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1. Introduction

Let G be a finite group. Pick g € G uniformly at random. What does g ‘look like’?

This ill-posed question can be sharpened in a variety of ways; this is the subject of

‘probabilistic group theory’ initiated by Erdés and Turan [41], [42], [43], [44]. Specializing

to the symmetric group, one can ask about features of cycles, fixed points, number of
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cycles, longest (or shortest) cycles, and the order of g [89]. The descent pattern has also
been well-studied [18]. Specializing to finite groups of Lie type gives ‘random matrix
theory over finite fields’ [49]. The enumerative theory of p-groups is developed in [15].
The questions also make sense for compact groups and lead to the rich world of random
matrix theory [4], [30], [46]. ‘Probabilistic group theory’ is used in many ways, see [39]
and [88] for alternative perspectives.

This paper specializes in a different direction. Let H and K be subgroups of G.
Then G splits into double cosets and one can ask about the distribution that a uniform
distribution on G induces on the double cosets. Three examples are treated in detail:

o« If G=GL,(F,) and H = K is the lower triangular matrices B (a Borel subgroup),
then the Bruhat decomposition

G = U BwB

wWES,

shows that the double cosets are indexed by permutations. The induced measure on
S, is the actively studied Mallows measure

pq(w) = ' (1)

where I(w) is the number of inversions in the permutation w and [n],! = (1 +¢)(1 +
q+q*)...(1+g+...+¢"1). The double cosets vary in size, from 1/[n],! to q(g)/[n]q!.
This might lead one to think that ‘most g lie in the big double coset’. While this

is true for ¢ large, when ¢ is fixed and n is large, the double coset containing a
_ (n—1)

gF1
with standard deviation of order y/n. See Theorem 3.5. The descent pattern of a

typical g corresponds to an I(w) with normal distribution centered at (Z)

typical w is a one dependent determinantal point process with interesting properties
[17]. There has been intensive work on the Mallows measure developed in the past
ten years, reviewed in Section 3.3. This past work focuses on ¢ as a parameter with
0 < g < 1. The group theory applications have ¢ > 1 and call for new theory.

e If G is the symmetric group So, and H = K is the hyperoctahedral group of cen-
trally symmetric permutations (isomorphic to C% x S,,), then the double cosets are
indexed by partitions of n and the induced measure is the celebrated Fwens’s sam-
pling formula

nl - gt»
A)=—— 2
P = L )
where ¢()) is the number of parts of A, z\ = [[;—, i*a;! if A has a; parts of size i,
and z = ¢q(¢g+1)...(¢+n —1). As explained in Section 4, the usual domain for p,
is in genetics. In statistical applications, ¢ is a parameter taken with 0 < ¢ < 1. The
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group theory application calls for new representations and theorems, developed here
using symmetric function theory.

o If G is the symmetric group S, and H = S\, K = S, are Young subgroups corre-
sponding to fixed partitions A and g of n, then the double cosets are indexed by
contingency tables: I x J arrays of non-negative integer entries with row sums A and
column sums p. If ' = {T};} is such a table, the induced measure on double cosets
is the Fisher-Yates distribution

T)=— J 3
w) = T )
z?]
where Aq,...,Ar are the row sums of 7" and pq,..., s are the column sums. This

measure has been well-studied in statistics because of its appearance in ‘Fisher’s
Exact Test’. This is explained in Section 5. Its appearance in group theory problems
suggests new questions developed here — what is the distribution of the number of
zeros or the largest entry? Conversely, available tools of mathematical statistics (chi-
squared approximation) answer natural group theory questions — which double coset
is largest, and how large is it?

The topics above have close connections to a lifetime of work by Jan Saxl. When the
parabolic subgroups are S X S,,_, the double cosets give Gelfand pairs. The same holds
for B, C S3, and, roughly, Jan proves that these are the only subgroups of S,, giving
Gelfand pairs for n sufficiently large. He solved similar classification problems for finite
groups of Lie type. These provide open research areas for the present project.

Section 2 provides background and references for double cosets, Hecke algebras, and
Gelfand pairs. Section 3 treats the Bruhat decomposition B\GL,,(F,)/B. Section 4 treats
B, \S2,/B,, and Section 5 treats parabolic subgroups of S,, and contingency tables. In
each of these sections, open related problems are discussed.

2. Background

This section gives definitions, properties, and literature for double cosets, Hecke alge-
bras, and Gelfand pairs.

2.1. Double cosets

Let H and K be subgroups of the finite group G. Define an equivalence relation on
G by

s~t < s=htk for s,teG, he H kekK.

The equivalence classes are called double cosets, written HsK for the double coset
containing s and H\G/K for the set of double cosets. This is a standard topic in un-
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dergraduate group theory [95], [40]. A useful development is in [20], Section 2.7. Simple
properties are:

|H|| K| | H||K]|
[H K] |[HNsKs™1| |KNs 1Hs| )
HsK
VD Y )
HsKcH\G/K
1
|[H\G/K| = K] > |Guil, where Gup={g:h 'gk=g}. (6)
heH ke K

Despite these nice formulas, enumerating the number of double cosets can be an
intractable problem. For example, when H and K are Young subgroups, double cosets
are contingency tables with fixed row and column sums. Enumerating these is a #-P
complete problem [32].

Consider the problem of determining the smallest (and largest) double coset. If H =
K, the smallest is the double coset containing id (with size |H - H| = |H|). When
K # H, it is not clear. Is it the double coset containing id? Not always. Indeed, for H
a proper subgroup of G, let g be any element of G not in H. Let K = H9 = g~ 'Hyg.
Then HgK = Hgg 'Hg = HHg = Hg, so the double coset HgK is just a single right
coset of H. This has minimal possible size among double cosets H x K. Since g is not
in H, HgK = Hg does not contain the identity. It can even happen that the double
coset containing the identity has maximal size. This occurs, from (4) above, whenever
HNK =1d.

For the largest size of a double coset, from (4) note that this can be at most |H| - |K]|.
If H = K this occurs if H is not normal. For H and K different, it is not clear. For
parabolic subgroups of S, a necessary and sufficient condition for the maximum size to
be achieved is that A\ majorizes u'. See [68] Section 1.3, which shows that the number of
double cosets achieving the maximum is the number of 0/1 matrices with row sums A
and column sums p’.

The seemingly simple problem of deciding when there is only one double coset becomes
the question of factoring G = HK. This has a literature surveyed in [10].

All professional group theorists use double cosets — one of the standard proofs of
the Sylow theorems is based on (5), and Mackey’s theorems about induction and re-
strictions are in this language. In addition, double cosets have recently been effective in
computational group theory. Laue [77] uses them to enumerate all isomorphism classes
of semi-direct products. Slattery [90] uses them in developing a version of coset enumer-
ation.

2.2. Hecke algebras

With H and K subgroups of a finite group G, consider the group algebra over a field
F:
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Ly(G)={f:G =T}

This is an algebra with (fi + f2)(s) = fi(s) + f2(s) and f1 * fa(s) = >, f1(t) f2(st™1).
The group H x K acts on Lr(G) by

fF(s) = f(h™ sk).

The bi-invariant functions (satisfying f(h~'sk) = f(s) for all h € H,k € K, s € G) form
a sub-algebra of Ly (G) which is here called the Hecke algebra. Many other names are
used, see [91] for history.

Hecke algebras are a mainstay of modern number theory (usually with infinite groups).
They are also used by probabilists (e.g. [34]) and many stripes of algebraists. Cur-
tis and Reiner [28] is a standard reference for the finite theory. We denote them by
Ly(H\G/K). Clearly the indicator functions of the double cosets form a basis for
Ly (H\G/K).

2.3. Gelfand pairs

For some choices of G and H, with K = H, the space Lp(H\G/K) forms a com-
mutative algebra (even though G and H are non-commutative). Examples with G = S,
are H,, = Sk x S,_ or H, = B,, in Sy,. Of course, G acts on Ly(G/H) (say with
F = C) and commutativity of Lc(G/H) is equivalent to the representation of G on
Lc(G/H) being multiplicity free: Since Le(G/H) = Ind$ (1) (the trivial representation
of H induced up to G), Frobenius reciprocity implies that each irreducible py occurring
in Lc(G/H) has a 1-dimensional subspace of left H-invariant functions. Let sy be such a
function, normalized by s)(1) = 1. These are the spherical functions of the Gelfand pair
(G, H). Standard theory shows that the spherical functions {s)} form a second basis for
Lc(H\G/H).

We will not develop this further and refer to [29] (Chapter 3F), [21], [79] for applica-
tions of Gelfand pairs in probability.

We also note that Gelfand pairs occur more generally for compact and non-compact
groups. For example, O,,/O,,_1 is Gelfand and the spherical functions become the spher-
ical harmonics of classical physics. For O, C GL,(R), the spherical functions are
the zonal polynomials beloved of older mathematical statisticians. Gelfand pairs are
even useful for large groups such as S and U, which are not locally compact. See
[19].

Clearly, finding subgroups H giving Gelfand pairs is a worthwhile project. Jan Saxl
worked on classifying subgroups giving Gelfand pairs over much of his career [87], [67].
He gave definitive results for the symmetric and alternating groups and for most all the
almost simple subgroups of Lie type. Alas, it turns out that if n is sufficiently large, then
Sk X Sp—k and By, give the only Gelfand pairs in S,, (at least up to subgroups of index
2; e.g. Ak X S,_k is Gelfand in S,,).
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3. Bruhat decomposition and Mallows measure
3.1. Introduction

Let G = GL,(IF,), the general linear group over a field with ¢ elements. Let B be the
lower triangular matrices in GG. Let W denote the permutation group embedded in G as
permutation matrices. The decomposition of G into B — B double cosets is called the
Bruhat decomposition [91] and has the following properties:

n—1
G=J BwB, |Bl=(q-1"%), |G =1BI[[Q+a+...+d). (7)
weW =1

Thus, permutations index the double cosets. The size of BwB is
|BwB| = |Blg"“),

where I(w) is the number of inversions of w (that is, I(w) = [{i < j : w; > w;}|). Dividing
by |G|, we get the induced measure

I(w) n—1 '
pol) = Loy Wl =TT+ a0 ®)

Example 3.1. In S3, the inversions are

w | 123 132 213 231 312 321
Iwy| 0o 1 1 2 2 3

and (1+¢q)(1+q+q¢%) =1+2q+2¢>+ ¢>.

The measure py(w), w € W, is studied as the Mallows measure on W = S, in the
statistical and combinatorial probability literature. A review is in Section 3.3. Much of
this development is for the statistically natural case of 0 < ¢ < 1 with ¢ close to 1. The
group theory application has ¢ = p® for a prime p and a € {1,2,3,...}. This calls for
new theorems and insights. The question of interest is

Pick g € G from the uniform distribution. What double coset is ¢ likely to be in?
(9)
An initial inspection of (8) reveals the minimum and maximum values: p,(id) = 1/[n],!
and pg(wo) = q(g)/[n]q! for wg = n(n—1)...21, the reversal permutation. Thus, BwyB is
the largest double coset. It is natural to guess that ‘maybe most elements are in BwgB’.
This turns out to not be the case.
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Lemma 3.2.

9 _ (1- é)n_l )= lj: (1- %)4 (10)

Proof. Using that (}) = S, simple algebra gives

(1)
. q
nly!  (1+q¢(1+q+¢?)...(1+q+...+q" 1)
1

1 1 1 1 1
(1r3) (i) (v i)

(-3

= O

= (1)

The infinite product [];=, (1 —1/¢") converges. This shows that for fixed ¢, when n is
large pq(wo) is exponentially small. Of course, for n fixed and ¢ large, py(wo) tends to 1
(only g > n is needed).

In Section 3.2, it is shown that a uniform g is contained in BwB for I(w) = (}) —

2
(Zj ) 4+ 7 (::ll)q with Z a standard normal random variable.

Let us conclude this introductory section with two applied motivations for studying
this double coset decomposition.

Example 3.3 (LU decomposition of a matriz). Consider solving Az = b with A fixed in
GL,(F;) and b fixed in . The standard ‘Gaussian elimination’ solution subtracts an ap-
propriate multiple of the first row from lower rows to make the first column (1,0, ...,0)7,
then subtracts multiples of the second row to make the second column (x,1,0,...,0)7,
and so on, resulting in the system

Ux* =b*

with U upper triangular. This can be solved inductively for z* and then z. This descrip-
tion assumes that at stage j, the (¢, j) entry of the current triangularization is non-zero.
If it is zero, a permutation (pivoting step) is made to work with the first non-zero el-
ement in column j. A marvelous article by Roger Howe [66] shows in detail how this
is equivalent to expressing A = BwB with the number of pivoting steps being ¢ !(),
Thus, matrices in the largest Bruhat cell require no pivots and p,(w) gives the chance of

various pivoting permutations.

Example 3.4 (Random generation for GL,(F,)). Suppose one wants to generate N in-
dependent picks from the uniform distribution on GL, (F,). We have had to do this in
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cryptography applications when ¢ = 2,n = 256, N = 10°. Testing conjectures for G also

uses random samples. One easy method is to fill in an n x n array with independent

picks from the uniform distribution on F, and then check if the resulting matrix A is

invertible (using Gaussian elimination). If A is not invertible, this is simply repeated.

The chance of success is approximately [~ (1 — qi> (~ 0.29 when ¢ = 2). Alas, this

calls for a variable number of steps and made a mess in programming our crypto chip.
Igor Pak suggested a simple algorithm that works in one pass:

1. Pick w € W from p,(w).
2. Pick By, By € B uniformly.
3. Form BiwBs.

Since picking B; uniformly is simple, this is a fast algorithm. But how to pick w from
pq? The following algorithm is standard:

1. Place symbols 1,2,...,n down in a row sequentially, beginning with 1.

2. If symbols 1,2,...,i — 1 have been placed, then place symbol i leftmost with proba-
bility ¢*~(q — 1)/(¢* — 1), secondmost with probability ¢*=2(¢ — 1)/(¢* — 1), ...and
ith with probability (¢ —1)/(¢* — 1).

3. Continue until all n symbols are placed.

The following sections develop some theorems for the Mallows distribution (8) for
g > 1 fixed and n large. In Section 3.2, the normality of I(w) is established. Section 3.3
develops other properties along with a literature review of what is known for ¢ < 1. The
descent pattern is developed in 3.4, generalizations to other finite groups and parallel
orbit decompositions (e.g. G x G acting on Mat(n,q)) are in Section 5.3. These sections
are also filled with open research problems.

3.2. Distribution of I(w)

This section proves the limiting normality of the number of inversions I(w) under the
Mallows measure p,(w) defined in (8), when ¢ > 1 is fixed and n is large. Thus, most
g € GL,(F,) are not in the largest double coset.

Theorem 3.5. With notation as above, for any z € R,

M-+ .,
pq{\/M/(q—l)Sx —\/—2—7(_46 dt+0(1)

The error term is uniform in .
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Proof. The argument uses the classical fact that under p, on S,, I(w) is exactly dis-
tributed as a sum of independent random variables. Let P;(i) = ¢'(¢ —1)/(¢?T* — 1) for
0 <@ <j < oo Write X; for a random variable with distribution P;,1 < j < n —1,
taking X; independent. Then

pI(w)=a)=P{X;+Xo+...+X,,_1=0a} foral nand 0<a<n-1. (11)
To see (11), use generating functions. Rodrigues [86] proved for any € that

}:9“”:(L+®O+9+95~%1+9+~~+W‘W

Take § = zq and divide both sides by [n],! to see
E,[z!“)] = E[z%] .. . E[zX1].

Under P;

g1 (1N 1 1
Pj(Xj—]—a)—ﬁ— 1—5 q—a 1+qj+17_1 .

Thus, when j is large (and using that ¢ > 1), the law of j — X is exponentially close to

a geometric random variable X with P(X = a) = (1 — l) G) ,0 < a < oo. This X

q
has E[X] =1/(¢— 1) and Var(X) = ¢/(¢ — 1)*. Now, the classical central limit theorem

implies the result. O
3.3. Simple properties of pg(w)

The discussion above points to the question of: What properties of w are ‘typical’
under p,y(w)? We now see that w with I(w) = () — (n—1)/(g—1) £ ¥ are typical,
but are all such w equally likely?

The distribution p,(w) is studied (for general Coxeter groups) in [34]. They show (for

all g,n)
Pq(w) = pg(w™) (12)
polwr =j) =’ "Hg-1/(¢" - 1) (13)
Polwn =34) =¢" 7 (q—1)/(¢" = 1) (14)
pe(w) = pg-1 (R(w)), (15)

where in the last expression R(w) is the reversal of w (e.g. R(31542) = 24513). However,
there do not appear to be simple expressions for p,(w; = j), 1 < < n, nor for the distri-
bution of the number of fixed points, cycles, or other features standard in enumerative
combinatorics.
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There has been remarkable study of features when ¢ is close to 1 (often ¢ =1 — 3/n).
These include

e The limiting distribution of the empirical measure % > diw, was studied by Shannon
Starr [93]. He shows, for ¢ =1 — 3/n,

. 1 1wy —
Ewl’glnioopq 52f<575> - / f(z,y)uz,y) dedy| > € =0
[0,1]x[0,1]

for any continuous function f : [0,1] x [0,1] — R, where

(6/2) sinh(5/2)
P/t cosh(B(x —y)/2) — e P/Acosh(B(z +y —1)/2))

u(z,y) = (

Starr derives these results rigorously by considering a Gibbs measure on permutations
Z71(B)e PHW) with H(w) = L > 1<i<j<n 9(0,00)(wj — w;). This work is continued
in [94], bringing in fascinating connections with statistical mechanics.

The function u(z,y) above is an example of a permutation limit or ‘permuton’. It
figures in many of the developments below.

o Starr’s work, along with the emerging world of permutation limit theory [65], [16],
is central to the work of Bhattacharya and Mukherjee [12], who study the degree
distribution of the permutation graphs (an edge from i to j if and only if 7 < j and
w(i) > w(j)) under p;_g/n(w), [12].

o Remarkable work on statistical aspects of the Mallows model (given an observed w,
how do you estimate § and how do such estimates behave?) is in [83]. This work
treats other Mallows models of the form pg(w) = e(=#/™Mdw:id) for d a metric on S,,.

o In [84], for ¢ = 1 — B/n with [ positive or negative (but fixed), Mukherjee extends
(13), (14), (15) above to

et =) |
e i gm0

with u the permutation limit above. He gives similar results for several coordinates
and uses these to prove limit theorems for the number of fixed points and cycles.

e The number d(w) of descents in w (and indeed the distribution of d(w) + d(w™1')) is
shown to be approximately normally distributed in [59] for ¢ = 1—/n. A description
of d(w) for fixed ¢ > 1 is in Section 3.4 below. This also follows from [59], with a
Barry-Esseen quality error.

o The cycles of w have limit distributions determined by [53] for ¢ =1 — §/n.

e The length of the longest increasing subsequence under p;_g/, has a fascinating
limit theory, see [82], [11]. See [9] for work on the longest monotone subsequence,
which works for fixed 0 < ¢ < 1 and thus is relevant to the present group theory
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applications. This paper develops a probabilistic regenerative process for building
permutations from the Mallows model that should be broadly useful for further
distribution questions.

e Three further papers develop properties of the Mallows model for fixed ¢ less than
1 (and are hence applicable to fixed ¢ greater than 1 because of (15)). In [27], the
authors study the distribution of pattern avoiding permutations for local patterns
(e.g. 321 avoiding) and related topics. A variety of techniques are used. These may
well transfer to other statistics. In [54], [55] a limiting measure on permutations of
the natural numbers (and Z) is introduced as a limit of finite Mallows measures.
As one offshoot, the limiting distribution of o; — ¢ (and multivariate extensions) is
determined. The main interest of these papers is a g-analog of de Finetti’s Theorem.

3.4. Descents

In this section, ¢ > 1 is fixed. A permutation w € S, has a descent at position ¢
if wit1 < w;. The total number of descents is d(w). The descent set is S(w) = {i <
n—1: w4 < w;}. For example, w = 561432 has d(w) = 3 and descent set S(w) =
{2,4,5}. Descents are a basic descriptive statistic capturing the ‘up/down’ patterns
in permutations. The distribution theory of d(w) is classical combinatorics going back
to Euler. Descent sets also have a remarkable combinatorial structure, see [18] for an
overview.

Recent work allows detailed distribution theory for d(w) and S(w) under the Mallows
distribution p,(w) for fixed ¢ > 1. To describe this, let

1 if wipr <wj
Xi(w) = v Y, 1<i<n-—1
0 if Wit1 > Wwj
If wis random, then X7, X, ..., X,,_1 is a point process. The following result of Borodin,

Diaconis, Fulman [18] describes many properties of this process. For further definitions
and background, see [17].

Theorem 3.6. Let p,, ¢ > 1, be the Mallows measure (8).

(a) The chance that a random permutation chosen from p, has descent set containing
81 < 89 < ...< 8 18

k
1
det {7& ,
[si+1 = 85l ]5 jo

with so = 0, g1 = n.
(b) The point process X;(w) is stationary, one dependent, and determinantal with kernel
K(z,y) = k(x — y) where
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Z k(m)z™ - 1

= T (el

(¢) The chance of finding k descents in a row is q(kgl)/[k‘—l—l]q!. In particular, the number

d(w) of descents has mean p(n,q) = ;15 (n — 1) and variance

s (@ —qg+1)(n—¢*+3¢—1)
"‘q( G+ +q+) )

Normalized by its mean and variance, the number of descents has a limiting standard
normal distribution.

Remarks.

1. Consider the distribution of d(w) in part (c) of Theorem 3.6. Under the uniform
distribution on S,,, d(w) has mean (n — 1)/2 and variance (n + 1)/12 (obtained by
setting ¢ = 1 in the formula in part (c)). The distribution p, pushes w toward wy. How
much? The mean increase to qi—l(n — 1) and, as makes sense, the variance decreases.
For large ¢, the mean goes to the maximum value (n — 1) and the variance goes to
Z€ero.

2. The paper [18] gives simple formulas for the k-point correction function p,(S(w) C S)
for general sets S.

3. There is an interesting alternative way to compute various moments for d(o) under

the measure p,. Let

An(y) = ) py(0)y?.

oc€Sy
[92] gives

> n 1 -y _ > q(;>
2 AW = gy =y P = 2

'wn.

Differentiating in y and setting y = 1 gives the generating function of the falling
factorial moments for d under p,. Using Maple, Stanley (personal communication)
computes

/ n __ qz2
2 AW = )

1" n __ q233(q2 +q+ Z)
A = e D@+ g e D

ZA///(l)Zn _ q324(q4 =+ q3 + 2q2z - C]z2 +2gz + Z2)
" (z=D*g+1)*(®+q+1)(¢* +1)

n
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These give independent checks on the mean and variance reported before and an
expression for the third moment. It would be a challenge to prove the central limit
theorem by this route.

Sections 3.1-3.4 underscore our main point: Enumeration by double cosets can lead
to interesting mathematics.

3.5. Other groups and actions

The Bruhat decomposition (7) is a special case of more general results. Bruhat showed
that a classical semi-simple Lie group has a double coset of this form where B is a
maximal solvable subgroup of G and W is the Weyl group. Then Chevalley showed the
construction makes sense for any field, particularly finite fields. This gives

Gl=1Bl Y ",

weWw

with /(w) the length of the word w in the Coxeter generators. The length generation
function factors

n

Yo =T +a+...+q),

weWw =1

where e;, the exponents of W, are known. From here, one can prove the analog of
Theorem 3.5. The Weyl groups have a well developed descent theory (number of positive
roots sent to negative roots) and one may ask about the analog of Theorem 3.6, along
with the other distribution questions above.

We want to mention two parallel developments. Louis Solomon [91] has built a beau-
tiful parallel theory for describing the orbits of GL,(F,) x GL,(F,;) on Mat(n,q), the
set of n x n matrices. This has been wonderfully developed by Tom Halverson and Arun
Ram [57]. None of the probabilistic consequences have been worked out. There is clearly
something worthwhile to do.

Second, Bob Gualnick [56] has classified the orbits of GL,,(F;) x GL,,(F,) acting on
the set Mat(n,m;q?) of n x m matrices over F,. Estimating the sizes and other natural
questions about the orbit in the spirit of this section seems like an interesting project.

Finally, it is worth pointing out that finding ‘nice descriptions’ of double cosets is
usually not possible. For example, let U, (q) be the group of n X n uni-upper triangular
matrices with entries in F,. Let G = U, (q) x Uyn(q), with H = K = U,(q) embedded
diagonally. Describing H — H double cosets is a well-studied wild problem in the language
of quivers [52]. In [3], this was replaced by the easier problem of studying the ‘super
characters’ of U,,. This leads to nice probabilistic limit theorems. See [24], [25].
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4. Hyperoctahedral double cosets and the Ewens sampling formula
4.1. Introduction

Let B,, be the group of symmetries of an n-dimensional hypercube. This is one of the
classical groups generated by reflections. It can be represented as

B, = CY xSy (16)

with S, acting on the binary n-tuples by permuting coordinates. Thus, |B,,| = n!2". For
present purposes it is useful to see B, C S, as the subgroup of centrally symmetric
permutations. That is, permutations o € Sa,, with o(i) + 0(2n+ 1 —1i) = 2n + 1 for all
1 <i < n. For example, when n = 2 we have |Bs| = 8 and, as elements of S4, can write

B, = {1234,4231,1324, 4321, 3142, 2143, 3412, 2413}.

The first and last values in each permutation sum to five, as do the middle two values.
This representation is useful in studying perfect shuffles of a deck of 2n cards [33].

The double coset space B, \S2,/B, is a basic object of study in the statisticians
world of zonal polynomials. Macdonald ([80], Section 7.1) develops this clearly, along
with citations to the statistical literature, and this section follows his notation.

We begin by noting two basic facts: 1) The double cosets By, \Sa,/B,, form a Gelfand
pair. 2) The double cosets are indexed by partitions of n. To see how this goes, to
each permutation o € Sy, associate a graph T'(o) with vertices 1,2,...,2n and edges
{€:, €7}, where ¢; joins vertices 2i — 1,2i and € joins vertices o(2i — 1), 0(2i). Color
the €; edges red and the €7 edges as blue (for interpretation of the colors in the text, the
reader is referred to the web version of this article). Then, each vertex lies on exactly one
red and one blue edge. This implies the components of T'(c) are cycles with alternating
red and blue edges, so each cycle has an even length. Dividing these cycle lengths by 2
gives a partition of n, call it A,.

Example 4.1. Take n = 3 and o = 612543. The graph T'(o) is

loa Lol
€1 €2 €3

€1
€3
O—C0 O
Here there is a cycle of length 4 and a cycle of length 2, thus this corresponds to the
partition A\, = (2,1).
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Macdonald proves (2.1 in Section 7.2, [80]) that A, = Ay if and only if o € B,,0'B,,.
Thus, the partitions of n serve as double coset representatives for B,\S2,/By,.
If we denote By = B,0B,, A = A,, then

(17)

with 2y = []/_;i%a;! and £(X) = >, a;(\) is the number of parts in A, where A
has a; parts of size i. For example, for 0 = id, we see \, = 1™,z = n! and |Bi»| =
(27n!)2/(2"n!) = |B,|. The largest double coset corresponds to the 2n cycles (12...2n)
in Sy, (not all 2n cycles are in the same double coset).

To see this, let f(A) = 228 for a partition \ of n. Note that for any ), if a box
from the lower right corner is moved to the right end of the top row, the result )\’ is still
a partition. For example,

A: N =

Lemma 4.2. With notation above, f(X) > f(X\).

Proof. Assume the first row of A has a boxes and the last row has b boxes. Consider
JN)/f(A). I b > 1, then £(N) = £(X\). With zy =[]}, i"™m;!, where m; is the number
of parts of A\ of length 7, then from A to \ only ¢ = a,b,a + 1,b — 1 will change. Thus,

f\)

f)

Cam  me = D)V (a4 1) (g + )0 (my — ) (D — 1) T (my g + 1)
B a™a(mg)! - (a + 1)™a+1(mgyqp)! - 0™ (mp)! - (b — 1)™o-1(mp—1)!

_ (a4+1) - (mgs1+1)-(b—1) - (mp—1 +1) _ (a+1)-(b—1) <1
a-mg-b-myp a-mg-b-my

Since a is the length of the top row and b is the length of the bottom row, m,11 =
myp—_1 = 0, and the inequality follows since mq, mpy > 1 and b < a.
If b =1, then ¢(\) = £(\) — 1 and

fN) _ (a+1)

= 1.
fQA)  2-amgmy < -

Corollary 4.3. For A+ n, f(\) < 2n with equality if and only if X = (n).

Remark. It is natural to guess that f(\) is monotone in the usual partial order on
partitions. This fails, for example:
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i

Here A < ), but f(\) = 273! < 28.41 = f(\). Still, inspection of special cases suggests
that the partial order in the lemma can be refined.

The lemma shows that the smallest double coset in B\ Say,/B,, corresponds to id, A =
1™, and the largest corresponds to the 2n cycle (12...2n), A = (n).
Dividing (17) by |Sa,| gives the probability measure

1 1/1 1
— 7—1 ; —
P,(\)=Z""-n!- ST with Z—§ (5—1—1)...(5—1—71—1) (18)

This shows that P, (\) is the Ewens measure Py for § = 1/2. The Ewens measure with
parameter 6 is usually described as a measure on the symmetric group .S,, with

gc(n)

A v s s p—

¢(n) = number of cycles in 7. (19)

If 7 is in the conjugacy class corresponding to A - n, then ¢(n) = £(\) and the size of the
conjugacy class is n!/zy. Using this, simple calculations show (18) is (19) with 8 = 1/2.

The Ewens measure is perhaps the most well-studied non-uniform probability on S,
because of its appearance in genetics. The survey by Harry Crane [26] gives a detailed
overview of its many appearances and properties. Limit theorems for Py are well devel-
oped. Arratia-Barbour-Tavaré ([5], chapter 4) studies the distribution of cycles (number
of cycles, longest and shortest cycles, etc.) under Py. The papers of Féray [45] study excee-
dences, inversions, and subword patterns. A host of features display a curious property:
The limiting distribution does not change with ¢ (!). For example, the structure of the
descent set of an Ewens permutation matches that of a uniform permutation. An elegant,
unified theory is developed in the papers of Kammoun [72], [71], [73]. More or less any
natural feature of A has been covered. These papers work for all 8 so the results hold for
Py in (19).

The following section gives more details. The final section suggests related problems.

4.2. Cycle indices and Poisson distributions
For a partition A of n let a;(A) be the number of parts of A equal to i. Thus,

S ia;(A) = n. For o € Sy, write a;(0) for a;(\,) and introduce the generating
functions:

1 - a; (o
fo(x1, .. xn) = @)l Z sz ( ), n>1

0€Sa, i=1
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Jo=1

and

'I”L

Ztn Q;Ln xl,...,wn).

The following analog of Pdlya’s cycle index theorem holds.

Theorem 4.4. With notation as above,

= exp <Zl %xn>

Proof. The proof uses symmetric function theory as in [80]. In particular, the power
sum symmetric functions in variables y = (y1,y2,...) are p;j(y) = >_,y] and, for A =
19129 . pa(y) = [1; py*- A formula at the bottom of pg 307 in [80] specializes to

Y 227 Vpa(y)pay') = exp <Z %pn(y)pn(y’))- (20)

A n=1

In (20), y and ¢’ are distinct sets of variables. We have set vy = 2 in Macdonald’s formula
(see the discussion following the proof). Set further y = 3’ and replace y by vty to get

ZZA 19 Z(A)t\/\lp/\(y)Q = exp (Z %pn(y)Q) J
)\ n=1

where [A| = >, A;. Since the p,, are free generators of the ring of symmetric functions,
they may be specialized to p, — /x; (that is, setting p;(y) = y/Z;). Then the formula
becomes

Z " Z z_12 £(X) H:L-az(A) = exp <Z ;n ) . (21)
n=0 AFn
As above, the inner sum is
22;12—6(/\) H‘T?i()\) 2nn| Z H ai(Ae) _ 22n) fn. O
Abn i 0€San &

To bring out the probabilistic content of Theorem 4.4, recall the negative binomial
density with parameters 1/2,1 — ¢ assigns mass

2n
tn
p1/2,1-¢(n) = z ! (22)n, Z7'=V1i—t, n=0,1,2,...
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Divide both sizes of (21) by /1 — ¢ to see

S bz f = [ exp (%x - %) , (22)
n=0 n=1
using the expansion 1—-t = T[], et"/2" . Recall the Poisson()\) distribution on
{0,1,2,...,} has density e=*)/j! and moment generating function e~****. This and
(22) gives

Corollary 4.5. Pickn € {0,1,2,...} from pi/21-+(n) and then o € Sa, from the uniform
distribution. If o has A\, with a; parts equal to i, then the {a;}I, are independent with
a; having a Poisson distribution with parameter t*/2i.

From this corollary one may prove theorems about the joint distribution of cycles
exactly as in [89]. This gives analytic proofs of previously proved results. For example,
for large n:

o The {a;} , are asymptotically independent with Poisson(1/2i) distributions.
o /()\) has mean asymptotic to log(n)/2, variance asymptotic to log(n)/2, and normal-
ized by its mean and variance ¢(\) has a limiting normal distribution.

The distributions of smallest and largest parts are similarly determined. The calcu-
lations in this section closely match the development in [96]. The results above relating
negative binomial mixtures and permutations are special cases of more general results.
See [85], Corollary 4.1, and their discussion of related literature. This gives a very clear
description of the results above from the genetics perspective.

4.3. Remarks and extensions

(a) The formula of Macdonald used in Section 4.2 involved a sequence of numbers
v;, 1 <4 < oo. For a partition A, define vy = vy, vy, ... vy, multiplicatively. Macdonald
proves

D n ' PAWIpAW) = Zn e WP ),
A

At the right, the product means ‘something is independent’ and it is up to us to see
what it is.

As a first example, take v; = 1 for all i. Then, proceeding as in (22) the formula
becomes

X in )

n ittt /i
E gCn(xl,...,xn):ezzfl t'/i
n=0
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with Cp(z1,...,2,) = 5 >oves, 1L; x?"(o), the cycle indicator of S,,. This is exactly
Pélya’s cycle formula, see [89].
Taking v, = 1/2 gives the results of Section 4.2 and indeed suggested the project of

enumerating by double cosets. Macdonald considers the five following choices for v,,:
L=t 2a,(1—¢")/(1—t")

and shows that each gives celebrated special functions: Schur, Hall-Littlewood, Zonal,
Jack, and Macdonald, respectively. We are sure that each will give rise to an interesting
enumerative story, if only we could find out what is being counted. Indeed, in [50] Jason
Fulman has shown that the case of v; = 1 — 1/¢" enumerates F-stable maximal tori in
GL,(F).

(b) For the cycles of the symmetric group, Pélya’s formula shows that the limiting
Poisson approximation is remarkably accurate. In particular, under the uniform distri-
bution on S,,:

o The first n moments of the number of fixed points of o, a;(c), are equal to the first
n moments of the Poisson(1) distribution.
o More generally, the mixed moments

Es, [a}'ab? ... a)']

equal the same moments of independent Poisson variables with parameters 1,1/2;.. .,
1/1, as long as ki + 2ky + ... + 1k < n.

Theorem 4.4 allows exact computation of the joint mixed moments of a1, as, ... for A
chosen from Ewens(1/2) distribution. They are not equal to the limiting moments. The
moments were first computed by Watterson in [96].

(c) We mention a g-analog of the results of this section which is parallel and ‘nice’. It
remains to be developed. The n-dimensional symplectic group Spa,(F,) is a subgroup
of GLyy, (F,) and GLay, Spay, is a Gelfand pair. The double cosets are nicely labeled and
the enumerative facts are explicit enough that analogs of the results above should be
applicable. For details, see [6].

Jimmy He ([58], [60]) worked out the convergence rates for the natural random walk
on GLay, Spa, using the spherical functions. This problem was suggested to the first
author by Jan Saxl as a way of tricking himself into learning some probability. The
result becomes a walk on quadratic forms, and He proves a cutoff occurs.

5. Parabolic subgroups of S,,

Let A\ be a partition of n (denoted A F n). That is, A = (A1, Aa,..., Ar) with A\ >
Ao > ... 2 A > 0and A\ + Ao + ... + A\; = n. The parabolic subgroup S) is the
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set of all permutations in S,, which permute only {1,2,...,\;} among themselves, only
{AM+1,..., A\ + A2} among themselves, and so on. Thus,

S>\§S)\1 XSAQX...XS)\I.

If s; = (i,i+1),1 < i < n—1 are the generating transpositions of S,,, then S) is generated
by {517\ {52, 5A05 - - - » Sa, }- The group Sy is often called a Young subgroup.

Let p = (p1,...,15) be a second partition of n. This section studies the double
cosets Sx\Sn/S,. These cosets are a classical object of study; they can be indexed by
contingency tables: I x J arrays of non-negative integers with row sums given be the
parts of A and column sums the parts of pu.

The mapping from S,, to tables is easy to describe: Fix ¢ € S,,. Inspect the first
A1 positions in o. Let T1; be the number of elements from {1,2,...,u;} occurring in
these positions, 712 the number of elements from {1 + 1,..., 41 + p2}, ...and Thy
the number of elements from {n — p; + 1,...,n}. In general, T;; is the number of
elements from {p1 + ...+ pi—1 +1,..., 01 + ... + p;} which occur in the positions
MFA+...F A1 +1lupto A +...4+ A\

Example 5.1. When n =5, A = (3,2), u = (2,2, 1) there are five possible tables:

2 1 0 2 01 1 2 0 1 1 1 0 2 1

0 1 1 0 2 0 1 0 1 1 1 0 2 00

o = 12345 o = 12543 o = 13425 o = 13524 o = 34512
24 12 24 48 12

Listed below each table is a permutation in the corresponding double coset, and the total
size of the double cosest.

The mapping o — T'(0) is S xS, bi-invariant and gives a coding of the double cosets.
See [68] for further details and proof of this correspondence. Jones [70] gives a different
coding.

Any double coset has a unique minimal length representative. This is easy to identify:
Given T, build o sequentially, left to right, by putting down 1,2,...,77; then pu;+1, u1 +
2,..., 1 +T12 ... each time putting down the longest available numbers in the u; block,
in order. Thus, in Example 5.1 the shortest double coset representative is 13524. For
more details, see [13].

The measure induced on contingency tables by the uniform distribution on 5, is

Py u(T) = nl H lelj . (23)
ij

This is the Fisher-Yates distribution on contingency tables, a mainstay of applied sta-
tistical work in chi-squared tests of independence. The distribution can be described by
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a sampling without replacement problem: Suppose that an urn contains n total balls of
1 different colors, r; of color i. To empty the urn, make J sets of draws of unequal sizes.
First draw ¢; balls, next ¢, and so on until there are ¢y = n — Z'jjz_ll c; balls left. Create
a contingency table by setting T;; to be the number of color ¢ in the jth draw.

This perspective, along with the previously defined mapping from permutations to
cosets, proves that the distribution on contingency tables induced by the uniform dis-
tribution on S, is indeed the Fisher-Yates: Suppose a permutation o € S,, represents a
deck of cards labeled 1,...,n. Given partitions A, i color cards 1,...,u; with color 1,
labels 1 +1,..., uo color 2 and so on. From a randomly shuffled deck, draw the first A\;
cards and count the number of each color, then draw the next Ao, and so on.

More statistical background and available distribution theory is given in the following
section. These results give some answers to the question:

Pick o € S, uniformly. What S)\S,/S, double coset is it likely to be in? (24)
From (23),

’SAO.SIA = /Ivlj' ’

ihj

for T'=1T(o). (25)

However, enumerating the number of double cosets is a #-P complete problem. See [32].

When A = p = (k,n—k), the double cosets give a Gelfand pair with spherical functions
the Hahn polynomials. The associated random walk is the Bernoulli-Laplace urn, which
is perhaps the first Markov chain! (See [35].) More general partitions give interesting urn
models but do not seem to admit orthogonal polynomial eigenvectors.

One final note: there has been a lot of study on the uniform distribution on the space of
tables with fixed row and column sums. This was introduced with statistical motivation
in [31]. The central problem has been efficient generation of such tables; enumerative
theory is also natural but remains to be developed. See [32], [23], [37], [38], [8] and
their references. The Fisher-Yates distribution (23) is quite different from the uniform
and central to both the statistical applications and to the main pursuits of the present
paper.

Section 5.1 develops statistical background and uses this to understand the size of
various double cosets, Section 5.2 proves a new limit theorem for the number of zeros in
T'(o). The final section discusses natural open problems.

5.1. Statistical background

Contingency tables arise whenever a population of size n is classified with two discrete
categories. For example, Table 1 shows 592 subjects classified by 4 levels of eye color and
4 levels of hair color.

A classic task is the chi-squared test for independence. This is based in the chi-squared
statistic
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Table 1

This table has a total of 592 entries, with row sums 71,792,173, 74 = 220,215,
93, 64 and column sums ci, co, c3,cqg = 108,286,71,127. There are 1,225,914,
276,768,514 = 1.225 x 10*° tables with these row and column sums.

Black Brown Red Blond Total
Brown 68 119 26 7 220
Blue 20 84 17 94 215
Hazel 15 54 14 10 93
Green 5 29 14 16 64
Total 108 286 71 127 592

) =3 (1= 22 ) (20

2]

This measure how close the table is to a natural product measure on tables. In the
example Table 1, y? = 138.28.

The usual probability model for such tables considers a population of size n, with
each individual independently assigned into one of the I x J cells with probability p;;
(pij >0, Zij pi; = 1). The independence model postulates

Pij = & '53‘

for aj, 8j > 0 and }; a; = >, B; = 1. A basic theorem in the subject [74] says that if n
is large and «;, 3; > 0 the x? statistic has a limiting distribution f(z), i.e.

P(x*<z)— /fk(t) dt,
0
where fi(z) is the chi-squared density with k = (I — 1)(J — 1) degrees of freedom:

k/2—1 _ ,—x/2
° c z > 0. (27)

fr(x) = m, =

The density fr has mean k and variance 2k and it is customary to compare the observed
x2 statistic with the k £+ v/2k limits and reject the null hypothesis if the statistic falls
outside this interval. In the example, & = 9 and the hypothesis of independence is
rejected.

The above simple rendition omits many points which are carefully developed in [76],
1, 2.

The great statistician R.A. Fisher suggested a different calibration: Fix the row sums,
fix the column sums and look at the conditional distribution of the table given the row
and column sums (under the independence model). It is an elementary calculation to
show that P(T" | A\, i) is the Fisher-Yates distribution (23). Notice that the Fisher-Yates
distribution does not depend on the ‘nuisance parameters’ o, 3;. This is called Fishers
exact test. There is a different line of development leading to the same distribution. This
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is the conditional testing approach (also due to Fisher). David Freedman and David Lane
[47], [48] give details, philosophy, and history. We only add that conditional testing is a
rich, difficult subject (starting with the question: what to condition on?). For discussion
and extensive pointers to the literature, see [78] (Chapter 2), [36] (Section 4).

All of this said, mathematical statisticians have long considered the distribution of
tables with given row and column sums under the Fisher-Yates distribution.

The following central limit theorem determines the joint limiting distribution of the
table entries T;; under the Fisher-Yates distribution. They are approximately multivari-
ate normal. As a corollary, the x? statistic has the appropriate chi-squared distribution.
This can be translated into estimates of the size of various double cosets, as discusses
after the statement.

In the following, fix I and J. Let A\ = (A7,..., A7), ™ = (uf,...,1}) be two se-
quences of partitions of n. Suppose there are constants o, 3; with 0 < «;, 8; < 1 such
that

lim A\'/n=q;, lim p?/n=p3; for 1<i<I,1<5<J (28)
n—oo

n—oo

Let T be drawn from the Fisher-Yates distribution (23) and let

n n?

n Tij  Aipy
-

Theorem 5.2. With notation as above, assuming (28), the random vector
Zn = (21N, 2 21y s 21y Z1)
converges in distribution to a normal distribution with mean zero and covariance matriz
¥ = (Diag(a) — a- o) @ (Diag(B) — B - B7),
fora=(aq,...,ar), B=(L1,...,87).

The tensor product in the definition of ¥ means that covariance between the i1, j;
variable and the iz, jo variable is given by (Diag(a) — o - OzT)Z.M.2 -(Diag(B8) — 8- BT)].M.Q.
Note that since the final entry in each row (or column) is determined by the other entries,
the I.J x I.J covariance matrix is singular with rank (I —1)(J — 1).

Corollary 5.3. Under the conditions of Theorem 5.2, the chi-squared statistic (26) has a
limiting chi-squared distribution (27) with k = (I — 1)(J — 1) degrees of freedom.

A very clear proof of Theorem 5.2 and the corollary is given by Kang and Klotz
[74]. They review the history, as well as survey several approaches to the proof. Their
argument is a classical, skillful use of Stirling’s formula and their paper is a model of
exposition.
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The usual way of using these results, for a single entry 7j; in the table, gives

T

P

Tij — vij LY L R S T <1 — A””)
) iy — 2 ’
n

1
€T ~ — N g.. =
no? vV2r n Y n?
) — 00

Any single entry of the table has a limiting normal approximation. This can also
be seen through the normal approximation to the hypergeometric distribution. This is
available with a Berry-Esseen error; see [62].

The limiting x? approximation shows that, under the Fisher-Yates distribution, most
tables are concentrated around the ‘independence table’

Aifhj

T = .
ij n

This T™ is rank one. While it does not have integer entries, it gives a good picture of the
approximate size of a typical double coset.

To be quantitative, let us define a distance between tables T, T’ with the same row
and column sums:

T =T'|lx =Y 1Ty = T,

,J

This is the L' distance, familiar as total variation from probability. Since D ;Tij =,
for many tables T, 7", ||T — T"||; = n. The Cauchy-Schwartz inequality shows

1T = T*|ly < Vn - X*(T). (29)

Corollary 5.3 shows that, under the Fisher-Yates distribution, y?(T) is typically (I —
1)(J—1)£+/2(I — 1)(J — 1), and thus typically ||T—T*|| is of order v/n < n. A different
way to say this is to divide the tables T and T by n to get probability distributions
T, T onlIJ points. Then, for most T,

-7 =0, (=)

Barvinok [8] studies the question in the paragraph above under the uniform distri-

bution on tables. In this setting, he shows that most tables are close (in a somewhat
strange distance) to quite a different table 7.

Theorem 5.2 also gives an asymptotic approximation to the size of the double coset
corresponding to the table T'. Call this S\T'S,. It is easy to see that |S\T'S,| = n!-P(T" |

A i) ~nl-p(T)/y/n with

—1 T
o—2-221 2T )2

#1) = ~m e
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for Z_ the vector corresponding to the upper left (I — J) x (J — 1) sub-matrix of T
(with notation as in Theorem 5.2) and ¥_ the associated (I —1)(J —1) x (I —1)(J —1)
covariance matrix (that is, the covariances between the remaining (I —1)-(J — 1) entries
of the sub-matrix). Note that removing one row and one column from 7' removes the
dependency so Y. _ is full rank. This uses the local limit version of Theorem 5.2, which
follows from the argument of Kang and Klotz [74]. See [22] for further details.

The asymptotics above show that the large double cosets are the ones closest to
the independence table. This may be supplemented by the following non-asymptotic
development.

Let T and 7" be tables with the same row and column sums. Say that T < T" (‘T"
majorizes T7) if the largest element in 7" is greater than the largest element in T, the
sum of the two largest elements in 7" is greater than the sum of the two largest elements
in T, and so on. Of course the sum of all elements in T’ equals the sum of all elements
of T.

Example 5.4. For tables with n = 8, A\ = Ao = pu; = po = 4, there is the following

(32)<(13) (0 %)

Majorization is a standard partial order on vectors [81] and Harry Joe [69] has shown

ordering

it is useful for contingency tables.

Proposition 5.5. Let T and T be tables with the same row and column sums and P the
Fisher-Yates distribution. If T <T', then

P(T) > P(T").

Proof. From the definition (23), we have log(P(T)) = C—}_, ;log(T3;!) for a constant C.
This form makes it clear the right hand side is a symmetric function of the I.J numbers
{T};}. The log convexity of the Gamma function shows that it is concave. A symmetric
concave function is Schur concave: That is, order-reversing for the majorization order
[81]. O

Remark. Joe [69] shows that, among the real-valued tables with given row and column
sums, the independence table T is the unique smallest table in majorization order.
He further shows that if an integer valued table is, entry-wise, within 1 of the real
independence table, then T' is the unique smallest table with integer entries. In this case,
the corresponding double coset has P(T') largest.

Example 5.6. Fix a positive integer a and consider an I x J table T" with all entries equal
to a. This has constant row sums J - ¢ and column sums [ - a. It is the unique smallest
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table with these row and column sums, and so corresponds to the largest double coset.
For a = 2,1 = 2,J = 3, this table is

2 2 2
T:(Q 2 2)'

Contingency tables with fixed row and column sums form a graph with edges between
tables that can be obtained by one move of the following: pick two rows 7,7 and two
columns j, j'. Add +1 to the (i, j) entry, —1 to the (¢, j) entry, +1 to the (i’, j/) entry, and
—1 to the (4, ') entry. This graph is connected and moves up or down in the majorization
order as the 2x2 table with rows 4, ¢ and columns j, 7' moves up or down. See Example 5.4
above.

5.2. Zeros in Fisher-Yates tables

In this section we will use rq,...,ry for the row sums of a table and ¢y, ..., cy for the
column sums. One natural feature of a contingency table is its zero entries. As shown
in Section 5.1, most tables will be close to the table T* with entries 7} = r;¢;/n. This
has no zero entries. Therefore, zeros are a pointer to the breakdown of the independence
model. In statistical applications, there is also the issue of ‘structural zeros’ — categories
such as ‘pregnant males’ which would give zero entries in cross-classified data due their
impossibility. See [14] for discussion. The bottom line is, professional statisticians are
always on the look-out for zeros in contingency tables. This section gives a limit theorem
for the number of zeros under natural hypotheses.

A simple observation which leads to the theorem is that a Fisher-Yates table
is equivalent to rows of independent multinomial vectors, conditioned on the col-
umn sums: let Xi,..., X; be independent random vectors of length J, with X; ~
Multinomial(ri,{qj}jzl) for some probabilities ¢; > 0 and >, q; = 1. That is, X;
are the occupancy counts generated by assigning r; balls to J boxes, with one ball going
to the jth box with probability ¢;. The joint distribution for the vectors is then

d T Til1 ZiJ
P(X_(%))_H<fci1,.--,wu> qin g (30)
Let Y7,...,Y; be distributed as X1,..., X conditioned on the sums Zi[:1 Xij = ¢j.
From (30) it is clear that Y7,..., Y7 has the Fisher-Yates distribution (23), regardless of
the choices g;.
This perspective allows us to use known limit results for multinomial distributions,
translated to contingency tables using conditioned limit theory. For the remainder, as-

sume that the row sums r; = 7 are constant, so that the X, are iid vectors. Let
f(X;) = ijl 1(X;; = 0) count the number of zero-entries in the vector. [63] con-

tains limit theorems for f(X;) as r — oo, with either Poisson or normal limit behavior
depending on the asymptotics of 7, J and the g;.
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Example 5.7. Consider an [ x J table with constant column sums ¢ = I(log(I - J) + 0).
The row sums are determined by r = n/I. If the table is created from the counts of
dropping n balls in I - J boxes, with each box equally likely, then the expected number
of zero entries is

1 " c \"
*=T1J (1 - — =I1J-(1— ~ T 7C/JN —0
A J ( [-J) d < n-J> Je €

If n,I,J — oo then \* — e~ ? and the following theorem shows that the number of
zeros has a Poisson(\*) distribution under these assumptions. Indeed, it shows this for
varying column sums.

Theorem 5.8. Suppose that n — oo and fix sequences In, Jn, ¢} such that
Jn Cn ’I’L/In
I, - 1--L — B.
S(1-2) s

j=1

Let Z,, be the number of zeros in a Fisher-Yates contingency table of size I,, X J, with
constant row sums r" = n/I" and column sums c{,...,c . Then

L(Z,) — Poisson(p).

Proof. Let X7' ~ Multinomial(r™, {¢} };~ Jn ), with the probabilities ¢; = ¢ /n chosen so

that E[Z i Xl =Ly g} = ¢} Then a conditioned limit theorem (Corollary 3.51in
[64]) says that if

c (Z f<X?>> = L),

where U has no normal component, then

I, I I,
L (Z f(i@")) =L (Z FX DY XE=cp,1<5< Jn) — L(U).
1=1 =1 i=1

If X is a multinomial generated by dropping r balls in J boxes, with probabilities g;,
and if

J
> (1—a) —a,
7j=1

then the number of empty boxes is asymptotically Poisson(c) (e.g. Theorem 6D in [7]).
Thus the condition
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0.25
]

Frequency

0.10
I

Number of zeros

Fig. 1. Results for the number of zeros from 50,000 samples of a contingency table with I = 50, J = 20,
constant row sums 7 = 110, and constant column sums ¢ = 275. The blue curve is the frequency polygon
of a Poisson distribution with A = 3.54.

Jn 7 T‘n
n ¢j
I Z(l— ) o

j=1
means that f(X]") is asymptotically Poisson(8/I™) and so Zf; f(X7)is Poisson(f). O

Preliminary computations indicate that Theorem 5.8 will hold with row sums that do
not vary too much. Fig. 1 shows the result from simulations for the number of zeros in
a 50 x 20 table with row and column sums fixed.

5.3. Further questions

It is natural to ask further questions about the distribution of natural features of the
tables representing double cosets. Three that stand out:

1. The positions of the zeros under the hypotheses of Theorem 5.8.

2. The size and distribution of the maximum entry in the table.

3. The RSK shape: Knuth’s extension of the Robinson-Schensted correspondence assigns
to a table T' a pair P, L of semi-standard Young tableux of the same shape. We
have not seen these statistics used in statistical work. So much is known about RSK
asymptotics that this may fall out easily.

4. Going back to Section 1: One nice development in probabilistic group theory on the
symmetric group has been to look at the distribution of natural statistics within a
fixed conjugacy class [51], [75]. In parallel, one could fix a double coset and look at
the distribution of standard statistics.
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5. Going further, this section has focused on enumerative probabilistic theorems for
parabolic subgroups of the symmetric group. The questions make sense for parabolic
subgroups of any finite Coxeter group. An enormous amount of combinatorial de-
scription is available (how does one describe double cosets?). This is wonderfully
summarized in the very accessible paper [13]. In any Coxeter group, each double
coset contains a unique minimal length representative. These minimal length double
coset representatives can be used as identifiers for the double coset. See [61] for more
on this. The focus of [13] is understanding Ws - w - Wp with w fixed as S and T vary
over subsets of the generating reflections.
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