
Joint Training of a Predictor Network and a Generative Adversarial 1 

Network for Time Series Forecasting: A Case Study of Bearing 2 

Prognostics 3 

Hao Lu1,2, Vahid Barzegar3, Venkat Pavan Nemani1, Chao Hu1,2,*, Simon Laflamme2,3, and  4 
Andrew Todd Zimmerman4,5 5 

1Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA 6 
2Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA 7 

3Department of Civil, Environmental and Construction Engineering, Iowa State University, Ames, IA 8 
50011 USA 9 

4Percēv LLC, Davenport, IA 52807, USA 10 
5Grace Technologies, Davenport, IA 52807, USA 11 

* Indicates corresponding author (chaohu@iastate.edu, huchaostu@gmail.com) 12 

Authors’ email addresses: hlu1@iastate.edu, barzegar@iastate.edu, vnemani@iastate.edu, 13 
chaohu@iastate.edu, laflamme@iastate.edu, andyz@gracetechnologies.com 14 

  15 

mailto:chaohu@iastate.edu
mailto:huchaostu@gmail.com
mailto:hlu1@iastate.edu
mailto:barzegar@iastate.edu
mailto:vnemani@iastate.edu
mailto:chaohu@iastate.edu
mailto:laflamme@iastate.edu
mailto:andyz@gracetechnologies.com


2 

 

Abstract 1 
The lack of bearing run-to-failure data has been one of the challenges in developing and practically 2 

implementing robust bearing prognostics models. This paper proposes a new Generative Adversarial 3 
Network (GAN) based prognostics method for RUL prediction. We propose a novel joint training strategy 4 
to integrate the training process of a bearing health predictor within the GAN architecture. GAN uses 5 
available time series degradation data to generate synthetic degradation data that enhances the predictor’s 6 
learning and forecast performance, thus improving the RUL prediction accuracy. We demonstrate the utility 7 
and performance of the proposed method through two examples. The first numerical toy case study of 8 
forecasting polynomial-like time series shows that the proposed Jointly Trained Health Predictor (HP-JT) 9 
method produces smaller one- and multi-step-ahead prediction errors than a traditional health predictor 10 
(HP). In the second case study, we design a cross-validation study utilizing an open-source bearing dataset 11 
to evaluate the model’s performance in RUL prediction. Compared to HP, the proposed method decreases 12 
the bearing RUL prediction average error by 29.4% in a five-fold cross-validation study. We further 13 
compare the model with standard data augmentation techniques such as adding noise and using a variational 14 
autoencoder (VAE). The results from the case studies show that the proposed method can generate time 15 
series representing the real-data distribution. 16 
Keywords: long short-term memory; generative adversarial network; time series prediction; bearing 17 
prognostics 18 
 19 
1. Introduction 20 

As one of the most common and critical components in rotating machines, the rolling element bearings 21 
play a crucial part in rotating machinery. The primary purpose of using bearing is to prevent direct metal-22 
to-metal contact between rotating components, friction, heat generation, and the wear and tear of parts (Lei 23 
et al., 2018; Wang et al., 2017; Zhang et al., 2017). The unexpected failure of the bearing may severely 24 
affect the adjacent machine components, leading to abrupt plant shutdown, financial loss, and even 25 
catastrophic accidents (Hu et al., 2019; Liu et al., 2018; J. Wu et al., 2018).  Therefore, accurate prediction 26 
of bearing remaining useful life (RUL) improves productivity and reduces maintenance costs. According 27 
to current literature, a general bearing failure prognostic methodology comprises four essential processes: 28 
data acquisition, health indicator construction, health stage division, and RUL prediction (Lei et al., 2018). 29 

The process of data acquisition collects signals that reflect bearing health stages. There are many 30 
sensing techniques, such as vibration (Guo et al., 2017; Wang, 2012; Wu et al., 2017), acoustic emission 31 
(Aye & Heyns, 2017; Motahari-Nezhad & Jafari, 2021), and temperature (Ren et al., 2017), have been 32 
applied to the data collection for bearing failure prognostics. The vibration sensors are most commonly 33 
used for bearing health monitoring due to their sensitivity and widespread availability. 34 

Health indicators, extracted from the acquired sensory data, are metrics that reflect the health states of 35 
the bearing. The construction of the health indicator is pivotal for failure prognostics. A well-defined health 36 
indicator could simplify the modeling of the degradation process and increase the RUL prediction accuracy. 37 
According to the construction strategies, the health indicators can be categorized into physics-based and 38 
virtual health indicators. Generally, physics-based health indicators are extracted from the raw signal using 39 
signal processing methods. Soualhi et al. (2014) used Hilbert-Huang transform to analyze vibration signals 40 
and constructed health indicators using amplitude values located at bearing characteristic frequencies. 41 
(Zhang et al., 2015) constructed a health indicator using the kurtosis values extracted from band-pass 42 
filtered vibration signals. The root mean square (RMS) is one of the most widely used physics-based health 43 
indicators.  Malhi et al. (2011) analyzed signals using wavelet transform, the RMS and peak values of 44 
wavelet coefficients were used to predict the RUL. Lu et al. (2018) extracted RMS values from band-pass 45 
filtered signal to quantify the bearing damage severity. The virtual health indicators are constructed by 46 
fusing multiple physics-based health indicators or multi-sensor signals. Wang (2012) used principal 47 
component analysis to fuse multiple features and construct the health indicator for bearing degradation. Ren 48 
et al. (2018) extracted features from the time domain, frequency domain, and time-frequency domain, then 49 
adopted an autoencoder to construct the health indicator. One limitation of virtual health indicators is that 50 
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virtual health indicators lack physical meaning and only present a virtual description of the degradation 1 
trends of the target bearings (Lei et al., 2018). 2 

The constructed health indicators could help divide the health stages of the bearing by identifying 3 
when the bearing degradation starts. Typically, the bearing is healthy at the early stage of its life, where the 4 
health indicator values do not change significantly. After the formation of the bearing fault, the bearing 5 
starts to degrade, and the bearing state transforms from the healthy stage into the degradation stage. The 6 
failure prognostics approaches focus on the degradation stage where an obvious trend can be observed in 7 
the health indicator values. The prognostics model is trained using the available degradation data then used 8 
to predict the RUL of the bearing. 9 

The RUL prediction approaches can be broadly classified into two categories based on the type of 10 
model: (a) model-based and (b) data-driven. The model-based approaches construct mathematical models 11 
by analyzing the bearing degradation mechanisms (Cubillo et al., 2016). Nowadays, model-based 12 
approaches such as the Paris-Erdogan model (Lei et al., 2016), particle filter (Jouin et al., 2016), the Eyring 13 
model (Saxena et al., 2008), and exponential model (Li et al., 2015) have been well applied to predict the 14 
general trend of degradation. However, the model-based approaches require accurate estimation of the 15 
model parameters. Since the rotating machinery has several different working settings, building a 16 
mathematical model that fits all the possible working conditions is challenging. Due to the poor adaptability 17 
of the model, if there is a change in the operating condition, the prediction results of model-based 18 
approaches tend to become less accurate and not reliable (Liu et al., 2021). 19 

On the other hand, data-driven approaches typically employ machine learning techniques to extract 20 
and learn the patterns from the available observations without utilizing any knowledge of the degradation 21 
mechanisms (Wu et al., 2020). In this regard, several well-known machine learning algorithms, such as 22 
Gaussian process regression (Pan et al., 2016), support vector machine (Lei, 2012), and artificial neural 23 
networks (Xue et al., 2020), have been implemented. 24 

In the past few years, deep learning techniques have attracted widespread attention. Yoo and Baek 25 
(2018) used wavelet transform analysis to extract the time-frequency features then the convolutional neural 26 
network (CNN) was employed to estimate the RUL. Guo et al. (2017) selected model input by looking at 27 
the correlation and monotonicity of extracted features, then developed a recurrent neural network (RNN) 28 
for RUL prediction. As a special type of recurrent neural network, long short-term memory (LSTM) has 29 
become a powerful tool in extracting temporal information for bearing failure prognostics. Y. Wu et al. 30 
(2018) adopted the LSTM model for bearing RUL prediction. A dynamic differential feature extraction 31 
method was utilized that helped the model capture the changes in features under different operating 32 
conditions. Other variants of deep learning models are also applied for bearing prognostics. For example, 33 
Chen et al. (2020) adopt the attention mechanism into the LSTM network to adaptively select features that 34 
are important for RUL prediction, resulting in accurate prediction results. Zhu et al. (2018) adopted a 35 
multiscale convolutional neural network, which keeps the global and local information synchronously to 36 
enhance the prediction performance.   37 

Based on the output of the model, the data-driven approaches for bearing prognostics can be sorted 38 
into two types: 1) direct mapping approaches (Cheng et al., 2021; Zhu et al., 2018); and 2) forecasting 39 
approaches (He et al., 2022; Shi & Chehade, 2021). The direct mapping approaches take the raw signal or 40 
constructed health indicator values as input and produce an RUL estimate as output. The forecasting 41 
approaches take the historical health indicator values as the input, forecast the future degradation trajectory 42 
of the health indicator values until the failure threshold is reached, then calculate the RUL. 43 

Although the data-driven approaches have shown promising results, they often face the following 44 
challenges: 45 

Many data-driven approaches map the model input with the RUL directly. However, it has been 46 
previously shown that the degradation process of the bearing is nonlinear (Sadoughi et al., 2019; Wang et 47 
al., 2016). During the early stage of the run-to-failure tests, the bearings are considered healthy and do not 48 
show any significant change in the collected vibration data. After a certain period of operation, bearing-49 
related faults can be detected, and a degradation trend can be observed. In addition to the variation in the 50 
time for the development of an incipient bearing fault, the degradation rate at which the bearing approaches 51 
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failure is highly nonlinear with the health indicator, a measure of bearing health condition. Therefore, 1 
directly mapping the extracted features to the RUL can produce nonphysical results that do not ensure RUL 2 
convergence as the bearing approaches failure. 3 

Besides, data-driven approaches heavily rely on a large amount of training data to acquire degradation 4 
information. However, it is time-consuming and costly to gather a large amount of bearing run-to-failure 5 
data. On the other hand, insufficient training data may lead to overfitting (Wen et al., 2020). Data 6 
augmentation is one way to alleviate this problem by generating synthetic data. Some commonly used 7 
approaches have been well applied, such as adding noise and extending or shrinking the data. The core of 8 
data augmentation is to ensure that the generated data is similar to the original data, not only in terms of 9 
magnitude but also in data distribution. In this regard, the generative adversarial network has attracted wide 10 
attention recently. GAN has been used in several fields to generate high-quality synthetic data for data 11 
augmentation, where traditional data augmentation methods do not yield good results. The implementation 12 
of GAN-based data augmentation has been applied to solve a variety of engineering problems, including 13 
but not limited to: (1) image classification(Abdelhalim et al., 2021; Frid-Adar et al., 2018; Shorten & 14 
Khoshgoftaar, 2019), (2) electroencephalography signal classification(Hatamian et al., 2020; Luo et al., 15 
2020), and (3) time series anomaly detection (Li et al., 2019; Lim et al., 2018). Many of these papers 16 
compared GAN-based data augmentation with conventional data augmentation approaches and 17 
demonstrated the GAN-based approach delivers significant improvement in model performance, such as 18 
sensitivity and prediction accuracy. For example, Frid-Adar et al. (2018) showed that compared to affine 19 
augmentation, using GAN-generated synthetic data increases the classification accuracy from 78.6% to 20 
85.7%. 21 

This paper proposes a GAN-based LSTM predictor for bearing fault prognostics. A Jointly Trained 22 
Health Predictor (HP-JT) method is proposed to forecast a health indicator. A preliminary version of this 23 
work was presented at the 2021 IEEE International Conference on Prognostics and Health Management 24 
(Lu et al., 2021). This work is a significantly expanded version of our conference paper. In addition to using 25 
real bearing run-to-failure data, we also devise a toy problem to mimic a simplified bearing degradation 26 
behavior. We compare the proposed method with other data augmentation methods, such as adding noise 27 
and using a variational autoencoder (VAE). Our main contributions are summarized as follows: 28 

1) Unlike traditional approaches where the maximum or mean vibration amplitude is used for RUL 29 
prediction, we define a bearing health indicator, which measures bearing health based on the root 30 
mean square values in the velocity domain. This definition complies with ISO 10816, which we 31 
also referred to in defining the threshold for bearing failure (Eshleman & Nagle-Eshleman, 1999; 32 
ISO 10816-3:2009, 2021). The proposed HP-JT method forecasts the health indicator (by marching 33 
in time) until the failure threshold is reached. 34 

2) To deal with the challenge of insufficient training data, we develop a GAN-based data 35 
augmentation method by integrating HP-JT into the GAN architecture and propose a joint training 36 
strategy. The performance of HP-JT is boosted by acquiring knowledge from both training data and 37 
synthetic data. 38 

The remainder of this paper is organized as follows. Section 2 introduces the proposed framework and 39 
the models used for comparison. Section 3 includes two case studies to evaluate the proposed method. 40 
Finally, the conclusions are summarized in section 4. 41 
 42 
2. Proposed HP-JT prognostics method 43 

Three different stages of the proposed method for bearing elements failure prognostics are summarized 44 
in Figure 1 (a)-(c), illustrating data preparation, offline training of HP-JT, and finally, online RUL 45 
prediction. Detailed discussions of the three stages in Figure 1 are presented in sections 2.1, 2.2, and 2.3. 46 
In section 2.4, we introduce benchmark models for comparison.  47 
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Figure 1: The main components and flowchart of (a) data preparation, (b) offline training of HP-JT, and (c) 

online RUL prediction 

 1 
2.1 Data preparation 2 

Data preparation is a process that converts the raw inputs into features that better represent the bearing 3 
health condition. In the proposed method, the RMS value of a sub-band filtered velocity signal is extracted 4 
and used as HI. 5 

Most run-to-failure datasets use vibration signals in the acceleration domain obtained from 6 
accelerometers. However, the industrial-relevant ISO standards define the end-of-life or the warning 7 
threshold values based on the feature values in the velocity domain (ISO 10816-3:2009, 2021). This is 8 
because the amplitude of acceleration changes dramatically under different shaft speeds. In contrast, the 9 
amplitude of the signal in the velocity domain provides a more stable representation. In the proposed 10 
method, firstly, the acceleration signal is converted into velocity domain 𝑣(𝑡) by performing numerical 11 
integration. To avoid interference from low-frequency noise and to obtain the frequency information that 12 
reflects the bearing damage severity as much as possible, the velocity RMS in the frequency range of 13 
0.2𝜔 − 𝑓𝑠/2 Hz is extracted, where 𝜔 denotes shaft frequency and 𝑓𝑠 denotes the sampling frequency. The 14 
RMS values of the time series are obtained from its Fourier transform spectrum using Parseval’s theorem 15 
(Nussbaumer, 1981), written as: 16 

 𝑉0.2ω−𝑓𝑠/2
RMS = √∑

|𝑉(𝑓)|2

2

𝑓𝑠/2
𝑓=0.2𝜔

 (1) 17 

were 𝑉(𝑓) is the single-side frequency spectrum for 𝑣(𝑡). To improve the reliability of the extracted 18 
features, we apply a moving average method. In this study, the smoothed health indicator value is the 19 
average of the current observation with two previous observations from the recent past. 20 

In the proposed method, the 2𝜎 approach was used to locate the first prediction time (FPT). The data 21 
collected at the early stage of the experiment are considered as healthy data with a calculated feature mean 22 
(𝜇) and standard deviation (𝜎). Using these, a threshold of (𝜇 + 2𝜎) is set on the feature value. The FPT 23 
was obtained when two consecutive observations (𝑉0.2𝜔−𝑓𝑠/2

𝑅𝑀𝑆 ) exceed the threshold. The End of Life (EOL) 24 

time of the bearing was obtained when 𝑉0.2𝜔−𝑓𝑠/2
𝑅𝑀𝑆  reaches a given threshold. In this study, following the 25 

ISO 10816 alarm threshold for medium-sized motors, we define the failure threshold value as 0.27 ips (ISO 26 
10816-3:2009, 2021). The development of 𝑉0.2𝜔−𝑓𝑠/2

𝑅𝑀𝑆  for a typical bearing is illustrated in Figure 2. Before 27 

the FPT, the bearing is healthy, the 𝑉0.2𝜔−𝑓𝑠/2
𝑅𝑀𝑆  present random fluctuation. After FPT, the bearing is in the 28 
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degradation stage, the 𝑉0.2𝜔−𝑓𝑠/2
𝑅𝑀𝑆  value increase with the deterioration of the bearing until it reaches the 1 

failure threshold. 2 
 3 

 

Figure 2: Evolution of 𝑉0.2ω−f𝑠/2
RMS  and identification of FPT, EOL for a typical bearing. 

 4 
2.2 Offline training of HP-JT  5 

The proposed HP-JT is formed by an LSTM layer followed by a dense layer. A detailed, mathematical 6 
description of LSTM can be found in Appendix A.1. The input of the HP-JT is the health indicator values 7 
starting from the previous 𝑘 −   time to the current time. And the output of the model is the health indicator 8 
value at the next time step. As shown in Figure 3, The training of the proposed HP-JT model consists of 9 
three steps: 1) Pre-train HP-JT, 2) Pre-train generator and discriminator, and 3) Jointly train all the 10 
components.  11 
 In the first step, the HP-JT was pre-trained using the raw data by utilizing the structure shown in Figure 12 
3 (a). In this step, the mean squared error loss is adopted to optimize the parameters of the predictor.  13 
 After the pre-training of the HP-JT, GAN is utilized to generate synthetic data to boost the performance 14 
of the HP-JT model. A brief description of a standard GAN can be found in Appendix A.2. A traditional 15 
way of performing GAN-based data augmentation is to use the training data to train the GAN, then combine 16 
the synthetic data with the training data to form augmented training data for model training. In this paper, 17 
different from that traditional GAN-based data augmentation, a joint training approach was designed, 18 
integrating the HP-JT into the GAN architecture. The architecture of the proposed GAN-LSTM network is 19 
shown in Figure 3 (b). The network is optimized by back-propagating error and the standard gradient 20 
descent optimization method (Ruder, 2016). 21 
 The generator takes a random vector of length 𝑘  and outputs a vector with the same length. The 22 
generated vector 𝑥̃𝑖,1:𝑘 is then fed into the HP-JT to predict the value at the next time step. The predicted 23 
next-step value is then attached to the generator’s output to get the s nthetic data.  he discriminator takes 24 
the synthetic and real data as the input and identifies the input as real or fake. 25 

 26 
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Figure 3: The training procedures of the proposed HP-JT model. The architecture used for each step is 

marked within a different color-coded box. (a) the architecture that trains the HP-JT model using the real 

data (b) the GAN-LSTM network that trains the HP-JT model, generator, and discriminator. (The 

dashed lines represent backpropagation of loss values) 

 1 
In the proposed GAN-LSTM network, both the generator, HP-JT, and discriminator contribute to 2 

synthetic data generation. The generator’s output is noise when it is initialized. To guarantee the HP-JT 3 
acquires degradation knowledge from synthetic data, we fix the parameters of the HP-JT, pre-train the 4 
generator and discriminator before all the GAN-LSTM components are jointly trained.  5 

During the pre-training of GAN-LSTM, the discriminator and generator are optimized iteratively. For 6 
the training of discriminator, the loss function is composed of two pieces: 1) the real data is classified 7 
correctly, and 2) the synthetic data is classified as fake data, which is written as: 8 

𝐿𝐷 = −
1

𝑛
∑ [log𝐷(𝑥𝑖,1:𝑘+1) + log( − 𝐷(𝑥̃𝑖,1:𝑘+1))]
𝑛
𝑖=1                                (2) 9 

where 𝑛 represents the number of training samples, 𝑥𝑖,1:𝑘+1 is the 𝑖th real data with length =𝑘. 𝐷(𝑥𝑖,1:𝑘+1) 10 
denotes the output of the discriminator with input as 𝑥𝑖,1:𝑘+1. 𝑥̃𝑖,1:𝑘+1 is the 𝑖th synthetic data with length=11 
𝑘, which is generated by concatenating the output of the generator (𝑥̃𝑖,1:𝑘) with the output of the predictor 12 

(𝑥̃𝑖,𝑘+1). The objective of the discriminator training is to minimize 𝐿𝐷 so that the discriminator can correctly 13 
identify the input data as real or fake.  14 
 For each epoch during the pre-training of the generator and discriminator, after the discriminator is 15 
optimized, the training of the generator begins by fixing the parameters of the discriminator. The objective 16 
of the generator training is to make the discriminator classify synthetic data as real data. And the loss 17 
function is written as: 18 

 𝐿𝐺 =
1

𝑛
∑ log ( − 𝐷(𝑥̃𝑖,1:𝑘+1))
𝑛
𝑖=1                                                  (3) 19 

 The training of generator and discriminator can be interpreted as a two-player game in which the 20 
discriminator tries to identify the generated signal from all the inputs, and the generator tries to generate 21 
synthetic data that can fool the discriminator. Conceptually, the training of GAN corresponds to a minimax 22 
two-player game written as  (Goodfellow et al., 2020): 23 

 
min max
𝐺 𝐷

    𝐿(𝐷, 𝐺) =
1

𝑛
∑ [log 𝐷(𝑥𝑖,1:𝑘+1) + log ( − 𝐷(𝑥̃𝑖,1:𝑘+1))]
𝑛
𝑖=1  (4) 24 

Overall, the training process for the proposed method consists of the following steps: 25 
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1) Pre-training HP-JT: The HP-JT model is pre-trained using the real data by utilizing the structure 1 
shown in Figure 3 (a).  2 

2) Pre-training the generator and discriminator: The parameters of the generator and the discriminator 3 
are iteratively updated according to the structure illustrated in Figure 3 (b), keeping the parameters 4 
of HP-JT fixed. 5 

3) Joint training of all the components: During every joint training epoch, the HP-JT, the generator, 6 
and the discriminator are simultaneously trained. The joint training epoch consists of two sub-steps. 7 
Firstly, the HP-JT learns from every iteration of synthetic data while providing better next-step 8 
prediction. And the next-step prediction is involved in the training of the generator and the 9 
discriminator. In other words, the three components now enhance the performance of each other. 10 
We note that joint training works only after pre-training the GAN components on real data, 11 
following the above two steps, without which the predictor focuses its learning on the random data 12 
provided by the generator. In the second sub-step, the predictor is fine-tuned using the real data. 13 
The pre-training and fine-tuning ensure a general direction of learning bearing degradation is 14 
achieved, which is further enhanced during joint training. 15 

The architecture of the proposed generator, discriminator, and HP-JT is shown in Table 1. The 16 
generator consists of three fully connected layers; the ReLU activation function is adopted to prevent 17 
negative synthetic signal values. The discriminator consists of four fully connected layers. The 18 
discriminator needs to output classification probabilities; therefore, the Sigmoid activation function is 19 
adopted at the last fully connected layer. And the proposed HP-JT is formed by an LSTM layer followed 20 
by a fully connected layer. 21 
 22 

Table 1: The structure of the proposed GAN-LSTM network. 23 
Module name Layer Output shape, Activation 

Generator 

Input (Samples, 20) 

Fully Connected (Samples, 64), Linear 

Fully Connected (Samples, 32), Linear 

Fully Connected (Samples, 20), ReLU 

Discriminator 

Input layer (Samples, 21) 

Fully Connected (Samples, 64), Linear 

Fully Connected (Samples, 128), ReLU 

Fully Connected (Samples, 64), ReLU 

Fully Connected (Samples, 1), Sigmoid 

HP-JT 

Input (Samples, 20, 1) 

LSTM (Samples, 60), Tanh 

Fully Connected (Samples, 1), Linear 

 24 
2.3 Online RUL prediction 25 

The trained health predictor is used to forecast the health indicator values until a failure threshold is 26 
reached. With the current time step as 𝑡current, the health indicator values from the previous 𝑘 −   time 27 
steps to the current time constitute the model input, and the model predicts the health indicator value at the 28 
next time step. The model output is then concatenated to the original input, and the model is reevaluated by 29 
marching in time to forecast the feature value until the model output exceeds the predefined threshold 30 
(𝑉cutoff) at time 𝑇EOL. The predicted RUL can be determined by:  31 

 RUL(𝑡) = 𝑇EOL − 𝑡current (5) 32 
2.4 Benchmark models 33 

Four commonly used methods are briefly introduced as benchmark models. The models are a) Health 34 
Predictor (HP), b) HP-Noise, c) HP-VAE, and d) quadratic regression model. In section 3, we compare the 35 
performance of the proposed HP-JT against the four benchmark methods.  36 
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a) HP 1 
We use the predictor without being integrated into the GAN as a baseline model, which we name HP. 2 

It has the same architecture as the HP-JT and is only trained on real data. 3 
b) HP-Noise 4 
We also want to compare the proposed method against other data augmentation approaches. To do 5 

that, we include the predictor trained with a simple data augmentation method, which we refer to as HP-6 
Noise. The synthetic data is generated by adding a certain Gaussian noise to the real data. The training 7 
dataset of HP-Noise is composed of synthetic and real data. The HP-Noise model also has the same 8 
architecture as the HP-JT model. 9 

c) HP-VAE 10 
Besides GAN, VAE is another powerful deep generative model for data augmentation (Huang et al., 11 

2021). The HP-VAE method is composed of two steps. First, the VAE is trained to provide synthetic data 12 
following a similar pattern to the training data. Then, the data generated by VAE are combined with the 13 
real data to train the predictor. The detailed configuration of HP-VAE is included in  Table 2. 14 

Table 2: The specific configuration of HP-VAE 15 
Module name Layer Output shape, Activation 

 Input (Samples, 21) 

Encoder 
Fully connected (Samples, 16), Linear 

Fully connected (Samples, 12), ReLU 

Decoder 

Input (Samples, 6) 

Fully connected (Samples, 16), Linear 

Fully connected (Samples, 21), ReLU 

HP-VAE 

Input (Samples, 20, 1) 

LSTM (Samples, 60), Tanh 

Fully connected (Samples, 1), Linear 

 16 
d) Quadratic regression model 17 
The quadratic regression model is a simple mathematical model that captures the degradation trend 18 

by fitting a quadratic model to the feature values. The model is defined as:  19 
 𝑉RMS(𝑡) = 𝑚1𝑡

2 +𝑚2𝑡 + 𝑚3  (6) 20 

where 𝑉RMS(𝑡)  represents the health indicator value at time 𝑡 , and 𝑚1 ,𝑚2  and 𝑚3  are the model 21 
parameters that are optimized during regression using real data. The ordinary least square method fits the 22 
model in eqn. (6) using the current and previous 𝑘 −   measurements. After the model parameters, 𝑚1,𝑚2 23 
and 𝑚3, are determined, followed by the prediction of the future health indicator values, RUL is calculated 24 
by measuring the time when the predicted health indicator reaches a predefined threshold. A certain RUL 25 
prediction will be deemed unreliable in the quadratic regression model if the bearing forecast values are 26 
monotonically decreasing and thus do not reach the threshold. In such cases, the model takes the nearest 27 
reliable RUL result minus the time difference between that prediction and current times as the predicted 28 
RUL. One other difference is that the regression model does not learn from the run-to-failure data of other 29 
bearings and relies only on the target bearing measurements. 30 
 31 
3. Case studies 32 

Two case studies are employed to demonstrate the effectiveness of the proposed method. Case study 33 
  is a numerical to  problem that evaluates the model’s performance in predicting future values. Case stud  34 
2 is a practical example, using publicly available Xi’an  iaotong Universit  and Chang ing Sum ong 35 
Technology Co., Ltd. (XJTU-SY) bearing dataset to verify the performance of the proposed method by 36 
considering the RUL prediction accuracy through a 5-fold cross-validation. The performance of the 37 
proposed method in uncertainty estimation is analyzed in section 3.3. The computational efficiency is 38 
discussed in Appendix D, focusing on the training and prediction time.  39 



10 

 

3.1 Case study 1: time series prediction of a toy problem 1 
3.1.1 Experimental setting 2 

A numerical toy problem is defined to mimic a simplified behavior of bearing degradation. In this case 3 
study, two types of trend functions are defined based on the bearing degradation patterns (Lei et al., 2018): 4 

Quadratic degradation trend: 5 
 𝑆Quadratic(𝑡) = 𝑎1𝑡

3 + 𝑏1𝑡
2 +𝑤    0 ≤ 𝑡 ≤ 𝑇 (7) 6 

Three-stage degradation trend: 7 

 𝑆Three−stage(𝑡) = {

𝑎2𝑡
3 + 𝑏2𝑡

2 + 𝑐2 + 𝑤 0 ≤ 𝑡 < 𝑡1
𝑎3𝑡

3 + 𝑏3𝑡
2 + 𝑐3 + 𝑤 𝑡1 ≤ 𝑡 < 𝑡2

𝑎4𝑡
3 + 𝑏4𝑡

2 + 𝑐4 + 𝑤 𝑡2 ≤ 𝑡 < 𝑇 

  (8) 8 

where 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖 (𝑖 =  ,2,3) are the coefficients of the degradation trends, and 𝑤 is Gaussian noise. The 9 
signal generated by the quadratic degradation function represents a monotonically increasing trend. The 10 
three-stage degradation function generates the signal where the rate of degradation is significant during the 11 
early stages (due to the formation of the defect) followed by its decrease (due to smoothening effect) and 12 
an increase close to EOL. This behavior is similar to the degradation processes with multiple stages 13 
summarized in (Lei et al., 2018). Eight simulated signals are generated by following eqns. (7) and (8) are 14 
illustrated in Figure 4. The parameter settings of each signal are included in Appendix B. 15 

 

 Figure 4: Summary of the generated signals with (a) quadratic and (b) three-stage degradation 

behavior.   

A cross-validation study was conducted using the simulated signals. For each cross-validation 16 
experiment, one signal was selected as the test data, and the other seven were used to train the model. In 17 
this case study, the predictor takes the signal values of current and previous 𝑘 −   time steps to forecast the 18 
value for the next 𝑁s steps. The HP-JT model was compared with HP, HP-Noise, and HP-VAE. After a 19 
preliminary optimization study, the learning rates for the HP, HP-Noise, and HP-VAE models were set as 20 
0.00015. The learning rate for the HP-JT model is also set to 0.00015, with the learning rates of both the 21 
generator and discriminator fixed at 0.0001. 22 

Given a test signal with a total length of 𝑇signal, we look at all the forecasts beginning from 𝑡 = 𝑘 +   23 

to the last possible forecast of length 𝑁𝑠 at 𝑡 = 𝑇signal − 𝑁𝑠. The RMSEs of all the forecasts are combined 24 

into a single evaluation metric, written as: 25 

 RMSEsignal = √
1

𝑇signal−𝑁𝑠−𝑘+1

1

𝑁𝑠
∑ ∑ (𝑆𝑡

𝑃(𝑖) − 𝑆𝑇(𝑡 + 𝑖))2
𝑁𝑠
𝑖=1

𝑇signal−𝑁𝑠

𝑡=𝑘  (9) 26 

where 𝑆𝑡
𝑃(𝑖) represents the 𝑖𝑡ℎ  predicted value from the prediction time 𝑡, 𝑆𝑇(𝑡 + 𝑖) represents the true 27 

value at time 𝑡 + 𝑖.  28 
 29 

3.1.2 Results 30 
An eight-fold cross-validation test was conducted for the eight signals, and the RMSE over all the 31 

prediction results was calculated (RMSEAll). Figure 5 (a) and (b) show the variation of RMSEAll with the 32 
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number of predicted steps 𝑁𝑠 with 50 and 200 training epochs, respectively. For both numbers of epochs, 1 
the HP-JT model produced the least RMSEAll value when forecasting 𝑁𝑠 =   to 𝑁𝑠 =  0 steps.  2 

All the data augmentation methods enhanced the RSME of the predictions compared to the HP model, 3 
with HP-VAE outperforming the HP-Noise. Note that HP-JT yields the best prediction RMSE for all 4 
forecast steps.  5 

For the remainder of this case study, we attempt to explain how the proposed method outperforms 6 
other data augmentation techniques. For comparison, all the models were trained with a total training epoch 7 
of 200. HP-JT is pre-trained for 30 epochs, followed by joint training with 170 epochs. 8 

 9 

 

Figure 5: RMSEAll results by multiple methods under different training settings; (a) the total training 

epoch = 50, the HP-JT was pre-trained with 30 epochs, and the joint training took 20 epochs (b) the 

total training epoch = 200, the HP-JT was pre-trained with 30 epochs and the joint training of 170 

epochs 

To show the forecasting capability of all the methods, we show the RMSE values for the one-step-10 
ahead (𝑁𝑠 =  ) and five-step-ahead (𝑁𝑠 = 5 ) predictions in Table 3. Among eight cross-validation 11 
experiments, the HP-JT produced the least RMSEAll value. On average, HP-JT outperformed 23.5%, 17.6%, 12 
and 13.7% for 𝑁𝑠 =  , and 19.6%, 15.2%, and 11.2% for 𝑁𝑠 = 5, compared to HP, HP-Noise, and HP-13 
VAE, respectively. Note that, compared with the quadratic degradation signals, there is a noticeable 14 
increase in the RMSEsignal value for the three-stage degradation signals given the more complicated health 15 

degradation structure, especially for signal 2-1.  16 
 17 

Table 3: Prediction results by HP-JT and benchmark models 18 

Signal 

ID 

Degradation 

type 

RMSE (×  0−2)  

𝑁𝑠 = 1 𝑁𝑠 = 5 

HP 
HP-

Noise 

HP-

VAE 
HP-JT HP 

HP-

Noise 

HP-

VAE 
HP-JT 

1-1 

Quadratic 

degradation 

2.16 1.20 1.31 1.08 6.15 3.42 3.73 2.84 

1-2 1.53 1.32 1.20 1.19 4.25 3.77 3.19 3.30 

1-3 2.02 1.80 1.56 1.51 6.42 5.78 4.84 4.65 

1-4 1.36 1.38 1.25 1.30 3.68 3.79 3.18 3.55 

2-1 

Three stage 

degradation 

3.89 3.85 3.48 2.68 11.93 11.86 10.81 8.84 

2-2 3.23 3.06 3.01 2.88 10.96 10.53 10.61 10.06 

2-3 2.97 2.85 2.98 2.66 9.83 10.11 10.17 9.54 

2-4 2.34 2.31 2.31 1.98 7.49 7.29 7.44 6.43 

RMSEAll 2.64 2.45 2.34 2.02 8.26 7.83 7.48 6.64 

 19 
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To further investigate the superior performance of HP-JT, the 20-step-ahead forecast results of the four 1 
models for two representative signals 1-2 and 2-4 at three different prediction times are shown in Figure 6. 2 
For the simple quadratic signal 1-2, all four predictor models achieved satisfactory predicting accuracy, yet 3 
the augmented data models slightly outperformed HP. However, for the more complicated signal 2-4, the 4 
HP-JT outperforms the benchmark models in the forecast, especially for time steps right after the second 5 
stage (from 𝑡 = 25 to 60 min). As we get further away from the second stage, HP-JT starts to perform 6 
similarly to the benchmark models as the signal starts to follow a simpler trend. 7 

 8 

 

Figure 6: The predicted results at different prediction times; (a) signal 1-2 at prediction times 

𝑡 = 20, 50, and 60 s, and (b) signal 2-4 at prediction times 𝑡 = 35, 45, and 70 s 
 9 

To investigate the reduction in average RMSE of the RUL, the t-Distributed Stochastic Neighbor 10 
Embedding (t-SNE) analysis (Van der Maaten & Hinton, 2008) was performed to visualize the similarity 11 
between real and synthetic data generated with adding noise, VAE and HP-JT. The t-SNE results for each 12 
data augmentation method are shown in Figure 7, with the total training epochs of 200 and signal 2-4 as the 13 
test data.  14 

The HP-Noise method augments the data by adding Gaussian noise to the training data; thus, the data 15 
points only shift slightly and maintain the original distribution. Therefore, this slightly shifted distribution 16 
does not add enough new information to generate novel data for training in the case of limited available 17 
data. HP-VAE was partially successful in mimicking the global trend of the real-data distribution; however, 18 
its restriction to Gaussian distribution modeling limited the generated data distribution to only partially 19 
represent the real data distribution resulting in little improvement. On the other hand, the data generated by 20 
HP-JT follows the global distribution and captures the local variations of the real-data distribution. Unlike 21 
HP-Noise, HP-JT is not limited to individual data points’ immediate neighborhood, thus creating novel yet 22 
representative synthetic data. 23 
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Figure 7: t-SNE results of real and synthetic data generated by multiple methods 

 1 
In the case of HP-JT, the synthetic data generated by the GAN-LSTM network changes during every 2 

epoch of pre-training and joint training to encompass the entire distribution of the training dataset. The 3 
evolution of the synthetic data distribution during the pre-training and joint training, which yields superior 4 
performance to the benchmark methods, is shown in Appendix B.  5 

To further explore the benefits of joint training strategy over static data augmentation, we study another 6 
model called HP-noJT that uses fixed synthetic data without joint training. The HP-noJT was initialized 7 
using the same parameters as that of the pre-trained HP-JT predictor, with the difference being that there is 8 
no joint training in the training procedure of HP-noJT. The synthetic data was combined with the original 9 
training data to train the model. In other words, the HP-noJT predictor only learns the original training data 10 
and the static synthetic data generated after the pre-training of the generator. On the other hand, during joint 11 
training in HP-JT, the generator is also simultaneously trained with the HP-JT predictor. As an effect of 12 
training the generator, slightly different synthetic data is generated at every epoch, which the HP-JT model 13 
also sees. In other words, the HP-JT model learns from different synthetic data at each joint train epoch, 14 
whereas the HP-noJT predictor was trained using fixed synthetic data. 15 

The prediction results of HP-noJT are summarized in Table 4. HP-noJT performs better than LSTM 16 
(Table 3) by 9.1% RMSEAll for one-step-ahead prediction. This observation proves that using synthetic data 17 
enhanced the accuracy of the next-step prediction. The HP-JT, however, outperforms HP-noJT by 15.8% 18 
in one-step-ahead (𝑁𝑠 =  ) prediction and by 13.1% in five-step-ahead (𝑁𝑠 = 5) prediction, respectively. 19 
The data generated at each epoch may contain some unreliable samples that are different from the real data. 20 
The HP-noJT may be forced to learn these unreliable samples during the training process. For HP-JT, the 21 
generated sample changed at each epoch, preventing the predictor from memorizing unreliable samples. 22 
The integration of the predictor and GAN architecture helps improve the generality of the HP-JT model, 23 
which leads to the least average RMSE error among all the tests. The discussion of change of the next-step 24 
prediction errors is included in Appendix B.3.  25 
 26 
 27 
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Table 4: Prediction results by HP-noJT 1 

Signal ID Degradation type 𝑁𝑠 = 1 𝑁𝑠 = 5 

1-1 

Quadratic 

degradation 

1.18 3.21 

1-2 1.39 3.68 

1-3 1.72 5.49 

1-4 1.38 3.76 

2-1 

Three-stage 

degradation 

3.56 11.15 

2-2 2.92 10.19 

2-3 3.14 10.59 

2-4 2.42 7.64 

RMSEAll 2.40 7.64 

 2 
3.2 Case study 2: bearing RUL prediction 3 
3.2.1 Experimental setting 4 

We now evaluate the performance of the proposed method aimed at RUL prediction using the publicly 5 
available XJTU-SY dataset. The XJTU-SY dataset provides run-to-failure data collected from 15 rolling 6 
element bearings (Wang et al., 2018). The vibration data can be divided into three groups based on the 7 
operating condition, shown in Table 5.  8 

Table 5: XJTU-SY bearing dataset. 9 
 Operating condition 
 Condition 1 Condition 2 Condition 3 

Radial load 12 kN 11 kN 10 kN 

Speed 35 Hz 37.5 Hz 40 Hz 

Bearing ID 

1-1 2-1 3-1 

1-2 2-2 3-2 

1-3 2-3 3-3 

1-4 2-4 3-4 

1-5 2-5 3-5 

 10 
The bearings were affected by the radial load; therefore, the data collected from the x-axis (horizontal 11 

direction) is more obvious (Kundu et al., 2019). In this case study, the x-axis vibration data were used to 12 

extract 𝑉0.2𝜔−𝑓𝑠/2
RMS  values for RUL prediction. The extracted 𝑉0.2𝜔−𝑓𝑠/2

RMS  features (from FPT to EOL) of each 13 

bearing are presented in Appendix C. The feature value of the most recent 𝑘 = 20 measurements was used 14 

in forecasting 𝑉0.2𝜔−𝑓𝑠/2
RMS  to a failure threshold of 0.27 and thus determine the RUL.  15 

We conducted a five-fold cross-validation study on the XJTU-SY dataset where the 15 bearings were 16 
divided into five folds, with each fold containing data collected from three different working conditions: 17 

Fold-1: Bearings 1-1, 2-1, and 3-1  18 
Fold-2: Bearings 1-2, 2-2, and 3-2 19 
Fold-3: Bearings 1-3, 2-3, and 3-3  20 
Fold-4: Bearings 1-4, 2-4, and 3-4 21 
Fold-5: Bearings 1-5, 2-5, and 3-5 22 
The proposed HP-JT model was compared with benchmark models presented in section III. The input 23 

length of the generator, HP-JT, and discriminator were set at 20, 20, and 21, respectively. The learning rate 24 
of the HP-JT was set as 0.001, and the learning rate of both generator and discriminator was 0.0001. The 25 
HP-JT was pre-trained for 60 epochs. The generator and discriminator were pre-trained for 1000 epochs. 26 
Finally, the joint training of all the GAN-LSTM components was performed for 60 epochs. 27 

Similar to case study 1, the HP and HP-Noise models had the same architecture as the HP-JT. The 28 
learning rates and the training epochs of those two models were set to 0.001 and 120, respectively. Note 29 
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that HP-JT only gets optimized during the pre-training and joint training. Therefore, the total training epoch 1 
of the HP-JT is equal to the predictor trained by other methods (HP, HP-Noise, and HP-VAE).  2 

The RMSE of RUL prediction results (from 𝑡FPT  to 𝑡EOL) was used as an evaluation metric that 3 
measures the prediction error, written as: 4 

 RMSERUL = √
1

(𝑡EOL−𝑡FPT+1)
∑ (RULpred(𝑡) − RULtrue(𝑡))

2𝑡EOL
𝑡=𝑡FPT

 (10) 5 

where 𝑡FPT is the time when prognostics starts, and RULpred(𝑡) and RULtrue(𝑡) are the predicted and true 6 

RUL at time step 𝑡, respectively. 7 
 8 
3.2.2 Results 9 

The RUL prediction results for all the test bearings, as a result of the five-fold cross-validation, are 10 
summarized in Table 6. The bearings are sorted in ascending order of the total prognostic duration Δ𝑇, 11 
defined as Δ𝑇 = 𝑡EOL − 𝑡FPT +  . For each bearing in Table 6, the model with the least prediction error is 12 
highlighted in bold. The cumulative RMSERUL is calculated by doing a weighted average of the individual 13 
bearing RMSERUL scaled by Δ𝑇. Overall, the proposed HP-JT produces better RUL prediction accuracies 14 
with 40.3%, 29.4%, 26.8%, and 20.4% improvement in RMSE error compared to the quadratic regression, 15 
HP, HP-Noise, and HP-VAE models. Note that for bearings 2-4, 3-5, 3-3, 1-5, and 1-4, the number of time 16 
steps in the prognostic time period is smaller than the selected input length of the LSTM predictor (𝑘=20 17 
min). For these bearings, data points before 𝑡FPT were used as input, and these data do not provide enough 18 
prognostic information for making accurate predictions. Also, for most tests, the proposed HP-JT model 19 
outperformed other methods with bearings that have a longer prognostic time. 20 

Table 6: RUL prediction results by HP-JT and benchmark models 21 

Bearing ID 
Δ𝑇 

(min) 

RMSE 

Quadratic 

regression 
HP HP-Noise HP-VAE HP-JT 

2-4 4 13.18 13.26 4.74 25.46 24.39 

3-5 6 6 13.47 4.18 15.73 10.89 

3-3 10 8.93 14.91 7.35 9.58 21.99 

1-5 16 60.06 22.97 13.49 37.72 30.93 

1-4 17 36.04 42.66 22.05 33.38 48.43 

2-1 34 9.70 5.34 10.14 18.61 42.59 

1-2 42 16.17 13.91 13.21 7.97 12.83 

1-1 43 13.70 15.71 14.4 27.36 9.04 

3-2 46 33.07 12.2 10.9 9.27 4.89 

3-4 60 16.37 8.23 12.99 11.98 12.6 

2-5 77 38.10 11.72 13.36 15.64 17.41 

2-3 83 20.20 15.74 25.12 28.17 9.93 

1-3 91 45.73 25.59 31.12 32.38 20.37 

2-2 105 58.77 43.99 43.56 33.97 29.69 

3-1 124 35.16 53.84 47.29 36.52 21.25 

Cumulative#  36.70 31.00 29.91 27.50 21.90 
# RMSE among all the bearings weighted by the prognostic time duration Δ𝑇. 22 

  23 
To better compare the prediction results, we analyze the mean absolute error (MAE) that quantifies 24 

the magnitude of the prediction error, and also include the mean error that quantifies the overall direction 25 
of the prediction error (overestimation or underestimation). At the same level of prediction accuracy, 26 
underestimating the bearing RUL is often more desirable than overestimating it in industry settings because 27 
overestimation brings misleading confidence to the end user and may cause unexpected machine failure. 28 
Figure 8 (a) summarizes the MAE and mean error of RUL prediction by various models. The MAE of 29 
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quadratic regression, HP, HP-Noise, and HP-VAE are 23.84, 21.77, 21.62, and 21.68 min, respectively. 1 
HP-JT yields the least MAE, 16.70 min. Compared to quadratic regression, the four health predictor models 2 
(i.e., HP, HP-Noise, HP-VAE, and HP-JT) predict RUL with smaller mean errors that are all less than zero 3 
(i.e., underestimating the RUL on average). 4 

At an early stage of degradation, 𝑉0.2𝜔−𝑓𝑠/2
RMS  of a bearing tends not to change significantly. As a result, 5 

the RUL predictions at this stage may contain larger errors than those when the bearing is close to failure. 6 

Suppose we only consider the samples from the time when 𝑉0.2𝜔−𝑓𝑠/2
RMS  first exceeds 0.17 ips to EOL and 7 

we label these samples as the late-stage degradation samples. The prediction errors on these samples are 8 
shown in Figure 8 (b). The MAE and error spread both decrease for all the five methods. Excluding the HP-9 
JT model, the HP-Noise model produces the lowest MAE. A paired t-test is conducted to analyze the mean 10 
difference between the prediction errors of HP-JT and HP-Noise. The null hypothesis in the paired t-test is 11 
the mean difference between the prediction errors by HP-JT and HP-Noise is zero. The p-value is 12 
2.26 ×  0−16 ≪ 0.001, which provides strong evidence against the null hypothesis. Thus, HP-JT yields a 13 
significantly different mean error compared to HP-Noise. As the mean error of HP-JT is closer to zero and 14 
its MAE is smaller, HP-JT on average archives higher accuracy than HP-Noise as well as the other three 15 
models. 16 
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Figure 8: The MAE, mean error, and error spread for five different methods: (a) the prediction errors 

from FPT to EOL and (b) the prediction errors from the first time 𝑉0.2𝜔−𝑓𝑠/2
RMS   0.17 ips to EOL. The 

error bars indicate mean ± one standard deviation. 

Figure 8 shows a typical predicted RUL and the corresponding 𝑉0.2𝜔−𝑓𝑠/2
RMS  for test bearing 3-2. Note 18 

that in the early stages of the bearing degradation, the HP-JT provided the most accurate results compared 19 
to the benchmark models. The quadratic regression model yielded the least accurate. As the bearing 20 
degradation progressed with time, the extracted feature became closer to the failure threshold and made 21 
RUL prediction easier with cumulative multi-step-ahead prediction error. This led to similar RUL 22 
prediction results across all the approaches.  23 

 24 
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To further investigate the results, the predicted feature values generated by all the comparative models 18 
at three different prediction times are shown in Figure 9. The HP-JT model predicted the degradation trend 19 
most accurately, especially at the onset of bearing degradation. Note that, at time 𝑡 = 20 min there is almost 20 
no change in the amplitude of input features, yet HP-JT successfully provides the most accurate result. The 21 
accuracy of the proposed method can be attributable to the quality of the synthetic training data where both 22 
global and local novel features are generated (see Appendix C). Note that HP, HP-Noise, and HP-VAE tend 23 
to underestimate the RUL, which indicates not being able to distinguish between local and global trends. 24 
The quadratic model is the most sensitive to the local trends as it only relies on information provided by 25 
recent local observations. If the local trends follow the global trend, it can provide accurate results as in the 26 
top plot. Otherwise, the results are unreliable, as in the middle plot of Figure 9. 27 

 28 

 

Figure 9: The predicted feature values at selected prediction times for bearing 3-2 
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Figure 8: The RUL prediction result and the degradation curve for bearing 3-2 
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3.3 Performance of the proposed method in uncertainty estimation 1 
The models presented thus far are deterministic. Now, we explore the forecasting performance of HP-2 

JT when considering uncertainty. The two major types of uncertainty are aleatoric uncertainty and epistemic 3 
uncertainty. Aleatoric uncertainty is irreducible uncertainty in the training data, which can be estimated by 4 
treating the model output as a distribution. Epistemic uncertainty is the uncertainty that occurs due to 5 
inadequate knowledge and data. Epistemic uncertainty can be reduced by having more training data. In the 6 
case of bearing prognostics, building a probabilistic model could help capture the aleatoric uncertainty of 7 
the data. And the use of data augmentation techniques such as HP-JT should theoretically provide a more 8 
reliable measure of epistemic uncertainty. 9 

One way to build a probabilistic model is to treat the model output to obey a Gaussian distribution by 10 
adding a Gaussian layer as the model’s last la er (Nemani et al., 2021). This added layer estimates both the 11 
mean 𝜇(𝑥) and variance 𝜎2(𝑥) of the Gaussian output. For a perfectly trained model, the output 𝜇(𝑥) is 12 
close to the true value 𝑦, and  𝜎2(𝑥) accounts for the uncertainty of the output. The negative log-likelihood 13 
(NLL) criterion is used to train the model with the Gaussian layer: 14 

 −log𝑝(𝑦𝑛|𝑥𝑛) =
log𝜎2(𝑥)

2
+
(𝑦−𝜇(𝑥))

2

2𝜎2(𝑥)
+ constant (11) 15 

For the bearing prognostic implementation in case study 2, the performance of HP-JT was compared 16 
against the HP model. To construct a probabilistic model, we replaced the HP-  ’s last la er  dense la er  17 
with a Gaussian layer. The architecture of the proposed HP-JT probabilistic network is shown in Appendix 18 
E. During the joint training of the HP-JT, the 𝜇(𝑥̃𝑖,𝑘+1) output was concatenated with  𝑥̃𝑖,1:𝑘  to form 19 

synthetic data (𝑥̃𝑖,1:𝑘+1).  20 
After the model was trained, the predictor estimates the bearing RUL following a similar procedure 21 

described in section 2. The time when next-step prediction 𝜇(HIInput = 𝑉0.2𝜔−𝑓𝑠/2
RMS ) reaches the threshold 22 

(𝑉cutoff) is marked as 𝜇RUL and the time when 𝜇(HIInput)  + 𝜎
2(HIInput) reaches the threshold defined 23 

equal to 𝜇RUL − 𝜎RUL
2 . 24 

The reliability curve is used to evaluate the model’s performance in uncertaint  estimation. The 25 
reliability curve displays the predicted fraction of points in each confidence interval relative to the expected 26 

fraction of points in that interval (Roman et al., 2021). Given a dataset {𝑥𝑇𝑝,1:𝑘+1, RUL𝑇𝑝} , 𝑇𝑝 =  ,… , 𝑇total. 27 

At each prediction time 𝑇𝑝, the probabilistic model provides a Gaussian distribution 𝒩(𝜇RUL, 𝜎RUL
2 ). We 28 

choose 𝑚  confidence levels 0 ≤ 𝑝1 < 𝑝2 < ⋯ < 𝑝𝑚 ≤  00 ; for each threshold 𝑝𝑗 , we compute the 29 

observed confidence level: 30 

 𝑝̂𝑗 =
∑ F𝑇𝑝(𝜇RUL,𝜎RUL

2 , 𝑝𝑗)
𝑇total
𝑇𝑝=1

𝑇total
×  00 (12) 31 

where F𝑇𝑝  is a function that classifies whether the true RULT𝑝 lies within a predefined interval. If the RULT𝑝 32 

lies below the 𝑝𝑗 -th quantile of the produced Gaussian distribution, 𝒩(𝜇RUL, 𝜎RUL
2 ) , then we have 33 

𝐹𝑇𝑝(𝜇RUL, 𝜎RUL
2 , 𝑝𝑗) =  ; otherwise, 𝐹𝑇𝑝(𝜇RUL, 𝜎RUL

2 , 𝑝𝑗) = 0 . The set {(𝑝𝑗, 𝑝̂𝑗)}𝑗=1
𝑀

 forms a reliability 34 

curve. 35 
In Figure 10, we compare the uncertainty estimation performance of the probabilistic HP-JT method 36 

and a simple probabilistic HP method for the case study 2 dataset. A total of five models are trained for 37 
each method to show run-to-run variation. The reliability of an ideal model falls on the black dashed line 38 
where the model is neither underconfident nor overconfident. Both HP and HP-JT are shown to be 39 
overconfident in their RUL predictions. However, the reliability curves produced by the HP-JT model are 40 
closer to the dashed line (the ideal case), meaning that the observed confidence level is overall closer to the 41 
expected confidence level. This means that the HP-JT provides more reliable uncertainty estimations of 42 
RUL.  43 

 44 
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Figure 10: Reliability plot showing the variation of the observed confidence level 

against the expected confidence level  

 1 
4. Conclusions 2 

In this paper, we propose a novel HP-JT method for forecasting the bearing health condition and 3 
predicting the bearing remaining useful life. We establish the superior performance of the proposed method 4 
by performing experiments on a toy problem mimicking simplified bearing failure behavior and using a 5 
publicly available XJTU-SY bearing dataset. We find that the GAN-LSTM architecture adds significant 6 
diversity to the training data while maintaining the original training data distribution instead of other data 7 
augmentation techniques such as adding noise and using VAE, which tend to mimic a local distribution of 8 
the training data. This leads to better learning of the long-term dependencies by the HP-JT model, leading 9 
to the lowest average RMSE in forecasting the time series for the toy problem. For the XJTU dataset, the 10 
HP-JT method achieves a 29.4% reduction in RMSE and a 25% reduction in MAE compared to the HP 11 
method. Also, the prediction error distribution indicates that the proposed method provides more accurate 12 
and conservative RUL prediction than the other methods used for comparison. The training of the proposed 13 
method requires more computational time relative to the benchmark methods; however, since in the 14 
industrial implementation, machine health assessments are carried out periodically, the process of bearing 15 
RUL prediction is not time-constrained, and thus, the model accuracy is more important than the training 16 
time. As long as the model provides higher accuracy, the added training complexity is not as important. 17 

The proposed HP-JT method can be applied to solve other engineering problems where time series 18 
prediction is required and the amount of available training data is limited. These problems include, for 19 
example, cutting tool health forecasting, battery capacity forecasting and life prediction, and sales 20 
forecasting. In this work, we assume bearing degradation is slow and gradual and does not involve extreme, 21 
short-term damage leading to sudden failure. As a result, the applicability of the method is limited to slow, 22 
gradual degradation trajectories. In this study, bearings 2-4, 3-3, 1-5, and 1-4 have fast  ΔT < 20 min) and 23 
dramatically changing degradation trajectories. The RMSEs of RUL prediction on these fast degrading 24 
bearings are larger than 20 min (i.e., larger than the maximum true RUL among the four bearings), which 25 
signifies this limitation. Prognostics on fast degrading bearings that fail almost instantaneously upon the 26 
start of degradation is a topic for future research. 27 
 28 
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Appendix A: background supplementary materials 1 
 2 
A.1 Fundamental LSTM architecture 3 

The LSTM uses memory cells to retain useful information in the long and short term to help with the 4 
vanishing gradient issues of RNNs. As shown in Fig A.1, each LSTM unit uses three internal gates to 5 
control the information flow for each time step, named forget gate, input gate, and output gate (Barzegar et 6 
al., 2021). 7  

   
Figure A.1: LSTM unit architecture 

 8 
The equations for each gate can be described as: 9 

Forget gate: 10 
 𝐹𝑡 = 𝜎(𝑊𝐹[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐹)  (13) 11 

where the sigmoid layer (𝜎) takes the previous output of the LSTM unit ℎ𝑡−1 and input 𝑥𝑡, and decides 12 
which parts of the past information to forget by outputting a value closer to 0 and what to retain by 13 
outputting a value closer to 1. 𝑊𝐹 and  𝑏𝐹 are the weights and biases of the forget gate, respectively. 14 

Input gate:  15 
 𝐼𝑡 = 𝜎(𝑊𝐼[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐼)⨂ tanh (𝑊𝐶[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)  (14) 16 

 𝐶𝑡 = 𝐹𝑡⨂𝐶𝑡−1 + 𝐼𝑡  (15) 17 

where the sigmoid layer decides which of the new information to be stored into the cell state 𝐶𝑡, 𝑊𝐼 and 𝑏𝐼 18 
are the weights and biases of the input gate, respectively, tanh(∙) creates the new candidate values for the 19 
new cell state,  𝑊𝐶 and 𝑏𝐶 are the weights and biases related to cell state calculation, respectively, and the 20 
previous cell state 𝐶𝑡−1 is multiplied with 𝐹𝑡, then added with 𝐼𝑡 to get the new current cell state 𝐶𝑡.  21 

Output gate:  22 
 𝑂𝑡 =  𝜎(𝑊𝑂[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑂) (16) 23 

 ℎ𝑡 = 𝑂𝑡⨂tanh (𝐶𝑡) (17) 24 

where the sigmoid layer determines the output of the cell, 𝑊𝑂 and 𝑏𝑂 are the weights and biases of the 25 
output gate, respectively, and tanh(∙) creates all possible values, which become the output after being 26 
multiplied with 𝑂𝑡. 27 
 28 
A.2 GAN 29 

GAN belongs to the class of generative models that aims to produce synthetic samples with a similar 30 
distribution as that of the input data. The GAN comprises two networks: generator and discriminator, as 31 
shown in Fig. Those two networks are trained with opposing goals. The goal of the generator is to produce 32 
synthetic data that has a similar distribution to that of the real data; the goal of the discriminator is to take 33 
the synthetic and real data and try to identify which input samples are real or fake (Goodfellow et al., 2020). 34 
The training of the GAN network aims to make the generator compete with the discriminator. A 35 
successfully trained generator converts the random noise into synthetic data with a similar distribution to 36 
the real data, which the discriminator fails to identify as fake.  37 

 38  
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Figure A.2: GAN architecture (the dashed lines represent backpropagation) 

 1 
Appendix B: case study 1 supplementary materials 2 
 3 
B.1 toy problem parameter setting   4 

The detailed parameters for each signal are listed in Table B.1. 5 
Table B.1: Generated signals 6 

Signal ID Signal Function 

1-1 2𝑡3 − 𝑡2 0 ≤ 𝑡 <  20 

1-2 2𝑡3 − 𝑡2 0 ≤ 𝑡 < 80 

1-3 2𝑡3 − 𝑡2 0 ≤ 𝑡 < 70 

1-4 2𝑡3 − 𝑡2 0 ≤ 𝑡 < 90 

2-1 {
5𝑡2 − 0.5t 0 ≤ 𝑡 < 40

0.5𝑏3𝑡
2 −  5t + 7780 40 ≤ 𝑡 < 90

0.3𝑡3 +  0480 90 ≤ 𝑡 <  20 

 

2-2 {
8𝑡2 − 5𝑡 0 ≤ 𝑡 < 30

 .5𝑡2 − 55𝑡 + 7350 30 ≤ 𝑡 < 60
0.05𝑡3 −  350 60 ≤ 𝑡 < 80 

 

2-3 {
 2𝑡2 − t 0 ≤ 𝑡 < 20

2𝑡2 − 55t + 5080 20 ≤ 𝑡 < 50
0.05𝑡3 +  080 50 ≤ 𝑡 < 70

 

2-4 {
35𝑡2 − t 0 ≤ 𝑡 < 25

5𝑡2 −  05t + 2 350 25 ≤ 𝑡 < 60
0. 𝑡3 +   450 60 ≤ 𝑡 < 90 

 

*In case study 1, each signal is normalized by dividing by its maximum value to rescale to [0,1], then the 7 
normalized signal is added with 𝑤(𝜇, 𝜎), where  𝜇 = 0 and 𝜎 = 0.0  8 
 9 
B.2 Evolution of data distribution  10 

This section shows the evolution of the synthetic data distribution to explain the superior outcome of 11 
HP-JT compared to HP-Noise and HP-VAE. Figure B.1 shows the evolution of the distribution with training 12 
epoch during pre-training and joint training. To begin with (epoch 0 of pre-training), the generated synthetic 13 
data is random noise depicted as blue dots in the t-SNE plot. As the generator gets trained with the input 14 
data, the synthetic data gradually approaches the distribution of the training dataset. During joint training, 15 
the distribution is further refined around the training distribution, but primarily, the HP-JT predictor learns 16 
the distribution of the synthetic data. Compared to the HP-Noise and HP-VAE models, the HP-JT model is 17 
trained with more diverse data that has a similar distribution to the real data. 18 
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Figure B.1: t-SNE results of real data and synthetic data by GAN-LSTM at different training epochs 

 1 
B.3 LSTM-noJT 2 

As mentioned in section 3.1, the HP-noJT was initialized using the parameters provided by the pre-3 
trained HP-JT model. In Figure B.2, we include an example where signal 2-4 is selected as test data to show 4 
the evolution of next-step prediction RMSE during the training. HP-JT converged faster than HP- noJT. 5 
After 100 training epochs, there is no significant change of training error for both HP-JT and HP- noJT. For 6 
the test error results, at the beginning of the training, HP-JT and HP-noJT have similar test errors, as HP-7 
noJT was initialized using HP-JT’s parameters. HP-JT converged faster than HP- noJT, and HP-JT provided 8 
less test error at the end of training.  9 
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Figure B.2: Next-step prediction error at different training epoch (a) training error (b) test error 

 1 
Appendix C: case study 2 supplementary materials 2 
 3 
C.1 Extracted features 4  

  
Figure C.1: The extracted 𝑉0.2𝜔−𝑓𝑠/2

RMS  values (from FPT to EOL) of each bearing 
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 1 
C.2 The distribution of synthetic data analysis 2 

For the GAN-LSTM network, the evolution of the synthetic data generated distribution with respect 3 
to real data is shown in Figure C.2 at different training epochs before the joint training for cross-validation 4 
fold 2. Each point is a time series of length 𝑘 +  . At training epoch 0, when the generator and discriminator 5 
 ere just initiali ed  the generator’s output  as random noise  and the distribution of s nthetic data  as 6 
significantly different compared to the real data. As the training progressed, the generator learned the trend 7 
of real data through adversarial training, and the synthetic data became similar to the real data. Note that at 8 
training epoch 1000, like in the toy example, the distribution of synthetic data follows a similar local and 9 
global structure to the real data. The small variations between the distributions of the datasets help improve 10 
the HP-   model’s generalit .  his graphical comparison sho s the generator net ork’s abilit  to 11 
understand the distribution of the real data and produce high-quality synthetic data, which helps to deal 12 
with the challenge of limited training data. 13  

  
Figure C.2: t-SNE results of real and synthetic data at different training epochs 

 14 
Next, we attempt to study the similarity between the real data of bearing degradation and the synthetic 15 

data generated from GAN-LSTM. When training the HP-JT model, the entire bearing degradation curve is 16 
split into time series of length 𝑘, which would also be the length of the synthetic data. Moreover, it is very 17 
difficult to identify which sample leads to which synthetic time series. Therefore, we use the dynamic time 18 
wrapping method (Kim et al., 2020) to select the synthetic data that is the most similar to a raw data segment. 19 
Finally, we concatenate the selected synthetic data and generate the synthetic bearing degradation curves. 20 

Figure C.3 shows the raw and synthetic data for bearings 1-1, 2-1, 2-5, and 3-1. The synthetic bearing 21 
data, constructed from synthetic samples, have similar trends to real data. While following the overall trends 22 
of the training data, the synthetic data ignored some local fluctuations and showed smoother trends. Taking 23 
bearing 2-5 as an example, the artificial bearing data from 40 to 60 min is smoother than the real data. 24 
Looking at both Figure C.2 and Figure C. 3, we can see the data generated by the generator and HP-JT 25 
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follows the overall degradation trends of the training data, which helps improve the HP-JT model’s 1 
performance. 2 
 3 

 

Figure C.3: Constructed artificial bearing data and the real data 

 4 
Appendix D: Computational Efficiency 5 

We compared the proposed HP-JT method with other deep learning methods in terms of the training 6 
time. The Fold 1 data of case study 2 were selected as test data, and the remainder data were used to train 7 
the model. Four models were trained using an Intel Core i7-10870H CPU @ 2.20GHz equipped with an 8 
NVIDIA RTX 3060 GPU with 6 GB dedicated GPU memory and 16 GB of system RAM. The scripts for 9 
constructing and optimizing all models were Python codes (Python Version 3.9.1). 10 

To minimize the effects of randomness during the measurements, here we summarize the mean 11 
computational times over the ten runs. The training time of HP + VAE is composed of two parts: the training 12 
time of the VAE and the training time of the predictor. The training time of HP-JT is composed of three 13 
parts: (1) the pre-training time of HP-JT, (2) the pre-training time of the generator and discriminator, and 14 
(3) the joint training time of the generator, discriminator, and HP-JT. 15 

 16 
Table D.1: Comparison of computational time of different approaches 17 

 HP HP-Noise HP-VAE HP-JT 

Computational time 

(s) of each step 
3.34 6.58 

Train VAE: 6.55 

Train predictor: 6.66 

Pre-training of HP-JT: 1.49 

Pre-training GAN: 14.56 

Joint training: 2.40 

Total training time (s) 3.34 6.58 13.21 18.45 

Evaluation time (s) 0.023 0.021 0.018 0.019 
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 1 
The training time of the proposed HP-JT is 18.45 s, which is more than five times compared to the 2 

training time of HP. The pre-training of generator and discriminator takes 14.56 s, accounting for a large 3 
portion of the training time.  4 

Though HP-JT requires a longer training time, only the predictor is involved in the RUL prediction 5 
process. As mentioned in section 2.4, the predictors used in HP, HP-Noise, HP-VAE, and HP-JT have the 6 
same architecture (one LSTM layer with the number of units = 60 followed by a fully connected layer). For 7 
each model, the time of performing 100 next-step predictions is listed in Table D.1. The evaluation time of 8 
each model is around 0.02 s. These numbers show that, regarding the RUL prediction process, the 9 
complexity of each model is similar. 10 

 11 
Appendix E: Configuration of the probabilistic network 12 
 13 

Table E.1: The specific configuration of the probabilistic network. 14 
Module name Layer Output shape, Activation 

Generator 

Input (Samples, 20) 

Fully connected (Samples, 64), Linear 

Fully connected (Samples, 32), Linear 

Fully connected (Samples, 20), ReLU 

Discriminator 

Input (Samples, 21) 

Fully connected (Samples, 64), Linear 

Fully connected (Samples, 128), ReLU 

Fully connected (Samples, 64), ReLU 

Fully connected (Samples, 1), Sigmoid 

HP-JT 

Input (Samples, 20, 1) 

LSTM (Samples, 60), Tanh 

Gaussian (Samples, 2), Linear 

 15 


