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Abstract

Probabilistic prediction of the remaining useful life (RUL) of bearings is critically important,
especially in an industrial setting where unplanned maintenance needs, unscheduled equipment
downtime, or catastrophic failures can cost a company millions of dollars and threaten worker
safety. Current research in the field of bearing prognostics clearly shows the advantage of a deep
learning-based solution, but the reliability of purely data-driven predictions is questionable in
harsh industrial environments with varying operational conditions. To make this work industrially
relevant, we adopt ISO guidelines to determine bearing failure thresholds (specifically ISO 10816),
which are defined in the velocity domain, while considering characteristic bearing fault
frequencies defined by the geometry of each bearing. We propose a two-stage Long Short-Term
Memory (LSTM) model ensemble which includes: (1) a predictor step to forecast and (2) a
corrector step to offset the RUL prediction. Each LSTM model within the ensemble is customized
to include a Gaussian layer that captures the aleatoric uncertainty in the forecasted parameter, and
the ensemble of all the individual LSTM models provides the epistemic uncertainty in the RUL
prediction. We demonstrate the implementation of the proposed model on the publicly available
Xi'an Jiaotong University and Changxing Sumyoung Technology Co., Ltd. (XJTU-SY) bearing
dataset and establish the superiority of the model, both in terms of accuracy as well as uncertainty
quantification, when compared against other commonly used techniques in the field of bearing
prognostics. The ensemble model tends to explore multiple functional/forecast modes providing
better uncertainty estimates when compared to Bayesian counterparts.

Keywords: Bearing prognostics, LSTM, time series forecasting, probabilistic prediction, ensemble
method.

1. Introduction

Prognostics and health management (PHM) technology has been receiving wide attention in recent
years because of its potential to help reduce machine downtime, avoid catastrophic failure, and
improve overall system reliability [1]-[3]. In the industrial environment, rolling element bearings
are a predominant focus of PHM because of their presence in the rotating component of almost
any critical piece of machinery [4]-[6]. The primary purpose of bearings is to reduce the rotational
friction between multiple rotating parts while holding them in place. In an industrial setting, the
bearings are often continuously operated under radial and/or axial loads and any catastrophic
bearing failure may severely affect not just the bearing but also other connected components and/or



processed outputs, leading to costly downtime and equipment replacement. Therefore, detection
of bearing faults [7], [8] and predicting the remaining useful life (RUL) of the bearings with a
certain degree of confidence can empower the maintenance engineer to schedule maintenance well
before bearing failure.

Predicting the RUL of bearings has typically been approached in one of two ways: (1) by using a
model-based approach where bearing failure mechanisms are modeled using mathematical
constructs and (2) by using a data-driven approach where the failure data of a previous set of
bearings will be used to train an offline model. In both cases, the generated model can be used to
predict the RUL of a similar bearing at a given point in time.

A micro-level model-based approach to RUL prediction requires prior knowledge of a bearing’s
failure mechanisms and their explicit modeling [9]. This level of understanding of the physics of
bearing degradation can lead to very accurate RUL estimates, but modeling extremely non-linear
failure mechanisms, such as excessive loading, breakdown of lubrication, contamination, and
bearing currents [10], along with the wide variation in bearing operating conditions, can severely
limit the application of model-based approaches. On the other hand, a macro-level model-based
prognostic approach includes simplification of the represented system by defining a certain
relationship between the input variables, the state variables, and the system output. Previous
research in this domain includes the use of the Kalman filter (and its derivatives) [11]-[17] and
particle filter (PF) [18]-[20]. Notably, Singleton et al. [11] uses an exponential form state equation
to predict the bearing RUL using extended Kalman filter. Li et al. [19] has proposed an improved
exponential model where the first prediction time is adaptively determined, and the PF technique
is used to reduce the errors associated with the stochastic noise. Qian et al. [20] combines two-
time scales by integrating phase space warping and a Paris crack growth model with PF to
effectively predict the bearing RUL.

Data-driven approaches do not require prior knowledge about bearing failure mechanisms and can
provide an estimate of bearing RUL that grows in credibility as more learning data is collected.
However, the accuracy of the data-driven approach is heavily dependent on the amount of failure
data available and is subject to typical reliability issues (such as overfitting) that present
themselves frequently in modern data science. Machine learning techniques such as artificial
neural networks (ANNs) [21]-[24], support/relevance vector machine (S/RVM) [25]-[29] are a
few data-driven approaches often used in this domain of research. Recently, deep learning
techniques are becoming more prominent due to their learning capability at multiple levels [30].
Among these, convolutional neural networks (CNN) [31]—-[35] and recurrent neural networks
(RNN) [23], [24] are gaining increased popularity due to their ability to store temporal information,
which can be particularly useful in predicting the bearing health condition. Guo et al. [24] was the
first to construct a bearing health indicator based on a feature selection criterion and used the health
indicator to train a recurrent neural network (RNN). Wang et al. [36] developed a new framework
of recurrent convolutional neural networks (RCNN) combined with variational inference to
determine probabilistic RUL prediction. Peng et al. [37] proposed a Bayesian deep-learning-based
method for uncertainty quantification in the field of prognostics.

The long short-term memory (LSTM) architecture is a special class of RNN that has the ability to
store long-term feature dependencies, and it is also being explored for prognostic applications



[38]-[41]. Mao et al. [42] used CNN to extract bearing degradation features which are then fed
into an LSTM model for RUL prediction. Although many of these deep learning methods show
promising results, these models often consist of a large number of parameters, requiring extensive
computational resources and time even for making predictions, particularly if Bayesian methods
are involved for uncertainty quantification. The scalability of such models, especially in an
embedded industrial internet of things (IloT) platform or soft-sensor applications [43], is not clear.
To this end, we attempt to advance the current state-of-the-art in bearing prognostics in the
following ways:

1)

2)

3)

4)

S)

We use the International Organization of Standardization (ISO 10816) set standards for
industrial machines to determine the end of life (EOL) for bearings as opposed to
traditional heuristic approaches of using maximum or mean vibration amplitude. The ISO
standards, which often evaluate excessive vibration in terms of velocity units like inches
per second (ips), define “excessive” vibration from an industrial standpoint which could be
quite different from what is seen in a lab-based experiment. Particularly, a lab-based
experiment can allow for a catastrophic bearing failure but this is not the case in an
industrial setting where a catastrophic failure can cost millions of dollars.

We extract velocity domain root mean square (RMS) features while accounting for
characteristic bearing fault frequencies. These features are then used to determine the first
prediction time (FPT) and to train the proposed model. Simultaneously, we also extract
features from both the time and frequency domains of acceleration, velocity, and jerk
vibration signals, which are used to train other correlation-based models, such as CNNs,
for comparison. Similar to the approach presented in Ref. [24], a total of twenty-four
features are selected based on their Pearson correlation coefficient and monotonicity which
indicates the variation of the bearing health condition with time.

We develop a simple and scalable ensemble of lightweight deep LSTM networks
(EnLSTM) that can provide a probabilistic prediction of RUL. As opposed to complex and
heavy parameter deep learning models, our proposed model uses multiple lightweight
models to enable embeddability on vibration measuring sensors for online prognostics of
bearing failure. A simple data augmentation technique is used during the training phase of
the LSTM networks to improve the accuracy and robustness of RUL prediction.

We propose a two-step algorithm consisting of (a) a predictor step (EnPLSTM): which
forecasts a selected feature to a certain threshold for an initial RUL prediction, (b) a
corrector step (EnCLSTM): which corrects the prediction of the EnPLSTM, and (c)
temporal fusion: which weighs in the predictions from the recent past to make a smoother
final prediction. Each individual LSTM model provides aleatoric uncertainty of predictions
through the use of a custom Gaussian layer. These LSTM models, when combined to form
an ensemble, can help estimate the epistemic uncertainty in bearing health forecasts. This
method ensures robust RUL predictions that are less sensitive to measurement noise and
also provide consistent predictions that do not vary vastly between successive
measurements.

Several metrics for quantifying uncertainty are used to compare the proposed model with
other probabilistic methods such as optimized PF and Bayesian-like Monte-Carlo (MC)
Dropout [44]. We also investigate how the ensemble EnPLSTM model works by
demonstrating that the training of each individual PLSTM model takes a different
optimization route. We show how exploring the functional/forecast modes provides a better
measure of uncertainty.



The rest of the paper is organized as follows. In section 2, we first formally introduce the overall
methodology followed by a discussion on relevant feature extraction while considering
characteristic bearing fault frequencies. Following this, we present an LSTM architecture with the
inclusion of a Gaussian layer to account for aleatoric uncertainty in the feature forecast and use
this to develop the EnPLSTM and EnCLSTM. In section 3, we implement the proposed model on
a publicly available bearing dataset from accelerated degradation experiments and establish the
superiority of our model when compared to other deterministic as well as probabilistic
contemporary models. Particularly in section 3, we reason why the ensemble predictor and
corrector work well for the bearing dataset by identifying scenarios where the model would fail.

2. Methodology

In the introduction, we established that probabilistic RUL prediction of rolling element bearings
is critically important for scheduling maintenance. In this section, we describe the technical
approach for achieving confident RUL predictions. We first describe the features extracted from
the vibration signals and then detail the proposed EnP/CLSTM algorithm after which we briefly
present model-based approaches like particle filter, similarity, and exponential/quadratic
regression, and a CNN data-driven approach. The detailed flow chart of the proposed bearing
prognostic algorithm is shown in Figure / for the proposed architecture. In a later section, we show
the advantage of the proposed method by using a case study of a run-to-failure bearing dataset.
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Figure 1: Schematic of the proposed bearing prognostic algorithm

The state of bearing health is often captured through vibration measurements collected in the radial
direction. Bearing defects can usually be classified as either (1) single-point defects or (2)
generalized roughness [45]. The former type of defect is localized, such as a spall or a pit, on an
otherwise smooth bearing surface, producing four different characteristic fault frequencies.



Generalized roughness arises when larger areas of the bearing component surfaces become coarse,
irregular, or deformed.

In this study, we limit our observations to single/multi-point defects, where the characteristic fault
frequencies [46], [47] are functions of rotational speed and can be obtained for flaws in the outer

race BPFO = wZ—N (1 — gcosqb), inner race BPFI = %N (1 + gcosqb), on one of the ball bearings
2
BSF = Z—: (1 — %cos2 (],')), or in the cage FTF = %(1 — %cosqb). Here w is the shaft rotational

speed in Hz, B is the ball diameter, P is the pitch diameter, ¢ is the contact angle, and N is the
number of balls. A bearing with a particular defect shows harmonics of the corresponding fault
frequency, and discrepancies arise whenever there is slippage. Moreover, when the fault is
sufficiently pronounced, the vibrations are accompanied by sidebands around these characteristic
frequencies. We, therefore, consider a frequency band around each fault frequency (see Figure 5)
to capture the fault signatures.

2.1 Feature Extraction in Velocity Domain

Most academic bearing run-to-failure datasets provide vibration data in the acceleration domain
whereas the ISO standards for defining end-of-life or alarm amplitudes are in the velocity domain
[48]-[50]. This is because the magnitude of a signal in the acceleration domain increases with the
frequency of that signal, whereas velocity provides a more stable representation of energy that is
independent of shaft or rotational speed. Moreover, the vibration in the velocity domain is less
susceptible to amplifier overloads that typically show up in the high-frequency domain which can
compromise the fidelity of low-frequency signals [51]. To this end, we propose the bearing be
considered unusable or require immediate maintenance if the overall velocity RMS in the
frequency range of 0.2w — 12.8 kHz (for a sampling frequency of sf = 25.6 kHz) for a single-
sided fast Fourier transform (FFT) spectrum exceeds a certain threshold. According to the ISO
standards [50], the threshold value varies with the type of application, but we choose a statistical
value of 0.3 ips assuming a medium-sized motor [48]. In situations where vibration sensors are
mounted both horizontally and vertically along the radial direction (see Figure 2), we define the
bearing to reach its end-of-life when the RMSs of both the horizontal and vertical velocities exceed
0.3 ips.

In addition to the velocity and acceleration domains, studying the jerk domain, which is the
differential of the acceleration vibration signal, can be important to detect abnormal vibration
signals, particularly at low rotational speeds [52], [53]. Although the case study which we present
later employs a moderate operating speed, we nevertheless find and show later in section 2.2 that
the features extracted from the jerk domain show good correlations with RUL for the bearings.

In practice, accelerometers are widely used due to their availability, small form factor, and low
cost as opposed to velocity sensors which are expensive and bulky. Unless directly measured, the
velocity vibration v(t) can be obtained by numerical integration of the acceleration vibration
signal, v(t) = |, Ot a(t)dt, and the jerk signal can be obtained by differentiating the same, j(t) =
da(t)

dt
numerical artifact stemming from the assumption that the initial condition for integration is

. After integration, the vibration signal will be modulated with a low-frequency signal as a



v(t = 0) = 0. To avoid this effect, we consider the frequency signal beyond 0.2w. One can use a
high-pass filter or just extract the RMS values from the frequency domain (for all three signals
a(t), v(t) and j(t)) within certain frequency ranges using Parseval’s theorem [54] which is based
on the principle of energy conservation. In particular, the RMS of a signal x(t) can be calculated
both in the time domain and based on a single-sided frequency spectrum X (f) with frequency
resolution of df as:

neg

1
XRMS = n—zx(wz: XOI+ )

=

sf/2
& IXP
2
f=df
where n; is the total number of points in the time domain signal during the sampling period of ¢
and n, = t; X sf. The RMS value between two frequencies f; and f, can therefore be calculated

as

Note that the summation is over the discrete X(f) values between f; and f, and FFT hereafter
refers to the single-sided FFT spectrum. In this study, we use two physics-based features extracted
from the velocity domain: Vﬁ}fss_sf /2 and V(ﬁxus_sf /2> Where BFF refers to beginning of bearing
fault frequencies BFF = 0.9 min(BPFO, BPFI, BSF) — sf /2. The pre-factor of 0.9 ensures a
10% frequency error margin for the onset of bearing degradation owing due to shaft speed
variations. Ve £/2 18 used to determine the FPT for bearing prognostics (see Appendix B) and
Vol_azl\ff_sf /2 18 used to determine whether a bearing has failed or requires immediate maintenance
based on ISO standards, which is approximately 0.3 ips for a medium-sized electric motor [48].
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Figure 2: Sensor mounting in the radial direction
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2.2.1 Fundamental LSTM architecture
The proposed model utilizes LSTM networks for forecasting the bearing health condition. LSTMs
utilize memory cells in addition to standard RNN units which help in retaining useful information
for both long and short periods of time and do not face the issue of vanishing gradients common
to RNNs. The basic architecture of the proposed model is shown in Figure 3. The structure of an
LSTM memory cell is shown in Figure 3(b) where each cell contains three gates (1) forget gate,
(2) input gate, and (3) output gate. The equations for the gates within the memory cell can be
described as
Forget gate:

fi = o(wr[hj—1, X;] + by) 3
where the sigmoid layer takes the input X § and the output of the previous LSTM block hj_l to
determine which parts from the old output be removed and wy is the weight of the forget gate with

bias by.
Input gate:
l] = O'(Wi[hj_l,Xj] + bl) 4
¢ = tanh(w,[hj_1, X;] + b) 5

where the sigmoid layer decides which of the new information be stored and tanh(-) creates all
possible values from the input X;. These two are then multiplied to update the new cell state C,.
This new memory is added to the previous cell state ¢;_; after the forget gate. w; and w, are the
respective weights of the input gate with corresponding biases b; and b,.
Output gate:

0; = O'(Wo [hj_l,X]] + bo) 7

h; = o;®tanh (¢;) 8

where the sigmoid layer determines the output of the cell. tanh(-) generates all possible values
which when multiplied to the output o; becomes selective of the output. w, and b,, are respectively
the weight and bias of the output gate. One important thing to note is the use of tanh(-) in the input
and the output gates overcome the vanishing gradient problem where the second derivative of the
internal state variables can sustain for a long range before becoming zero.
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2.2.2 Gaussian Layer for Uncertainty Quantification

Traditional deep neural networks (DNNs) like LSTMs are designed for a single output prediction
(or a point prediction), which can be viewed as an overconfident prediction. For practical
applications like bearing failure, overconfident RUL predictions are dangerous and costly as they
might either lead to premature maintenance requests (due to an early prediction) or catastrophic
failure of the bearing and connected equipment (due to a late prediction). On the other hand,
models that quantify the uncertainty of RUL prediction allow the user to make risk-based
maintenance decisions that balance out maintenance resource requirements while avoiding early
maintenance triggers stemming from low confidence prediction models. Probabilistic DNNs are
often achieved through Bayesian formalism [55] where the parameters of the DNN are subjected
to a prior distribution and after training, the posterior distribution over the parameters is computed
which can then be used to quantify predictive uncertainty. To make the Bayesian implementation
tractable for DNNs, a variety of approximations such as Markov chain Monte Carlo (MCMC) are
used. However, Bayesian methods are computationally more expensive and model training takes
more time when compared to non-Bayesian methods. To address this issue in DNNs, Monte Carlo
dropout was proposed by Gal et al. [44]. Also, Lakshminarayanan et al. proposed a simple and
scalable technique for predictive uncertainty estimation by using a proper scoring rule during
training combined with model ensembles [56], which we use in our work for estimating uncertainty
in bearing prognostics. For input features x, we use an LSTM network to model the prediction
distribution pg (y|x) for real-valued output y and 6 are the parameters of the LSTM network. We
first state the methodology for a single LSTM model and then later combine them to generate an
ensemble of LSTM models.

A scoring rule is used to measure the quality of the prediction pg(y|x) giving a higher numerical
score to better-calibrated predictions. Let the scoring rule be S (pg, (y, x)) and the true distribution
be q(y, x). The expected scoring rule is

S(pe, @) = j q,x)S(pe, (v, x))dydx 9

S(e, @) = 5(q,9); S(pe,q) = S(q,q) iff pa(y|x) = q(y|x) 10
Therefore, by minimizing the loss function £(8) = —S(pg, q), pe(y|x) can approach q(y|x).
When maximizing the likelihood, the score function can be given as S(pg (¥, %)) = logps (¥|x)
which satisfies the Gibbs inequality. Commonly used loss functions like mean squared error stated

as MSE = YN_ (v, — ;1(xn))2 for a training dataset containing N datapoints of (x,y) do not
capture predictive uncertainty. We, therefore, devise a Gaussian layer (see Figure 3(a)) which
gives two outputs: the predicted mean p(x) and variance 62 (x). By treating the sample values to
obey the Gaussian distribution with the predicted mean and variance, we minimize the negative
log-likelihood (NLL) criterion
log o (x — 1 ()

—logpe (Ynlxn) = S 29( ) + (y 20!;6(2))) + constant 11
In other words, training the model using the scoring rule gives two outputs: mean u(x) and
variance o2 (x) accounting for the aleatoric uncertainty, which is a measure of the variation within
each prediction model. On the other hand, the accuracy of a deep learning model depends on the
amount of data available, leading to epistemic uncertainty which we capture through an ensemble
of LSTM networks. With the availability of more data, the predictions of the LSTM networks in
the ensemble tend to merge, thereby reducing the epistemic uncertainty. Each LSTM network in




the ensemble is trained independently through different weight initializations and shuffling the
input data. To that end, we train M = 5 LSTM models on the same data that only differ through
the learned parameters 6,,,. One could also change the number of LSTM unit cells among different
LSTM networks and still obtain good uncertainty estimations. We then treat the ensemble as a
uniformly-weighted mixture model and combine the predictions as

1 —M
r(ylx) = MZ Pe,, (v1%) 12

m=1
In our study, pg_ (y|x) refers to the Gaussian probability distribution of the forecast trajectory of

Vg?;‘fj_sf /2 of each of the M LSTM models. We can further derive that the ensemble of all the
LSTM models to also be Gaussian with the mean and variance taking the following forms

1 M
P =3 g, () 13

of(x) = %Z:ﬂ (02,60 + 13, (0) = u2(x) 14

2.2.3 Proposed Model Architecture
The proposed model is an ensemble of multiple simple LSTMs with a Gaussian layer for
uncertainty quantification. The proposed method involves three steps

1) Predictor LSTM ensemble (EnPLSTM): where the feature (VO}%)S_SJC /2) is forecasted to a

certain alarm threshold and hence predict the RUL.

2) Corrector LSTM ensemble (EnCLSTM): where the output of the EnPLSTM is used to
determine the possible correction to the RUL.

3) Temporal fusion: where the predictions from the recent past are considered to provide a
final RUL prediction.

Predictor LSTM ensemble (EnPLSTM):

The EnPLSTM consists of individual predictor LSTM (PLSTM) models for which the input at any
time t consists of the feature values of the previous k timesteps, Ft™**1, Ft=k+2  Ft (k is also
called the lookback time step). The input has the form (#samples X k X Nearures) With the output
being the next-step feature prediction F!*1 (here nNgearures = 1 as we only forecast F =

VOP_%VIQ,S_ sf/2)- We then march forward in time until the cutoff is reached at Teyofr and determine the

mean value of RUL as ufy’" (t) = Teyeorr — t. The use of a Gaussian layer for each PLSTM model

provides information about the uncertainty in the forecast feature which can then be used to
determine the uncertainty in the RUL prediction at every time instant g;RUX(t). After performing
the ensemble of all the PLSTMs using eqns. 13 and 14, we obtain RUL (,u*p, a*p) as the final output
of the EnPLSTM. The schematic in Figure 3(a) refers to just one PLSTM network and Table 1
lists the various layers in each PLSTM model with k = 20. The Gaussian layer in Table 1 has two
outputs — the mean and standard deviation of the next step prediction. Each PLSTM model consists
of 16,142 parameters which is at least two orders of magnitude smaller than some of the other
contemporary deep learning models that quantify uncertainty [36].

Table 1: Architecture of a PLSTM network with Gaussian layer

Layer Output shape # Parameters
Input layer (Samples, 20, 1) 0
LSTM (Samples, 60) 14,880

10



Dense (Samples, 20) 1,220
Gaussian layer [(Samples, 1), (Samples, 1)] 42
Total: 16,142

Corrector LSTM ensemble (EnCLSTM):

The input and output of the PLSTM model are respectively the features from the previous k time
steps and the next step prediction. We observe the RUL prediction of a trained EnPLSTM shows
deviation from RULY" € even for the training dataset. We note that our approach of forecasting is
different from the commonly used bearing prognostic approach of directly mapping features to
RUL, in which case we can expect a good RUL fit at least for the training dataset. In other words,
RUL becomes a secondary outcome of the EnPLSTM method unlike a primary output when
developing feature-RUL mapping models. Therefore, the EnPLSTM is used to evaluate the error
in RUL prediction on the training dataset. The error in forecasting for each bearing can be
quantified as ARUL(t) = RUL"™ (t) — RUL(t).

A shown in Figure 3(c), the architecture of the CLSTM model is similar to that of the PLSTM
model with two differences: (1) the input now includes RUL (u*p) from the EnPLSTM model, in
addition to the input to the predictor step, and (2) the output is now ARUL(t), rather than the next-
step feature prediction. Unlike the EnPLSTM (which is a one-step-ahead prediction), the
EnCLSTM attempts to map the RUL prediction error. The architecture of a single CLSTM model
is shown in Table 2 with the LSTM layer having 80 hidden units. The shape of the input layer is
(samples, 20, 2) with a lookback of 20-time steps with two features: RUL(u*p) and VOE%)S_S]C /2
The final output from the Gaussian layer is the mean and standard deviation of the error correction
ARUL(uc, 0.). After training, the CLSTM model gives an estimate of the mean and standard
deviation of the error ARUL(u, 0.), which after ensemble (following the same logic as in eqns.
13 — 14) becomes ARUL (., Osc).

Table 2: Architecture of the CLSTM model with Gaussian layer

Layer Output shape # Parameters
Input layer (Samples, 20, 2) 0
LSTM (Samples, 80) 26,560
Dense (Samples, 20) 1,620
Gaussian layer [(Samples, 1), (Samples, 1)] 42
Total: 28,222

The correction term ARUL(u.., 0.c) can be positive or negative, however, in our experience, we
find that the PLSTM model, generally, underpredicts the RUL during the early stage of bearing
degradation but converges to actual RUL in the second half of the bearing life. In other words, at
the beginning of bearing degradation, the CLSTM model plays a significant role but loses
importance as the bearing approaches EOL. To this end, we combine RUL (u*p, 0*p) and
ARUL(l,c, 0.c) through a weight which is a function of the feature value W(F = VRMS y /2). The

net RUL prediction RUL (Ufinal, Ginal) can be stated as
RUL(Unet, Onet) = RUL(up, 0.p) + W(F = V5o s5/2) X ARUL(fsc, 0.c) 15
A logistic sigmoidal function is used as the weight function W (F = yRMS . /2) with the sigmoid

midpoint Fy pinned at 1.25 times the feature value at FPT.

11
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W(F):l—m 16

where a determines the growth rate/ steepness of the sigmoidal curve and Fy, = 1.25 X F(t =
trpr) = 1.25 X Voo sf/2(t = tepr).

Temporal Fusion:

Rapid changes in the vibration measurements can often lead to highly time-varying RUL
predictions, especially when using data mapping models like the CLSTM. Sudden changes in the
RUL predictions are not physically meaningful from a maintenance perspective. We, therefore,
devise a simple technique where the RUL predictions in the recent past are weighed in to make a
final prediction. A simple half-normal weighting function is used to determine the importance of
the RUL predictions where the predictions closest to the current time get more weight than those

in the distant past. At a time t, the RUL prediction after temporal fusion RUL (,utf (t)) can be

stated as

L
RUL yf(t) =Z Wery X (RUL(pner(t — ) — ) 17
i=0
iAt )
T ie(_(sztf) > 18
T oy
Wer i
== 19
Were Yo Wi

where L is the number of discrete past RUL predictions the user wants to consider, At is the time
interval between two consecutive RUL predictions and oy is a user-defined parameter that

accounts for the spread of the half-normal curve. A larger value of g; would give more similar
weights to recent RUL predictions whereas a smaller value of o;¢ gives more importance to the

current RUL prediction at time t. The weights across the (L 4+ 1) RUL predictions are normalized
in eqn. 19. We observe that performing temporal fusion provides smoother RUL prediction curves
while also reducing the RMSE error. The entire algorithm is presented in Table 3.

Table 3: Algorithm for the proposed predictor-corrector LSTM model for bearing prognostics
Algorithm: Probabilistic RUL prediction for bearing prognostics (test dataset)
Inputs:  Accelerometer vibration signal a(t) over the past k time steps
Lookback time k: 20 time steps
Cutoff: 0.3 ips
M =5 trained PLSTMs and CLSTMs
Output: Probabilistic remaining useful life RUL(Uinal, Tfinag) at time t

1 Calculate the velocity vibration v(t) = [ Ot a(t)dt and the corresponding FFT in frequency domain
V(f). Calculate V;{}\fpsisf/z (t) and Vg%s_sm (1).
Predictor LSTM model

2 Reshape input feature F = Rév[ws sf/2(t —k + 1 - t) into shape X}, = (1,lookback, 1). The input
sample at a given time t is of the form F(t —k + 1 — t) with the corresponding output will be
F(t+ 1)

3 UseVAMS £/2(t) ineqn. B. 1 to determine if FPT is reached. Proceed iff ¢ = tgpr.

4 foreach PLSTMm=1:M
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5 Initialize: forecast time t/ = 1, f = F(t)

6 while (f < 0.3 ips):

7 Next step prediction: ( f, af) = PLSTM (Xp)

8 Modify X = concatenate(X, f)

9 UpdateXp=Xp(t+tf—k+1—>t+tf)

10 tf =t/ +1

11 end while

12 unE(t) = /. Calculate aleatoric uncertainty oa’" () using .

13 end for (line 7)
14 Calculate ensemble mean and variance RUL (y*p, O'*p) as fp(t) = % M _, uRUL(t) and a*zp (t) =
% M_, (O}I;LULZ(t) + pRY Lz(t)) — pu#,(t). This is the final output of EnPLSTM.
Corrector LSTM model
15 Reshape input features VOI?%)S_S]:/Z (t—k+1->t)andRUL (y*p t—-k+1- t)) into shape X, =

(1,lookback, 2).

16 Determine the error correction ARUL(u¢, 0.) = CLSTM(X.) for each CLTM and calculate
ensemble correction ARUL (i, 0,) similar to line 14.

17 Calculate the final RUL prediction using eqn. 15.

18 Temporal fusion: Use eqn. 17 for smoothing the RUL prediction.

2.3 Models for Comparison

In this section, we briefly present three data-driven approaches, which are (1) CNN-based feature-
RUL mapping, (2) similarity-based interpolation, (3) Monte Carlo (MC) Dropout (see Appendix
C), and two model-based approaches, (1) optimized particle filter and (2) regression fitting (see
Appendix D for quadratic and double exponential regression fitting). In a later section, we compare
the performance of the proposed model against these four benchmark models typically employed
in prognostic literature.

2.3.1 CNN

Traditionally, CNN was used for image processing to capture spatial and temporal dependencies
of image features by application of several filters [57]-[59]. Many bearing prognostic models were
built upon a CNN framework [31]-[33] and we, therefore, adopt a basic CNN architecture in our
study to compare against our proposed method. Each input sample at a given time ¢ of the CNN
model is the set of 24 features (see Appendix A) for the previous 20-time steps and the output is
the corresponding RUL of the bearing.

The CNN model consists of six convolution blocks, a dropout layer, and two fully connected layers
(see Appendix C for the model architecture). The convolution blocks contain three layers, namely,
1-D convolution, 1-D batch normalization, and a Leaky ReLU non-linear activation function. The
dropout layer serves to prevent overfitting of the training data. The two fully connected layers
further reduce the features generated by the convolution blocks to a single output, the estimated
RUL. The CNN model was implemented using PyTorch in a Python environment configured to
run on a single Nvidia RTX-2070 video card with 8 Gb of onboard graphics memory. The model
was trained for 100 epochs using AdamW optimizer with beta 1 of 0.5, beta 2 of 0.999, weight
decay of 0.01, and initial learning rate of 0.001. The training was performed with mean squared
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error as the loss function. The learning curve of CNN and PLSTM model are shown in Appendix
G.

2.3.2 Similarity-based Interpolation

Similarity-based interpolation is a data-driven prognostic approach where a portion of the bearing
health data, such as the feature development Fi.s from a test bearing is compared against similar
feature(s) from the training dataset F,i,. The hypothesis of this method is that the partial F;g; 1S
similar to an equal-sized portion from Fi,i,, the time-scale of which is determined by optimizing
the difference between the two data [60]-[63]. To predict the RUL of a test bearing at time t, the
test feature Fieg; in our study will be the VO‘?ZMQ)S_Sf s2(t =k +1 - t) with a lookback of k time

steps. To determine the optimal fit with respect to each training bearing, Fi.s; 1S displaced along
the time axis and the time instant T, at which the sum of squared differences (SSD) between Fiogt
and Fip,ip 18 minimum is determined. Figure 4 depicts the procedure for determining T,.
Mathematically, this can be stated as

k
min SSD = Z(Ftest(t —j+ 1) = Fain(To + k — ))? 20
j=1
subject to Ty € [0, L — k] where L is the total life of the training bearing dataset. T, determined
from eqn. 20 is then used to calculate RUL based on the training dataset given as
RUL=L—-k-T, 21
In many cases, the training dataset consists of run-to-failure vibration data from multiple bearings
(say NMypain in number) and RUL determined from eqn. 21 for each of the bearings in the training
dataset can be added using a simple weight function which is the inverse of SSD. In other words,
a smaller value of SSD indicates greater similarity, and the appropriate RUL is given greater
importance. This can be stated as

Ntrain
1
RULpet = 77 z W, x RUL; 22
i=1
Ntrain
w= > w 23
i=1
W, = ! 24
LT SSD;

A major advantage of this method is the non-requirement of defining failure. However, this method
cannot guarantee that the RUL prediction converges to true RUL as the bearing is close to EOL.
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2.3.3 Optimized Particle Filter

Particle filter (PF) is based on the concepts of Bayesian inference and the sequential Monte Carlo
method and excels in modeling dynamic non-linear systems [64]. PF has been found to be
successful in other bearing prognostics studies [65]-[67]. A set of random particles approximately
satisfying the model equations are used for estimating the potential RUL with uncertainty.
However, this method is very sensitive to the initial guess of the system state and resampling
strategies and improper selection of the same often leads to degeneracy or leading to loss of particle
diversity [68]. The fundamentals of PF are described in Appendix D and in this section, we briefly
describe our implementation of PF with optimized initial states utilizing Latin-hypercube
sampling.

Modeling the state and measurement equations for bearings can be quite complex as the failure
modes are quite diverse and we, therefore, use a combination of exponential and linear terms in
describing the development of bearing features over time. Mathematically, we use the following
equations:
State transition equation:

Ar = Qg1+ Uye, by =brq +Upp, € =Cpoq Uz 25
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Measurement equation:

Ve = aeP D o6 (6 — trpr) + v, 26
where y, is the feature measurement (obtained from vibration data) at time ¢, uq, u,, us, v are the
Gaussian noise variables with a certain standard deviation (and zero mean). Proper execution of
PF involves the following steps (1) particle initialization, (2) state update, (3) particle weight
update, (4) resampling, and (5) state estimation (which we describe in Table D.1).

As measurements are collected in real-time, the system parameters of the particles are trained to
start from the initial guess, and the updated state of the particles is used to forecast the features
until a threshold is reached and hence obtain the RUL’ for the j** particle. The effective RUL is
obtained by a weighted sum of RUL’. This can be mathematically expressed as

RUL/(t) = Solve (a{ebgt* + ctjt* = Cutoff) — (t — tppr) 27
t Np

RUL(t) = Z w/ X RUL/(t) 28
=1

Often the selection of the initial state values (which can be considered as hyperparameters) is
heuristic and can change from bearing to bearing which defeats the purpose of a generalized PF
model. To this end, we develop the PF algorithm by optimizing the initial state parameters
{ao, by, ¢} on the training bearing dataset by minimizing an RUL prediction error metric and using
the same initial state for the test bearings.

3. Case Study Using the XJTU-SY Dataset

In this section, we demonstrate the advantage of our proposed prognostic method utilizing the run-
to-failure vibration data provided by Ref. [29]. We also compare our proposed method against the
methods described in section 2.3.

3.1 Dataset

The XJTU-SY bearing dataset consists of run-to-failure vibration data of 15 roller element
bearings (LDK UER204). The failure of these bearings is accelerated by applying a radial load.
The 15 bearings are divided into three groups of 5 bearings and each group is subject to a certain
radial load and rotational speed (see Table 4). Two PCB 352C33 accelerometers are mounted
perpendicularly along the radial direction, which the authors of Ref. [29] refer to as horizontal and
vertical directions. We refer to the same as vibrations in the x and y directions consistent with the
schematic shown in Figure 2. Data is collected for 1.28 sec every minute at a sampling frequency
of 25.6 kHz. For further details regarding the experimental setup, we refer the readers to Ref. [29].

Table 4: Summary of bearings from XJTU-SY dataset [29]

Operating condition Bearing ID Rotating speed (rpm) Radial force (kN)
Bearing 1 1
Bearing 1 2
Condition 1 Bearing 1 3 2100 12
Bearing 1 4
Bearing 1 5
Bearing 2 1
Bearing 2 2

Condition 2 2250 11
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Bearing 2 3
Bearing 2 4
Bearing 2 5
Bearing 3 1
Bearing 3 2
Condition 3 Bearing 3 3 2400 10
Bearing 3 4
Bearing 3 5

Figure 5(a) shows the run-to-failure vibration data obtained from the accelerometer mounted in
the x direction for Bearing 1 1. The reported total life of the bearing is 123 min with vibration
measurements taken at every minute. For purposes of illustration, we highlight the vibration data
obtained at t = 100 min in Figure 5(a) and also show the corresponding FFT of this signal in
Figure 5(c). Since the provided data is obtained from accelerometers whereas our proposed method
is primarily aimed at bearing prognostics using ISO standards, we first convert the acceleration
signal into the velocity domain by integration (see section 2). The result of integration is shown
in Figure 5(b) and the corresponding FFT of v(t = 100) is presented in Figure 5(d). Numerical
integration of the acceleration signal introduces low-frequency component as can be seen by a
wavy nature of v(t). This can also be seen in the FFT of v(t) in Figure 5(d) where we can observe
large amplitudes in the very low-frequency domain of < 0.2w. This numerical artifact is taken
care of by considering the RMS value calculated from f > 0.2w. The fault frequencies for this
bearing are determined to be BPFO = 3.08w and BPFI = 4.92w. In Figure 5(c) and (d), we also
show 1 X,2 X and 3 X BPFO + 5% Hz bands, and 1 X and 2 X BPFI + 5% Hz bands (as defined
in section 2.1). One can observe peaks in BPFO bands indicating an outer race fault which is also
confirmed in Ref. [29]. Also, the process of integration into the velocity domain preserves the
peaks at characteristic fault frequencies.
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Figure 5: (a) Run-to-failure vibration data for Bearing 1 1 with a snapshot of the vibration signal
collected at t = 100 min. (b) Corresponding velocity signal at t = 100 min. The FFT spectra of
the acceleration and velocity signals along with BPFO and BPFI are shown in (c) and (d)
respectively.

3.2 FPT Determination

The bearing prognostic algorithm is triggered at FPT as this marks the beginning of bearing
degradation. Before we present the results of FPT on this dataset, we first show a waterfall plot
revealing the development of a bearing fault in the frequency domain. Figure 6 shows the FFT
waterfall plot of Bearing 1 1 within the first ten orders of shaft frequency. One can observe the
advent of an outer race defect at around 80 min which is accompanied by an increase in FFT
amplitudes in the BPFO characteristic frequency range (and its harmonics). We have suppressed
the DC component (f = 0 Hz) of the FFT for presentation purposes.
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Figure 6: Waterfall plot of the FFT for Bearing 1 1 with characteristic fault frequency bands

As stated in section 2.3, FPT is determined by the 20 method [35] applied on V;%S_Sf /2 Where
BFF refers to the bearing fault frequencies BFF = 0.9 min(BPFO, BPFI, BSF). In this study, we
neglect BSF, and hence we get BFF = 2.75w. We mark this frequency in Figure 5(c) and (d). In
Figure 7 we show the variation of V&MY /2 and VRMS . f/2 for two candidate bearings, Bearing
1 1 and Bearing 2 3, in both the x and y directions. Several observations can be made from
Figure 7. First, VO‘?;VIa?_Sf /2 Which is a measure of the overall health of the bearing assembly is
always greater than Vyoe _ /2 Which primarily measures the bearing health condition. This stems
from the fact that the energy within the frequency range of 0.2w — sf /2 already contains the
energy associated with 2.75w — sf /2. As a corollary, a large difference between VOI_QZM(L,S_Sf /2 and
VRMS . £/2 1s indicative of synchronous defects such as shaft unbalance, misalignment and
mechanical looseness. On the contrary, a smaller difference between the two RMS values indicates
a good fit/assembly. As can be seen in Figure 7, Bearing 1 1 experiences a relatively larger degree
of synchronous faults when compared to Bearing 2 3. Second, VRIS £/2 1s much more stable
than VO}_{ZN({;S_S]: /2 and is therefore a good metric to determine the FPT using the 2o method. On the
other hand, V(,‘?zMj’_sf /2 18 used to determine the EOL, based on the cutoff of 0.3 ips, as it reflects

the overall vibration energy levels within the system. Third, the FPT and EOL vary in both
directions for both bearings. We, therefore, determine the effective FPT conservatively by
choosing the earlier occurrence of tgpr, and trpr,,-

tppr = Min (tFPTx' tFPTy) 29
The effective EOL is determined when the overall RMS reaches the threshold value in both x and
y directions to ensure good utility of the bearing and avoiding early maintenance.

tgor, = mMax (tEOLx' tEOLy) 30
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Figure 7: Development of features Viars_ £/2 and VRS s /2 for Bearing 1_1 in (a) x-direction
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20, rus are also plotted in each case.

3.3 Development of the Proposed Model

In this section, we first describe the test-train data for cross-validation followed by a parametric
study, focused on the PLSTM model. We then depict the advantage of the proposed model when
compared to other models discussed in section 2.6.

3.3.1 Cross-Validation

A 5-fold cross-validation study is conducted on the set of 15 bearings. The five folds are as follows:
Fold-1: Bearing 1 1, Bearing 2 1, Bearing 3 1

Fold-2: Bearing 1 2, Bearing 2 2, Bearing 3 2

Fold-3: Bearing 1 3, Bearing 2 3, Bearing 3 3

Fold-4: Bearing 1 4, Bearing 2 4, Bearing 3 4

Fold-5: Bearing 1 _5, Bearing 2 5, Bearing 3 5

While performing the cross-validation study, one fold is chosen to be the test set while the other
four folds are used for training the models. For example, for the first cross-validation trial, Fold-1
serves as the test set whereas Folds 2, 3, 4, and 5 are used for training the model. Cross-validation
ensures the generality of the model and any result of a bearing presented hereafter is obtained when
the bearing is a part of the test set during the cross-validation study.
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3.3.2 Evaluation Criteria

Several evaluation criteria are used to evaluate and compare the performance of all the models in
terms of prediction error as well as uncertainty quantification. First, the root mean squared error
(RMSE) is calculated as

1 r true _ 2
RMSE = j Tt ¥ 1)2 (RUL've(t) — RUL(L)) 31

t=tFPT
where RUL™ € (t) and RUL(t) are respectively the true RUL and predicted RUL at time ¢t and T
is the total duration of RUL prediction. RMSE is a measure of the error in RUL prediction from
FPT to EOL. Another important feature of a good prediction model is the convergence to the true
RUL as bearing approaches EOL. To assess this, we use a weighted RMSE which can be defined
as

1 T S 2
WERMSE = > W@ (RULe(e) - RUL®) 32
\/(T —tppr + 1) Lit=tppr ( )

where w(t) is the weight assigned to the squared prediction error at time 7 and this weight increases
as the bearing approaches its EOL. To obtain w(t), we first defined weight w(t) as w(t) =t —

tepr and then normalize this weight as w(t) = w(t)/ Z?thPT w(t).

---- Ground Truth RUL
---- Predicted RUL
[ ] Accuracy zone

Probability mass
B overlap with [_]

Remaining Useful Life

«— 95% Confidence Interval RN

Time from FPT
Figure 8: Uncertainty quantification metrics

Uncertainty quantification metrics are adapted from Refs. [69], [70] with a schematic shown in
Figure 8. A good prognostic model would have decreasing uncertainty when approaching EOL to
provide more confident RUL predictions. To quantify this, an accuracy zone (see Figure 8),
bounded by RUL™ € (t)(1 + a%), is used to determine several metrics: (1) a-accuracy, which is
defined as the number of predicted RUL points within the accuracy region with respect to the total
number of predictions, (2) [-probability, which is the average of the probability mass of the
RUL(t) PDF within the accuracy region and (3) percentage of early predictions (PEP) which
measures the number of RUL(t) prediction below RUL™ e(¢). It is preferred that a-accuracy
approaches 100% where most RUL prediction points are within the accuracy zone. Ideally,
probability should be equal to 1 indicating a model to have a compact confidence interval which
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also decreases as the bearing approaches EOL. The PEP metric provides insight into how
conservative a given prognostic model is.

3.3.3 LSTM Parametric Study

A parametric study is important to optimize the model hyperparameters, such as the number of
hidden units in the LSTM models, lookback k, the number of epochs (Appendix G), etc. For
brevity, we only present the parametric study related to the number of hidden units in PLSTM.
Figure 9(a) shows both the RMSE and wtRMSE of the PLSTM model on the training dataset for
six different numbers of hidden units within the LSTM layer. By using a fewer number of hidden
units (and hence fewer parameters), the deep learning model is too simple and becomes less
sensitive to variation in the input data. On the other hand, using too many hidden units makes the
model overly complex for the amount of data available tending towards overfitting. For the XJTU-
SY dataset, we find that using 60 hidden units provides minimum RMSE and wtRMSE.

Like any other prognostic model, LSTM-based architecture also has its limitations. Particularly in
the bearing prognostic scenario, we find the following challenges: (1) very noisy feature data, (2)
limited training data, and (3) most of the training data is in the domain pertaining to a healthy
bearing suppressing learning from the bearing degradation domain. Although the third scenario
can be tackled by considering only the bearing degradation data for training the LSTM network,
this further accentuates the second problem of limited data. The use of data augmentation is
particularly useful to address this aspect for a stable forecast. To demonstrate this, we use a simple
toy example of linear degradation with noise to train and test an LSTM network as shown in Figure
9(b). When very little data is available and is noisy, the LSTM forecast can almost be flat especially
near the onset of bearing degradation. By using data augmentation of duplicating the training data
with added Gaussian noise, we observe the forecast to be much more intuitive and stable. To this
end, for the XJTU-SY bearing dataset, we add Gaussian noise to Vofle\fvs_sf /2 as a simple data

augmentation technique similar to Refs. [71], [72].

(a) 0 > (b) 17 Truth
___F t with noi
30 - 4 o 0.8 tr:irr?i?wzsd:t; o
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4 20 § 2L
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Figure 9: (a) Performance of various PLSTM on the training dataset. (b) Demonstration of the
effect of data augmentation on noisy feature forecasting using a toy problem.
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3.3.4 RUL Prediction Results

In this section, we first demonstrate the working of the EnP/CLSTM ensemble followed by
depicting the RUL prediction results of certain bearings. Finally, we evaluate the various models
in terms of accuracy and uncertainty quantification based on the metrics defined in section 2.4.

The PLSTM model forecasts Voo /2 at a given instant in time till a cutoff of 0.3 ips is reached
with uncertainty. Figure 10(a) shows the Voff;\f‘;s_sf /2 forecast of five PLSTM models at t = 2470
mins for Bearing 3 2 (cross-validation Fold-2). The use of the Gaussian layer provides information
regarding the uncertainty of the forecast which translates to the uncertainty in RUL prediction for
each PLSTM model in the form of RUL(i,, 6)|m=1.5. The mean RUL prediction by each
PLSTM model, RUL(ty,) | m=1.5, is shown in Figure 10(b) (we suppress showing the uncertainty

for clarity). An effective RUL, RUL(u,p, 0.p), is calculated using p.,(t) = %anﬂ uRUL(t) and

o5 (t) = §2§n=1 (o-#lULz(t) + ,uf;LULZ(t)) — uZ,(t). We observe from Figure 10(b) that the

ensemble of the five PLSTM models underpredicts the RUL in the first half of the prediction
period and approaches the true RUL in the second half. After implementing the EnCLSTM, the
RUL prediction in the first half is increased closer to the true RUL as shown by the green line in
Figure 10(b). However, the prediction sequences change drastically when there are sudden changes
in the measurements. After implementing the temporal fusion step (section 2.5.3), the RUL
prediction is smoothened. The 95% confidence interval around the RUL prediction accommodates
most parts of the true RUL. Therefore, maintenance decisions can be confidently made according
to the uncertainty in RUL prediction.

In Figure 11, we compare the RUL prediction results from PF, similarity-based interpolation,
CNN-RUL correlation, quadratic regression fitting, MC Dropout, and the proposed method for
three representative bearings, each from a unique operating condition, viz. Bearing 1 3 (cross-
validation Fold-3), Bearing 2 1 (cross-validation Fold-1), Bearing 3 4 (cross-validation Fold-4).
Figure 11 (a) and (b) show the RUL prediction of the different models and the corresponding
ngj_sf /2 for Bearing 1_3 respectively. Here, we can observe that the noisy feature data right
from the start of FPT distracts the PF learning, similarity-based approach, and quadratic regression,
thus drastically affecting the RUL prediction accuracy. In all the three bearings shown in Figure
11, the proposed EnP/CLSTM model shows superior prognostic capability. Also, the similarity-
based approach is often observed to overpredict the RUL in the provided bearing dataset. This is
because the similarity of the feature development in the test bearing is mapped to an early stage of
the training bearings, which leads to overpredicting the RUL. Data mapping methods such as the
CNN-RUL, which are not built on physics, have a good chance of predicting highly varying RUL
depending on the input.
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In Table 5, we compare the proposed model to several probabilistic RUL prediction models,
namely optimized particle filter (section 2.3.3) and Bayesian-like Monte-Carlo (MC) Dropout
[44]. The models are evaluated using the metrics defined in section 3.3.2 with @ = 30% in addition
to NLL (eqn. 11). Each entry of Table 5 is the t-distributed 95% confidence interval of all the test
bearings. Each model is run independently for five times to ensure consistency. First, the non-
Bayesian EnPLSTM model performs at least as good if not better when compared to MC Dropout
as also concluded by Refs. [56], [73]. Moreover, execution of MC Dropout for prognostics takes
considerably longer time than EnP/CLSTM. For example, the execution of trained MC Dropout
models on an Intel Core 15 processor with 16GB RAM, computing the entire prognostic curve for
Bearing 3 2 (Figure 10), takes about 5 minutes whereas the EnP/CLSTM takes less than 30
seconds. Also, MC Dropout is observed to over-predict the RUL and hence has a low PEP value
(see Figure 11). On the other hand, both PLSTM and EnPLSTM models provide more conservative
RUL estimates and hence have high PEP. Low wtRMSE values of both PLSTM and EnPLSTM
models indicate that these models have better accuracy in predicting RUL close to EOL. However,
the NLL of the PLSTM is larger as this model only accounts for the aleatoric uncertainty and fails
to provide good RUL predictions especially at the onset of bearing degradation.

Table 5: Evaluation metrics for various probabilistic models

RMSE WtRMSE a-accuracy  [3-probability PEP NLL
(min) (min) % - % -

Particle Filter =~ 34.0 + 8.9 3106 152+ 3.4 0.13 + 0.04 60.8+14.5 22.0+£105
MC Dropout  31.8 £ 10.5 3.6+23 239+ 10.1 0.20+0.11 355+ 16.4 4.8+1.4
PLSTM 23.71+9.2 1.8+ 0.6 224 +£151 0.24+0.11 68.3 +11.6 75+21
EnPLSTM 21.2+78 1.6 £ 0.5 26.6 £ 8.1 0.27 £ 0.09 68.4+14.4 6.3+ 19
EnP/CLSTM 15.9+5.2 1.4+1.2 46.1+14.0 0.35+0.10 62.4+10.7 3.8+1.3
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Figure 12: Uncertainty quantification by each of the probabilistic prediction methods. (a)
Reliability plot showing the variation of the observed confidence level against the expected
confidence level (the black dashed line is the ideal case) and (b) variation of average RUL
prediction error for points outside the confidence intervals against the expected confidence level
(a consistent inverse relationship is desired).
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In practice, it is desired to have accurate uncertainty estimates from a model, particularly in safety-
critical applications where the model is used in a decision-making framework. The reliability curve
of a perfectly calibrated model will fall on the black dashed line in Figure 12(a), indicating that
the observed confidence exactly matches the expected confidence. The PLSTM and PF models in
Figure 12(a) exhibit an extreme level of overconfidence in their RUL predictions, i.e. for most of
the reliability curve, the model is observed to provide much lower confidence than is asked, or
“expected” of it. The low observed confidence of PF stems from large prediction errors whereas
for PLSTM, the overconfidence is primarily due to low aleatoric uncertainty in the forecasts albeit
lower prediction errors (see Figure 12(b)). The inclusion of the epistemic uncertainty in EnPLSTM
leads to a better reliability curve closer to the ideal line. However, after correction, the proposed
method is shown to have the best reliability curve of all the probabilistic models, with the least
overall deviation from the ideal line. The average absolute prediction error [ARUL]| in Figure 12(b)
is calculated based on the RUL predictions outside the expected confidence intervals for all the
bearings. The EnPLSTM and MC Dropout models also exhibit a high level of overconfidence with
EnPLSTM having a lower |[ARUL|. In the limit of low confidence level, both PLSTM and
EnLSTM have similar |[ARUL|. However, as EnPLSTM also accounts for epistemic uncertainty,
|ARUL| of EnPLSTM decreases significantly with an increase in the expected confidence level
diverging from the |ARUL| of PLSTM. The proposed method exhibits the lowest prediction error,
indicating that the uncertainty estimates from the proposed model are better calibrated.

Table 6 lists the FPT and EOL for all bearings while also listing the RMSE and wtRMSE values
for all the methods used for comparison. The RMSE and wtRMSE entries are color-coded to
clearly distinguish the prognostic methods that perform the best for each bearing. The greener the
color, the higher the model’s prognostic accuracy. The proposed method gives minimum RMSE
and wtRMSE values for most of the bearings. The cumulative RMSE and wtRMSE values shown
in Table 6 for the different models is calculated similar to eqn. D.5 where more importance is
given to bearings that have larger prognostic durations. To further compare the performance of all
the models across all bearings (when treated as test bearings during cross-validation), we plot the
predicted RUL and true RUL for all 741 test samples in Appendix Figure G.2.

Table 6: Comparing the various prognostic methods for all bearings. The prognostic models that
are more accurate are shaded Green.

B FPT | EOL | AT CNN RMSE MC E Eab/
ID | (min) | (min) | (min) | Quadratic | Similarity RUL PF Dropout PLSTM PL SI"}M CLgTM
11 79 121 43 13.5 13.8 7.5 20.1 29.2 13.0 13.0 10.9
12 55 96 42 17.9 8.7 8.5 17.1 10.3 12.0 12.0 12.4
13 60 150 91 91.6 26.9 233 39.4 25.8 235 235 12.2
15 26 41 16 128.8 62.3 40.2 14.0 27.8 141 141 29.4
21| 456 | 489 34 12.1 19.7 16.5 16.2 90.0 6.0 5.9 6.9
22 50 154 105 53.8 28.0 334 47.3 36.2 34.0 34.0 33.0
23| 316 | 398 83 15.2 19.0 20.8 30.1 24.7 141 141 111
2 4 32 35 4 10.7 18.5 45.9 4.6 29.9 7.7 7.7 8.1
25| 123 199 77 42.7 20.5 33.6 38.4 15.8 16.5 16.4 11.3
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3.1 | 2404 | 2527 124 62.4 32.7 36.9 56.4 38.0 39.8 39.8 26.0
3 2 | 2450 | 2495 46 22.5 16.7 7.8 21.5 8.8 12.1 12.1 3.7
33 343 352 10 31.8 25.6 41.4 4.9 35.2 8.4 8.4 7.9
3 4| 1420 | 1479 60 19.9 17.3 23.3 17.2 48.4 4.6 4.0 5.2
3_5# 8(20) 25 6 3.3 21.0 1.2 7.9 46.9 5.5 5.5 5.8
Net 741 44 .1 23.6 25.3 34.4 31.6 21.0 20.9 16.1
B FPT EOL AT WIRMSE
ID | (min) | (min) | (min) | Quadratic | Similarity fgjﬁ PF Dr?p‘f)ut PLSTM PLE‘;M Cfgl;/M
11 79 121 43 1.6 1.7 1.1 2.6 4.4 1.4 1.4 1.5
12 55 96 42 1.9 1.4 1.2 2.1 1.5 1.5 1.5 1.7
13 60 150 91 10.7 2.7 2.9 3.3 3.1 1.6 1.6 1.0
15 26 41 16 19.2 14.2 10.0 3.1 5.5 3.6 3.6 6.2
21 456 489 34 1.0 2.4 2.7 2.7 11.4 0.8 0.8 0.9
22 50 154 105 6.3 1.9 2.6 3.2 2.5 2.3 2.3 2.5
23 316 398 83 1.4 1.6 1.5 2.5 2.0 1.2 1.2 1.0
2 4 32 35 4 3.2 5.8 13.7 1.7 8.4 2.2 2.2 2.1
25 123 199 77 4.8 2.6 4.0 4.1 1.0 1.1 1.1 0.8
3 1 | 2404 | 2527 124 52 2.1 2.0 4.4 3.8 2.3 2.3 1.4
3 2 | 2450 | 2495 46 1.6 1.4 0.8 2.9 1.0 1.2 1.2 0.4
33 343 352 10 3.2 4.0 83 1.5 10.4 2.1 2.1 1.8
34 1420 | 1479 60 2.0 1.6 2.7 1.8 4.8 0.5 0.5 0.6
3 5% 820) | 25 6" 2.4 7.4 0.6 1.4 15.2 2.6 2.6 2.6
Net 741 4.7 2.3 2.6 3.1 3.5 1.6 1.6 1.4

"Bearing 1_4 undergoes a sudden catastrophic failure and is therefore not shown. *Bearing 3_5:
Although FPT is at 8 min mark, at least 20 data points are needed for prediction using the deep
learning models

3.3.5 Discussion on the Advantages of EnPLSTM

While Bayesian-like techniques tend to provide uncertainty around a single-mode, deep ensemble
models explore diverse modes within the same function space [73]. Typically, deep ensemble
models are generated with random initializations which when trained on the same training dataset,
take different optimization trajectories in trying to describe the function space. In this paper, the
function space corresponds to feature forecasting for bearing prognostics. The PLSTMs trained
with different initializations have vastly dissimilar weights, as shown by the cosine similarity plot
in Figure 13(a), even though the NLL loss (eqn. 11) of each of these models is similar. Here, the
cosine similarity of a pair of trained models with parameters 6; and 6; is defined as

(6, - Hj) / (| 16;1| ||9]||) Each individual PLSTM model can therefore be hypothesized to have

obtained different but related optimum modes within the function space which is also the reason
for obtaining different forecast trajectories in Figure 10(a). To show this, we plot the t-Distributed
Stochastic Neighbor Embedding (t-SNE) [74] of the Volle\’[ws_sf /2 forecasts on Bearing 2_1 (cross-

validation Fold-1) for three representative PLSTM models from Figure 13(a). Each datapoint on
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the t-SNE plot in Figure 13(b) corresponds to forecasting forty time steps ahead of the current
measurement. At the beginning of the training process (epoch = 0), all three PLSTM models have
distinct weights, a result of the random weight initialization process. After training for 80 epochs,
each of the PLSTM model forecasts is observed to approach the true forecast distribution through
different optimization routes (see Figure 13(b)). The size of the squares in Figure 13(b) is
proportional to the aleatoric uncertainty in the forecast of each of the PLSTM models. The origin
of epistemic uncertainty is precisely what is observed in Figure 13(c). The different model weight
initializations lead to different trained models which lead to slightly different RUL predictions.
The model-to-model variation in model weights and hence forecasts/RUL predictions directly
quantifies the epistemic uncertainty. For samples that are outside the distribution of the training
data, each PLSTM model predicts high aleatoric uncertainty which, when combined into an
ensemble, provides an even larger epistemic uncertainty (Figure 13(c)). When determining the
RUL of bearings, if the time series describing the test bearing health condition is not seen during
the training process, the proposed model would predict large uncertainties (both aleatoric and
epistemic) indicating the model’s lack of confidence in such an RUL prediction. In the case of a
single model, there is no way to determine whether or not it has obtained a best forecast/RUL
prediction, and therefore no way to quantify the epistemic uncertainty in its prediction. This is why
a single data-driven model for prognostics should not be trusted.
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Figure 13: (a) Cosine similarity of the weights of five PLSTM models trained for 80 epochs with
different model weight initializations on the same training dataset. (b) t-SNE plot of forecasting
40 time-steps of Vgbls_ /2 by three representative PLSTM models at epochs 0 and 80 for Bearing
2 1. The ground truth of V(fé‘”ws_sf /2 18 also shown along with a sinusoidal out-of-distribution

sample. The sizes of the squares and diamonds are proportional to the aleatoric uncertainty in
forecast. (c) Forecasting of the three PLSTM models for a sample within the training data
distribution and the sinusoidal out-of-distribution sample.

3.3.6 Discussion on the Advantages of EnCLSTM

The EnPLSTM model often underpredicts the true RUL, especially at the beginning of bearing
failure. This is true even for the bearings used to train the PLSTM as described in section 2.5.3.
The main purpose of the EnCLSTM model is to correct this error and provide a more accurate
RUL estimate. Figure 14(a), shows the variation of the normalized RUL error prediction obtained
from one PLSTM against the feature VOI?ZMQ;C’_Sf /2 for both the training and testing datasets of a
representative cross-validation fold, Fold-3. The circle symbol size in Figure 14(a) is proportional
to the uncertainty in prediction. At low VO‘?;‘“a?_sf /2 values, indicative of the onset of bearing

29



degradation, the predicted error and uncertainty are large. Ideally, the model error should not vary
with time. However, in the case of RUL prediction, almost any model may exhibit high errors
close to the FPT and then gradually increase in accuracy as the model is able to process more data
over time. This is particularly true for LSTMs as they store relevant temporal information in their
network architecture which is used at a later time to improve prediction accuracy. The errors in
Figure 14(a) exhibit a relatively clear decreasing trend with VO‘?ZN;)S_Sf /2> and for this reason, the
error can be learned by another model. Error correction, delta-learning, and residual learning [75],
[76] are all names for these types of models which have been proposed for the same task of
correcting model predictions using learned errors. Therefore, a data mapping based correction
model CLSTM would help reduce the prediction error ARUL especially when combined with a
weighting function W(F = Volg\ff_sf /2) as mentioned in eqn. 15. However, this approach would
only work if the training dataset and the testing dataset have similar input/output distributions. As
shown in Figure 14(a), the training dataset (black) and the test dataset (blue) are found to have
similar error distributions (output of CLSTM). The error in RUL from EnPLSTM is due to the
accumulated uncertainty when forecasting V03§f,;s_sf /2- A t-SNE plot in Figure 14(b) reveals that
the Vof%f’_sf /2 feature distributions of the training and testing datasets are also similar and the
symbol size, which is proportional to the uncertainty of the next step prediction (01:',€+1 from Figure
4), also indicate that the magnitude of aleatoric uncertainties at (k + 1) time step are similar across
training and testing datasets. However, for samples that are out of distribution, like the artificially
generated sinusoidal-like time series shown as red circles in Figure 14(b), the uncertainty is large
at the (k + 1) time step even from a single PLSTM model (aleatoric uncertainty). When
considering an ensemble, several PLSTM model disagreements in the forecast lead to an even
larger epistemic uncertainty proving the effectiveness of the ensemble method in determining non-
confident predictions.

The t-SNE plot in Figure 14(c) compares the train and test distributions of the EnCLSTM input
which consists of k = 20 lookback time steps of Viors_ £/2 and RUL predictions from EnPLSTM
(see Table 3). The symbol size in Figure 14(c) is proportional to the EnPLSTM RUL prediction
error RULY™e — RUL (,u*p, a*p) for the training dataset and predicted error correction
ARUL(u,., 0,.) for the testing dataset. Figure 14(c) indicates that the EnCLSTM inputs as well the
magnitude of RUL corrections of the testing dataset are similar to the training dataset. The
overlapping of the two datasets in the t-SNE space is a good indication of their distribution
similarity which makes the predictions from the EnCLSTM model trustworthy. We further
compare the predicted ARUL(u,, 0..) to that of true RUL errors of EnPLSTM in Figure 14(d),
where, the horizontal and vertical error bars correspond to variation in RUL prediction errors from
the EnPLSTM and EnCLSTM models for five independent runs, respectively. Ideally, EnCLSTM
would predict the exact RUL error of EnPLSTM leading to a perfect RUL prediction model.
However, the predictions from EnCLSTM deviate from the ideal line, indicating the model was
not able to perfectly predict the RUL error. Regardless, when compared to the EnPLSTM model
(i.e. without the correction term), the EnCLSTM model provides largely improved predictions of
RUL error as evidenced by a significant improvement in the overall RUL evaluation metrics for
EnP/CLSTM in Table 5. Even though the EnCLSTM model provides accurate predictions of RUL
error, it is still susceptible to making errant predictions because of noise in the data. The
implementation of weighted correction (eqn. 15) and temporal fusion (eqn. 17) restrict the
influence of sudden noise spikes in the error correction predictions which are sometimes observed
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for data-mapping models like CLSTM. Although the analysis pertaining to Figure 14 is described
for Fold-3, we find similar observations for all the cross-validation folds giving confidence in the
effectiveness of reducing the prediction error through the implementation of EnCLSTM.
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Figure 14: (a) Error in RUL prediction for representative training and testing bearings from Fold-
3 with the size of a circle proportional to the standard deviation of the RUL prediction, a,,, by one
PLSTM model. (b) t-SNE plot of training and testing data for Fold-3, where each point corresponds
to k-time steps of Vgars_¢ £/2- The symbol size is proportional to the standard deviation of the next-
step feature prediction a,’,”l from the single PLSTM model used in (a). For the out-of-distribution
samples, standard deviations of both single PLSTM and EnPLSTM are shown. (¢) t-SNE plot of
the input to the CLSTM model where the circle size is proportional to the RUL error. (d)
Comparing EnCLSTM RUL prediction error to the true prediction error of EnPLSTM. The
horizontal and vertical error bars represent the variation in RUL prediction error from EnPLSTM
and EnCLSTM for five runs respectively.

4. Conclusion

High productivity demands on modern-day machinery require intelligent solutions to avoid
machine downtime and prevent catastrophic failures. In this paper, we present an ensemble
approach to bearing prognostics that not only provides probabilistic RUL predictions but is also
lightweight, making it suitable for embedding on IlIoT platforms. To make our work more
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industrially relevant, we adopt the ISO standards for defining bearing failure, which is established
in the velocity domain. We also incorporate physics by capturing energy-based features in the
velocity domain (in the form of RMS) that reflect both characteristic bearing fault frequencies and
overall bearing health. Unlike purely data-driven algorithms, the inclusion of bearing failure
physics has the potential to generalize our approach to other bearings in different working
conditions.

The proposed algorithm is built upon a vanilla LSTM model with an added Gaussian layer to
forecast an RMS feature (obtained from the velocity domain) while also obtaining the aleatoric
uncertainty of such a forecast. The proposed algorithm consists of three major steps: (1) a predictor
step PLSTM, where the feature is forecasted to a certain threshold by doing a one-step-ahead
prediction and marching in time, (2) a corrector step CLSTM, which offsets the RUL prediction
obtained from the predictor step and (3) temporal fusion, which effectively smoothens the RUL
prediction based on the recent history of predictions. The proposed algorithm also uses an
ensemble approach EnP/CLSTM because the limited amount of available bearing run-to-failure
data causes deep learning models to train differently every time. By combining RUL predictions
from models with a similar architecture that have been trained on the same dataset but with
different initial conditions, we can capture the epistemic uncertainty in our predictions.

Using a publicly available dataset, we show the superiority of our proposed model, in terms of
accuracy as well as uncertainty quantification, when compared to other traditional models such as
particle filter, similarity-based approaches, CNN-RUL correlation, Bayesian-like MC Dropout,
and simple regression techniques. The proposed EnP/CLSTM model reduces the RMSE and
wtRMSE by at least 50% when compared to Bayesian-like MC Dropout. To compare the
uncertainty capability of models we introduce a-accuracy,  probability, and percentage of early
prediction (PEP) metrics. The proposed model ensures around 50% of the RUL prediction points
lie within the 30% a-accuracy region which is superior to all other models. In general, the LSTM-
based models make conservative RUL predictions with high PEP. The proposed method has one
order of magnitude faster execution time when compared to MC Dropout making it feasible for
ITIoT applications.

The proposed predictive approach was developed in collaboration with Grace Technologies with
an IIoT deployment in mind, and the authors are in the process of implementing it for commercial
use inside the GraceSense™ Vibration & Temperature Node. The main benefit of this embedded
deployment is to reduce the need to wirelessly transmit raw acceleration data — in exchange for a
small amount of additional computational capability and time. In a GraceSense™ deployment, this
results in a greater than 10,000X reduction in transmission requirements, which eliminates
problems stemming from overcrowding of the 2.4GHz band in industrial facilities and can allow
a vibration node to predict the remaining useful life of a bearing once per hour for up to five years
without needing a change of battery. This represents at least a 50X improvement in battery life for
this node.
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Appendix A: Feature Extraction and Selection

The various models (such as CNN) use different features in addition to the velocity RMS values
within certain frequency ranges. We, therefore, extract the following data/physics-based features
from both the time and frequency domains
e Time-domain features: max amplitude, RMS, kurtosis
e Frequency domain features:
o BPFO fault frequency max amplitude and RMS: 1 X,2 X or 3 X BPFO + 5% Hz
o BPFI fault frequency max amplitude and RMS: 1 X,2 X or 3 X BPFI + 5% Hz
o BSF fault frequency max amplitude and RMS: 1 X,2 X or 3 X BSF + 5% Hz
o RMS within the frequency ranges to capture FTF 0.2w — 0.8w, shaft frequency
0.8w — 1.2w, two harmonics of shaft frequency 1.2w — 3.2w, entire frequency
range 0.2w — sf /2, frequency range after shaft frequency 1.2w — sf /2, bearing
fault frequencies BFF = 0.9 min(BPFO, BPFI, BSF) — sf /2.

The above-listed 27 features are calculated in the radial direction for both directions in the velocity,
acceleration, and jerk domains making a total of 162 (= 27 X 2 X 3) features. The code for feature
extraction has been provided at https://github.com/VNemanil4/Bearing LSTMPrognostics.

In bearing prognostics, the true RUL of the bearing is defined to decrease linearly with time from
the FPT to the EOL. The goal of feature selection is to identify features that contain strong
information regarding the bearing health condition while discarding other features. Selecting
features that have a strong linear behavior correlates well to true RUL, thus enabling an accurate
RUL estimate. To this end, we use two criteria to determine a score for each feature and select
features with the best scores. The two criteria used are (1) Monotonicity and (2) Pearson correlation
coefficient for testing the linearity. Monotonicity is defined in terms of the feature to have either a
continuously increasing or decreasing characteristic, given in terms of counting the differential of
each feature F; with a total of T observations.

Num(dF; > 0) Num(dF; <0)

T-1 T-1

In the literature, the RUL of a bearing is always treated as a straight line between the onset of
bearing degradation and its EOL. Therefore, a Pearson correlation coefficient is used to determine
the linear correlation between each feature F; and RUL. This can be defined as
|2 (Ff — FY) (RULS — RULY)|

Mon; = A1l

Cori = A2
\/ZZ=1(Fit - Fil)z {zl(RULt — RULY)
The final score is an average of the above two selection criteria, expressed as
Mon; + Cor;

Top 24 features are selected from the total of 162 features based on the score. Each selected feature
is subjected to moving average smoothing with a lookback window size of three. In other words,
the smoothened feature value after moving averaging is the average of the current measurement
with two measurements from the recent past. Each of the features is then normalized and averaged
to determine the health index HI(t) € (0,1) where a health index of one refers to a perfectly
healthy bearing.
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Appendix B: First Prediction Time (FPT) Determination
At the beginning of operation, machines are often healthy considering a good initial setup. After a
certain duration of operation, the bearings will start to degrade, and the signature of the degradation
process can be determined from the vibration signals. The FPT is the time at which the beginning
of bearing degradation is evident and is also the time at which prognostics is triggered. Predicting
the RUL prior to the onset of degradation is unrealistic and not practical as there is little to no fault
signature in the observed data. In this study, we use the RMS in the velocity domain pertaining to
the beginning of characteristic bearing fault frequencies Ve f/2 to determine the FPT. We use
the 20 method also used in previous bearing prognostics literature [35], with the difference being
we use Vo ¢ /2 to employ the 20 criterion instead of kurtosis. During the early machine life, the
mean p,rvs and standard deviation o, rms are determined, and then the FPT is obtained whenever
Vé{pl\gﬁsf /2 crosses the threshold of p,rms + 20,rus for two consecutive observations. In other
words, the FPT is the time tzpr at which

|V§Fl\gisf/2(tpp-p —j)— ,uVRMS| > 20,Rrus, j=0and1 B.1

Appendix C: CNN Model Architecture
Table C.1 and C.2 show the architecture of the CNN model described in section 2.3.1.

Table C.1: Convolution Block Architecture
Layer
Convolution-1D

Batch Normalization-1D
Leaky ReLU

Table C.2: Convolution Network Architecture

Layer Output Shape # Parameters
Convolution Block 1 (Samples, 32, 19) 4,704
Convolution Block 2 (Samples, 32, 17) 3,168
Convolution Block 3 (Samples, 32, 15) 3,168
Convolution Block 4 (Samples, 64, 13) 6,336
Convolution Block 5 (Samples, 64, 11) 12,480
Convolution Block 6 (Samples, 64, 9) 12,480

Dropout Probability = 0.10
Dense (Samples, 64) 36,928
Dense — Output (Samples, 1) 65
Total: 79,329

Appendix D: Particle Filter:
A nonlinear state-space model can be defined in terms of the system state vector x(t), system
model parameters 6 (t) and noisy observations y(t) given as
State transition equation:
xe = f(xe-1,0c-1) +uy, Oy =0;1 + 17 D.1
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Measurement equation:

ye = g(x;,0;) + v, D.2
where f(-,) is the state transition function, g(-,-) is the measurement function, u; is the process
noise for the system states, 1; is the process noise for model parameters and v, is the measurement
noise with the subscript indicating the time at which the system equations are evaluated.

The posterior probability distribution functions (PDFs) of the states given the past observation
p(x:|y1.t) can be posed as a Bayesian interference problem. In PF, the posterior PDFs are
determined based on the Monte Carlo method by utilizing a set of particles and associated weights
that are updated with every measurement. Following the theoretical background presented in [67],

[77]-[79], the posterior PDF can be stated as
Np

p(xe|y1e) = Z wl8(x, — x]) D.3
. . j=1
where xg and Wt] are the j* particle state and weights at the time t and Ny, is the number of

particles. The weights w/ are determined by using the importance density function which is often

chosen to be equal to prior pdf. Based on this assumption, the weight update equation can be stated
as

w! o« wl_ p(v:|x]) D.4

Following the discussion from section 2.2.3, to optimize the initial states {ag, by, ¢y}, We use the
Latin hypercube sampling (LHS) technique [80] to generate a set of random initial state parameters
within certain bounds. For each set of initial state parameters, wtRMSE is calculated for the RUL
prediction for each of the bearing in training dataset. A final score is calculated by combining the
wtRMSE of all the training bearings using the equation
Ntrain
SrmsE = Z (EOL; — tgpr, + 1) X wtRMSE; D.5
i=1

where Nyp.i, 1S the number of bearings in the training dataset and the pre-factor (EOL — tgpp + 1)
is a measure of the time duration between the FPT and EOL. Bearings that trigger prognostics for
a longer duration are given importance. The overall algorithm regarding LHS-based optimization
and PF methodology is presented in Table D.1.

Table D.1: Algorithm for LHS optimized PF that determines RUL of a test bearing after optimizing
the initial parameters using the training bearing dataset.
Algorithm: LHS optimized PF for bearing prognostics
Inputs: y(t) — measured feature for bearings
k —lookback time
po — initial probability distribution of states {a, b, c}
N, — number of particles
Output: RUL(t) for test bearing
1  Latin hypercube sampling: Generate Ny g samples of {a, by, ¢y}
2 forn=1toNyys
3 for i = 1 to Nypaip
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18
19
20
21
22
23
24
25

Initialize N,, particles around {a, by, co}j::l: Ny and assign equal weights

wl = 1/N,.
for t = FPT; to EOL;
forj=1to N,
Evaluate state transition eqn. 25
Update weights of the particles using eqn. D. 4

Calculate RUL! (t) using eqn. 27
end for (from line 6)
forj=1to N,
Normalize weights w/ = w/ / Z?’zl w/
end for (from line 11)
Calculate RUL;(t) using eqn. 28
Multinomial resampling Ref. [81]
Assign equal weights to the resampled particles
end for
end for
Calculate score of this LHS sample Sg,,¢p using eqn. D. 5
end for
Identify optimally {ag, by, co} by min{Sguyse}n=1:n,4¢
for each test bearing
Initialize N,, particles similar to line 4 but with {ay, by, ¢y}
Determine RUL(t) by modifying lines 5—17 with while loop instead to determine EOL
end for

Appendix E: Monte Carlo (MC) Dropout

MC Dropout is reported to have Bayesian-like behavior [44]. The basic model for MC Dropout is
similar to that of the PLSTM model and is shown in Table E1 (Table 1 without the Gaussian layer).
The dropout value is set at 0.1. A single model is trained but is run multiple times with the 10%
dropout to achieve an uncertainty estimate. The code for implementation of a single MC Dropout
is provided at https://github.com/VNemanil4/Bearing_ LSTMPrognostics where RUL of a test
bearing is determined by model training followed by forecasting by marching in time till Vi £/2

reaches the cutoff.

Table E1: Architecture of the MC Dropout model

Layer QOutput shape # Parameters
Input layer (Samples, 20, 1) 0
LSTM (Samples, 60) 14,880
Dense (Samples, 20) 61
Total: 14,941

Appendix F: Regression Fitting (Quadratic and Exponential)
At every instant in time t, regression fitting is performed by considering the past k = 30 time steps
of feature data F = VS £/2(t —k + 1 - t) consistent with the rest of the models. The quadratic

model used to model the degradation trend can be stated as [82]:
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F(t) = myt? + myt + my F.1
where F (t) represents feature value at a time t. Unknown parameters m1, m2, m3 are determined
by the ordinary least squares method.

A double exponential model [83] is also used for regression. The mathematical formula of the
exponential model can be written as:

F(t) = aeP + ce®t F.2
a,b,c, and d are four unknown parameters identified by the nonlinear least square curve fitting
method.

To predict the bearing RUL, the fitted degradation curve is extrapolated up to the predefined failure
threshold of 0.3 ips. The bearing RUL at the current inspection time t is given as:

where Tggp, is the time when the extrapolated degradation curve first reaches 0.3ips. We would
like to note that for the particular selected feature derived from the XJTU-SY bearing dataset, both
the double exponential and quadratic regression fitting do not provide satisfactory results. Thus,
we only show the RMSE and wtRMSE of the quadratic regression fitting in Table 5.

Appendix G: Comparing Model Training and RUL Prediction Results

Figure G.1 shows the learning curves of (a) PLSTM and (b) CNN model for Fold-4. Among the
12 training bearings, 2 bearings are used for validation. Both the learning curves indicate model
convergence with no overfitting.
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3 S 0.3
R 4 0.2
=2 c 02+
2 * 01 W\w
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Figure G.1: Learning curve of (a) PLSTM with NLL loss function and (b) CNN-RUL with mean
squared error loss function.

Figure G.2 compares the RUL predictions of all the models across all bearings (when treated as
test bearings during cross-validation). Note that the test samples are sorted in the ascending order
of the true RUL. We observe that (1) the proposed model provides a more conservative prediction
and (2) the prediction is centered around the true RUL especially when the RUL has a low value,
indicating the convergence of the model towards the true RUL when the bearing is approaching

failure. Having a conservative prediction is critical from a maintenance perspective to avoid false
negatives.
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