HYBRIDIZATION OF THE RIGOROUS COUPLED-WAVE APPROACH WITH
TRANSFORMATION OPTICS FOR ELECTROMAGNETIC SCATTERING BY A
SURFACE-RELIEF GRATING

B. J. CIVILETTI*, A. LAKHTAKIAT, AND P. B. MONK?

Abstract. We hybridized the rigorous coupled-wave approach (RCWA) with transformation optics to develop a
hybrid coordinate-transform method for solving the time-harmonic Maxwell equations in a 2D domain containing a
surface-relief grating. In order to prove that this method converges for the p-polarization state, we studied several
different but related scattering problems. The imposition of generalized non-trapping conditions allowed us to prove
a-priori estimates for these problems. To do this, we proved a Rellich identity and used density arguments to extend
the estimates to more general problems. These a-priori estimates were then used to analyze the hybrid method. We
obtained convergence rates with respect to two different parameters, the first being a slice thickness indicative of spatial
discretization in the depth dimension, the second being the number of terms retained in the Rayleigh—Bloch expansions
of the electric and magnetic field phasors with respect to the other dimension. Testing with a numerical example revealed
faster convergence than our analysis predicted. The hybrid method does not suffer from the Gibbs phenomenon seen
with the standard RCWA.
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1. Introduction. Electromagnetic scattering characteristics of periodic structures are widely
researched in physics and engineering communities because of diverse applications including filters,
beam splitters, and beam couplers [1, 2, 3, 4]. Design and optimization of these and other devices
call for the solutions of scattering problems, thereby creating interest also in the applied mathematics
community, especially to settle issues of uniqueness and existence of results for the relevant variational
problems [5, 6, 7, 8].

Periodic electromagnetic structures for optical applications are holographic (i.e., volumetric) grat-
ings [9, 10, 11], surface-relief gratings [2, 12], and combinations of both [13, 14]. Our interest here lies in
surface-relief gratings that are commonly employed to redirect optical beams [15, 16, 17], for spectro-
scopic analysis [18, 19], and to enhance photonic absorption in solar cells [20, 21, 22]. A surface-relief
grating is a periodically undulating interface of two different media. If the undulations are sufficiently
shallow [23, 24], an analytical method due to Rayleigh [25, 26] suffices to predict the scattering char-
acteristics. Semi-analytical methods such as the Rayleigh—Fourier method [27, 28, 29], the T-matrix
method [30, 31, 32], the rigorous-coupled wave approach (RCWA) [33, 34, 35|, the differential method
[36, 37, 38] and perturbation methods [85] are used for moderately deep undulations. Purely numerical
techniques such as the finite element method [39, 40, 41], the boundary element method [42, 43], and
the finite-difference time-domain method [44, 45, 46], as well as integral-equation methods [47, 48]
may be used for deep undulations.

The RCWA is a popular technique for surface-relief gratings, largely because it is mesh-free and its
approach to the solution of the time-harmonic Maxwell equations is elegantly intuitive [12, 35, 49, 50].
At its core, the RCWA exploits Floquet theory [51, 52, 53] which shows that the solutions are, in
general, quasi-periodic [5, 54]. This fact is used to express the field phasors as well as the periodic
relative permittivity in the grating region (containing the undulations) as Fourier series [55], which
are appropriately truncated so that only a finite number of terms in the Fourier series are retained.
Then, the grating region is decomposed into thin slices and the grating is replaced by a stairstep
approximation [12]. Due to this discretization of the spatial domain, the RCWA algorithm requires
the solution of a second-order matrix ordinary differential equation in each slice, followed by the
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enforcement of the appropriate transmission conditions to ensure continuity of the solution and its
conormal derivative across the interslice boundaries. Thus, the RCWA approximates the solution in
the entire domain.

The RCWA algorithm has been shown to converge with respect to both the number of terms in the
truncated Fourier series and the slice thickness, roughly speaking, as long as the relative permittivity
is monotonic in the direction perpendicular to the grating [56, 57]. The RCWA yields accurate
results for s-polarized incident light, but generally converges more slowly for p-polarized incident light
[35, 58, 59].

A drawback of RCWA is that the relative permittivity is replaced in the grating region with a
piecewise smooth approximation. Representing such a function with Fourier series results in the Gibbs
phenomenon near a discontinuity [60]. This limitation prevent the successful application of RCWA to
gratings with deep undulations [50].

The purpose of this paper is to formulate and analyze a numerical method that combines the
RCWA and transformation optics to mitigate the Gibbs phenomenon [61, 62, 63]. In order to avoid
representing piecewise smooth functions as Fourier series, we first apply a coordinate transformation
so that the periodically undulating interface in the grating region is mapped to a flat interface in the
new coordinates. Once the solution in the mapped domain is found, the inverse transformation is
used to map it back into the original spatial domain. Because we combine two methods, we term our
scheme "hybrid”. Our hybrid method is motivated by the differential method [36, 37] but we employ
a different coordinate transformation and a different solution algorithm (RCWA). The differential
method uses a coordinate transform that is not the identity in the two half-spaces above and below
the domain, and therefore would require different radiation conditions than what we have considered
here. We have chosen a different coordinate transform in order to obtain a method that is amenable
to analysis. The differential method is useful in solving a multilayered problem with non-intersecting
interfaces of which some interfaces are planar and the others are periodically undulating with the
same period [64], and so is our hybrid method.

By using a coordinate transformation, we only have to consider an electromagnetic scattering
problem with simple geometry, i.e., a flat interface of infinite extent. The downside is that the
Helmholtz equation in the mapped domain has anisotropic coefficient functions, even if the problem
in the original domain has isotropic coefficient functions. There exists Rellich theory for such problems
[7] with diagonal matrix coefficient functions, but in our case there will be off-diagonal terms in those
coefficient functions. Complicating matters even more, we analyze a problem where the anisotropic
coefficient functions are only piecewise smooth and the data is not in L2. In order to prove a-priori
estimates for this problem, we first consider an easier problem where the coefficient functions are C'*°
and the data is L?. We derive a Rellich identity for this problem and use it to prove an a-priori
estimate. Using density arguments similar to those of Graham et al. [65], we extend the a-priori
estimates to the full problem. A generalized Babuska—Brezzi condition [66, 67, 68] is shown to hold
for all of our problems, and the existence and uniqueness of the variational solution follows.

This paper is organized as follows. The electromagnetic preliminaries are stated in Sec. 2. In Sec.
3, we define the scattering problem in the original spatial domain. We define the standard Dirichlet-
to-Neumann map (DtN) [69, 70] and use it to derive a general form of our variational problem. In Sec.
4, we prove a Rellich identity for a simplified version of the variational problem. Then, assuming that
certain non-trapping conditions [65] hold and the right hand side of the Helmholtz equation is in L2,
we show that this Rellich identity implies an a-priori estimate for our problem under the assumption
that the off-diagonal terms in the matrix coefficient function of the Helmholtz equation are sufficiently
small. We then extend this estimate to problems where the right hand side of the Helmholtz equation
is only in an appropriate dual space. Section 5 extends these results using density arguments to more
general coefficient functions. Using norm-equivalence, we show in Sec. 6 that the transformed problem
has a unique solution. We define the discretized form of the transformed problem in Sec. 7 and show
that there is a unique solution and determine the convergence rate with respect to slice thickness. We
show convergence with respect to the number of retained Fourier terms and derive an order rate in



Sec. 8. Finally, in Sec. 9 we present a numerical example as a test of our convergence theory.

2. Preliminaries. We consider linear optics with an exp(—iwt) dependence on time ¢, where
i = v/—1 and w is the angular frequency of light. The electric field phasor is given by E = Eje; +
E262+E363 = (El, E27 Eg) and the magnetic field phasor is H = H161 +H2€2+H3€3 = (Hl, HQ, Hg),
where the unit vectors e; = (1,0,0), e2 = (0,1,0), and e3 = (0,0, 1). The relative permittivity matrix
everywhere can be expressed as

(2.1) €=

and the relative permeability matrix everywhere as

pir p2r | O
(2.2) w=| pi2 po2| O ,
0 0 |pss

all ten constitutive scalars in these two matrices being complex-valued functions of the spatial coor-
dinates 7 and x5, but not of x3. The geometry of the scattering problem is invariant along the x3
axis.

When the electric field phasor and the magnetic field phasor are independent of z3, then the time-
harmonic Maxwell equations decompose into two sets of independent equations. The set of equations
involving E7, Es, and Hj refers to the p-polarization state, and the set involving E3, Hy, and Hs refers
to the s-polarization state [12]. The latter polarization state does not pose any significant problem
when the RCWA is implemented [49, 56], but the former does [35, 50, 57]. Therefore, in the following
sections, we present the hybrid method only for the p-polarization state, for which the following
three partial differential equations emerge from the time-harmonic Faraday and the Ampere-Maxwell
equations:

0 0
2.3 —F, - —F ] H
(2.3) o, 2 o1s 1 = WloM33 113,
0 .
(24) ang —lWEeQ (511E1 + 612E2) s
€r2
0 .
(2.5) ang iweg (€21 E1 + €92F3) ,
€Tl

where g9 = 8.854 x 107!2 F m~! is the permittivity and po = 47 x 10~7 H m~! is the permeability
of vacuum.

Our aim is to obtain a Helmholtz equation for Hs from (2.3)—(2.5). In order to eliminate F;, we
first multiply (2.4) by €21 and (2.5) by €11 and then add the resulting equations to get

0 0
(2.6) iwegly = |€| (821 8752]{3 +en 6331H3> )
where
(2 7) g — €11 €21
’ €12 €22

is a symmetric matrix and |A| denotes the determinant of a matrix A. In order to eliminate Es, we
first multiply (2.4) by €22 and (2.5) by €12, and then add the resulting equations to get

) . 0 0
(2.8) iwegly = — |€| ! <€228 H; +€123 H3> .
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Fig. 3.1: Geometry of the scattering problem.

Substitution of (2.6) and (2.8) in (2.3) yields the Helmholtz equation
(2.9) V- (|é|_1 éTVHg) + K2M33H3 =0

satisfied by Hs, where k = w,/eoto is the wavenumber in vacuum and the superscript T denotes the
transpose. We call |é\71 €' and ps3 the coefficient functions of this Helmholtz equation. The hybrid
method solves the scattering problem associated with (2.9). Let us note that only the following five
constitutive scalars are relevant: €11, €12, €21, €12, and uss.

3. Scattering problem and its variational formulation. In this section, we define some
notation related to the scattering problem and give the variational formulation to be analyzed in the
later sections.

We define x = (21, 72) € R? in the original coordinate system. As shown in Fig. 3.1, the strip
Q = (—00,00) x (—H, H) for H € R* contains the grating region. The half-spaces above and below
this strip are identified as Uy = {x|vo > H} and U;; = {x|vo < —H }, respectively. The grating
surface is denoted by I' = {x | x5 = g(x1)} for a periodic g € C?(R) with period A > 0. Without loss
of generality, g(z1) > 0 for z; € R. The grating region strictly is the strip QF = (—00,00) X [ga, 3],
where g, = min {g(z1)} and g, = max {g(x1)}. We choose H large enough so that I' € Qf c . The
outward unit normal to € is denoted by v.

The homogeneous media occupying UE and Uy are isotropic, dielectric, and non-magnetic. Ac-
cordingly,

€+I, X € U+,
(3.1) e(x) = "
eI, xeUyg,

and p(x) = I for x € Ut U Uy, where I is the identity matrix. We assume that both ¢, > 0 and
e_ > 0 are real valued.



Incident on T' is a downward propagating p-polarized plane wave
(3.2) u'"(z1, T9) = —exp {ie}rﬂ/@ [x18in0 — (zo — H) cos 0]} ,

where 0 € [0,7/2) is the incidence angle from the positive zp-axis. The scattered field u(x) for this
scattering problem is quasi-periodic with period A [51, 53, 54]. This means that

(3.3) u(zy + A, x9) = exp(iagA)u(zy, o)
for x € R, where ag = /<a£1+/2 sin@. The multiplicative factor ¥ = exp(iapA) is called the phase factor;
ap =0 and ¥ =1 for normal incidence (i.e., § = 0) and in this case u is periodic with period A.
Due to u being quasi-periodic, the variational formulation can be written over a bounded region
containing only a single period of Q2. We identify this bounded region as 2 = [-A/2,A/2] x (—H, H)
and its upper and lower boundaries as 'y g = {x| —A/2 < z1 < A/2,25 = £H}. The quasi-periodic
boundaries are identified as I'yp /o = {x| — H < xp < H, 21 = £A/2}.
We assume that €(x) is a piecewise C'(R3*3) function that may have jumps across the interface
T', and can be complex valued. Our analysis requires that

(3.4) im e(x1,H—96) =¢e41

|
6—0
for § > 0, so that € does not jump across the top boundary xo = H, but may jump across the bottom
boundary zo = —H. For the sake of notational simplicity, we assume that e_ = ¢, although it is
possible to handle the case where e_ # e..

Given a source G = V- [(e7'T — A)Vul"] + £2(1 — a)u™ with coefficient functions A = |&|~1&
and a = uss, the problem is to find a scattered field u such that

(3.5) V- (AVu) + x*au = G, x € Q,
(3.6) Uu(—A/2,29) — u(A/2,25) =0, x9 € (—H,H),
Ju ou
. U—(—A/2 ——(A)2 = —H H
(3 7) 8VA( / ’$2) 81/A( / 7x2) 0, T2 € ( ’ )’
together with a suitable radiation condition [71, 72] for u, where 8671; = v AVu is the conormal

derivative of u. This problem has been studied previously by us [57] for the special case where & = ¢l
and A = ¢TI in Q by using a Rellich identity to show an a-priori estimate. A generalized Babuska—
Brezzi condition holds since an inf-sup and transposed inf-sup condition [7] is satisfied. This is used
to obtain a unique variational solution to the problem.

We now define some Sobolev spaces [73] in order to study our subsequent variational formulation.
The Hilbert space H] () is defined as the completion of H'(€2) N CZ%() in the standard H'-norm
given by

1/2
2 2
(3.8) ol g = ( /Q o +|w|) ,

where Cg5(Q) is the set of quasi-periodic smooth functions in €. The space H},(2)" is the dual space
of H},(€) endowed with the norm

[F'(v)]

@ vl o

(3.9) [Fllyeq = sup

0#veEH],

The trace space HY (P+y) with k € N is endowed with the norm

1/2
3.10) ol = (z e, —ad | m&ﬁ)

meZ
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with a;, = ag + 2mm/A and the Fourier coefficients defined as

(3.11) vE = n /A/2 Olp, , exp(—iam1) dz1.

In order to state the appropriate radiation conditions and the variational formulation for (3.5)—(3.7),
we now define the standard DtN maps on 'y [6, 7, 8]. Since we have assumed that € = ¢, 1 in Uﬁ,
the Helmholtz equation (3.5) simplifies to

(3.12) Au+ ke u=0

in UI_iI. In order to avoid Rayleigh-Wood anomalies [2, 74], we assume that Hﬁi/ 2 =% a,y, for any m € Z.

For ¢ € Hgluéz (T'm), we consider vy € HépJOC(Q*) satisfying

(3.13) Avg + K%e4vg =0  in QF,
(3.14) vy=¢ only,

with QF = [—-A/2,A/2] x (H,00). Then v, has the special form

(3.15)  wg(x) = > ¢f expli(za — H)Bp] expliomar) + Y ¢, exp [=i(ws — H)Bm] explicmz1)
meEZL MEZL

for x € QF, where

VE2er — a2, o2 < ke,
o 2 2 2
iva2, — k2., ol > k%,

The representation (3.15) consists of two different types of solutions [8]. The first series on the right
hand side of (3.15) comprises a finite number of upward propagating plane waves and an infinite
number of evanescent waves that decay exponentially as x9 — oo. The second series on the right
hand side of (3.15) comprises a finite number of downward propagating plane waves and an infinite
number of evanescent waves that decay as 9 — —oo. The radiation condition [71, 72] enjoins us to
choose the first solution type in Q1 and the second type in Q= = [-A/2,A/2] X (—c0, —H).

Using these expansions, we now define the standard DtN maps T : H&;/,Q(Fi H) — H(ﬁ)l/ 2(I‘i H)

as

(3.17) (T*¢)(z1) = ic}! Z B dE expliomx)

meZ

for ¢ € H;I/,Q (Tz). In the upcoming variational formulation we will replace the conormal derivatives
E%Z = v AVw with ¢, T (w), and the resulting sesquilinear form will be bounded on H} (9) x

Hép(Q) due to this choice of DtN map. To conclude this discussion on DtN maps we recall that
(3.18) Re [ @T*(¢) <0,

(3.19) Im dTE(9) >0,

for ¢ € H(%z (T£m) [7], where the overbar denotes the complex conjugate.
We denote the jump of a function w across an interface T' as [[w]], = w| — w|p. The matrix
coefficient function A may jump across the interface I'; while the field w as well as its conormal
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derivative are assumed to be continuous across I' so that [[w]], = 0 and H;T“;H = 0. Before
r

the coordinate transformation is implemented, the general scattering problem we wish to solve is as
follows: Given some data F' € H),(Q)', find a w € H} (Q) such that

(3.20) V- (AVw) + k*aw = F, x € (),
(3.21) Vw(—A/2,29) —w(A/2,25) =0, z2 ER,
ow ow
(322) \Ija(fA/Qa ‘TQ) - E(A/Qﬂlé) - 07 T2 € Ra

together with the radiation condition.
The variational formulation of (3.20)-(3.22) is to find a w € H,(Q) such that

(3.23) /Q [(Vv)*AVw — k*awd] — /

Tt (w) — 7T~ (w) = — T
FHT()/F_HT” F

Q

forv € H, Ollp(Q), which follows in the usual way from the divergence theorem. Here, * denotes conjugate
transpose of a vector. There are no boundary terms on the quasi-periodic boundaries I'y /o since
55971: is periodic with period A for all v € H} ().

We finish this section by defining B(w, v; A, a, ) to be the sesquilinear form on the left hand side
of (3.23), so that B(-,-) : H} () x H},(Q) — C. The variational problem is to find a w € H} ()
such that

(3.24) B(w,v; A, a,Q) = —(F,v)0.0
for v € H}, (), where (-,-)o,q is the L? inner product on €.

4. A Rellich identity and a-priori estimates. Following Lechleiter and Ritterbusch [7], in
this section we derive a Rellich identity. We assume that A(x) and a(x) > 0 are real valued in .
Both A(x) and a(x) are x;-periodic (with period A) such that

(4.1) Alp,=¢'T  and alp, =1

Given a § > 0, the matrix A is assumed to have the special form

(4.2) A(x) = (a?(X) 5@2(X)> 7

daz(x)  aj(x)

with the strictly positive scalar functions a?(x) and a?(x). Finally, we suppose there is constant ¢y > 0
such that £*A(x)€ > col€|? for every € € C? and x € Q. Our problem differs from that of Lechleiter
and Ritterbusch [7] because:
(i) we allow for small off-diagonal terms in A,
(ii) a2(x) can change sign in 2, and
(iii) the Helmholtz equation (3.20) may have a non-constant coefficient function a(x).
THEOREM 4.1. Suppose that A is uniformly positive definite, A € C=(R?*2,Q) and a € C=(Q)

are real valued and periodic in xy with period A. Let w € Hy,(Q) be a variational solution to (3.23)
for F € L*(Q). Then for § >0,

w |? ow Ow Oda 9
2| W ow oJw 2 oa
/92 as D23 + JasRe <8x1 3@) + K /gz(x2+H)3m2 |w]
2 2
vor [ e (129 2129 C 2 —/ wT+(w)—/ TT~ (w)
o Oz Oa Ty I_y

(4.3) - /Q (xg—&-H)(Vw)*g—i(Vw) 9 /Q (22 + H)Re (%F) - /Q P,

7



Proof. Since w solves (3.23), we have that

ow

(4.4) /Q o H)g%v (AVT) = /Q (224 H) 5 (F — i)

By taking twice the real part of both sides of (4.4) and using

ow _ o |w)?
4. 2 —_— =
( 5) Re <8x2w> 8x2 ’
we get
QRe/(:c +H)8—wv.(Avm72/(x + H)R a—wf + 2/ ( +H)ﬁ+ |w|?
2 92 = 2 e . K ) D3 a| |w
Q Q Q
(46) _2HK,2/ |’LU‘2,
T

after integrating by parts in x3. By virtue of the divergence theorem, we have

(4.7) /Qg;”zv-(AVw)_/m(x2+H)aw%_/ﬂAvw.v<(x2+H)g‘”).

0xo Ova T9

We take twice the real part of both sides of (4.7) to obtain

dw ow oW ow |? ow dw
2 V. (AVD) =2H | 2Re( om0 ) — [ 2|2 |2 o7
Re A awzv (AVwW) - Re <8x2 81/A) /Q [a3 925 + dasRe (8961 3@)1
(4.8) - / (22 + H)2Re [AVw~ v (8“’)} .
Q O
Since
_ ow 0 . LO0A
(4.9) 2Re [AVw -V (3@)} = 95, [(Vw)*AVw] — (Vw) Dg Vw,
we get
/(332 + H)2Re {AVw -V <8w)] =2H (Vw)*AVw — / (z2 + H)(Vw)*a—AVw
Q 81‘2 Tx Q 8{E2
(4.10) —/(Vw)*AVw
Q

after integrating by parts in x5. We notice that

2

ow

(9{)32

2
—a%

ow

oz,

ow Ow . o

We now substitute (4.10) in (4.8) and use (4.11) in the resulting equation. Upon setting v = w in the
variational formulation (3.23), we see that

(4.12) /Q(Vw)*A(Vw) = /<;2/Qa|w|2+/FH wT ™t (w) +/FH wl ™ (w) —/QFE,

which we use on the right hand side of (4.10). Equating the resulting integral equation with (4.6) and
rearranging some terms completes the proof. a



We now use the Rellich identity to show an a-priori estimate for a solution w of the variational
problem (3.23). To do this, non-trapping conditions [65] must hold for A(x) and a(x) wherein their
xo-derivatives have sign conditions (see (4.13)) in Q. The existence and uniqueness of w € H} ()
follows because the a-priori estimates imply an inf-sup condition for the sesquilinear form B(-,-) on
Hollp(Q) X H&p(Q).

THEOREM 4.2. In addition to the assumptions of Theorem 4.1, we assume that the non-trapping
conditions

da(x)
8%2

hold for every & € C? and x € Q. Then for § > 0 small enough, the solution w € H;p(Q) to the
variational problem (3.23) is unique and there is a constant C > 0 such that

(4.13) >0 and '

(4.14) lwll; o < ClFlloq;
where

1 1/2
(4.15) C=2|—+20 (21%5+ +2H + 1)

0
and
(4.16)

2 1
01:4H(H+1){'mpxen[a<xﬂ+1}x . . ex
Co 2infxeqlaz(x)] min,cz, ( a2, — n26+\)

Proof. We take the real part of both sides of the Rellich identity (4.3). From the non-trapping
conditions (4.13) and the Cauchy—Schwarz inequality [75], we have

ow |I?
2 |laz— —Re/ wl ™t (w)
Oz 0,Q T
ow > |ow|? ow Ow
con [ et (12 <12 Y o] o] e (220
= T [EJF ((%2 1 )JH{ wl™| + ‘ QaQRe Ox1 Oxo
ow
(4.17) +4H ||o—| [ Fllgq+ lwlloo Flloq-
6$2 0,Q

We can control the integral term with the & factor by recalling that ab < 1 (a* 4 b%) for all a > 0 and
b > 0. It follows that

(4.18) 26

ow Oow 2
Re (W W <5 :
/Qa2 e<8x1 (9@)’ N :Sclelg(‘az(X)DvaHo’ﬂ

We also have the bound [6]

(4.19) 2H la; (
Ty
The use of (4.18) and (4.19) in (4.17) yields

2
—Re/ wT™ (w)
0,Q Ty

1/2
(4.20) < 0 sup (Jax(x)) Vw2 + (4H/<;5+/ L 4H + 1) w0 1 Flloq -

ow |?

Oy

ow
6I1

2
2 1/2
) + 17w ] < 4H"€5+/ [wllo.q 1 Fllo.q -

ow

2 a387
2
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On using Parseval’s theorem, it follows from the definition of the DtN maps that
1
(4.21) m [ @l (w) — Re/ @I (w) > — min (\/|oz$n - 1125+|) w2,
Ty Ty g4 meZ ’

Then by taking the imaginary part of both sides of the Rellich identity and using the Cauchy—Schwarz
inequality, we have

(4.22) Im | TT " (w) < [Jwlloo 1 Fllogq -
H

Combining the last inequality with (4.21) yields

_ 1 2
(4.23) ~Re [ wTt(w) 2 = min (Viah = #]) lulp, ~ lelon 1l
Tu g4 meZ
We then combine the inequalities (4.20) and (4.23) to obtain
ow || 1 . 2
2lasgo |+ 2omin (Viez, = #24]) Il
(4.24) < 0sup (Ja2(9))) Vel +2 (2Hkel? +2H +1) [l g 1Fllg 0

In order to control ||w||gQ7 we use Lemma 4.3 of Lechleiter and Rittersbusch [7] that delivers

2

ow
2 2
(4.25) lwllg.q < 4H? | Z—{  +4H |[wllr,,
210,02
for every w € H(Q). Using (4.24) and (4.25) we have
1 E4

lwllyq < AH(H + 1) +

2infxcolad(3)] " minycs (v/]a% — %] )

ow || 1

. 2
e R e [

0,
1 E4
<4H(H +1){ — o +
2infxealti X)) min,ep (v/fo2, — w241
2 1/2

(4.26) x [(551615(|ag(x)|) IVl g +2 (2Hrel + 20 +1) ], g ||F||O’Q} .

We set v = w in the variational formulation (3.23) and take the real part of both sides. Since A is
uniformly positive definite, there is a constant ¢y > 0 such that

2
2 K” Supycq [a(x)] 2 1
(a27) o < { =2 Rxe0 80N gt Ly 17

Now we use inequality (4.26) in the last inequality and divide both sides by [Jwl|, o. This yields

1
(4.28) [1 —6C 81618 (@(X)D} wll; o < LO +2C, (QHHEi/Z +92H + 1)} 1Flg.-
To finish the proof, we can choose § > 0 so that
(4.29) 5< L . 0

~ 201 Supyen (Jaz(x)])
10



Now we extend the previous a-prior:i estimates to problems where the right hand side F' € H, Ollp(Q)’ ,
together with the non-trapping conditions (4.13). Instead of F € L?(Q2), we have uniqueness and

existence results for the variational problem (3.23) even when the right hand side is a general bounded

linear functional in the dual space H},(€2)".

COROLLARY 4.3. Assume the conditions of Theorems 4.1 and 4.2 hold and w € H} () is a
variational solution to (3.23) with F € Hép(ﬂ)’ on the right hand side. Then for 6 > 0 small enough,
w e H} () is unique and there is a constant C' > 0 such that

(4.30) [wlly o < ClF[.q-

Proof. Define B*(q,v) = B(q,v; A,a,Q) + 2x? [, aqv for q,v € H} (). Since A is uniformly
positive definite, we have

(4.31) |B* (v, v)| > min {COa K irelg[a(X)]} o} g

for v € Hép(ﬂ); therefore, the sesquilinear form B*(-,-) is coercive. By virtue of the Lax—Milgram
lemma, [73], there is a unique solution w* € H} () to

(4.32) BT (wt,v) = —F(v)

for v € H! (), and furthermore

—1
(4.39) Ji* 0 < min o fuf Gl | 1P

With wt given, 2x*aw™ € L?(2) and we have by virtue of Theorem 4.2 a unique solution w; € H} ()
to

4.34 B(wq,v; A a ) = 2:‘4‘;2 aw v
( ) ( 1, Uy £, 0y )
Q

for v € H},(Q) and § < 0 small enough. We therefore have that
(4.35) Bw™ +wy,v; A, a,Q) = —F(v)

for v € H},(€2), and a constant C' > 0 such that
-1
Jort 4 1]y < min e fng a1} 1+ 2082 sup ]

(4.36) < min {co, K> )i(relg[a(x)]}l {1 + 2Ck? sup [a(x)]} IFl g -

The proof follows from w = wT + wy. a0

5. Additional a-priori estimates. In this section we consider our variational problem (3.23)
where A € L®(R?**2,Q) and a € L®°(Q) are almost everywhere periodic in x; with period A. In
Sec. 4, we derived a-priori estimates for the case where the coeflicient functions are smooth, but we
extend those results to more general coefficient functions in this section.

We begin by defining the function ¢ € C§°(R?) as

Cexp (lx‘%l) . ‘X| < 1,
0, x| > 1,
11

(5.1) P(x) = {



for x € R? with C' > 0 chosen so that [z, ¢ = 1. Let ¢¢(x) = (2¢(x/() for ¢ > 0. We extend the
coefficients A and a by periodicity to the domain U = {x € R?| — A < x; < A}. We can therefore
choose ¢ > 0 small enough so that Q C U, CC U where Uy = {x € U | dist (z,0U) > ( }.

Next, we define the sequences QS)C‘ € C*°U;) as

(52 0 = e = [ xGx=¥)ev)dy.

where x denotes convolution and x € {a?, as,a3,a}. This discussion leads us to the following theorem.

THEOREM 5.1. Suppose that A € L®(R?*2,Q) and a € L>=(Q) are real valued and almost ev-
erywhere periodic in x1 with period A. Also, let A be uniformly positive definite and have the special
form

5.3 A — (00t

dag(x) a3(x)
and that

(5.4) esssup [€ A (x + 7es) — €7 AE(x)] <0
xe

for € € C2and 7 > 0, as well as that

(5.5) eiseigrzlf [a(x + Te2) —a(x)] >0

for 7> 0. Then, given F € H} (Q)" and § > 0 small enough, there is a unique solution w € HJ ()
to (3.23). Furthermore, there is a constant C' > 0 such that

(5.6) [wll o < CllENL.q-

Proof. First, we show that the sequences ¢2‘ € C°(Q) satisfy the conditions of Theorem 4.2. We
define the matrix A, € C*°(R?*2,Q)) as

6o (x) 60 (x)
5.7 Ax)=[ "¢ S, .
57 ) <5¢g2<x> ¢23<x>>

By virtue of the standard properties of mollifiers [73], we have

5.8 |lox = —o0

(5.8) ¢g X 0.0

as ¢ — 0 for x € {a?,az,a3,a}. Let A > 0 be an eigenvalue of A with eigenvector v € R%. Then

(5.9) 12w = Acully o < V2 (vl 1A = Agllg o — 0

as ¢ — 0. We can therefore choose ¢ > 0 small enough so that the eigenvalues of A, are strictly
positive and A is uniformly positive definite. We notice that

(5.10) O+ An) = [ x(xot Aey = ¥)iely) dy = 030,

]RQ
since x is almost everywhere periodic in x; with period A. We have defined A¢ so that £*A¢&§ =
(€*A€) * 1 for € € C%. Tt then follows that

(€AcE) (x + 7e2) — (€ AcE) (%) = / (€7 AE(x + res — y) — £ AE] Yc(y) dy

lyl<¢

xEN

< esssup [é*Aﬁ(x+Tez)—§*A§(x)]/ C@[’C(Y)dy
yi<

(5.11) <0

12



for £ € C? and 7 > 0. Therefore,

0A((x)
5.12 <O
(512 g 25 <
for ¢ € C? and x € Q. On using (5.5), a similar argument to (5.11) shows that 82230(;) >0 for x € Q.

Thus, the coefficients ¢¢ and A satisfy the conditions of Corollary 4.3 for ¢ > 0 and ¢ > 0 sufficiently
small. We have that

B(q,v; A¢, 6¢,Q) =B(q7v;A,a>Q)+A(V0)*(A<—A) (Va)

(5.13) - KQ/Q (a— ) qu,

for ¢ € H},(Q) and v € H} (Q). Furthermore, we find a sequence (wy)
that ||w —wel|; o, <& for £ >0 and

>0 With we € C°°(2) such

(5.14) B(we,v; A, a,Q) = —F(v) — B(w — we,v; A, a,Q)

for all v € H},(€2). Upon setting ¢ = we in (5.13), we see that

B(we,v; A¢, ¢¢, Q) = —F(v) — B(w — we,v; A, a,Q) + /Q(Vv)* (A — A) Vg

(5.15) + I'iz/ (a— ¢%) wev
Q
for v € H},(€2). Due to Corollary 4.3, with w — we € H} (Q) given, we let wy € H} () solve
(5.16) B(wy,v; A¢, ¢¢,Q) = —F(v) — B(w — we,v; A, a,Q)
for v € H},(€2) and d; > 0 small enough. We also let wy € Hg, () solve

(5.17) B(wz,v; A¢, ¢, Q) :/Q(Vv)* (Ac—A) Vw5+f<;2/g(a—¢g) weT

for v € H},(€2) and d; > 0 small enough. Furthermore, we have a constant C¢ > 0 such that

—F(v) — B(w — 1AL a,Q
lorl <G sup ITEO) =B —weviAa )
' 0AvEHL, () HU||1,Q

(5.18) < Cc (IFll e+ o = welly )

We also have

’fg(vv)* (Ac — A) Ve + K2 fQ (a - ¢g) weT
[wally o <C¢  sup

0AvVEHL,(Q) HU||1Q

(5.19) < C¢ [IVwell 1Ac — Allgg + 5 el 162 — ally o]

for the same constant C¢ > 0.
For each x € {a?,as,a3,a}, we can write

— ocai /
(5.20) X = eiselfrllf X+x,

13



where x’ € L*>°(Q) and essinfxcq X’ = 0. But then we notice
5.21 X > inf inf // dy = inf x.
(5.21) ¢¢ 2 essinfx +essinf x . we(y) dy = essinf x

By writing x = esssupq x + X’ with x’ € L*>(x € Q) and esssup,c x’ = 0, a similar argument shows
that

(5.22) eiseiélfx <of < essesflzlp X.

Now (5.22) and the explicit form of the constant (4.16) allow us to find a constant C' > 0 independent
of ¢ > 0 such that C¢ < C for all ( > 0. For the same reason, the sequence (5C)<>0 is uniformly
bounded away from zero and has a convergence subsequence. Let this subsequence be conveniently
denoted as (d¢). - We therefore find a ¢ > 0 such that § = lim¢_,o dc. By virtue of (5.16) and (5.17),
we have that we = w; + wy and so

[wlly o < llw—welly o + llwell; o

(5.23) <&+ ||w1||1,§z + ||w2||179.

The proof follows by taking ¢ — 0 and £ — 0 in (5.23). By virtue of (5.18), lime_q [lwill; o <
C|F|l,.q- Finally, (5.19) shows that lim¢o [lwzll; o = 0. o

6. Problem in the mapped domain. We now study a related scattering problem after a
coordinate transformation Gg' is used to map € into the domain Q = [~A/2,A/2] x [-H, H]. The
coordinate transformation Gg is defined by

(6.1) T = I,
(6.2) xo = S(T2)g(&1) + &2,

for some C? function S(&2); thus, X = (21, 22) € R2.

For our numerical example later on, we chose S to be piecewise cubic, but there are many possible
choices. For the mapping to have the desired properties, we require that S(+H) = 0, S(0) = 1,
S'(xH) = 0 and §’(0) = 0. The grating interface I gets mapped to &5 = 0 and, therefore, in the
transformed coordinate system the interface I' = {%|#, = 0} is flat. Since the interfaces I'yy are
unchanged by the coordinate transformation, the hybrid method can be extended to multiple smooth
interfaces.

For a function w in the original coordinate system, we define w(x) = w(Gs(%)) after mapping. In
order to write the equation for the transformed field @, we denote the Jacobian of Gs as D. We seek
to find a @ such that

(6.3) V- (|D|D—1KD—T%) +K?Dlat =V - [[DID (7' - K)D—T%im} + #2D|(1 — a)aine,

subject to quasi-periodicity and radiation conditions. The advantage of this problem is that dis-
continuities of the transformed version A of A occur only on flat boundaries. We have chosen the
coordinate transform so that (6.3) reduces to (3.12) in the half-spaces Uz and therefore we use the
same radiation conditions as we did with the original problem. R R R

The transformed variational problem is as follows. Given an ' € H} (Q), find a @ € H} ()
such that

(6.4) B(w, ;[ DID"'AD™", |D|a, Q) = —(F, ), 4

for v € Hép(ﬁ).
So far we have shown that the variational problem (3.23) has unique solutions for coefficient
functions that are L> as long as, roughly speaking, they satisfy the general non-trapping conditions

14



(5.4) and (5.5). We now show that there is a unique solution @ € Hellp(ﬁ) to the transformed problem
(6.4). The transformed coefficient functions C = |[D|D"'AD~T and ¢ = |[D|a do not necessarily
satisfy these non-trapping conditions, so we cannot appeal to our theory for the original problem.
Instead, we appeal to norm equivalence to show an a-priori estimate for the transformed problem.
THEOREM 6.1. Suppose that there exists a constant co > 0 such that |D(X)| > ¢ > 0 for X € Q.

Then the transformed problem (6.4) has a unique variational solution W € Hép(ﬁ). Furthermore,
there is a constant C' > 0 such that

6.5 e <P .
(6.5 el g <7,
Proof. We notice that ||[D|D™1D~T| = 1 and 50 Apax (%) = Amin(¥) 1. The determinant |D(%)| =

1 + 8'(#2)g(#1) is continuous since we have assumed that S(#2) and g(#;) are C? functions. We
therefore have a constant ¢; > 0 such that

(6.6) o2 (DD D) = pf (14 SELEIEELY

Since the trace is the sum of eigenvalues, in particular we can show that Ay (X) is positive and
bounded away from zero. After multiplying (6.6) by Amin(X), we see that

AL (®)+1
. > min
(6 7) C1 = 7/\““(%) =

for % € Q. Since |D|D'D~T is real and symmetric, it follows that it is uniformly positive definite
and there are constants C7 > 0 and Cy > 0 such that

(6.8) Cil¢]* < €' DIDT'D™ T (R)€ < Cl€f?

€o

for £ € C? and % € Q.
For w € C*°(Q), it follows that

lwll o = (D[, @)y g + (DD~ Vid, D~ Vib), o

(6.9) > min (co, C1) ||} g -
On the other hand, we have

1 1
(6.10) 1 > min (o 27 ) il
which shows that we have norm equivalence for C*° functions. For w € H} () we can find a sequence
(w¢), of C>(92) functions that converge to w in H' using the density of C>(Q) N H} () in HJ, ().
The mapped sequence () ¢ defined by W = w¢oGs is a Cauchy sequence, using the norm equivalence

for smooth functions. We therefore find a unique w € qulp(ﬁ) and two constants C; > 0 and Cy > 0
such that

(6.11) Cywlly o < @l g < Cofwll; q-
Given an F € Hollp(ﬁ)’7 we can find a unique fz € HJ () and an F € H} (Q)' such that

(6.12) F(#) = (v, D(G5" (%) fp)o = F(v).
For this particular F'(v), we have a unique solution w € Hép(Q) to the original variational problem

(3.23). A similar density argument yields a unique @ € Hép(ﬁ) that solves (6.4). To complete the
proof, we use norm equivalence again to see that

il g < C2C 1Pl o < C3C B
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Our next aim is to show that the solution has some additional regularity, i.e., w € H' () for
s € (0, sp) with so € (0,1/2). Furthermore, using this regularity result, we will aim to show that the
mapped solution w € H 1"’s(ﬁ). The hybrid coordinate-transformation method converges due to this
extra regularity, as shown in Secs. 8 and 9.

THEOREM 6.2. Suppose the conditions of Theorem 5.1 hold. Let w € H () be the solution to the
variational problem (3.23) with F € L2 () on the right hand side. Then there exist constants C > 0
and so € (0,1/2) such that

(6.13) [wlliys0 < CliFllo  for0<s < so.

Proof. We extend F' and w by quasi-periodicity. In UE and Uy we extend F' by zero and the
solution w using its Rayleigh-Bloch expansion [57]. We denote these extended functions by F° and
w®. We define the circular extended domain ° as

(6.14) 0 ={x|R> x|},

where R > 0 is chosen large enough so that Q C Q°. Also, we let x € C* be a smooth cutoff function
such that x =1 in Q° and x = 0 on 90°. We define p € H'(Q) as p = yw® that solves the original
problem and p = 0 on 09°.

Since

(6.15) V. (AVp)T = / [(VX)T AVw® + V- (wCPAVY) + (F° — n2aw°)x} 7
QO o

for v € HY(Q°), p solves the Laplace equation with zero boundary conditions and a right hand side
G = (V)()—r AVw® + V- (wAVY) + (F° — k2aw®)x. By virtue of Proposition 2.1 of Bonito et al.
[76], it follows that G € H*~! for so € (0,1/2) and s € (0,s0). Also, Theorem 3.1 of Bonito et al. [76]
shows that we have a constant C' > 0 such that

(616) Hp||1+s,Q° <C HGHsfl,QO :
It follows from a predeceesor paper [56] and our a-priori bound (5.6) that
[l 50 < ClIGH -1 00

< C (Il go +IFllo g0
(6.17) < ClIFllog- 0

COROLLARY 6.3. Suppose the conditions of Theorems 6.1 and 6.2 hold. Then there exists con-
stants C' > 0 and sg € (0,1/2) such that

6.18 i A<CHﬁH R 0<s< so.
(6.19 ol on < C[[F],,  ro<s<s

Proof. The result follows from Theorem 6.2 and Heuer Lemma 2.8 [77]. a

7. Discretized problem. In this section, we define a discretized problem where the transformed
coefficient functions C = |[D|D"'AD~ " and ¢ = |D|a are replaced by piecewise smooth approxima-
tions. Since this new problem no longer corresponds to a coordinate transform, we cannot appeal to
norm equivalence as we did in Sec. 6 to show existence and uniqueness of solutions. Instead, we use
the fact that the discretized problem is a small perturbation of the transformed problem.

For an integer N > 1, we define the discretization parameter h = 2H/N and the N + 1 grid points

(7.1) —H==%20<%21 <<y <Ton=H.
16



We assume that £5 = 0 is a grid point. The domain Qis decomposed into N thin slices
(7.2) Sy =[-A/2,A/2] X [Z2.p, E2,n41], n€[0,N—1],
and the transformed coeflicients functions are sampled at the slice midpoints given by

ok 1. .
(7.3) T3n =5 (Z2.n + T2nt1), n€O,N—1].

On each slice S,,, we define the discretized coefficient functions as
(7.4) Pp(X) = B(81,23,)

for x € S, and ® € {C, ¢}. The discretized coefficient functions are piecewise constant in & and only
depend on z; in each slice S,,. Since the transformed coefficients only have discontinuities on a flat
interface, the discretized coefficients are continuous in every slice. The discretized variational problem
is as follows. Given F' € H} (), find a Wy, € H},(2) such that

(7.5) Bty b, Ch, e, Q) = F(0)

for v € Hcllp(ﬁ).
THEOREM 7.1. Suppose the conditions of Theorems 6.1 and 6.2 hold. Then for h > 0 small

enough, there is a unique solution W € Hép(ﬁ) to the discretized problem (7.5). Furthermore, there
exists a constant C > 0 such that

inc
u

(7.6) i =il g < Ch|

-
Proof. We define the maps T : Hép(ﬁ) — Hép(ﬁ)’ and T), : Hép(ﬁ) — Hép(ﬁ)’ by (Tw,0) =
B(w, 0, C, ¢, ﬁ) and (Tpw,v) = B(w, 0, Cp, cp, ﬁ), respectively. We see that

@ =Ty, 3]l < C = Call [V ||| -+ 52 lle = enll Il 1910

0,0
(7.7) < Oh”ﬁ’Hl,ﬁ H{)||1ﬁ
Then in the operator norm, we have
(T = Th)wll,, g
(7.8) IT —Th||=  sup L8 < oh
0£wEHL (D) ||w||1,Q

It follows from Corollary 10.3 of Kress [78] that, for & > 0 small enough, there is a constant C' > 0
such that
l*fl)

i~ il < € (1T = Tl g+ G - Gl

~inc

<cn(Jall, g+
(7.9) < Ch|

inc
u

o

8. Convergence in the number of retained Fourier terms. In this section, we show that
the hybrid coordinate-transformation method converges with respect to the number of terms retained
in the Fourier series. We return to the case of a generic orthotropic medium described by (2.1) and
(2.2) that occupies 2, with € a symmetric matrix. Later in this section, we show how to choose € and
p in order to solve the transformed scattering problem.
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In the mapped domain, we consider E(%) = E1(X)e; + Fa(X)es and H(R) = Hs(%)es, where

R 1 OH, OH,
8.1 By = —
(8.1) 1 iweo |8 (522 Dty + €12 8:%1> )
. 1 OH; OH;
2 —
(8 ) 2 iw&“o ‘§| <€21 632‘2 ten 85:1 > ’
and
(83) @ . (|§|_1 éTﬁﬁg,) + l€2/,L33f{3 =0.

Therefore, in order to solve the correct Helmholtz equation (6.3) we choose the constitutive
parameters such that

A|-1 —-1AD-T -171-T
(84) = |A|"'DD'AD | 0 and = DD~ 4D | U
0 | 12271 |D|éss 0 | Dla

For example, |&|~* = |A| and therefore |&|7'&T = |D|D"'AD" T since A is symmetric. The partial
differential equation (8.3) is difficult to solve, so we replace the coefficient functions with the piecewise
smooth functions Cy, and ¢, given by (7.4).

The constitutive parameters are written as the Fourier series

. . 27 . . 27
(8.5) e(x) = Z em(&2) exp (zAmxl) and  p(X) = Z P (Z2) exp (zAmxl) .
meZ meZ
We also expand the field phasors in terms of the Rayleigh—Bloch expansions
(8.6) B(%) = Ei(%)e; + Ba(R)es = 3 [Em(@)el n EQ,,,L(J:«Q)eQ} exp (iam#1)
meZ
(8.7) () = f3(%)es = Y [Ham(@z)es] exp (i),

mEZ

with the unknown Fourier functions EA'Lm(a”‘rg), Eg,m(i'g), and I':rg’m(i'g). Substitution of the expansions
(8.5)—(8.7) in the time-harmonic Maxwell equations delivers a system of two first-order partial dif-
ferential equations and an algebraic equations relating the unknown coefficients E ,(#2), Eam(i2),
and I§T3’m(:%2) [12, 49]. Once this system is solved, the electric and magnetic field phasors can be
reconstructed in the mapped domain { using (8.6) and (8.7).

We truncate the series (8.6) and (8.7) to include only |m| < M, M > 0. In order to write a system
of 2M + 1 equations relating the Fourier coefficients, we define the three (2M + 1) x 1 matrixes

. . . . . T
(8.8) ¢ = (El,—MaEl,—M-i-l,"' 7E1,M—1aE1,M) ,

. . A ) A T
(8.9) &, = (E2,7M7E2,7M+1>"‘ aE2,M717E2,M) )
and

R . . . ) T
(8.10) 3 = (HS,—M7H3,—M+17 e 7H3,M—1,H3,M> .

along with the (2M + 1) x (2M + 1) matrix

(811) a:diag(a_M,a_M+1,~-- 7011\4_1,011\/[).
18



With 7 (¢) denoting the (2M + 1) x (2M + 1) Toeplitz matrix formed from the Fourier coefficients of
a periodic function ¢, the RCWA then requires the solution of the 2M + 1 equations

~

T (Ch22) 8;3')3 i[aT (Ch21) + T (Ch,12)a] %25
(8.12) + [Iﬂ?zT(Ch) - uT(Ch_’H) ] §J

in each slice S,,, where C}, ¢, denotes the fmth component of Cp,.

The RCWA enforces transmission conditions for the tangential components of the fields across
all interslice boundaries. Also, appropriate boundary conditions are enforced on the top and bottom
boundaries of 2. To this end, we define the reflected and transmitted fields as

(8.13) H™{(X) = e5 Z H’Fef explifm (&2 — H)] exp(iam1), 29> H,
and
(8.14) HY () = Z HY, exp[—ifp(ia + H)|exp(iamit), &2 < —H,

with unknown coefficients H§e,fn and ngm, respectively. Also, the incident field (3.2) can be written
as

(8.15) Hire(%) = — exp|—ifo (&2 — H)] exp(iapdy).
The boundary conditions across the plane 2o = H are

ﬁ3,m(£2) = _61710 + ﬁg?fn

(8.16) . (3 , Zo=H,
sn®) i (5,0 + 5%
8$2
where §,,,./ is the Kronecker delta. The boundary conditions across the plane &5 = —H are
Hj(d2) = HY',,
(817) 8ﬂ’3’m(iﬁ2) _ _ZB gtr y To = —H.
8@‘2 mit3,m

In addition, the following transmission conditions hold for every interslice boundary:

5], =0

H;ﬂc,ﬁﬁgﬂ —0

To==%2n

(8.18)

Now we can show that the RCWA for this problem is actually a Galerkin method, i.e., the solution
solves the appropriate variational problem.

THEOREM 8.1. In the mapped domain, uj, 5 (&) = Hs(&) solves the variational problem

X . N 1 6A1nc s
(8.19) B(ij, pr, 0015 Chycn, ) = < - T (a™), 'UM>
E4 8x2 0,y

for every tpr € H'(—H, H) ® Sy with Sy = span,,, < prlexp(iamd1)].
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Proof. We let the test function 5 € H'(—H, H) ® span,, <p[exp(iami1)]. We can therefore
write

(8.20)

@>

M
Z )exp(—iq,1).

By virtue of the orthogonality of the basis functions exp(ia,21), it follows from (8.12) that
A2 N o

(8.21) / [v : (ChVHg) Tar + w2enHsoar | diy = 0
AJ2

in each slice. Now we integrate with respect to 3 and use the divergence theorem in each slice to
obtain

/ [(ﬁf}M)*Chﬁﬁg - Hzchﬁggwj}

Sn

(822) +/ EMVTChﬁfAIg 7/ EMVTChﬁﬁg =0.
T2=%2,n T2=%2 n+t1

Next, we sum over all the slices and use the transmission conditions to obtain

- . - — 1 9H — 1 0H
(8.23) / {(V@M)*ChVHg - n%hHg@M} f/ Tar— =2 +/ G — 218 .
a ry €4 022 r_, €4 O

By applying the boundary conditions across 2o = +H, we see that

1 93 1 oaie

8.24 ——=(H) = —TH(a™) + TH(H
(324) — i) = S T + T (7
and
1 0H; oz
8.25 ——(—H)=-T"(H,).
(8.25) G H) = =T (1)
The use of (8.24) and (8.25) in (8.23) completes the proof. O

To show that we have convergence in the parameter M, we now consider an adjoint problem.
To this end, let B*(w,v) = B(v,w) be the adjoint form of the sesquilinear form B(-,-). Given an
F € L*(Q), the adjoint problem is to seek a 2z € Hy,(€2) such that

(8.26) B*(24,9:C,c,Q) = (Fv)

)

for v € Hollp(ﬁ). Due to our theory, we know that Z; exists and is unique; furthermore there are
constants C' > 0 and so € (0,1/2) such that

(8.27)

for s € (0, sp).

THEOREM 8.2. Assume that the conditions of Theorem 7.1 hold. For M > 0 large enough, there
are constants C > 0 and sg € (0,1/2) independent of h > 0 such that

(8.28) lan — dnallgg <C(M72 +hM™)  for0<s<so.
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Proof. We define the truncation operator Fy : Hcllp(ﬁ) — HY(—H,H) ® Sy as

M

(8.29) Fud(®) = > ém(@2)expliami)

m=—M

for ¢ € Hcllp(ﬁ). We let ép = Gy, — Gp,pr and set F =¢éy and © = &, in the adjoint problem (8.26).
By virtue of theorem 8.1 we have the Galerkin orthogonality

~

(8.30) B(én, Frzey; Chycn, ) = 0.

It follows that

N 8.30 R N R ~ N N ~
||€M||g,ﬁ 27 B(énr, Zepy — Fmien; Chycn, Q) + B, 26y, ; C — Chy e — cn, Q)

< ylleally g lens — FarZenlly g + | B(éar, 2eps © — Chyc — cn, )

<vlleally g lZen s M7 + Chllenmlly g [1Zen 10

(8.27) . . )
(8.31) < C[M™*+ ] llemllyq llenmll a

for s € (0,50). We then divide (8.31) through by |[|éas||, o to see that
(8.32) lemllon < C M7 +h] lleally g -

The proof is complete by applying an argument of Schatz [79] that shows ||éxs||, g < CM ™% for M > 0
large enough. a

We conclude this section by combining our convergence theory into a single theorem that shows
that the approximate solution 4y, »s in the mapped domain converges to the true solution 4. Generally
speaking, we need the relative permittivity € and relative permeability p from the original scattering
problem to be non-trapping.

THEOREM 8.3. Suppose that the conditions of Theorems 5.1 and 6.1 hold. Then for some h > 0
small enough and M > 0 large enough, there are constants C > 0 and sg € (0,1/2) independent of h
and M such that

(8.33) i — anarll g < C |h+ M5 L h(1 - K)M—*0-K) |

where K € {0,1} and s € (0, 50).
Proof. We write & — Uy, pr = U — Up + Up, — Up,ar and use the triangle inequality. The proof follows
from Theorems 6.1 and 8.2. O

9. Numerical example. We now present a numerical example to test our convergence theory.
Let §(Z2) be a piecewise cubic function in the computational domain and identically zero outside; in
particular,

1— 1533+ 7523, &2 €[0,H],
(9.1) S(i’z) =<¢1-— %JAC% - %f%, o € [*H, 0),
0, |Z2| > H.

We used Matlab version R2019b to implement the RCWA for anisotropic constitutive parameters.
When the grating is flat and e(x) = e(x2)I is piecewise uniform, the scattering problem can be
solved analytically [80]. However, as analytic solutions are unavailable when g(z1) is not constant
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for x1 € [-A/2,A/2], we compared the results of our hybrid method to those from the finite element
method (FEM) [81, 82]. We used NETGEN version 6.2 [83] to implement an FEM solver and @y, as
was compared to the FEM solution @ rgas with respect to the relative L? norm

(9.2) linar — trpall lireml "

After the solution @ »s has been calculated, it is possible to map it back into the original spatial
domain as

(9.3) un v = i (G5 (x)).

Given a point (z1,z2) we solved (6.2) for &3 using the bisection method. We then found the closest

grid point &5 ,, to this solution and set wp ar(x1,22) = @n ar(E1,&2,,). Therefore, we also compared

the results of the RCWA solution [57] of the original problem (3.5)—(3.7) to the mapped solution wup,_ps.
We now consider a test case where

A
(9.4) g(x1) = 5 cos(2mx1/A)
with A = 500 nm, H = 700 nm, x = 27/600 nm~*, § =0, ex = 1, pu(x) = I for x € Q, and

(1+107%)1, g(z1) <o < H,
(9.5) e(x) =
(—154+49)I, —H <z <g(x1).

The case of complex coefficient functions can be handled using the technique of Lechleiter and Rit-
tersbusch [7]. The small imaginary part in the relative permittivity in the portion of Q above the
grating was done for the sake of numerical stability of the marching method used to implement the
RCWA algorithm [57].

When the RCWA algorithm [12, 35, 57] is used, the Gibbs phenomenon [84] arises prominently near
the grating [59], especially in the spatial profile of F;. This is exemplified by the plot of |E}(x1, 23)]
vs. x1/A for z5/H = 0 in Fig. 9.1, obtained with M = 10 and & = 1 nm. Our hybrid coordinate-
transformation method implemented with M = 10 and h = 1 nm delivered a very smooth profile, also
shown in the same figure, the relative L? error (normalized using the hybrid solution) between the
results from the two methods being ~ 4 x 10~!. Thus, the hybrid method was able to eliminate the
Gibbs phenomenon. The relative L? error decreases as |x2 — g(z1)| increases in Q — QF, and the error
becomes insignificant outside Q.

For x5/H = 0, the relative L? error between the hybrid solution and the FEM solution was
approximately 5 x 1076, Thus, the FEM can deliver better results for the p-polarization state than
the RCWA [59, 57], but the computational resources needed for the FEM solution are much more
than for the RCWA since the FEM requires inverting large sparse matrices.

The hybrid method provides the solution in mapped domain 2 first and the original domain
second. |Hs(iy,42)| is plotted vs. #1/A and #/H in the left panel of Fig. 9.2, and |Hs(Zy,22)] is
plotted vs. x1/A and z3/H in the right panel of Fig. 9.2, obtained with M = 10 and h = 1 nm. The
grating is, of course, flat in Q but sinusoidally undulating in . The spatial profiles of |H3| are very
different in the central region but become quite similar in the neighborhoods of I'y, undoubtedly
due to the properties of the function S(Z3) of (9.1) at &2 € {—H,0, H}, as identified in Sec. 6.
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Fig. 9.1: |Ey(x1,x2)| vs. x1/A for the example problem when z5/H = 0. Blue curve: RCWA solution
calculated with M = 10 and A = 1 nm. Red curve: Hybrid solution calculated with M = 10 and
h =1 nm. See the paragraph containing (9.4) for other details.

-0.5 0 0.5 -0.5 0 0.5
5(1//\ Xl/A

Fig. 9.2: Spatial profiles of (left) |Hs(#1, %) in Q and (right) |Hs(&1,22)| in €. See the paragraph
containing (9.4) for other details. The grating is outlined in white in both domains.

Finally, we studied the convergence of the hybrid method with respect to both M and h, by
comparing iy, ps with the FEM solution 4rgas. The results of this study are shown in Fig. 9.3. Figure
9.3a shows the convergence rate of uy, »s with respect to the parameter M, @y, ar being calculated for
M € {1,2,--- ,10} with h = 1 nm fixed. We observe O(e~2M) convergence for M < 5 and O(e=M)
convergence for M > 6. Theorem 8.3 predicts faster convergence for small enough M and slower
convergence for large enough M, both trends being exemplified numerically in Figure 9.3a. Figure
9.3b shows the convergence rate of 4y, ps with respect to the slice thickness h, calculations having been
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made for h € {1,2,4,5,10,20,50} nm with M = 10 fixed. We observe O(h?) convergence.

Previous analysis has predicted slower convergence rates in terms of both M and h for the RCWA
[57]. Therefore, a benefit of the hybrid method over the RCWA is the observed exponential convergence
rate with respect to the parameter M.

0 . . . -2 ,
10 — 10 e e
2 == llanar — dreulllldren -o ||pr — Greml|||@rEa|
o —2M - - 2 .
T 2 \:ﬂ:\ o) 7 ow) r
= 107 Nw ] = 5
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[y e = s, o
<3 \:\ <!§ 4 ///
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= \\ ~ o i /,/z
- e =
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Fig. 9.3: Convergence plots comparing the hybrid solution with the FEM solution in the mapped
domain. See the paragraph containing (9.4) for other details. (a) Semilog plot of relative L? error vs.
M when h =1 nm. (b) Loglog plot of relative L? error vs. h when M = 10.

10. Conclusion. In this paper, we formulated and analyzed a hybrid method for solving the
time-harmonic Maxwell equations in a spatial domain that contains a grating. This method combines
transformation optics with the RCWA. The domain is invariant in one dimension and the chosen
constitutive properties allow the reduction of the full Maxwell system to a 2D Helmholtz equation for
each linear polarization state, our focus lying on the p-polarization state. We proved the existence of
a unique solution to the original scattering problem by establishing integral formulas similar to the
Rellich identity to prove a-priori estimates. Our analysis required certain non-trapping conditions to
hold. After implementing a coordinate transformation from the original domain to a mapped domain,
we used norm equivalence to prove the uniqueness and existence of solutions to the transformed
scattering problem. The discretized form of the transformed problem was analyzed for convergence
analysis with respect to two different parameters: (i) a slice thickness indicative of spatial discretization
in one dimension and (ii) the number of terms retained in the Fourier-Bloch expansions of the electric
and magnetic field phasors with respect to the other dimension. Testing with a numerical example
revealed faster convergence than our analysis predicts, which suggests future work to improve analysis.
In contrast to RCWA, the hybrid method does not suffer from the Gibbs phenomenon. However, the
hybrid method is applicable only to gratings that are the graphs of functions.
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