energy-based features in the 

velocity domain (in the form of RMS) that reflect both characteristic bearing fault frequencies and 

overall bearing health. Unlike purely data-driven algorithms, the inclusion of bearing failure 

physics has the potential to generalize our approach to other bearings in different working 

conditions. 

 

The proposed algorithm is built upon a vanilla LSTM model with an added Gaussian layer to 

forecast an RMS feature (obtained from the velocity domain) while also obtaining the aleatoric 

uncertainty of such a forecast. The proposed algorithm consists of three major steps: (1) a predictor 

step PLSTM, where the feature is forecasted to a certain threshold by doing a one-step-ahead 

prediction and marching in time, (2) a corrector step CLSTM, which offsets the RUL prediction 

obtained from the predictor step and (3) temporal fusion, which effectively smoothens the RUL 

prediction based on the recent history of predictions. The proposed algorithm also uses an 

ensemble approach EnP/CLSTM because the limited amount of available bearing run-to-failure 

data causes deep learning models to train differently every time. By combining RUL predictions 

from models with a similar architecture that have been trained on the same dataset but with 

different initial conditions, we can capture the epistemic uncertainty in our predictions.  

 

Using a publicly available dataset, we show the superiority of our proposed model, in terms of 

accuracy as well as uncertainty quantification, when compared to other traditional models such as 

particle filter, similarity-based approaches, CNN-RUL correlation, Bayesian-like MC Dropout, 

and simple regression techniques. The proposed EnP/CLSTM model reduces the 𝑅𝑀𝑆𝐸 and 

𝑤𝑡𝑅𝑀𝑆𝐸 by at least 50% when compared to Bayesian-like MC Dropout. To compare the 

uncertainty capability of models we introduce 𝛼-accuracy, 𝛽 probability, and percentage of early 

prediction (PEP) metrics. The proposed model ensures around 50% of the RUL prediction points 

lie within the 30% 𝛼-accuracy region which is superior to all other models. In general, the LSTM-

based models make conservative RUL predictions with high PEP. The proposed method has one 

order of magnitude faster execution time when compared to MC Dropout making it feasible for 

IIoT applications.  
 

The proposed predictive approach was developed in collaboration with Grace Technologies with 

an IIoT deployment in mind, and the authors are in the process of implementing it for commercial 

use inside the GraceSense™ Vibration & Temperature Node. The main benefit of this embedded 

deployment is to reduce the need to wirelessly transmit raw acceleration data – in exchange for a 

small amount of additional computational capability and time. In a GraceSense™ deployment, this 

results in a greater than 10,000X reduction in transmission requirements, which eliminates 

problems stemming from overcrowding of the 2.4GHz band in industrial facilities and can allow 

a vibration node to predict the remaining useful life of a bearing once per hour for up to five years 

without needing a change of battery. This represents at least a 50X improvement in battery life for 

this node. 
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Appendix A: Feature Extraction and Selection 

The various models (such as CNN) use different features in addition to the velocity RMS values 

within certain frequency ranges. We, therefore, extract the following data/physics-based features 

from both the time and frequency domains 

• Time-domain features: max amplitude, RMS, kurtosis 

• Frequency domain features: 

o BPFO fault frequency max amplitude and RMS: 1 ×, 2 ×  or 3 ×  𝐵𝑃𝐹𝑂 ± 5% Hz 

o BPFI fault frequency max amplitude and RMS: 1 ×, 2 ×  or 3 ×  𝐵𝑃𝐹𝐼 ± 5% Hz 

o BSF fault frequency max amplitude and RMS: 1 ×, 2 ×  or 3 ×  𝐵𝑆𝐹 ± 5% Hz 

o RMS within the frequency ranges to capture FTF 0.2𝜔 − 0.8𝜔, shaft frequency 

0.8𝜔 − 1.2𝜔, two harmonics of shaft frequency 1.2𝜔 − 3.2𝜔, entire frequency 

range 0.2𝜔 − 𝑠𝑓/2, frequency range after shaft frequency 1.2𝜔 − 𝑠𝑓/2, bearing 

fault frequencies BFF = 0.9 min(BPFO, BPFI, BSF) − 𝑠𝑓/2.  

 

The above-listed 27 features are calculated in the radial direction for both directions in the velocity, 

acceleration, and jerk domains making a total of 162 (= 27 × 2 × 3) features. The code for feature 

extraction has been provided at https://github.com/VNemani14/Bearing_LSTMPrognostics. 

 

In bearing prognostics, the true RUL of the bearing is defined to decrease linearly with time from 

the FPT to the EOL. The goal of feature selection is to identify features that contain strong 

information regarding the bearing health condition while discarding other features. Selecting 

features that have a strong linear behavior correlates well to true RUL, thus enabling an accurate 

RUL estimate. To this end, we use two criteria to determine a score for each feature and select 

features with the best scores. The two criteria used are (1) Monotonicity and (2) Pearson correlation 

coefficient for testing the linearity. Monotonicity is defined in terms of the feature to have either a 

continuously increasing or decreasing characteristic, given in terms of counting the differential of 

each feature 𝐹𝑖 with a total of 𝑇 observations.  

Moni = |
𝑁𝑢𝑚(𝑑𝐹𝑖 > 0)

𝑇 − 1
−

𝑁𝑢𝑚(𝑑𝐹𝑖 < 0)

𝑇 − 1
| 𝐴. 1 

In the literature, the RUL of a bearing is always treated as a straight line between the onset of 

bearing degradation and its EOL. Therefore, a Pearson correlation coefficient is used to determine 

the linear correlation between each feature 𝐹𝑖 and RUL. This can be defined as 

Cori =
|∑ (𝐹𝑖

𝑡 − 𝐹𝑖
1)𝑇

𝑡=1 (𝑅𝑈𝐿𝑡 − 𝑅𝑈𝐿1)|

√∑ (𝐹𝑖
𝑡 − 𝐹𝑖

1)2𝑇
𝑡=1 ∑ (𝑅𝑈𝐿𝑡 − 𝑅𝑈𝐿1)𝑇

𝑡=1

𝐴. 2
 

The final score is an average of the above two selection criteria, expressed as  

scorei =
Moni + Cori

2
𝐴. 3 

Top 24 features are selected from the total of 162 features based on the score. Each selected feature 

is subjected to moving average smoothing with a lookback window size of three. In other words, 

the smoothened feature value after moving averaging is the average of the current measurement 

with two measurements from the recent past. Each of the features is then normalized and averaged 

to determine the health index HI(𝑡) ∈ (0,1) where a health index of one refers to a perfectly 

healthy bearing.  

 

https://github.com/VNemani14/Bearing_LSTMPrognostics
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Appendix B: First Prediction Time (FPT) Determination 

At the beginning of operation, machines are often healthy considering a good initial setup. After a 

certain duration of operation, the bearings will start to degrade, and the signature of the degradation 

process can be determined from the vibration signals. The FPT is the time at which the beginning 

of bearing degradation is evident and is also the time at which prognostics is triggered. Predicting 

the RUL prior to the onset of degradation is unrealistic and not practical as there is little to no fault 

signature in the observed data. In this study, we use the RMS in the velocity domain pertaining to 

the beginning of characteristic bearing fault frequencies 𝑉BFF−𝑠𝑓/2
RMS  to determine the FPT. We use 

the 2𝜎 method also used in previous bearing prognostics literature [35], with the difference being 

we use 𝑉BFF−𝑠𝑓/2
RMS  to employ the 2𝜎 criterion instead of kurtosis. During the early machine life, the 

mean 𝜇𝑉RMS  and standard deviation 𝜎𝑉RMS  are determined, and then the FPT is obtained whenever 

𝑉BFF−𝑠𝑓/2
RMS  crosses the threshold of 𝜇𝑉RMS + 2𝜎𝑉RMS  for two consecutive observations. In other 

words, the FPT is the time 𝑡𝐹𝑃𝑇 at which 

|𝑉BFF−𝑠𝑓 2⁄
RMS (𝑡FPT − 𝑗) − 𝜇𝑉RMS| > 2𝜎𝑉RMS , 𝑗 = 0 and 1 𝐵. 1 

 

 

 

Appendix C: CNN Model Architecture 

Table C.1 and C.2 show the architecture of the CNN model described in section 2.3.1. 

 

Table C.1: Convolution Block Architecture 

Layer 

Convolution-1D 

Batch Normalization-1D 

Leaky ReLU 

 

Table C.2: Convolution Network Architecture 

 

Appendix D: Particle Filter: 

A nonlinear state-space model can be defined in terms of the system state vector 𝑥(𝑡), system 

model parameters 𝜃(𝑡) and noisy observations 𝑦(𝑡) given as 

State transition equation:  

𝑥𝑡 = 𝑓(𝑥𝑡−1, 𝜃𝑡−1) + 𝑢𝑖 , 𝜃𝑡 = 𝜃𝑡−1 + 𝑟𝑡 𝐷. 1 

Layer Output Shape # Parameters 

Convolution Block 1 (Samples, 32, 19) 4,704 

Convolution Block 2 (Samples, 32, 17) 3,168 

Convolution Block 3 (Samples, 32, 15) 3,168 

Convolution Block 4 (Samples, 64, 13) 6,336 

Convolution Block 5 (Samples, 64, 11) 12,480 

Convolution Block 6 (Samples, 64, 9) 12,480 

Dropout Probability = 0.10  

Dense (Samples, 64) 36,928 

Dense – Output (Samples, 1) 65 

Total:  79,329 
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Measurement equation:  

𝑦𝑡 = 𝑔(𝑥𝑖, 𝜃𝑖) + 𝑣𝑡 𝐷. 2 

where 𝑓(∙,∙) is the state transition function, 𝑔(∙,∙) is the measurement function, 𝑢𝑡 is the process 

noise for the system states, 𝑟𝑡 is the process noise for model parameters and 𝑣𝑡 is the measurement 

noise with the subscript indicating the time at which the system equations are evaluated.  

 

The posterior probability distribution functions (PDFs) of the states given the past observation 

𝑝(𝑥𝑡|𝑦1:𝑡) can be posed as a Bayesian interference problem. In PF, the posterior PDFs are 

determined based on the Monte Carlo method by utilizing a set of particles and associated weights 

that are updated with every measurement. Following the theoretical background presented in [67], 

[77]–[79], the posterior PDF can be stated as 

𝑝(𝑥𝑡|𝑦1:𝑡) ≈ ∑ 𝑤𝑡
𝑗
𝛿(𝑥𝑡 − 𝑥𝑡

𝑗
)

𝑁𝑝

𝑗=1

𝐷. 3 

where 𝑥𝑡
𝑗
 and 𝑤𝑡

𝑗
 are the 𝑗𝑡ℎ particle state and weights at the time 𝑡 and 𝑁𝑝 is the number of 

particles. The weights 𝑤𝑡
𝑗
 are determined by using the importance density function which is often 

chosen to be equal to prior pdf. Based on this assumption, the weight update equation can be stated 

as 

𝑤𝑡
𝑗

∝ 𝑤𝑡−1
𝑗

𝑝(𝑦𝑡|𝑥𝑡
𝑗
) 𝐷. 4 

 

Following the discussion from section 2.2.3, to optimize the initial states {𝑎0, 𝑏0, 𝑐0}, we use the 

Latin hypercube sampling (LHS) technique [80] to generate a set of random initial state parameters 

within certain bounds. For each set of initial state parameters, 𝑤𝑡𝑅𝑀𝑆𝐸 is calculated for the RUL 

prediction for each of the bearing in training dataset. A final score is calculated by combining the 

𝑤𝑡𝑅𝑀𝑆𝐸 of all the training bearings using the equation 

𝑆𝑅𝑀𝑆𝐸 = ∑ (EOL𝑖 − 𝑡FPT𝑖
+ 1) × 𝑤𝑡𝑅𝑀𝑆𝐸𝑖

𝑛train

𝑖=1

𝐷. 5 

where 𝑛train is the number of bearings in the training dataset and the pre-factor (EOL − 𝑡FPT + 1) 

is a measure of the time duration between the FPT and EOL. Bearings that trigger prognostics for 

a longer duration are given importance. The overall algorithm regarding LHS-based optimization 

and PF methodology is presented in Table D.1.  

 

 

Table D.1: Algorithm for LHS optimized PF that determines RUL of a test bearing after optimizing 

the initial parameters using the training bearing dataset. 

Algorithm: LHS optimized PF for bearing prognostics 

Inputs: 𝑦(𝑡) – measured feature for bearings 

 𝑘 – lookback time 

 𝑝0 – initial probability distribution of states {𝑎, 𝑏, 𝑐} 

 𝑁𝑝 – number of particles 

Output: RUL(𝑡) for test bearing 

1 Latin hypercube sampling: Generate 𝑁LHS samples of {𝑎0, 𝑏0, 𝑐0}  

2  for 𝑛 = 1 to 𝑁LHS 

3   for 𝑖 = 1 to 𝑛train 
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4              Initialize 𝑁𝑝 particles around {𝑎0, 𝑏0, 𝑐0}𝑗=1:𝑁𝑝

𝑗
 and assign equal weights   

   𝑤0
𝑗

= 1/𝑁𝑝. 

5   for 𝑡 = FPT𝑖 to EOL𝑖 

6    for 𝑗 = 1 to 𝑁𝑝 

7     Evaluate state transition eqn. 25 

8     Update weights of the particles using eqn. 𝐷. 4 

9     Calculate 𝑅𝑈𝐿𝑖
𝑗(𝑡) using eqn. 27 

10    end for (from line 6) 

11    for 𝑗 = 1 to 𝑁𝑝 

12     Normalize weights 𝑤𝑡
𝑗

= 𝑤𝑡
𝑗 ∑ 𝑤𝑡

𝑗𝑁𝑝

𝑗=1
⁄  

13    end for (from line 11) 

14    Calculate 𝑅𝑈𝐿𝑖(𝑡) using eqn. 28 

15                   Multinomial resampling  Ref. [81] 

16    Assign equal weights to the resampled particles 

17   end for 

18  end for 

19  Calculate score of this LHS sample 𝑆𝑅𝑀𝑆𝐸
𝑛  using eqn. 𝐷. 5 

20 end for 

21 Identify optimally {𝑎0
∗ , 𝑏0

∗, 𝑐0
∗} by min{𝑆𝑅𝑀𝑆𝐸

𝑛 }𝑛=1:𝑁𝐿𝐻𝑆
 

22 for each test bearing 

23  Initialize 𝑁𝑝 particles similar to line 4 but with {𝑎0
∗ , 𝑏0

∗, 𝑐0
∗} 

24  Determine RUL(𝑡) by modifying lines 5–17 with while loop instead to determine EOL 

25 end for 

 

Appendix E: Monte Carlo (MC) Dropout 

MC Dropout is reported to have Bayesian-like behavior [44]. The basic model for MC Dropout is 

similar to that of the PLSTM model and is shown in Table E1 (Table 1 without the Gaussian layer). 

The dropout value is set at 0.1. A single model is trained but is run multiple times with the 10% 

dropout to achieve an uncertainty estimate. The code for implementation of a single MC Dropout 

is provided at https://github.com/VNemani14/Bearing_LSTMPrognostics where RUL of a test 

bearing is determined by model training followed by forecasting by marching in time till 𝑉0.2𝜔−𝑠𝑓 2⁄
RMS  

reaches the cutoff. 

 

Table E1: Architecture of the MC Dropout model 

Layer Output shape # Parameters 

Input layer (Samples, 20, 1) 0 

LSTM (Samples, 60) 14,880 

Dense (Samples, 20) 61 

Total:  14,941 

 

Appendix F: Regression Fitting (Quadratic and Exponential) 

At every instant in time 𝑡, regression fitting is performed by considering the past 𝑘 = 30 time steps 

of feature data 𝐹 = 𝑉0.2𝜔−𝑠𝑓 2⁄
RMS (𝑡 − 𝑘 + 1 → 𝑡) consistent with the rest of the models. The quadratic 

model used to model the degradation trend can be stated as [82]: 

https://github.com/VNemani14/Bearing_LSTMPrognostics
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𝐹(𝑡) = 𝑚1𝑡2 + 𝑚2𝑡 + 𝑚3 𝐹. 1 

where 𝐹(𝑡) represents feature value at a time 𝑡. Unknown parameters 𝑚1, 𝑚2, 𝑚3 are determined 

by the ordinary least squares method. 

 

A double exponential model [83] is also used for regression. The mathematical formula of the 

exponential model can be written as: 

𝐹(𝑡) = 𝑎𝑒𝑏𝑡 + 𝑐𝑒𝑑𝑡 𝐹. 2 

𝑎, 𝑏, 𝑐, and 𝑑 are four unknown parameters identified by the nonlinear least square curve fitting 

method.  

 

To predict the bearing RUL, the fitted degradation curve is extrapolated up to the predefined failure 

threshold of 0.3 ips. The bearing RUL at the current inspection time 𝑡 is given as: 

RUL(𝑡) = 𝑇EOL − 𝑡 𝐹. 3 

where  𝑇EOL is the time when the extrapolated degradation curve first reaches 0.3ips. We would 

like to note that for the particular selected feature derived from the XJTU-SY bearing dataset, both 

the double exponential and quadratic regression fitting do not provide satisfactory results. Thus, 

we only show the 𝑅𝑀𝑆𝐸 and 𝑤𝑡𝑅𝑀𝑆𝐸 of the quadratic regression fitting in Table 5. 

 

Appendix G: Comparing Model Training and RUL Prediction Results 

Figure G.1 shows the learning curves of (a) PLSTM and (b) CNN model for Fold-4. Among the 

12 training bearings, 2 bearings are used for validation. Both the learning curves indicate model 

convergence with no overfitting.  

 
Figure G.1: Learning curve of (a) PLSTM with NLL loss function and (b) CNN-RUL with mean 

squared error loss function.  

 

Figure G.2 compares the RUL predictions of all the models across all bearings (when treated as 

test bearings during cross-validation). Note that the test samples are sorted in the ascending order 

of the true RUL. We observe that (1) the proposed model provides a more conservative prediction 

and (2) the prediction is centered around the true RUL especially when the RUL has a low value, 

indicating the convergence of the model towards the true RUL when the bearing is approaching 

failure. Having a conservative prediction is critical from a maintenance perspective to avoid false 

negatives. 
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Figure G.2: Performance of all the models with all 15 bearings as test bearings during the 5-fold 

cross-validation study. 
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