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Abstract. We hybridized the rigorous coupled-wave approach (RCWA) with transformation optics to develop a
hybrid coordinate-transform method for solving the time-harmonic Maxwell equations in a 2D domain containing a
surface-relief grating. In order to prove that this method converges for the p-polarization state, we studied several
different but related scattering problems. The imposition of generalized non-trapping conditions allowed us to prove
a-priori estimates for these problems. To do this, we proved a Rellich identity and used density arguments to extend
the estimates to more general problems. These a-priori estimates were then used to analyze the hybrid method. We
obtained convergence rates with respect to two different parameters, the first being a slice thickness indicative of spatial
discretization in the depth dimension, the second being the number of terms retained in the Rayleigh–Bloch expansions
of the electric and magnetic field phasors with respect to the other dimension. Testing with a numerical example revealed
faster convergence than our analysis predicted. The hybrid method does not suffer from the Gibbs phenomenon seen
with the standard RCWA.
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1. Introduction. Electromagnetic scattering characteristics of periodic structures are widely
researched in physics and engineering communities because of diverse applications including filters,
beam splitters, and beam couplers [1, 2, 3, 4]. Design and optimization of these and other devices
call for the solutions of scattering problems, thereby creating interest also in the applied mathematics
community, especially to settle issues of uniqueness and existence of results for the relevant variational
problems [5, 6, 7, 8].

Periodic electromagnetic structures for optical applications are holographic (i.e., volumetric) grat-
ings [9, 10, 11], surface-relief gratings [2, 12], and combinations of both [13, 14]. Our interest here lies in
surface-relief gratings that are commonly employed to redirect optical beams [15, 16, 17], for spectro-
scopic analysis [18, 19], and to enhance photonic absorption in solar cells [20, 21, 22]. A surface-relief
grating is a periodically undulating interface of two different media. If the undulations are sufficiently
shallow [23, 24], an analytical method due to Rayleigh [25, 26] suffices to predict the scattering char-
acteristics. Semi-analytical methods such as the Rayleigh–Fourier method [27, 28, 29], the T-matrix
method [30, 31, 32], the rigorous-coupled wave approach (RCWA) [33, 34, 35], the differential method
[36, 37, 38] and perturbation methods [85] are used for moderately deep undulations. Purely numerical
techniques such as the finite element method [39, 40, 41], the boundary element method [42, 43], and
the finite-difference time-domain method [44, 45, 46], as well as integral-equation methods [47, 48]
may be used for deep undulations.

The RCWA is a popular technique for surface-relief gratings, largely because it is mesh-free and its
approach to the solution of the time-harmonic Maxwell equations is elegantly intuitive [12, 35, 49, 50].
At its core, the RCWA exploits Floquet theory [51, 52, 53] which shows that the solutions are, in
general, quasi-periodic [5, 54]. This fact is used to express the field phasors as well as the periodic
relative permittivity in the grating region (containing the undulations) as Fourier series [55], which
are appropriately truncated so that only a finite number of terms in the Fourier series are retained.
Then, the grating region is decomposed into thin slices and the grating is replaced by a stairstep
approximation [12]. Due to this discretization of the spatial domain, the RCWA algorithm requires
the solution of a second-order matrix ordinary differential equation in each slice, followed by the
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enforcement of the appropriate transmission conditions to ensure continuity of the solution and its
conormal derivative across the interslice boundaries. Thus, the RCWA approximates the solution in
the entire domain.

The RCWA algorithm has been shown to converge with respect to both the number of terms in the
truncated Fourier series and the slice thickness, roughly speaking, as long as the relative permittivity
is monotonic in the direction perpendicular to the grating [56, 57]. The RCWA yields accurate
results for s-polarized incident light, but generally converges more slowly for p-polarized incident light
[35, 58, 59].

A drawback of RCWA is that the relative permittivity is replaced in the grating region with a
piecewise smooth approximation. Representing such a function with Fourier series results in the Gibbs
phenomenon near a discontinuity [60]. This limitation prevent the successful application of RCWA to
gratings with deep undulations [50].

The purpose of this paper is to formulate and analyze a numerical method that combines the
RCWA and transformation optics to mitigate the Gibbs phenomenon [61, 62, 63]. In order to avoid
representing piecewise smooth functions as Fourier series, we first apply a coordinate transformation
so that the periodically undulating interface in the grating region is mapped to a flat interface in the
new coordinates. Once the solution in the mapped domain is found, the inverse transformation is
used to map it back into the original spatial domain. Because we combine two methods, we term our
scheme ”hybrid”. Our hybrid method is motivated by the differential method [36, 37] but we employ
a different coordinate transformation and a different solution algorithm (RCWA). The differential
method uses a coordinate transform that is not the identity in the two half-spaces above and below
the domain, and therefore would require different radiation conditions than what we have considered
here. We have chosen a different coordinate transform in order to obtain a method that is amenable
to analysis. The differential method is useful in solving a multilayered problem with non-intersecting
interfaces of which some interfaces are planar and the others are periodically undulating with the
same period [64], and so is our hybrid method.

By using a coordinate transformation, we only have to consider an electromagnetic scattering
problem with simple geometry, i.e., a flat interface of infinite extent. The downside is that the
Helmholtz equation in the mapped domain has anisotropic coefficient functions, even if the problem
in the original domain has isotropic coefficient functions. There exists Rellich theory for such problems
[7] with diagonal matrix coefficient functions, but in our case there will be off-diagonal terms in those
coefficient functions. Complicating matters even more, we analyze a problem where the anisotropic
coefficient functions are only piecewise smooth and the data is not in L2. In order to prove a-priori
estimates for this problem, we first consider an easier problem where the coefficient functions are C∞

and the data is L2. We derive a Rellich identity for this problem and use it to prove an a-priori
estimate. Using density arguments similar to those of Graham et al. [65], we extend the a-priori
estimates to the full problem. A generalized Babus̆ka–Brezzi condition [66, 67, 68] is shown to hold
for all of our problems, and the existence and uniqueness of the variational solution follows.

This paper is organized as follows. The electromagnetic preliminaries are stated in Sec. 2. In Sec.
3, we define the scattering problem in the original spatial domain. We define the standard Dirichlet-
to-Neumann map (DtN) [69, 70] and use it to derive a general form of our variational problem. In Sec.
4, we prove a Rellich identity for a simplified version of the variational problem. Then, assuming that
certain non-trapping conditions [65] hold and the right hand side of the Helmholtz equation is in L2,
we show that this Rellich identity implies an a-priori estimate for our problem under the assumption
that the off-diagonal terms in the matrix coefficient function of the Helmholtz equation are sufficiently
small. We then extend this estimate to problems where the right hand side of the Helmholtz equation
is only in an appropriate dual space. Section 5 extends these results using density arguments to more
general coefficient functions. Using norm-equivalence, we show in Sec. 6 that the transformed problem
has a unique solution. We define the discretized form of the transformed problem in Sec. 7 and show
that there is a unique solution and determine the convergence rate with respect to slice thickness. We
show convergence with respect to the number of retained Fourier terms and derive an order rate in
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Sec. 8. Finally, in Sec. 9 we present a numerical example as a test of our convergence theory.

2. Preliminaries. We consider linear optics with an exp(−iωt) dependence on time t, where
i =

√
−1 and ω is the angular frequency of light. The electric field phasor is given by E = E1e1 +

E2e2+E3e3 = (E1, E2, E3) and the magnetic field phasor is H = H1e1+H2e2+H3e3 = (H1, H2, H3),
where the unit vectors e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1). The relative permittivity matrix
everywhere can be expressed as

(2.1) ε =

 ε11 ε21 0
ε12 ε22 0
0 0 ε33


and the relative permeability matrix everywhere as

(2.2) µ =

 µ11 µ21 0
µ12 µ22 0
0 0 µ33

 ,

all ten constitutive scalars in these two matrices being complex-valued functions of the spatial coor-
dinates x1 and x2, but not of x3. The geometry of the scattering problem is invariant along the x3
axis.

When the electric field phasor and the magnetic field phasor are independent of x3, then the time-
harmonic Maxwell equations decompose into two sets of independent equations. The set of equations
involving E1, E2, and H3 refers to the p-polarization state, and the set involving E3, H1, and H2 refers
to the s-polarization state [12]. The latter polarization state does not pose any significant problem
when the RCWA is implemented [49, 56], but the former does [35, 50, 57]. Therefore, in the following
sections, we present the hybrid method only for the p-polarization state, for which the following
three partial differential equations emerge from the time-harmonic Faraday and the Ampère–Maxwell
equations:

∂

∂x1
E2 −

∂

∂x2
E1 = iωµ0µ33H3,(2.3)

∂

∂x2
H3 = −iωε0 (ε11E1 + ε12E2) ,(2.4)

∂

∂x1
H3 = iωε0 (ε21E1 + ε22E2) ,(2.5)

where ε0 = 8.854 × 10−12 F m−1 is the permittivity and µ0 = 4π × 10−7 H m−1 is the permeability
of vacuum.

Our aim is to obtain a Helmholtz equation for H3 from (2.3)–(2.5). In order to eliminate E1, we
first multiply (2.4) by ε21 and (2.5) by ε11 and then add the resulting equations to get

(2.6) iωε0E2 = |ε̃|−1

(
ε21

∂

∂x2
H3 + ε11

∂

∂x1
H3

)
,

where

(2.7) ε̃ =

(
ε11 ε21
ε12 ε22

)
is a symmetric matrix and |A| denotes the determinant of a matrix A. In order to eliminate E2, we
first multiply (2.4) by ε22 and (2.5) by ε12, and then add the resulting equations to get

(2.8) iωε0E1 = − |ε̃|−1

(
ε22

∂

∂x2
H3 + ε12

∂

∂x1
H3

)
.
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Fig. 3.1: Geometry of the scattering problem.

Substitution of (2.6) and (2.8) in (2.3) yields the Helmholtz equation

(2.9) ∇ ·
(
|ε̃|−1

ε̃⊤∇H3

)
+ κ2µ33H3 = 0

satisfied by H3, where κ = ω
√
ε0µ0 is the wavenumber in vacuum and the superscript ⊤ denotes the

transpose. We call |ε̃|−1
ε̃⊤ and µ33 the coefficient functions of this Helmholtz equation. The hybrid

method solves the scattering problem associated with (2.9). Let us note that only the following five
constitutive scalars are relevant: ε11, ε12, ε21, ε12, and µ33.

3. Scattering problem and its variational formulation. In this section, we define some
notation related to the scattering problem and give the variational formulation to be analyzed in the
later sections.

We define x = (x1, x2) ∈ R2 in the original coordinate system. As shown in Fig. 3.1, the strip

Ω̃ = (−∞,∞) × (−H,H) for H ∈ R+ contains the grating region. The half-spaces above and below
this strip are identified as U+

H = {x |x2 > H } and U−
H = {x |x2 < −H }, respectively. The grating

surface is denoted by Γ = {x |x2 = g(x1)} for a periodic g ∈ C2(R) with period Λ > 0. Without loss
of generality, g(x1) ≥ 0 for x1 ∈ R. The grating region strictly is the strip Ω† = (−∞,∞) × [ga, gb],

where ga = min {g(x1)} and gb = max {g(x1)}. We choose H large enough so that Γ ⊂ Ω† ⊂ Ω̃. The

outward unit normal to Ω̃ is denoted by ν.
The homogeneous media occupying U+

H and U−
H are isotropic, dielectric, and non-magnetic. Ac-

cordingly,

(3.1) ε(x) =

ε+I, x ∈ U+
H ,

ε−I, x ∈ U−
H ,

and µ(x) = I for x ∈ U+
H ∪ U−

H , where I is the identity matrix. We assume that both ε+ > 0 and
ε− > 0 are real valued.
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Incident on Γ is a downward propagating p-polarized plane wave

(3.2) uinc(x1, x2) = − exp
{
iε

1/2
+ κ [x1 sin θ − (x2 −H) cos θ]

}
,

where θ ∈ [0, π/2) is the incidence angle from the positive x2-axis. The scattered field u(x) for this
scattering problem is quasi-periodic with period Λ [51, 53, 54]. This means that

(3.3) u(x1 + Λ, x2) = exp(iα0Λ)u(x1, x2)

for x ∈ R, where α0 = κε
1/2
+ sin θ. The multiplicative factor Ψ = exp(iα0Λ) is called the phase factor ;

α0 = 0 and Ψ = 1 for normal incidence (i.e., θ = 0) and in this case u is periodic with period Λ.
Due to u being quasi-periodic, the variational formulation can be written over a bounded region

containing only a single period of Ω̃. We identify this bounded region as Ω = [−Λ/2,Λ/2]× (−H,H)
and its upper and lower boundaries as Γ±H = {x | −Λ/2 < x1 < Λ/2, x2 = ±H}. The quasi-periodic
boundaries are identified as Γ±Λ/2 = {x | −H < x2 < H, x1 = ±Λ/2}.

We assume that ε(x) is a piecewise C1(R3×3) function that may have jumps across the interface
Γ, and can be complex valued. Our analysis requires that

(3.4) lim
δ→0

ε(x1, H − δ) = ε+I

for δ > 0, so that ε does not jump across the top boundary x2 = H, but may jump across the bottom
boundary x2 = −H. For the sake of notational simplicity, we assume that ε− = ε+, although it is
possible to handle the case where ε− ̸= ε+.

Given a source G = ∇ ·
[
(ε−1

+ I−A)∇uinc
]
+ κ2(1− a)uinc with coefficient functions A = |ε̃|−1ε̃

and a = µ33, the problem is to find a scattered field u such that

∇ · (A∇u) + κ2au = G, x ∈ Ω,(3.5)

Ψu(−Λ/2, x2)− u(Λ/2, x2) = 0, x2 ∈ (−H,H),(3.6)

Ψ
∂u

∂νA
(−Λ/2, x2)−

∂u

∂νA
(Λ/2, x2) = 0, x2 ∈ (−H,H),(3.7)

together with a suitable radiation condition [71, 72] for u, where ∂u
∂νA

= ν⊤A∇u is the conormal
derivative of u. This problem has been studied previously by us [57] for the special case where ε = εI
and A = ε−1I in Ω by using a Rellich identity to show an a-priori estimate. A generalized Babus̆ka–
Brezzi condition holds since an inf-sup and transposed inf-sup condition [7] is satisfied. This is used
to obtain a unique variational solution to the problem.

We now define some Sobolev spaces [73] in order to study our subsequent variational formulation.
The Hilbert space H1

qp(Ω) is defined as the completion of H1(Ω) ∩ C∞
qp(Ω) in the standard H1–norm

given by

(3.8) ∥v∥1,Ω =

(∫
Ω

|v|2 + |∇v|2
)1/2

,

where C∞
qp(Ω) is the set of quasi-periodic smooth functions in Ω. The space H1

qp(Ω)
′ is the dual space

of H1
qp(Ω) endowed with the norm

(3.9) ∥F∥1∗,Ω = sup
0̸=v∈H1

qp(Ω)

|F (v)|
∥v∥1,Ω

.

The trace space Hk
qp(Γ±H) with k ∈ N is endowed with the norm

(3.10) ∥v∥k,Γ±H
=

(∑
m∈Z

∣∣κ2ε+ − α2
m

∣∣k ∣∣v±m∣∣2
)1/2
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with αm = α0 + 2πm/Λ and the Fourier coefficients defined as

(3.11) v±m =
1

Λ

∫ Λ/2

−Λ/2

v|Γ±H
exp(−iαmx1) dx1.

In order to state the appropriate radiation conditions and the variational formulation for (3.5)–(3.7),
we now define the standard DtN maps on Γ±H [6, 7, 8]. Since we have assumed that ε ≡ ε+I in U±

H ,
the Helmholtz equation (3.5) simplifies to

(3.12) ∆u+ κ2ε+u = 0

in U±
H . In order to avoid Rayleigh–Wood anomalies [2, 74], we assume that κε

1/2
+ ̸= αm for any m ∈ Z.

For ϕ ∈ H
1/2
qp (ΓH), we consider vϕ ∈ H1

qp,loc(Ω
+) satisfying

∆vϕ + κ2ε+vϕ = 0 in Ω+,(3.13)

vϕ = ϕ on ΓH ,(3.14)

with Ω+ = [−Λ/2,Λ/2]× (H,∞). Then vϕ has the special form

(3.15) vϕ(x) =
∑
m∈Z

ϕ+m exp [i(x2 −H)βm] exp(iαmx1) +
∑
m∈Z

ϕ+m exp [−i(x2 −H)βm] exp(iαmx1)

for x ∈ Ω+, where

(3.16) βm =


√
κ2ε+ − α2

m, α2
m < κ2ε+,

i
√
α2
m − κ2ε+, α2

m > κ2ε+.

The representation (3.15) consists of two different types of solutions [8]. The first series on the right
hand side of (3.15) comprises a finite number of upward propagating plane waves and an infinite
number of evanescent waves that decay exponentially as x2 → ∞. The second series on the right
hand side of (3.15) comprises a finite number of downward propagating plane waves and an infinite
number of evanescent waves that decay as x2 → −∞. The radiation condition [71, 72] enjoins us to
choose the first solution type in Ω+ and the second type in Ω− = [−Λ/2,Λ/2]× (−∞,−H).

Using these expansions, we now define the standard DtN maps T± : H
1/2
qp (Γ±H) → H

−1/2
qp (Γ±H)

as

(3.17) (T±ϕ)(x1) = iε−1
+

∑
m∈Z

βmϕ
±
n exp(iαmx1)

for ϕ ∈ H
1/2
qp (Γ±H). In the upcoming variational formulation we will replace the conormal derivatives

∂w
∂νA

= ν⊤A∇w with ε+T
±(w), and the resulting sesquilinear form will be bounded on H1

qp(Ω) ×
H1

qp(Ω) due to this choice of DtN map. To conclude this discussion on DtN maps we recall that

Re

∫
Γ±H

ϕT±(ϕ) ≤ 0,(3.18)

Im

∫
Γ±H

ϕT±(ϕ) ≥ 0,(3.19)

for ϕ ∈ H
1/2
qp (Γ±H) [7], where the overbar denotes the complex conjugate.

We denote the jump of a function w across an interface Γ as [[w]]Γ = w|+Γ − w|−Γ . The matrix
coefficient function A may jump across the interface Γ; while the field w as well as its conormal
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derivative are assumed to be continuous across Γ so that [[w]]Γ = 0 and
[[

∂w
∂νA

]]
Γ

= 0. Before

the coordinate transformation is implemented, the general scattering problem we wish to solve is as
follows: Given some data F ∈ H1

qp(Ω)
′, find a w ∈ H1

qp(Ω) such that

∇ · (A∇w) + κ2aw = F, x ∈ Ω,(3.20)

Ψw(−Λ/2, x2)− w(Λ/2, x2) = 0, x2 ∈ R,(3.21)

Ψ
∂w

∂νA
(−Λ/2, x2)−

∂w

∂νA
(Λ/2, x2) = 0, x2 ∈ R,(3.22)

together with the radiation condition.
The variational formulation of (3.20)–(3.22) is to find a w ∈ H1

qp(Ω) such that

(3.23)

∫
Ω

[
(∇v)∗A∇w − κ2awv

]
−
∫
ΓH

vT+(w)−
∫
Γ−H

vT−(w) = −
∫
Ω

Fv

for v ∈ H1
qp(Ω), which follows in the usual way from the divergence theorem. Here, ∗ denotes conjugate

transpose of a vector. There are no boundary terms on the quasi-periodic boundaries Γ±Λ/2 since

v ∂w
∂νA

is periodic with period Λ for all v ∈ H1
qp(Ω).

We finish this section by defining B(w, v;A, a,Ω) to be the sesquilinear form on the left hand side
of (3.23), so that B(·, ·) : H1

qp(Ω) ×H1
qp(Ω) → C. The variational problem is to find a w ∈ H1

qp(Ω)
such that

(3.24) B(w, v;A, a,Ω) = −(F, v)0,Ω

for v ∈ H1
qp(Ω), where (·, ·)0,Ω is the L2 inner product on Ω.

4. A Rellich identity and a-priori estimates. Following Lechleiter and Ritterbusch [7], in
this section we derive a Rellich identity. We assume that A(x) and a(x) > 0 are real valued in Ω.
Both A(x) and a(x) are x1-periodic (with period Λ) such that

(4.1) A|−ΓH
= ε−1

+ I and a|−ΓH
= 1.

Given a δ > 0, the matrix A is assumed to have the special form

(4.2) A(x) =

(
a21(x) δa2(x)
δa2(x) a23(x)

)
,

with the strictly positive scalar functions a21(x) and a
2
3(x). Finally, we suppose there is constant c0 > 0

such that ξ∗A(x)ξ ≥ c0|ξ|2 for every ξ ∈ C2 and x ∈ Ω. Our problem differs from that of Lechleiter
and Ritterbusch [7] because:

(i) we allow for small off-diagonal terms in A,
(ii) a2(x) can change sign in Ω, and
(iii) the Helmholtz equation (3.20) may have a non-constant coefficient function a(x).

Theorem 4.1. Suppose that A is uniformly positive definite, A ∈ C∞(R2×2,Ω) and a ∈ C∞(Ω)
are real valued and periodic in x1 with period Λ. Let w ∈ H1

qp(Ω) be a variational solution to (3.23)
for F ∈ L2(Ω). Then for δ > 0,∫

Ω

2

[
a23

∣∣∣∣ ∂w∂x2
∣∣∣∣2 + δa2Re

(
∂w

∂x1

∂w

∂x2

)]
+ κ2

∫
Ω

(x2 +H)
∂a

∂x2
|w|2

+ 2H

∫
ΓH

[
ε−1
+

(∣∣∣∣ ∂w∂x1
∣∣∣∣2 − ∣∣∣∣ ∂w∂x2

∣∣∣∣2
)

− κ2 |w|2
]
−
∫
ΓH

wT+(w)−
∫
Γ−H

wT−(w)

=

∫
Ω

(x2 +H)(∇w)∗ ∂A
∂x2

(∇w)− 2

∫
Ω

(x2 +H)Re

(
∂w

∂x2
F

)
−
∫
Ω

Fw.(4.3)
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Proof. Since w solves (3.23), we have that

(4.4)

∫
Ω

(x2 +H)
∂w

∂x2
∇ · (A∇w) =

∫
Ω

(x2 +H)
∂w

∂x2

(
F − κ2aw

)
.

By taking twice the real part of both sides of (4.4) and using

(4.5) 2Re

(
∂w

∂x2
w

)
=
∂ |w|2

∂x2
,

we get

2Re

∫
Ω

(x2 +H)
∂w

∂x2
∇ · (A∇w) = 2

∫
Ω

(x2 +H)Re

(
∂w

∂x2
F

)
+ κ2

∫
Ω

[
(x2 +H)

∂a

∂x2
+ a

]
|w|2

− 2Hκ2
∫
ΓH

|w|2 ,(4.6)

after integrating by parts in x2. By virtue of the divergence theorem, we have

(4.7)

∫
Ω

∂w

∂x2
∇ · (A∇w) =

∫
∂Ω

(x2 +H)
∂w

∂x2

∂w

∂νA
−
∫
Ω

A∇w · ∇
(
(x2 +H)

∂w

∂x2

)
.

We take twice the real part of both sides of (4.7) to obtain

2Re

∫
Ω

∂w

∂x2
∇ · (A∇w) = 2H

∫
ΓH

2Re

(
∂w

∂x2

∂w

∂νA

)
−
∫
Ω

2

[
a23

∣∣∣∣ ∂w∂x2
∣∣∣∣2 + δa2Re

(
∂w

∂x1

∂w

∂x2

)]

−
∫
Ω

(x2 +H)2Re

[
A∇w · ∇

(
∂w

∂x2

)]
.(4.8)

Since

(4.9) 2Re

[
A∇w · ∇

(
∂w

∂x2

)]
=

∂

∂x2
[(∇w)∗A∇w]− (∇w)∗ ∂A

∂x2
∇w ,

we get ∫
Ω

(x2 +H)2Re

[
A∇w · ∇

(
∂w

∂x2

)]
= 2H

∫
ΓH

(∇w)∗A∇w −
∫
Ω

(x2 +H)(∇w)∗ ∂A
∂x2

∇w

−
∫
Ω

(∇w)∗A∇w(4.10)

after integrating by parts in x2. We notice that

(4.11) 2Re

(
∂w

∂x2

∂w

∂νA

)
− (∇w)∗A(∇w) = a23

∣∣∣∣ ∂w∂x2
∣∣∣∣2 − a21

∣∣∣∣ ∂w∂x1
∣∣∣∣2 .

We now substitute (4.10) in (4.8) and use (4.11) in the resulting equation. Upon setting v = w in the
variational formulation (3.23), we see that

(4.12)

∫
Ω

(∇w)∗A(∇w) = κ2
∫
Ω

a |w|2 +
∫
ΓH

wT+(w) +

∫
Γ−H

wT−(w)−
∫
Ω

Fw,

which we use on the right hand side of (4.10). Equating the resulting integral equation with (4.6) and
rearranging some terms completes the proof.
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We now use the Rellich identity to show an a-priori estimate for a solution w of the variational
problem (3.23). To do this, non-trapping conditions [65] must hold for A(x) and a(x) wherein their
x2-derivatives have sign conditions (see (4.13)) in Ω. The existence and uniqueness of w ∈ H1

qp(Ω)
follows because the a-priori estimates imply an inf-sup condition for the sesquilinear form B(·, ·) on
H1

qp(Ω)×H1
qp(Ω).

Theorem 4.2. In addition to the assumptions of Theorem 4.1, we assume that the non-trapping
conditions

(4.13)
∂a(x)

∂x2
≥ 0 and ξ∗

∂A(x)

∂x2
ξ ≤ 0

hold for every ξ ∈ C2 and x ∈ Ω. Then for δ > 0 small enough, the solution w ∈ H1
qp(Ω) to the

variational problem (3.23) is unique and there is a constant C > 0 such that

(4.14) ∥w∥1,Ω ≤ C ∥F∥0,Ω ,

where

C = 2

[
1

c0
+ 2C1

(
2Hκε

1/2
+ + 2H + 1

)]
(4.15)

and

C1 = 4H(H + 1)

{
κ2 supx∈Ω [a(x)]

c0
+ 1

}
×

 1

2 infx∈Ω[a23(x)]
+

ε+

minm∈Z

(√
|α2

m − κ2ε+|
)
 .

(4.16)

Proof. We take the real part of both sides of the Rellich identity (4.3). From the non-trapping
conditions (4.13) and the Cauchy–Schwarz inequality [75], we have

2

∥∥∥∥a3 ∂w∂x2
∥∥∥∥2
0,Ω

− Re

∫
ΓH

wT+(w)

≤ 2H

∫
ΓH

[
ε−1
+

(∣∣∣∣ ∂w∂x2
∣∣∣∣2 − ∣∣∣∣ ∂w∂x1

∣∣∣∣2
)

+ κ2 |w|2
]
+ 2δ

∣∣∣∣∫
Ω

a2Re

(
∂w

∂x1

∂w

∂x2

)∣∣∣∣
+ 4H

∥∥∥∥ ∂w∂x2
∥∥∥∥
0,Ω

∥F∥0,Ω + ∥w∥0,Ω ∥F∥0,Ω .(4.17)

We can control the integral term with the δ factor by recalling that ab ≤ 1
2

(
a2 + b2

)
for all a ≥ 0 and

b ≥ 0. It follows that

(4.18) 2δ

∣∣∣∣∫
Ω

a2Re

(
∂w

∂x1

∂w

∂x2

)∣∣∣∣ ≤ δ sup
x∈Ω

(|a2(x)|) ∥∇w∥20,Ω .

We also have the bound [6]

(4.19) 2H

∫
ΓH

[
ε−1
+

(∣∣∣∣ ∂w∂x2
∣∣∣∣2 − ∣∣∣∣ ∂w∂x1

∣∣∣∣2
)

+ κ2 |w|2
]
≤ 4Hκε

1/2
+ ∥w∥0,Ω ∥F∥0,Ω .

The use of (4.18) and (4.19) in (4.17) yields

2

∥∥∥∥a3 ∂w∂x2
∥∥∥∥2
0,Ω

− Re

∫
ΓH

wT+(w)

≤ δ sup
x∈Ω

(|a2(x)|) ∥∇w∥20,Ω +
(
4Hκε

1/2
+ + 4H + 1

)
∥w∥1,Ω ∥F∥0,Ω .(4.20)
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On using Parseval’s theorem, it follows from the definition of the DtN maps that

(4.21) Im

∫
ΓH

wT+(w)− Re

∫
ΓH

wT+(w) ≥ 1

ε+
min
m∈Z

(√
|α2

m − κ2ε+|
)
∥w∥20,ΓH

.

Then by taking the imaginary part of both sides of the Rellich identity and using the Cauchy–Schwarz
inequality, we have

(4.22) Im

∫
ΓH

wT+(w) ≤ ∥w∥0,Ω ∥F∥0,Ω .

Combining the last inequality with (4.21) yields

(4.23) − Re

∫
ΓH

wT+(w) ≥ 1

ε+
min
m∈Z

(√
|α2

m − κ2ε+|
)
∥w∥20,ΓH

− ∥w∥0,Ω ∥F∥0,Ω .

We then combine the inequalities (4.20) and (4.23) to obtain

2

∥∥∥∥a3 ∂w∂x2
∥∥∥∥2
0,Ω

+
1

ε+
min
m∈Z

(√
|α2

m − κ2ε+|
)
∥w∥20,ΓH

≤ δ sup
x∈Ω

(|a2(x)|) ∥∇w∥20,Ω + 2
(
2Hκε

1/2
+ + 2H + 1

)
∥w∥1,Ω ∥F∥0,Ω .(4.24)

In order to control ∥w∥20,Ω, we use Lemma 4.3 of Lechleiter and Rittersbusch [7] that delivers

(4.25) ∥w∥20,Ω ≤ 4H2

∥∥∥∥ ∂w∂x2
∥∥∥∥2
0,Ω

+ 4H ∥w∥20,ΓH

for every w ∈ H1(Ω). Using (4.24) and (4.25) we have

∥w∥20,Ω ≤ 4H(H + 1)

 1

2 infx∈Ω[a23(x)]
+

ε+

minm∈Z

(√
|α2

m − κ2ε+|
)


×

[
2

∥∥∥∥a3 ∂w∂x2
∥∥∥∥2
0,Ω

+
1

ε+
min
m∈Z

(√
|α2

m − κ2ε+|
)
∥w∥20,ΓH

]

≤ 4H(H + 1)

 1

2 infx∈Ω[a23(x)]
+

ε+

minm∈Z

(√
|α2

m − κ2ε+|
)


×
[
δ sup
x∈Ω

(|a2(x)|) ∥∇w∥20,Ω + 2
(
2Hκε

1/2
+ + 2H + 1

)
∥w∥1,Ω ∥F∥0,Ω

]
.(4.26)

We set v = w in the variational formulation (3.23) and take the real part of both sides. Since A is
uniformly positive definite, there is a constant c0 > 0 such that

(4.27) ∥w∥21,Ω ≤
{
κ2 supx∈Ω [a(x)]

c0
+ 1

}
∥w∥20,Ω +

1

c0
∥w∥0,Ω ∥F∥0,Ω .

Now we use inequality (4.26) in the last inequality and divide both sides by ∥w∥1,Ω. This yields

(4.28)

[
1− δC1 sup

x∈Ω
(|a2(x)|)

]
∥w∥1,Ω ≤

[
1

c0
+ 2C1

(
2Hκε

1/2
+ + 2H + 1

)]
∥F∥0,Ω .

To finish the proof, we can choose δ > 0 so that

(4.29) δ ≤ 1

2C1 supx∈Ω (|a2(x)|)
.
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Now we extend the previous a-priori estimates to problems where the right hand side F ∈ H1
qp(Ω)

′,
together with the non-trapping conditions (4.13). Instead of F ∈ L2(Ω), we have uniqueness and
existence results for the variational problem (3.23) even when the right hand side is a general bounded
linear functional in the dual space H1

qp(Ω)
′.

Corollary 4.3. Assume the conditions of Theorems 4.1 and 4.2 hold and w ∈ H1
qp(Ω) is a

variational solution to (3.23) with F ∈ H1
qp(Ω)

′ on the right hand side. Then for δ > 0 small enough,
w ∈ H1

qp(Ω) is unique and there is a constant C > 0 such that

(4.30) ∥w∥1,Ω ≤ C ∥F∥1∗,Ω .

Proof. Define B+(q, v) = B(q, v;A, a,Ω) + 2κ2
∫
Ω
aqv for q, v ∈ H1

qp(Ω). Since A is uniformly
positive definite, we have

(4.31)
∣∣B+(v, v)

∣∣ ≥ min

{
c0, κ

2 inf
x∈Ω

[a(x)]

}
∥v∥21,Ω

for v ∈ H1
qp(Ω); therefore, the sesquilinear form B+(·, ·) is coercive. By virtue of the Lax–Milgram

lemma [73], there is a unique solution w+ ∈ H1
qp(Ω) to

(4.32) B+(w+, v) = −F (v)

for v ∈ H1
qp(Ω), and furthermore

(4.33)
∥∥w+

∥∥
1,Ω

≤ min

{
c0, κ

2 inf
x∈Ω

[a(x)]

}−1

∥F∥1∗,Ω .

With w+ given, 2κ2aw+ ∈ L2(Ω) and we have by virtue of Theorem 4.2 a unique solution w1 ∈ H1
qp(Ω)

to

(4.34) B(w1, v;A, a,Ω) = 2κ2
∫
Ω

aw+v

for v ∈ H1
qp(Ω) and δ < 0 small enough. We therefore have that

(4.35) B(w+ + w1, v;A, a,Ω) = −F (v)

for v ∈ H1
qp(Ω), and a constant C > 0 such that

∥∥w+ + w1

∥∥
1,Ω

≤ min

{
c0, κ

2 inf
x∈Ω

[a(x)]

}−1

∥F∥1∗,Ω + 2Cκ2 sup
x∈Ω

[a(x)]
∥∥w+

∥∥
0,Ω

≤ min

{
c0, κ

2 inf
x∈Ω

[a(x)]

}−1{
1 + 2Cκ2 sup

x∈Ω
[a(x)]

}
∥F∥1∗,Ω .(4.36)

The proof follows from w = w+ + w1.

5. Additional a-priori estimates. In this section we consider our variational problem (3.23)
where A ∈ L∞(R2×2,Ω) and a ∈ L∞(Ω) are almost everywhere periodic in x1 with period Λ. In
Sec. 4, we derived a-priori estimates for the case where the coefficient functions are smooth, but we
extend those results to more general coefficient functions in this section.

We begin by defining the function ψ ∈ C∞
0 (R2) as

(5.1) ψ(x) =

{
C exp

(
1

|x|−1

)
. |x| < 1,

0, |x| ≥ 1,
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for x ∈ R2 with C > 0 chosen so that
∫
R2 ψ = 1. Let ψζ(x) = ζ−2ψ(x/ζ) for ζ > 0. We extend the

coefficients A and a by periodicity to the domain U = {x ∈ R2 | − Λ < x1 < Λ }. We can therefore
choose ζ > 0 small enough so that Ω ⊂ Uζ ⊂⊂ U where Uζ = {x ∈ U | dist (x, ∂U) > ζ }.

Next, we define the sequences ϕχζ ∈ C∞(Uζ) as

(5.2) ϕχζ (x) = χ ⋆ ψζ =

∫
R2

χ(x− y)ψζ(y) dy,

where ⋆ denotes convolution and χ ∈ {a21, a2, a23, a}. This discussion leads us to the following theorem.

Theorem 5.1. Suppose that A ∈ L∞(R2×2,Ω) and a ∈ L∞(Ω) are real valued and almost ev-
erywhere periodic in x1 with period Λ. Also, let A be uniformly positive definite and have the special
form

(5.3) A(x) =

(
a21(x) δa2(x)
δa2(x) a23(x)

)
and that

(5.4) ess sup
x∈Ω

[ξ∗Aξ(x+ τe2)− ξ∗Aξ(x)] ≤ 0

for ξ ∈ C2and τ ≥ 0, as well as that

(5.5) ess inf
x∈Ω

[a(x+ τe2)− a(x)] ≥ 0

for τ ≥ 0. Then, given F ∈ H1
qp(Ω)

′ and δ > 0 small enough, there is a unique solution w ∈ H1
qp(Ω)

to (3.23). Furthermore, there is a constant C > 0 such that

(5.6) ∥w∥1,Ω ≤ C ∥F∥1∗,Ω .

Proof. First, we show that the sequences ϕχζ ∈ C∞(Ω) satisfy the conditions of Theorem 4.2. We

define the matrix Aζ ∈ C∞(R2×2,Ω) as

(5.7) Aζ(x) =

(
ϕ
a2
1

ζ (x) δϕa2

ζ (x)

δϕa2

ζ (x) ϕ
a2
3

ζ (x)

)
.

By virtue of the standard properties of mollifiers [73], we have

(5.8)
∥∥∥ϕχζ − χ

∥∥∥
0,Ω

→ 0

as ζ → 0 for χ ∈ {a21, a2, a23, a}. Let λ > 0 be an eigenvalue of A with eigenvector v ∈ R2. Then

(5.9) ∥λv −Aζv∥0,Ω ≤
√
2 ∥v∥∞ ∥A−Aζ∥0,Ω → 0

as ζ → 0. We can therefore choose ζ > 0 small enough so that the eigenvalues of Aζ are strictly
positive and Aζ is uniformly positive definite. We notice that

(5.10) ϕχζ (x1 + Λ, x2) =

∫
R2

χ(x+ Λe1 − y)ψζ(y) dy = ϕχζ (x),

since χ is almost everywhere periodic in x1 with period Λ. We have defined Aζ so that ξ∗Aζξ =
(ξ∗Aξ) ⋆ ψζ for ξ ∈ C2. It then follows that

(ξ∗Aζξ) (x+ τe2)− (ξ∗Aζξ) (x) =

∫
|y|<ζ

[ξ∗Aξ(x+ τe2 − y)− ξ∗Aξ]ψζ(y) dy

≤ ess sup
x∈Ω

[ξ∗Aξ(x+ τe2)− ξ∗Aξ(x)]

∫
|y|<ζ

ψζ(y) dy

≤ 0(5.11)
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for ξ ∈ C2 and τ ≥ 0. Therefore,

(5.12) ξ∗
∂Aζ(x)

∂x2
ξ ≤ 0

for ξ ∈ C2 and x ∈ Ω. On using (5.5), a similar argument to (5.11) shows that
∂ϕa

ζ (x)

∂x2
≥ 0 for x ∈ Ω.

Thus, the coefficients ϕaζ and Aζ satisfy the conditions of Corollary 4.3 for ζ > 0 and δζ > 0 sufficiently
small. We have that

B(q, v;Aζ , ϕ
a
ζ ,Ω) = B(q, v;A, a,Ω) +

∫
Ω

(∇v)∗ (Aζ −A) (∇q)

+ κ2
∫
Ω

(
a− ϕaζ

)
qv,(5.13)

for q ∈ H1
qp(Ω) and v ∈ H1

qp(Ω). Furthermore, we find a sequence (wξ)ξ>0 with wξ ∈ C∞(Ω) such

that ∥w − wξ∥1,Ω ≤ ξ for ξ > 0 and

(5.14) B(wξ, v;A, a,Ω) = −F (v)−B(w − wξ, v;A, a,Ω)

for all v ∈ H1
qp(Ω). Upon setting q = wξ in (5.13), we see that

B(wξ, v;Aζ , ϕ
a
ζ ,Ω) = −F (v)−B(w − wξ, v;A, a,Ω) +

∫
Ω

(∇v)∗ (Aζ −A)∇wξ

+ κ2
∫
Ω

(
a− ϕaζ

)
wξv(5.15)

for v ∈ H1
qp(Ω). Due to Corollary 4.3, with w − wξ ∈ H1

qp(Ω) given, we let w1 ∈ H1
qp(Ω) solve

(5.16) B(w1, v;Aζ , ϕ
a
ζ ,Ω) = −F (v)−B(w − wξ, v;A, a,Ω)

for v ∈ H1
qp(Ω) and δζ > 0 small enough. We also let w2 ∈ H1

qp(Ω) solve

(5.17) B(w2, v;Aζ , ϕ
a
ζ ,Ω) =

∫
Ω

(∇v)∗ (Aζ −A)∇wξ + κ2
∫
Ω

(
a− ϕaζ

)
wξv

for v ∈ H1
qp(Ω) and δζ > 0 small enough. Furthermore, we have a constant Cζ > 0 such that

∥w1∥1,Ω ≤ Cζ sup
0̸=v∈H1

qp(Ω)

|−F (v)−B(w − wξ, v;A, a,Ω)|
∥v∥1,Ω

≤ Cζ

(
∥F∥1∗,Ω + ∥w − wξ∥1,Ω

)
.(5.18)

We also have

∥w2∥1,Ω ≤ Cζ sup
0 ̸=v∈H1

qp(Ω)

∣∣∣∣∫Ω
(∇v)∗ (Aζ −A)∇wξ + κ2

∫
Ω

(
a− ϕaζ

)
wξv

∣∣∣∣
∥v∥1,Ω

≤ Cζ

[
∥∇wξ∥∞ ∥Aζ −A∥0,Ω + κ2 ∥wξ∥∞

∥∥ϕaζ − a
∥∥
0,Ω

]
(5.19)

for the same constant Cζ > 0.
For each χ ∈ {a21, a2, a23, a}, we can write

(5.20) χ = ess inf
x∈Ω

χ+ χ′ ,
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where χ′ ∈ L∞(Ω) and ess infx∈Ω χ
′ = 0. But then we notice

(5.21) ϕχζ ≥ ess inf
x∈Ω

χ+ ess inf
x∈Ω

χ′
∫
R2

ψζ(y) dy = ess inf
x∈Ω

χ.

By writing χ = ess supΩ χ+χ′ with χ′ ∈ L∞(x ∈ Ω) and ess supx∈Ω χ
′ = 0, a similar argument shows

that

(5.22) ess inf
x∈Ω

χ ≤ ϕχζ ≤ ess sup
x∈Ω

χ.

Now (5.22) and the explicit form of the constant (4.16) allow us to find a constant C > 0 independent
of ζ > 0 such that Cζ ≤ C for all ζ > 0. For the same reason, the sequence (δζ)ζ>0 is uniformly
bounded away from zero and has a convergence subsequence. Let this subsequence be conveniently
denoted as (δζ)ζ>0. We therefore find a δ > 0 such that δ = limζ→0 δζ . By virtue of (5.16) and (5.17),
we have that wξ = w1 + w2 and so

∥w∥1,Ω ≤ ∥w − wξ∥1,Ω + ∥wξ∥1,Ω
≤ ξ + ∥w1∥1,Ω + ∥w2∥1,Ω .(5.23)

The proof follows by taking ζ → 0 and ξ → 0 in (5.23). By virtue of (5.18), limξ→0 ∥w1∥1,Ω ≤
C ∥F∥1∗,Ω. Finally, (5.19) shows that limζ→0 ∥w2∥1,Ω = 0.

6. Problem in the mapped domain. We now study a related scattering problem after a
coordinate transformation G−1

S is used to map Ω into the domain Ω̂ = [−Λ/2,Λ/2] × [−H,H]. The
coordinate transformation GS is defined by

x1 = x̂1,(6.1)

x2 = S(x̂2)g(x̂1) + x̂2,(6.2)

for some C2 function S(x̂2); thus, x̂ = (x̂1, x̂2) ∈ R2.
For our numerical example later on, we chose S to be piecewise cubic, but there are many possible

choices. For the mapping to have the desired properties, we require that S(±H) = 0, S(0) = 1,
S ′(±H) = 0 and S ′(0) = 0. The grating interface Γ gets mapped to x̂2 = 0 and, therefore, in the
transformed coordinate system the interface Γ̂ = {x̂ | x̂2 = 0} is flat. Since the interfaces Γ±H are
unchanged by the coordinate transformation, the hybrid method can be extended to multiple smooth
interfaces.

For a function w in the original coordinate system, we define ŵ(x̂) = w(GS(x̂)) after mapping. In
order to write the equation for the transformed field û, we denote the Jacobian of GS as D. We seek
to find a û such that

(6.3) ∇̂ ·
(
|D|D−1ÂD−⊤∇̂û

)
+ κ2|D|âû = ∇̂ ·

[
|D|D−1(ε−1

+ I− Â)D−⊤∇̂ûinc
]
+ κ2|D|(1− â)ûinc,

subject to quasi-periodicity and radiation conditions. The advantage of this problem is that dis-
continuities of the transformed version Â of A occur only on flat boundaries. We have chosen the
coordinate transform so that (6.3) reduces to (3.12) in the half-spaces U±

H and therefore we use the
same radiation conditions as we did with the original problem.

The transformed variational problem is as follows. Given an F̂ ∈ H1
qp(Ω̂)

′, find a ŵ ∈ H1
qp(Ω̂)

such that

(6.4) B(ŵ, v̂; |D|D−1ÂD−⊤, |D|â, Ω̂) = −(F̂ , v̂)0,Ω̂

for v̂ ∈ H1
qp(Ω̂).

So far we have shown that the variational problem (3.23) has unique solutions for coefficient
functions that are L∞ as long as, roughly speaking, they satisfy the general non-trapping conditions
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(5.4) and (5.5). We now show that there is a unique solution ŵ ∈ H1
qp(Ω̂) to the transformed problem

(6.4). The transformed coefficient functions C = |D|D−1ÂD−⊤ and c = |D|â do not necessarily
satisfy these non-trapping conditions, so we cannot appeal to our theory for the original problem.
Instead, we appeal to norm equivalence to show an a-priori estimate for the transformed problem.

Theorem 6.1. Suppose that there exists a constant c0 > 0 such that |D(x̂)| ≥ c0 > 0 for x̂ ∈ Ω̂.

Then the transformed problem (6.4) has a unique variational solution ŵ ∈ H1
qp(Ω̂). Furthermore,

there is a constant C > 0 such that

(6.5) ∥ŵ∥1,Ω̂ ≤ C
∥∥∥F̂∥∥∥

1∗,Ω̂
.

Proof. We notice that ||D|D−1D−⊤| = 1 and so λmax(x̂) = λmin(x̂)
−1. The determinant |D(x̂)| =

1 + S ′(x̂2)g(x̂1) is continuous since we have assumed that S(x̂2) and g(x̂1) are C2 functions. We
therefore have a constant c1 > 0 such that

(6.6) c1 ≥ tr(|D|D−1D−⊤) = |D|
(
1 +

(S(x̂2)g′(x̂1))2 + 1

|D|2

)
≥ c0.

Since the trace is the sum of eigenvalues, in particular we can show that λmin(x̂) is positive and
bounded away from zero. After multiplying (6.6) by λmin(x̂), we see that

(6.7) c1 ≥ λ2min(x̂) + 1

λmin(x̂)
≥ c0

for x̂ ∈ Ω̂. Since |D|D−1D−⊤ is real and symmetric, it follows that it is uniformly positive definite
and there are constants C1 > 0 and C2 > 0 such that

(6.8) C1|ξ|2 ≤ ξ∗|D|D−1D−⊤(x̂)ξ ≤ C2|ξ|2

for ξ ∈ C2 and x̂ ∈ Ω̂.
For w ∈ C∞(Ω), it follows that

∥w∥21,Ω = (|D|ŵ, ŵ)0,Ω̂ + (|D|D−⊤∇̂ŵ,D−⊤∇̂ŵ)0,Ω̂
≥ min (c0, C1) ∥ŵ∥21,Ω̂ .(6.9)

On the other hand, we have

(6.10) ∥ŵ∥21,Ω̂ ≥ min

(
1

supx̂∈Ω̂ (|D(x̂)|)
,
1

C2

)
∥w∥21,Ω ,

which shows that we have norm equivalence for C∞ functions. For w ∈ H1
qp(Ω) we can find a sequence

(wζ)ζ of C∞(Ω) functions that converge to w in H1 using the density of C∞(Ω)∩H1
qp(Ω) in H

1
qp(Ω).

The mapped sequence (ŵζ)ζ defined by ŵζ = wζ ◦GS is a Cauchy sequence, using the norm equivalence

for smooth functions. We therefore find a unique ŵ ∈ H1
qp(Ω̂) and two constants C1 > 0 and C2 > 0

such that

(6.11) C1 ∥w∥1,Ω ≤ ∥ŵ∥1,Ω̂ ≤ C2 ∥w∥1,Ω .

Given an F̂ ∈ H1
qp(Ω̂)

′, we can find a unique fF̂ ∈ H1
qp(Ω) and an F ∈ H1

qp(Ω)
′ such that

(6.12) F̂ (v̂) = (v, |D(G−1
S (x))|−1fF̂ )0,Ω = F (v).

For this particular F (v), we have a unique solution w ∈ H1
qp(Ω) to the original variational problem

(3.23). A similar density argument yields a unique ŵ ∈ H1
qp(Ω̂) that solves (6.4). To complete the

proof, we use norm equivalence again to see that

∥ŵ∥1,Ω̂ ≤ C2C ∥F∥1∗,Ω ≤ C2
2C
∥∥∥F̂∥∥∥

1∗,Ω̂
.
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Our next aim is to show that the solution has some additional regularity, i.e., w ∈ H1+s(Ω) for
s ∈ (0, s0) with s0 ∈ (0, 1/2). Furthermore, using this regularity result, we will aim to show that the

mapped solution ŵ ∈ H1+s(Ω̂). The hybrid coordinate-transformation method converges due to this
extra regularity, as shown in Secs. 8 and 9.

Theorem 6.2. Suppose the conditions of Theorem 5.1 hold. Let w ∈ H1(Ω) be the solution to the
variational problem (3.23) with F ∈ L2

qp(Ω) on the right hand side. Then there exist constants C > 0
and s0 ∈ (0, 1/2) such that

(6.13) ∥w∥1+s,Ω ≤ C ∥F∥0,Ω for 0 < s ≤ s0.

Proof. We extend F and w by quasi-periodicity. In U+
H and U−

H we extend F by zero and the
solution w using its Rayleigh–Bloch expansion [57]. We denote these extended functions by F ◦ and
w◦. We define the circular extended domain Ω◦ as

(6.14) Ω◦ = {x | R > |x|},

where R > 0 is chosen large enough so that Ω ⊂ Ω◦. Also, we let χ ∈ C∞ be a smooth cutoff function
such that χ ≡ 1 in Ω◦ and χ ≡ 0 on ∂Ω◦. We define p ∈ H1(Ω) as p = χw◦ that solves the original
problem and p ≡ 0 on ∂Ω◦.

Since

(6.15)

∫
Ω◦

∇ · (A∇p) v =

∫
Ω◦

[
(∇χ)⊤ A∇w◦ +∇ · (w◦A∇χ) + (F ◦ − κ2aw◦)χ

]
v

for v ∈ H1(Ω◦), p solves the Laplace equation with zero boundary conditions and a right hand side

G = (∇χ)⊤ A∇w◦ + ∇ · (w◦A∇χ) + (F ◦ − κ2aw◦)χ. By virtue of Proposition 2.1 of Bonito et al.
[76], it follows that G ∈ Hs−1 for s0 ∈ (0, 1/2) and s ∈ (0, s0). Also, Theorem 3.1 of Bonito et al. [76]
shows that we have a constant C > 0 such that

(6.16) ∥p∥1+s,Ω◦ ≤ C ∥G∥s−1,Ω◦ .

It follows from a predeceesor paper [56] and our a-priori bound (5.6) that

∥w∥1+s,Ω ≤ C ∥G∥s−1,Ω◦

≤ C
(
∥w◦∥1,Ω◦ + ∥F ◦∥0,Ω◦

)
≤ C ∥F∥0,Ω .(6.17)

Corollary 6.3. Suppose the conditions of Theorems 6.1 and 6.2 hold. Then there exists con-
stants C > 0 and s0 ∈ (0, 1/2) such that

(6.18) ∥ŵ∥1+s,Ω̂ ≤ C
∥∥∥F̂∥∥∥

0,Ω̂
for 0 < s ≤ s0.

Proof. The result follows from Theorem 6.2 and Heuer Lemma 2.8 [77].

7. Discretized problem. In this section, we define a discretized problem where the transformed
coefficient functions C = |D|D−1ÂD−⊤ and c = |D|â are replaced by piecewise smooth approxima-
tions. Since this new problem no longer corresponds to a coordinate transform, we cannot appeal to
norm equivalence as we did in Sec. 6 to show existence and uniqueness of solutions. Instead, we use
the fact that the discretized problem is a small perturbation of the transformed problem.

For an integer N ≥ 1, we define the discretization parameter h = 2H/N and the N+1 grid points

(7.1) −H = x̂2,0 < x̂2,1 < · · · < x̂2,N < x̂2,N = H.
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We assume that x̂2 = 0 is a grid point. The domain Ω̂ is decomposed into N thin slices

(7.2) Sn = [−Λ/2,Λ/2]× [x̂2,n, x̂2,n+1] , n ∈ [0, N − 1] ,

and the transformed coefficients functions are sampled at the slice midpoints given by

(7.3) x̂∗2,n =
1

2
(x̂2,n + x̂2,n+1) , n ∈ [0, N − 1] .

On each slice Sn, we define the discretized coefficient functions as

(7.4) Φh(x̂) = Φ(x̂1, x̂
∗
2,n)

for x̂ ∈ Sn and Φ ∈ {C, c}. The discretized coefficient functions are piecewise constant in x̂2 and only
depend on x̂1 in each slice Sn. Since the transformed coefficients only have discontinuities on a flat
interface, the discretized coefficients are continuous in every slice. The discretized variational problem
is as follows. Given F̂ ∈ H1

qp(Ω̂)
′, find a ŵh ∈ H1

qp(Ω̂) such that

(7.5) B(ŵh, v̂,Ch, ch, Ω̂) = F̂ (v̂)

for v̂ ∈ H1
qp(Ω̂).

Theorem 7.1. Suppose the conditions of Theorems 6.1 and 6.2 hold. Then for h > 0 small
enough, there is a unique solution ŵ ∈ H1

qp(Ω̂) to the discretized problem (7.5). Furthermore, there
exists a constant C > 0 such that

(7.6) ∥û− ûh∥1,Ω̂ ≤ Ch
∥∥uinc∥∥

1,Ω
.

Proof. We define the maps T : H1
qp(Ω̂) → H1

qp(Ω̂)
′ and Th : H1

qp(Ω̂) → H1
qp(Ω̂)

′ by (Tŵ, v̂) =

B(ŵ, v̂,C, c, Ω̂) and (Thŵ, v̂) = B(ŵ, v̂,Ch, ch, Ω̂), respectively. We see that

|[(T − Th)ŵ, v̂]| ≤ ∥C−Ch∥∞
∥∥∥∇̂ŵ∥∥∥

0,Ω̂

∥∥∥∇̂v̂∥∥∥
0,Ω̂

+ κ2 ∥c− ch∥∞ ∥ŵ∥0,Ω̂ ∥v̂∥0,Ω̂

≤ Ch ∥ŵ∥1,Ω̂ ∥v̂∥1,Ω̂ .(7.7)

Then in the operator norm, we have

(7.8) ∥T − Th∥ = sup
0̸=ŵ∈H1

qp(Ω̂)

∥(T − Th)ŵ∥1∗,Ω̂
∥ŵ∥1,Ω

≤ Ch.

It follows from Corollary 10.3 of Kress [78] that, for h > 0 small enough, there is a constant C > 0
such that

∥û− ûh∥1,Ω̂ ≤ C

(
∥(T − Th)û∥1∗,Ω̂ +

∥∥∥Ĝ− Ĝh

∥∥∥
1∗,Ω̂

)
≤ Ch

(
∥û∥1,Ω̂ +

∥∥ûinc∥∥
1,Ω̂

)
≤ Ch

∥∥uinc∥∥
1,Ω

.(7.9)

8. Convergence in the number of retained Fourier terms. In this section, we show that
the hybrid coordinate-transformation method converges with respect to the number of terms retained
in the Fourier series. We return to the case of a generic orthotropic medium described by (2.1) and
(2.2) that occupies Ω, with ε̃ a symmetric matrix. Later in this section, we show how to choose ε and
µ in order to solve the transformed scattering problem.
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In the mapped domain, we consider Ê(x̂) = Ê1(x̂)e1 + Ê2(x̂)e2 and Ĥ(x̂) = Ĥ3(x̂)e3, where

(8.1) Ê1 = − 1

iωε0 |ε̃|

(
ε22

∂Ĥ3

∂x̂2
+ ε12

∂Ĥ3

∂x̂1

)
,

(8.2) Ê2 =
1

iωε0 |ε̃|

(
ε21

∂Ĥ3

∂x̂2
+ ε11

∂Ĥ3

∂x̂1

)
,

and

(8.3) ∇̂ ·
(
|ε̃|−1

ε̃⊤∇̂Ĥ3

)
+ κ2µ33Ĥ3 = 0.

Therefore, in order to solve the correct Helmholtz equation (6.3) we choose the constitutive
parameters such that

(8.4) ε =

(
|Â|−1|D|D−1ÂD−⊤ 0

0 |̂̃µ|−1|D|ε̂33

)
and µ =

(
|D|D−1 ̂̃µD−⊤ 0

0 |D|â

)
.

For example, |ε̃|−1 = |Â| and therefore |ε̃|−1ε̃⊤ = |D|D−1ÂD−⊤ since Â is symmetric. The partial
differential equation (8.3) is difficult to solve, so we replace the coefficient functions with the piecewise
smooth functions Ch and ch given by (7.4).

The constitutive parameters are written as the Fourier series

(8.5) ε(x̂) =
∑
m∈Z

εm(x̂2) exp

(
i
2π

Λ
mx̂1

)
and µ(x̂) =

∑
m∈Z

µm(x̂2) exp

(
i
2π

Λ
mx̂1

)
.

We also expand the field phasors in terms of the Rayleigh–Bloch expansions

Ê(x̂) = Ê1(x̂)e1 + Ê2(x̂)e2 =
∑
m∈Z

[
Ê1,m(x̂2)e1 + Ê2,m(x̂2)e2

]
exp (iαmx̂1) ,(8.6)

Ĥ(x̂) = Ĥ3(x̂)e3 =
∑
m∈Z

[
Ĥ3,m(x̂2)e3

]
exp (iαmx̂1) ,(8.7)

with the unknown Fourier functions Ê1,m(x̂2), Ê2,m(x̂2), and Ĥ3,m(x̂2). Substitution of the expansions
(8.5)–(8.7) in the time-harmonic Maxwell equations delivers a system of two first-order partial dif-
ferential equations and an algebraic equations relating the unknown coefficients Ê1,m(x̂2), Ê2,m(x̂2),

and Ĥ3,m(x̂2) [12, 49]. Once this system is solved, the electric and magnetic field phasors can be

reconstructed in the mapped domain Ω̂ using (8.6) and (8.7).
We truncate the series (8.6) and (8.7) to include only |m| ≤M ,M ≥ 0. In order to write a system

of 2M + 1 equations relating the Fourier coefficients, we define the three (2M + 1)× 1 matrixes

Ê1 =
(
Ê1,−M , Ê1,−M+1, · · · , Ê1,M−1, Ê1,M

)⊤
,(8.8)

Ê2 =
(
Ê2,−M , Ê2,−M+1, · · · , Ê2,M−1, Ê2,M

)⊤
,(8.9)

and

Ĥ3 =
(
Ĥ3,−M , Ĥ3,−M+1, · · · , Ĥ3,M−1, Ĥ3,M

)⊤
.(8.10)

along with the (2M + 1)× (2M + 1) matrix

(8.11) a = diag (α−M , α−M+1, · · · , αM−1, αM ) .
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With T (ϕ) denoting the (2M +1)× (2M +1) Toeplitz matrix formed from the Fourier coefficients of
a periodic function ϕ, the RCWA then requires the solution of the 2M + 1 equations

T (Ch,22)
∂2Ĥ3

∂x̂22
+ i [aT (Ch,21) + T (Ch,12)a]

∂Ĥ3

∂x̂2

+
[
κ2T (ch)− aT (Ch,11)a

]
Ĥ3 = 0(8.12)

in each slice Sn, where Ch,ℓm denotes the ℓmth component of Ch.
The RCWA enforces transmission conditions for the tangential components of the fields across

all interslice boundaries. Also, appropriate boundary conditions are enforced on the top and bottom
boundaries of Ω̂. To this end, we define the reflected and transmitted fields as

Ĥref(x̂) = e3

M∑
m=−M

Ĥref
3,m exp[iβm(x̂2 −H)] exp(iαmx̂1), x̂2 ≥ H,(8.13)

and

Ĥtr(x̂) = e3

M∑
m=−M

Ĥtr
3,m exp[−iβm(x̂2 +H)] exp(iαmx̂1), x̂2 ≤ −H,(8.14)

with unknown coefficients Ĥref
3,m and Ĥtr

3,m, respectively. Also, the incident field (3.2) can be written
as

(8.15) Ĥ inc
3 (x̂) = − exp[−iβ0(x̂2 −H)] exp(iα0x̂1).

The boundary conditions across the plane x̂2 = H are

(8.16)

Ĥ3,m(x̂2) = −δm0 + Ĥref
3,m

∂Ĥ3,m(x̂2)

∂x̂2
= iβm

(
δm0 + Ĥref

3,m

)
 , x̂2 = H ,

where δmm′ is the Kronecker delta. The boundary conditions across the plane x̂2 = −H are

(8.17)

Ĥ3,m(x̂2) = Ĥtr
3,m

∂Ĥ3,m(x̂2)

∂x̂2
= −iβmĤtr

3,m

 , x̂2 = −H .

In addition, the following transmission conditions hold for every interslice boundary:

(8.18)

[[
Ĥ3

]]
x̂2=x̂2,n

= 0[[
ν⊤Ch∇̂Ĥ3

]]
x̂2=x̂2,n

= 0

 , n ∈ [1, N − 1] .

Now we can show that the RCWA for this problem is actually a Galerkin method, i.e., the solution
solves the appropriate variational problem.

Theorem 8.1. In the mapped domain, ûth,M (x̂) = Ĥ3(x̂) solves the variational problem

(8.19) B(ûth,M , v̂M ;Ch, ch, Ω̂) =

〈
1

ε+

∂ûinc

∂x̂2
− T+(ûinc), v̂M

〉
0,Γ̂H

for every v̂M ∈ H1(−H,H)⊗ SM with SM = span|m|≤M [exp(iαmx̂1)].
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Proof. We let the test function v̂M ∈ H1(−H,H) ⊗ span|m|≤M [exp(iαmx̂1)]. We can therefore
write

(8.20) v̂M =
M∑

m=−M

v̂m(x̂2) exp(−iαmx̂1).

By virtue of the orthogonality of the basis functions exp(iαmx̂1), it follows from (8.12) that

(8.21)

∫ Λ/2

−Λ/2

[
∇̂ ·
(
Ch∇̂Ĥ3

)
v̂M + κ2chĤ3v̂M

]
dx̂1 = 0

in each slice. Now we integrate with respect to x̂2 and use the divergence theorem in each slice to
obtain ∫

Sn

[
(∇̂v̂M )∗Ch∇̂Ĥ3 − κ2chĤ3v̂M

]
+

∫
x̂2=x̂2,n

v̂Mν⊤Ch∇̂Ĥ3 −
∫
x̂2=x̂2,n+1

v̂Mν⊤Ch∇̂Ĥ3 = 0.(8.22)

Next, we sum over all the slices and use the transmission conditions to obtain

(8.23)

∫
Ω̂

[
(∇̂v̂M )∗Ch∇̂Ĥ3 − κ2chĤ3v̂M

]
−
∫
Γ̂H

v̂M
1

ε+

∂Ĥ3

∂x̂2
+

∫
Γ̂−H

v̂M
1

ε+

∂Ĥ3

∂x̂2
= 0.

By applying the boundary conditions across x̂2 = ±H, we see that

1

ε+

∂Ĥ3

∂x̂2
(H) =

1

ε+

∂ûinc

∂x2
− T+(ûinc) + T+(Ĥ3)(8.24)

and

1

ε+

∂Ĥ3

∂x̂2
(−H) = −T−(Ĥ3).(8.25)

The use of (8.24) and (8.25) in (8.23) completes the proof.

To show that we have convergence in the parameter M , we now consider an adjoint problem.
To this end, let B∗(w, v) = B(v, w) be the adjoint form of the sesquilinear form B(·, ·). Given an

F̂ ∈ L2(Ω̂), the adjoint problem is to seek a ẑF̂ ∈ H1
qp(Ω̂) such that

(8.26) B∗(ẑF̂ , v̂;C, c, Ω̂) =
(
F̂ , v̂

)
0,Ω̂

for v̂ ∈ H1
qp(Ω̂). Due to our theory, we know that ẑF̂ exists and is unique; furthermore there are

constants C > 0 and s0 ∈ (0, 1/2) such that

(8.27)
∥∥ẑF̂∥∥1+s,Ω̂

≤ C
∥∥∥F̂∥∥∥

0,Ω̂

for s ∈ (0, s0).

Theorem 8.2. Assume that the conditions of Theorem 7.1 hold. For M > 0 large enough, there
are constants C > 0 and s0 ∈ (0, 1/2) independent of h > 0 such that

(8.28) ∥ûh − ûh,M∥0,Ω̂ ≤ C
(
M−2s + hM−s

)
for 0 < s ≤ s0.
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Proof. We define the truncation operator FM : H1
qp(Ω̂) → H1(−H,H)⊗ SM as

(8.29) FMϕ(x̂) =
M∑

m=−M

ϕm(x̂2) exp(iαmx̂1)

for ϕ ∈ H1
qp(Ω̂). We let êM = ûh − ûh,M and set F̂ = êM and v̂ = êM in the adjoint problem (8.26).

By virtue of theorem 8.1 we have the Galerkin orthogonality

(8.30) B(êM ,FM ẑêM ;Ch, ch, Ω̂) = 0.

It follows that

∥êM∥20,Ω̂
(8.30)
= B(êM , ẑêM −FM ẑêM ;Ch, ch, Ω̂) +B(êM , ẑêM ;C−Ch, c− ch, Ω̂)

≤ γ ∥êM∥1,Ω̂ ∥ẑêM −FM ẑêM ∥1,Ω̂ +
∣∣∣B(êM , ẑêM ;C−Ch, c− ch, Ω̂)

∣∣∣
≤ γ ∥êM∥1,Ω̂ ∥ẑêM ∥1+s,Ω̂M

−s + Ch ∥êM∥1,Ω̂ ∥ẑêM ∥1,Ω̂
(8.27)

≤ C
[
M−s + h

]
∥êM∥0,Ω̂ ∥êM∥1,Ω̂(8.31)

for s ∈ (0, s0). We then divide (8.31) through by ∥êM∥0,Ω̂ to see that

(8.32) ∥êM∥0,Ω̂ ≤ C
[
M−s + h

]
∥êM∥1,Ω̂ .

The proof is complete by applying an argument of Schatz [79] that shows ∥êM∥1,Ω̂ ≤ CM−s forM > 0
large enough.

We conclude this section by combining our convergence theory into a single theorem that shows
that the approximate solution ûh,M in the mapped domain converges to the true solution û. Generally
speaking, we need the relative permittivity ε and relative permeability µ from the original scattering
problem to be non-trapping.

Theorem 8.3. Suppose that the conditions of Theorems 5.1 and 6.1 hold. Then for some h > 0
small enough and M > 0 large enough, there are constants C > 0 and s0 ∈ (0, 1/2) independent of h
and M such that

(8.33) ∥û− ûh,M∥K,Ω̂ ≤ C
[
h+M−s(2−K) + h(1−K)M−s(1−K)

]
,

where K ∈ {0, 1} and s ∈ (0, s0).

Proof. We write û− ûh,M = û− ûh+ ûh− ûh,M and use the triangle inequality. The proof follows
from Theorems 6.1 and 8.2.

9. Numerical example. We now present a numerical example to test our convergence theory.
Let S(x̂2) be a piecewise cubic function in the computational domain and identically zero outside; in
particular,

(9.1) S(x̂2) =


1− 3

H2 x̂
2
2 +

2
H3 x̂

3
2, x̂2 ∈ [0, H],

1− 3
H2 x̂

2
2 − 2

H3 x̂
3
2, x̂2 ∈ [−H, 0),

0, |x̂2| > H.

We used Matlab version R2019b to implement the RCWA for anisotropic constitutive parameters.
When the grating is flat and ε(x) = ε(x2)I is piecewise uniform, the scattering problem can be

solved analytically [80]. However, as analytic solutions are unavailable when g(x1) is not constant
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for x1 ∈ [−Λ/2,Λ/2], we compared the results of our hybrid method to those from the finite element
method (FEM) [81, 82]. We used NETGEN version 6.2 [83] to implement an FEM solver and ûh,M
was compared to the FEM solution ûFEM with respect to the relative L2 norm

(9.2) ∥ûh,M − ûFEM∥ ∥ûFEM∥−1
.

After the solution ûh,M has been calculated, it is possible to map it back into the original spatial
domain as

(9.3) uh,M = ûh,M (G−1
S (x)).

Given a point (x1, x2) we solved (6.2) for x̂2 using the bisection method. We then found the closest
grid point x̂2,n to this solution and set uh,M (x1, x2) = ûh,M (x̂1, x̂2,n). Therefore, we also compared
the results of the RCWA solution [57] of the original problem (3.5)–(3.7) to the mapped solution uh,M .

We now consider a test case where

(9.4) g(x1) =
Λ

5
cos(2πx1/Λ)

with Λ = 500 nm, H = 700 nm, κ = 2π/600 nm−1, θ = 0, ε± = 1, µ(x) = I for x ∈ Ω, and

(9.5) ε(x) =

(1 + 10−9i)I, g(x1) < x2 < H,

(−15 + 4i)I, −H < x2 < g(x1).

The case of complex coefficient functions can be handled using the technique of Lechleiter and Rit-
tersbusch [7]. The small imaginary part in the relative permittivity in the portion of Ω above the
grating was done for the sake of numerical stability of the marching method used to implement the
RCWA algorithm [57].

When the RCWA algorithm [12, 35, 57] is used, the Gibbs phenomenon [84] arises prominently near
the grating [59], especially in the spatial profile of E1. This is exemplified by the plot of |E1(x1, x2)|
vs. x1/Λ for x2/H = 0 in Fig. 9.1, obtained with M = 10 and h = 1 nm. Our hybrid coordinate-
transformation method implemented with M = 10 and h = 1 nm delivered a very smooth profile, also
shown in the same figure, the relative L2 error (normalized using the hybrid solution) between the
results from the two methods being ≃ 4× 10−1. Thus, the hybrid method was able to eliminate the
Gibbs phenomenon. The relative L2 error decreases as |x2 − g(x1)| increases in Ω̃−Ω†, and the error

becomes insignificant outside Ω̃.
For x2/H = 0, the relative L2 error between the hybrid solution and the FEM solution was

approximately 5 × 10−6. Thus, the FEM can deliver better results for the p-polarization state than
the RCWA [59, 57], but the computational resources needed for the FEM solution are much more
than for the RCWA since the FEM requires inverting large sparse matrices.

The hybrid method provides the solution in mapped domain Ω̂ first and the original domain Ω
second. |Ĥ3(x̂1, x̂2)| is plotted vs. x̂1/Λ and x̂2/H in the left panel of Fig. 9.2, and |H3(x̂1, x2)| is
plotted vs. x1/Λ and x2/H in the right panel of Fig. 9.2, obtained with M = 10 and h = 1 nm. The

grating is, of course, flat in Ω̂ but sinusoidally undulating in Ω. The spatial profiles of |H3| are very
different in the central region but become quite similar in the neighborhoods of Γ±H , undoubtedly
due to the properties of the function S(x̂2) of (9.1) at x̂2 ∈ {−H, 0, H}, as identified in Sec. 6.
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Fig. 9.1: |E1(x1, x2)| vs. x1/Λ for the example problem when x2/H = 0. Blue curve: RCWA solution
calculated with M = 10 and h = 1 nm. Red curve: Hybrid solution calculated with M = 10 and
h = 1 nm. See the paragraph containing (9.4) for other details.

Fig. 9.2: Spatial profiles of (left) |Ĥ3(x̂1, x̂2)| in Ω̂ and (right) |H3(x̂1, x2)| in Ω. See the paragraph
containing (9.4) for other details. The grating is outlined in white in both domains.

Finally, we studied the convergence of the hybrid method with respect to both M and h, by
comparing ûh,M with the FEM solution ûFEM . The results of this study are shown in Fig. 9.3. Figure
9.3a shows the convergence rate of ûh,M with respect to the parameter M , ûh,M being calculated for
M ∈ {1, 2, · · · , 10} with h = 1 nm fixed. We observe O(e−2M ) convergence for M ≤ 5 and O(e−M )
convergence for M ≥ 6. Theorem 8.3 predicts faster convergence for small enough M and slower
convergence for large enough M , both trends being exemplified numerically in Figure 9.3a. Figure
9.3b shows the convergence rate of ûh,M with respect to the slice thickness h, calculations having been
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made for h ∈ {1, 2, 4, 5, 10, 20, 50} nm with M = 10 fixed. We observe O(h2) convergence.
Previous analysis has predicted slower convergence rates in terms of both M and h for the RCWA

[57]. Therefore, a benefit of the hybrid method over the RCWA is the observed exponential convergence
rate with respect to the parameter M .
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Fig. 9.3: Convergence plots comparing the hybrid solution with the FEM solution in the mapped
domain. See the paragraph containing (9.4) for other details. (a) Semilog plot of relative L2 error vs.
M when h = 1 nm. (b) Loglog plot of relative L2 error vs. h when M = 10.

10. Conclusion. In this paper, we formulated and analyzed a hybrid method for solving the
time-harmonic Maxwell equations in a spatial domain that contains a grating. This method combines
transformation optics with the RCWA. The domain is invariant in one dimension and the chosen
constitutive properties allow the reduction of the full Maxwell system to a 2D Helmholtz equation for
each linear polarization state, our focus lying on the p-polarization state. We proved the existence of
a unique solution to the original scattering problem by establishing integral formulas similar to the
Rellich identity to prove a-priori estimates. Our analysis required certain non-trapping conditions to
hold. After implementing a coordinate transformation from the original domain to a mapped domain,
we used norm equivalence to prove the uniqueness and existence of solutions to the transformed
scattering problem. The discretized form of the transformed problem was analyzed for convergence
analysis with respect to two different parameters: (i) a slice thickness indicative of spatial discretization
in one dimension and (ii) the number of terms retained in the Fourier–Bloch expansions of the electric
and magnetic field phasors with respect to the other dimension. Testing with a numerical example
revealed faster convergence than our analysis predicts, which suggests future work to improve analysis.
In contrast to RCWA, the hybrid method does not suffer from the Gibbs phenomenon. However, the
hybrid method is applicable only to gratings that are the graphs of functions.
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[54] G. Floquet, “Sur les équations différentielles à coefficients périodiques,” Ann. Sci. l’Ecole Norm. Super., 2nd
Series 12, 47–88 (1883).
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[83] J. Schöberl, Netgen/NGSolv, https://ngsolve.org, 5 May 2020.
[84] T.W. Körner, Fourier Analysis, Chap. 17, Cambridge University Press, Cambridge, United Kingdom (1988).
[85] D.P. Nicholls, and F.Reitich, “Boundary perturbation methods for high-frequency acoustic scattering: Shallow

periodic gratings,” J. Acoust. Soc. Am. 123, 2531–2541 (2008).

Acknowledgments. This work was supported in part by the US National Science Foundation
under Grant Nos. DMS-2011603 and DMS-2011996. AL thanks the Charles Godfrey Binder Endow-
ment at Penn State for ongoing support of his research activities.

27


	Introduction
	Preliminaries
	Scattering problem and its variational formulation
	A Rellich identity and a-priori estimates
	Additional a-priori estimates
	Problem in the mapped domain
	Discretized problem
	Convergence in the number of retained Fourier terms
	Numerical example
	Conclusion
	References

