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insights into the LU matrix factorization. 2) The double cosets 
of the hyperoctahedral group inside S2n, which leads to new 
applications of the Ewens’s sampling formula of mathematical 
genetics. 3) Finally, if H and K are parabolic subgroups of 
Sn, the double cosets are ‘contingency tables’, studied by 
statisticians for the past 100 years.
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1. Introduction

Let G be a finite group. Pick g ∈ G uniformly at random. What does g ‘look like’? 

This ill-posed question can be sharpened in a variety of ways; this is the subject of 

‘probabilistic group theory’ initiated by Erdős and Turan [41], [42], [43], [44]. Specializing 

to the symmetric group, one can ask about features of cycles, fixed points, number of 
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cycles, longest (or shortest) cycles, and the order of g [89]. The descent pattern has also 

been well-studied [18]. Specializing to finite groups of Lie type gives ‘random matrix 

theory over finite fields’ [49]. The enumerative theory of p-groups is developed in [15]. 

The questions also make sense for compact groups and lead to the rich world of random 

matrix theory [4], [30], [46]. ‘Probabilistic group theory’ is used in many ways, see [39]

and [88] for alternative perspectives.

This paper specializes in a different direction. Let H and K be subgroups of G. 

Then G splits into double cosets and one can ask about the distribution that a uniform 

distribution on G induces on the double cosets. Three examples are treated in detail:

• If G = GLn(Fq) and H = K is the lower triangular matrices B (a Borel subgroup), 

then the Bruhat decomposition

G =
⋃

ω∈Sn

BωB

shows that the double cosets are indexed by permutations. The induced measure on 

Sn is the actively studied Mallows measure

pq(ω) =
qI(ω)

[n]q!
, (1)

where I(ω) is the number of inversions in the permutation ω and [n]q! = (1 + q)(1 +

q+q2) . . . (1 +q+. . .+qn−1). The double cosets vary in size, from 1/[n]q! to q(n

2
)/[n]q!. 

This might lead one to think that ‘most g lie in the big double coset’. While this 

is true for q large, when q is fixed and n is large, the double coset containing a 

typical g corresponds to an I(ω) with normal distribution centered at 
(

n
2

)

− (n−1)
q+1 , 

with standard deviation of order 
√

n. See Theorem 3.5. The descent pattern of a 

typical ω is a one dependent determinantal point process with interesting properties 

[17]. There has been intensive work on the Mallows measure developed in the past 

ten years, reviewed in Section 3.3. This past work focuses on q as a parameter with 

0 < q ≤ 1. The group theory applications have q > 1 and call for new theory.

• If G is the symmetric group S2n and H = K is the hyperoctahedral group of cen-

trally symmetric permutations (isomorphic to Cn
2 ! Sn), then the double cosets are 

indexed by partitions of n and the induced measure is the celebrated Ewens’s sam-

pling formula

pq(λ) =
n! · q"(λ)

z · zλ

, (2)

where #(λ) is the number of parts of λ, zλ =
∏n

i=1 iaiai! if λ has ai parts of size i, 

and z = q(q + 1) . . . (q + n − 1). As explained in Section 4, the usual domain for pq

is in genetics. In statistical applications, q is a parameter taken with 0 < q ≤ 1. The 
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group theory application calls for new representations and theorems, developed here 

using symmetric function theory.

• If G is the symmetric group Sn and H = Sλ, K = Sµ are Young subgroups corre-

sponding to fixed partitions λ and µ of n, then the double cosets are indexed by 

contingency tables: I × J arrays of non-negative integer entries with row sums λ and 

column sums µ. If T = {Tij} is such a table, the induced measure on double cosets 

is the Fisher-Yates distribution

p(T ) =
1

n!

∏

i,j

µi!λj !

Tij !
, (3)

where λ1, . . . , λI are the row sums of T and µ1, . . . , µJ are the column sums. This 

measure has been well-studied in statistics because of its appearance in ‘Fisher’s 

Exact Test’. This is explained in Section 5. Its appearance in group theory problems 

suggests new questions developed here – what is the distribution of the number of 

zeros or the largest entry? Conversely, available tools of mathematical statistics (chi-

squared approximation) answer natural group theory questions – which double coset 

is largest, and how large is it?

The topics above have close connections to a lifetime of work by Jan Saxl. When the 

parabolic subgroups are Sk ×Sn−k, the double cosets give Gelfand pairs. The same holds 

for Bn ⊂ S2n and, roughly, Jan proves that these are the only subgroups of Sn giving 

Gelfand pairs for n sufficiently large. He solved similar classification problems for finite 

groups of Lie type. These provide open research areas for the present project.

Section 2 provides background and references for double cosets, Hecke algebras, and 

Gelfand pairs. Section 3 treats the Bruhat decomposition B\GLn(Fq)/B. Section 4 treats 

Bn\S2n/Bn and Section 5 treats parabolic subgroups of Sn and contingency tables. In 

each of these sections, open related problems are discussed.

2. Background

This section gives definitions, properties, and literature for double cosets, Hecke alge-

bras, and Gelfand pairs.

2.1. Double cosets

Let H and K be subgroups of the finite group G. Define an equivalence relation on 

G by

s ∼ t ⇐⇒ s = htk for s, t ∈ G, h ∈ H, k ∈ K.

The equivalence classes are called double cosets, written HsK for the double coset 

containing s and H\G/K for the set of double cosets. This is a standard topic in un-
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dergraduate group theory [95], [40]. A useful development is in [20], Section 2.7. Simple 

properties are:

|HsK| =
|H||K|

|H ∩ sKs−1|
=

|H||K|

|K ∩ s−1Hs|
(4)

|G : H| =
∑

HsK∈H\G/K

|HsK|

|H|
(5)

|H\G/K| =
1

|H||K|

∑

h∈H,k∈K

|Ghk|, where Ghk = {g : h−1gk = g}. (6)

Despite these nice formulas, enumerating the number of double cosets can be an 

intractable problem. For example, when H and K are Young subgroups, double cosets 

are contingency tables with fixed row and column sums. Enumerating these is a #-P 

complete problem [32].

Consider the problem of determining the smallest (and largest) double coset. If H =

K, the smallest is the double coset containing id (with size |H · H| = |H|). When 

K += H, it is not clear. Is it the double coset containing id? Not always. Indeed, for H

a proper subgroup of G, let g be any element of G not in H. Let K = Hg = g−1Hg. 

Then HgK = Hgg−1Hg = HHg = Hg, so the double coset HgK is just a single right 

coset of H. This has minimal possible size among double cosets H × K. Since g is not 

in H, HgK = Hg does not contain the identity. It can even happen that the double 

coset containing the identity has maximal size. This occurs, from (4) above, whenever 

H ∩ K = id.

For the largest size of a double coset, from (4) note that this can be at most |H| · |K|. 

If H = K this occurs if H is not normal. For H and K different, it is not clear. For 

parabolic subgroups of Sn a necessary and sufficient condition for the maximum size to 

be achieved is that λ majorizes µt. See [68] Section 1.3, which shows that the number of 

double cosets achieving the maximum is the number of 0/1 matrices with row sums λ

and column sums µt.

The seemingly simple problem of deciding when there is only one double coset becomes 

the question of factoring G = HK. This has a literature surveyed in [10].

All professional group theorists use double cosets – one of the standard proofs of 

the Sylow theorems is based on (5), and Mackey’s theorems about induction and re-

strictions are in this language. In addition, double cosets have recently been effective in 

computational group theory. Laue [77] uses them to enumerate all isomorphism classes 

of semi-direct products. Slattery [90] uses them in developing a version of coset enumer-

ation.

2.2. Hecke algebras

With H and K subgroups of a finite group G, consider the group algebra over a field 

F :
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LF (G) = {f : G → F}.

This is an algebra with (f1 + f2)(s) = f1(s) + f2(s) and f1 ∗ f2(s) =
∑

t f1(t)f2(st−1). 

The group H × K acts on LF (G) by

fh,k(s) = f(h−1sk).

The bi-invariant functions (satisfying f(h−1sk) = f(s) for all h ∈ H, k ∈ K, s ∈ G) form 

a sub-algebra of LF(G) which is here called the Hecke algebra. Many other names are 

used, see [91] for history.

Hecke algebras are a mainstay of modern number theory (usually with infinite groups). 

They are also used by probabilists (e.g. [34]) and many stripes of algebraists. Cur-

tis and Reiner [28] is a standard reference for the finite theory. We denote them by 

LF (H\G/K). Clearly the indicator functions of the double cosets form a basis for 

LF (H\G/K).

2.3. Gelfand pairs

For some choices of G and H, with K = H, the space LF (H\G/K) forms a com-

mutative algebra (even though G and H are non-commutative). Examples with G = Sn

are Hn = Sk × Sn−k or Hn = Bn in S2n. Of course, G acts on LF (G/H) (say with 

F = C) and commutativity of LC(G/H) is equivalent to the representation of G on 

LC(G/H) being multiplicity free: Since LC(G/H) = IndG
H(1) (the trivial representation 

of H induced up to G), Frobenius reciprocity implies that each irreducible ρλ occurring 

in LC(G/H) has a 1-dimensional subspace of left H-invariant functions. Let sλ be such a 

function, normalized by sλ(1) = 1. These are the spherical functions of the Gelfand pair 

(G, H). Standard theory shows that the spherical functions {sλ} form a second basis for 

LC(H\G/H).

We will not develop this further and refer to [29] (Chapter 3F), [21], [79] for applica-

tions of Gelfand pairs in probability.

We also note that Gelfand pairs occur more generally for compact and non-compact 

groups. For example, On/On−1 is Gelfand and the spherical functions become the spher-

ical harmonics of classical physics. For On ⊂ GLn(R), the spherical functions are 

the zonal polynomials beloved of older mathematical statisticians. Gelfand pairs are 

even useful for large groups such as S∞ and U∞, which are not locally compact. See 

[19].

Clearly, finding subgroups H giving Gelfand pairs is a worthwhile project. Jan Saxl 

worked on classifying subgroups giving Gelfand pairs over much of his career [87], [67]. 

He gave definitive results for the symmetric and alternating groups and for most all the 

almost simple subgroups of Lie type. Alas, it turns out that if n is sufficiently large, then 

Sk × Sn−k and Bn give the only Gelfand pairs in Sn (at least up to subgroups of index 

2; e.g. Ak × Sn−k is Gelfand in Sn).
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3. Bruhat decomposition and Mallows measure

3.1. Introduction

Let G = GLn(Fq), the general linear group over a field with q elements. Let B be the 

lower triangular matrices in G. Let W denote the permutation group embedded in G as 

permutation matrices. The decomposition of G into B − B double cosets is called the 

Bruhat decomposition [91] and has the following properties:

G =
⋃

ω∈W

BωB, |B| = (q − 1)nq(n

2
), |G| = |B|

n−1
∏

i=1

(1 + q + . . . + qi). (7)

Thus, permutations index the double cosets. The size of BwB is

|BωB| = |B|qI(ω),

where I(ω) is the number of inversions of ω (that is, I(ω) = |{i < j : ωi > ωj}|). Dividing 

by |G|, we get the induced measure

pq(ω) =
qI(ω)

[n]q!
, [n]q! =

n−1
∏

i=1

(1 + q + . . . + qi) (8)

Example 3.1. In S3, the inversions are

ω 123 132 213 231 312 321

I(ω) 0 1 1 2 2 3

and (1 + q)(1 + q + q2) = 1 + 2q + 2q2 + q3.

The measure pq(ω), ω ∈ W , is studied as the Mallows measure on W = Sn in the 

statistical and combinatorial probability literature. A review is in Section 3.3. Much of 

this development is for the statistically natural case of 0 < q < 1 with q close to 1. The 

group theory application has q = pa for a prime p and a ∈ {1, 2, 3, . . . }. This calls for 

new theorems and insights. The question of interest is

Pick g ∈ G from the uniform distribution. What double coset is g likely to be in?

(9)

An initial inspection of (8) reveals the minimum and maximum values: pq(id) = 1/[n]q!

and pq(ω0) = q(n

2
)/[n]q! for ω0 = n(n −1) . . . 21, the reversal permutation. Thus, Bω0B is 

the largest double coset. It is natural to guess that ‘maybe most elements are in Bω0B’. 

This turns out to not be the case.
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Lemma 3.2.

q(n

2
)

[n]q!
= c(q)

(

1 − 1

q

)n−1

, c(q) =

n−2
∏

i=2

(

1 − 1

qi

)−1

(10)

Proof. Using that 
(

n
2

)

=
∑n−1

i=1 i, simple algebra gives

q(n

2
)

[n]q!
=

q(n

2
)

(1 + q)(1 + q + q2) . . . (1 + q + . . . + qn−1)

=
1

(

1 + 1
q

) (

1 + 1
q + 1

q2

)

. . .
(

1 + 1
q + . . . + 1

qn−1

)

=

(

1 − 1
q

)n−1

∏n−2
i=2

(

1 − 1
qi

) !

The infinite product 
∏∞

i=1(1 − 1/qi) converges. This shows that for fixed q, when n is 

large pq(ω0) is exponentially small. Of course, for n fixed and q large, pq(ω0) tends to 1

(only q . n is needed).

In Section 3.2, it is shown that a uniform g is contained in BωB for I(ω) =
(

n
2

)

−
(n−1)
q−1 + Z

√

(n−1)q
q−1 with Z a standard normal random variable.

Let us conclude this introductory section with two applied motivations for studying 

this double coset decomposition.

Example 3.3 (LU decomposition of a matrix). Consider solving Ax = b with A fixed in 

GLn(Fq) and b fixed in Fn
q . The standard ‘Gaussian elimination’ solution subtracts an ap-

propriate multiple of the first row from lower rows to make the first column (1, 0, . . . , 0)T , 

then subtracts multiples of the second row to make the second column (∗, 1, 0, . . . , 0)T , 

and so on, resulting in the system

Ux∗ = b∗

with U upper triangular. This can be solved inductively for x∗ and then x. This descrip-

tion assumes that at stage j, the (c, j) entry of the current triangularization is non-zero. 

If it is zero, a permutation (pivoting step) is made to work with the first non-zero el-

ement in column j. A marvelous article by Roger Howe [66] shows in detail how this 

is equivalent to expressing A = BωB with the number of pivoting steps being qn−I(ω). 

Thus, matrices in the largest Bruhat cell require no pivots and pq(ω) gives the chance of 

various pivoting permutations.

Example 3.4 (Random generation for GLn(Fq)). Suppose one wants to generate N in-

dependent picks from the uniform distribution on GLn(Fq). We have had to do this in 
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cryptography applications when q = 2, n = 256, N = 106. Testing conjectures for G also 

uses random samples. One easy method is to fill in an n × n array with independent 

picks from the uniform distribution on Fq and then check if the resulting matrix A is 

invertible (using Gaussian elimination). If A is not invertible, this is simply repeated. 

The chance of success is approximately 
∏∞

i=1

(

1 − 1
qi

)

(≈ 0.29 when q = 2). Alas, this 

calls for a variable number of steps and made a mess in programming our crypto chip.

Igor Pak suggested a simple algorithm that works in one pass:

1. Pick ω ∈ W from pq(ω).

2. Pick B1, B2 ∈ B uniformly.

3. Form B1ωB2.

Since picking Bi uniformly is simple, this is a fast algorithm. But how to pick ω from 

pq? The following algorithm is standard:

1. Place symbols 1, 2, . . . , n down in a row sequentially, beginning with 1.

2. If symbols 1, 2, . . . , i − 1 have been placed, then place symbol i leftmost with proba-

bility qi−1(q − 1)/(qi − 1), secondmost with probability qi−2(q − 1)/(qi − 1), . . . and 

ith with probability (q − 1)/(qi − 1).

3. Continue until all n symbols are placed.

The following sections develop some theorems for the Mallows distribution (8) for 

q > 1 fixed and n large. In Section 3.2, the normality of I(ω) is established. Section 3.3

develops other properties along with a literature review of what is known for q < 1. The 

descent pattern is developed in 3.4, generalizations to other finite groups and parallel 

orbit decompositions (e.g. G × G acting on Mat(n, q)) are in Section 5.3. These sections 

are also filled with open research problems.

3.2. Distribution of I(ω)

This section proves the limiting normality of the number of inversions I(ω) under the 

Mallows measure pq(ω) defined in (8), when q > 1 is fixed and n is large. Thus, most 

g ∈ GLn(Fq) are not in the largest double coset.

Theorem 3.5. With notation as above, for any x ∈ R,

pq

{

I(ω) −
(

n
2

)

+ (n−1)
q−1

√

(n − 1)q/(q − 1)
≤ x

}

=
1√
2π

x
∫

−∞

e−t2/2 dt + o(1).

The error term is uniform in x.



222 P. Diaconis, M. Simper / Journal of Algebra 607 (2022) 214–246

Proof. The argument uses the classical fact that under pq on Sn, I(ω) is exactly dis-

tributed as a sum of independent random variables. Let Pj(i) = qi(q − 1)/(qj+1 − 1) for 

0 ≤ i ≤ j < ∞. Write Xj for a random variable with distribution Pj , 1 ≤ j ≤ n − 1, 

taking Xj independent. Then

pq(I(ω) = a) = P {X1 + X2 + . . . + Xn−1 = a} for all n and 0 ≤ a ≤ n − 1. (11)

To see (11), use generating functions. Rodrigues [86] proved for any θ that

∑

ω∈Sn

θI(ω) = (1 + θ)(1 + θ + θ2) . . . (1 + θ + . . . + θn−1).

Take θ = xq and divide both sides by [n]q! to see

Eq[xI(ω)] = E[xX1 ] . . . E[xXn−1 ].

Under Pj

Pj(Xj = j − a) =
qj−a(q − 1)

qj+1 − 1
=

(

1 − 1

q

)

1

qa

(

1 +
1

qj+1 − 1

)

.

Thus, when j is large (and using that q > 1), the law of j − Xj is exponentially close to 

a geometric random variable X with P (X = a) =
(

1 − 1
q

) (

1
q

)a

, 0 ≤ a < ∞. This X

has E[X] = 1/(q − 1) and Var(X) = q/(q − 1)2. Now, the classical central limit theorem 

implies the result. !

3.3. Simple properties of pq(ω)

The discussion above points to the question of: What properties of ω are ‘typical’ 

under pq(ω)? We now see that ω with I(ω) =
(

n
2

)

− (n − 1)/(q − 1) ±
√

(n−1)q
q−1 are typical, 

but are all such ω equally likely?

The distribution pq(ω) is studied (for general Coxeter groups) in [34]. They show (for 

all q, n)

pq(ω) = pq(ω−1) (12)

pq(ω1 = j) = qj−1(q − 1)/(q2 − 1) (13)

pq(ωn = j) = qn−j(q − 1)/(qn − 1) (14)

pq(ω) = pq−1(R(ω)), (15)

where in the last expression R(ω) is the reversal of ω (e.g. R(31542) = 24513). However, 

there do not appear to be simple expressions for pq(ωi = j), 1 < i < n, nor for the distri-

bution of the number of fixed points, cycles, or other features standard in enumerative 

combinatorics.
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There has been remarkable study of features when q is close to 1 (often q = 1 − β/n). 

These include

• The limiting distribution of the empirical measure 1
n

∑

δi,ωi
was studied by Shannon 

Starr [93]. He shows, for q = 1 − β/n,

lim
ε↓0,n→∞

pq











∣

∣

∣

∣

∣

∣

∣

1

n

∑

f

(

i

n
,

ωi

n

)

−
∫

[0,1]×[0,1]

f(x, y)u(x, y) dxdy

∣

∣

∣

∣

∣

∣

∣

> ε











= 0

for any continuous function f : [0, 1] × [0, 1] → R, where

u(x, y) =
(β/2) sinh(β/2)

(

eβ/4 cosh(β(x − y)/2) − e−β/4 cosh(β(x + y − 1)/2)
) .

Starr derives these results rigorously by considering a Gibbs measure on permutations 

Z−1(β)e−βH(ω) with H(ω) = 1
n−1

∑

1≤i<j≤n δ(0,∞)(ωj − ωi). This work is continued 

in [94], bringing in fascinating connections with statistical mechanics.

The function u(x, y) above is an example of a permutation limit or ‘permuton’. It 

figures in many of the developments below.

• Starr’s work, along with the emerging world of permutation limit theory [65], [16], 

is central to the work of Bhattacharya and Mukherjee [12], who study the degree 

distribution of the permutation graphs (an edge from i to j if and only if i < j and 

ω(i) > ω(j)) under p1−β/n(ω), [12].

• Remarkable work on statistical aspects of the Mallows model (given an observed ω, 

how do you estimate β and how do such estimates behave?) is in [83]. This work 

treats other Mallows models of the form pβ(ω) = e(−β/n)d(ω,id), for d a metric on Sn.

• In [84], for q = 1 − β/n with β positive or negative (but fixed), Mukherjee extends 

(13), (14), (15) above to

lim
n→∞

∣

∣

∣

∣

pq(σ(i) = j)

u(i/n, j/n)/n
− 1

∣

∣

∣

∣

= 0

with u the permutation limit above. He gives similar results for several coordinates 

and uses these to prove limit theorems for the number of fixed points and cycles.

• The number d(ω) of descents in ω (and indeed the distribution of d(ω) + d(ω−1)) is 

shown to be approximately normally distributed in [59] for q = 1 −β/n. A description 

of d(ω) for fixed q > 1 is in Section 3.4 below. This also follows from [59], with a 

Barry-Esseen quality error.

• The cycles of ω have limit distributions determined by [53] for q = 1 − β/n.

• The length of the longest increasing subsequence under p1−β/n has a fascinating 

limit theory, see [82], [11]. See [9] for work on the longest monotone subsequence, 

which works for fixed 0 < q < 1 and thus is relevant to the present group theory 
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applications. This paper develops a probabilistic regenerative process for building 

permutations from the Mallows model that should be broadly useful for further 

distribution questions.

• Three further papers develop properties of the Mallows model for fixed q less than 

1 (and are hence applicable to fixed q greater than 1 because of (15)). In [27], the 

authors study the distribution of pattern avoiding permutations for local patterns 

(e.g. 321 avoiding) and related topics. A variety of techniques are used. These may 

well transfer to other statistics. In [54], [55] a limiting measure on permutations of 

the natural numbers (and Z) is introduced as a limit of finite Mallows measures. 

As one offshoot, the limiting distribution of σi − i (and multivariate extensions) is 

determined. The main interest of these papers is a q-analog of de Finetti’s Theorem.

3.4. Descents

In this section, q > 1 is fixed. A permutation ω ∈ Sn has a descent at position i

if ωi+1 < ωi. The total number of descents is d(ω). The descent set is S(ω) = {i ≤
n − 1 : ωi+1 < ωi}. For example, ω = 561432 has d(ω) = 3 and descent set S(ω) =

{2, 4, 5}. Descents are a basic descriptive statistic capturing the ‘up/down’ patterns 

in permutations. The distribution theory of d(ω) is classical combinatorics going back 

to Euler. Descent sets also have a remarkable combinatorial structure, see [18] for an 

overview.

Recent work allows detailed distribution theory for d(ω) and S(ω) under the Mallows 

distribution pq(ω) for fixed q > 1. To describe this, let

Xi(ω) =

{

1 if ωi+1 < ωi

0 if ωi+1 > ωi

, 1 ≤ i ≤ n − 1.

If ω is random, then X1, X2, . . . , Xn−1 is a point process. The following result of Borodin, 

Diaconis, Fulman [18] describes many properties of this process. For further definitions 

and background, see [17].

Theorem 3.6. Let pq, q > 1, be the Mallows measure (8).

(a) The chance that a random permutation chosen from pq has descent set containing 

s1 < s2 < . . . < sk is

det

[

1

[sj+1 − sj ]q!

]k

i,j=0

,

with s0 = 0, sk+1 = n.

(b) The point process Xi(ω) is stationary, one dependent, and determinantal with kernel 

K(x, y) = k(x − y) where



P. Diaconis, M. Simper / Journal of Algebra 607 (2022) 214–246 225

∑

m∈Z

k(m)zm =
1

1 − (
∑∞

m=0 zn/[m]q!)
−1 .

(c) The chance of finding k descents in a row is q(k+1

2
)/[k+1]q!. In particular, the number 

d(ω) of descents has mean µ(n, q) = q
q+1 (n − 1) and variance

σ2 = q

(

(q2 − q + 1)(n − q2 + 3q − 1)

(q + 1)2(1 + q + q2)

)

.

Normalized by its mean and variance, the number of descents has a limiting standard 

normal distribution.

Remarks.

1. Consider the distribution of d(ω) in part (c) of Theorem 3.6. Under the uniform 

distribution on Sn, d(ω) has mean (n − 1)/2 and variance (n + 1)/12 (obtained by 

setting q = 1 in the formula in part (c)). The distribution pq pushes ω toward ω0. How 

much? The mean increase to q
q+1 (n − 1) and, as makes sense, the variance decreases. 

For large q, the mean goes to the maximum value (n − 1) and the variance goes to 

zero.

2. The paper [18] gives simple formulas for the k-point correction function pq(S(ω) ⊂ S)

for general sets S.

3. There is an interesting alternative way to compute various moments for d(σ) under 

the measure pq. Let

An(y) =
∑

σ∈Sn

pq(σ)yd(σ).

[92] gives

∞
∑

n=0

An(y)zn =
1 − y

E(z(y − 1)) − y
, E(w) =

∞
∑

n=0

q(n

2
)

[n]q!
wn.

Differentiating in y and setting y = 1 gives the generating function of the falling 

factorial moments for d under pq. Using Maple, Stanley (personal communication) 

computes

∑

n

A′
n(1)zn =

qz2

(z − 1)2(q + 1)

∑

n

A′′
n(1)zn =

q2z3(q2 + q + z)

(z − 1)3(q + 1)2(q2 + q + 1)

∑

n

A′′′
n (1)zn =

q3z4(q4 + q3 + 2q2z − qz2 + 2qz + z2)

(z − 1)4(q + 1)3(q2 + q + 1)(q2 + 1)
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These give independent checks on the mean and variance reported before and an 

expression for the third moment. It would be a challenge to prove the central limit 

theorem by this route.

Sections 3.1-3.4 underscore our main point: Enumeration by double cosets can lead 

to interesting mathematics.

3.5. Other groups and actions

The Bruhat decomposition (7) is a special case of more general results. Bruhat showed 

that a classical semi-simple Lie group has a double coset of this form where B is a 

maximal solvable subgroup of G and W is the Weyl group. Then Chevalley showed the 

construction makes sense for any field, particularly finite fields. This gives

|G| = |B|
∑

ω∈W

q"(ω),

with #(ω) the length of the word ω in the Coxeter generators. The length generation 

function factors

∑

ω∈W

q"(ω) =
n

∏

i=1

(1 + q + . . . + qei),

where ei, the exponents of W , are known. From here, one can prove the analog of 

Theorem 3.5. The Weyl groups have a well developed descent theory (number of positive 

roots sent to negative roots) and one may ask about the analog of Theorem 3.6, along 

with the other distribution questions above.

We want to mention two parallel developments. Louis Solomon [91] has built a beau-

tiful parallel theory for describing the orbits of GLn(Fq) × GLn(Fq) on Mat(n, q), the 

set of n × n matrices. This has been wonderfully developed by Tom Halverson and Arun 

Ram [57]. None of the probabilistic consequences have been worked out. There is clearly 

something worthwhile to do.

Second, Bob Gualnick [56] has classified the orbits of GLn(Fq) × GLm(Fq) acting on 

the set Mat(n, m; q2) of n × m matrices over Fq. Estimating the sizes and other natural 

questions about the orbit in the spirit of this section seems like an interesting project.

Finally, it is worth pointing out that finding ‘nice descriptions’ of double cosets is 

usually not possible. For example, let Un(q) be the group of n × n uni-upper triangular 

matrices with entries in Fq. Let G = Un(q) × Un(q), with H = K = Un(q) embedded 

diagonally. Describing H−H double cosets is a well-studied wild problem in the language 

of quivers [52]. In [3], this was replaced by the easier problem of studying the ‘super 

characters’ of Un. This leads to nice probabilistic limit theorems. See [24], [25].
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4. Hyperoctahedral double cosets and the Ewens sampling formula

4.1. Introduction

Let Bn be the group of symmetries of an n-dimensional hypercube. This is one of the 

classical groups generated by reflections. It can be represented as

Bn
∼= Cn

2 ! Sn (16)

with Sn acting on the binary n-tuples by permuting coordinates. Thus, |Bn| = n!2n. For 

present purposes it is useful to see Bn ⊂ S2n as the subgroup of centrally symmetric 

permutations. That is, permutations σ ∈ S2n with σ(i) + σ(2n + 1 − i) = 2n + 1 for all 

1 ≤ i ≤ n. For example, when n = 2 we have |B2| = 8 and, as elements of S4, can write

Bn = {1234, 4231, 1324, 4321, 3142, 2143, 3412, 2413}.

The first and last values in each permutation sum to five, as do the middle two values. 

This representation is useful in studying perfect shuffles of a deck of 2n cards [33].

The double coset space Bn\S2n/Bn is a basic object of study in the statisticians 

world of zonal polynomials. Macdonald ([80], Section 7.1) develops this clearly, along 

with citations to the statistical literature, and this section follows his notation.

We begin by noting two basic facts: 1) The double cosets Bn\S2n/Bn form a Gelfand 

pair. 2) The double cosets are indexed by partitions of n. To see how this goes, to 

each permutation σ ∈ S2n associate a graph T (σ) with vertices 1, 2, . . . , 2n and edges 

{εi, ε
σ
i }n

i=1 where εi joins vertices 2i − 1, 2i and εσ
i joins vertices σ(2i − 1), σ(2i). Color 

the εi edges red and the εσ
i edges as blue (for interpretation of the colors in the text, the 

reader is referred to the web version of this article). Then, each vertex lies on exactly one 

red and one blue edge. This implies the components of T (σ) are cycles with alternating 

red and blue edges, so each cycle has an even length. Dividing these cycle lengths by 2

gives a partition of n, call it λσ.

Example 4.1. Take n = 3 and σ = 612543. The graph T (σ) is

Here there is a cycle of length 4 and a cycle of length 2, thus this corresponds to the 

partition λσ = (2, 1).
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Macdonald proves (2.1 in Section 7.2, [80]) that λσ = λσ′ if and only if σ ∈ Bnσ′Bn. 

Thus, the partitions of n serve as double coset representatives for Bn\S2n/Bn.

If we denote Bλ = BnσBn, λ = λσ, then

|Bλ| =
|Bn|2

2"(λ)zλ

, (17)

with zλ =
∏n

i=1 iaiai! and #(λ) =
∑n

i=1 ai(λ) is the number of parts in λ, where λ

has ai parts of size i. For example, for σ = id, we see λσ = 1n, zλ = n! and |B1n | =

(2nn!)2/(2nn!) = |Bn|. The largest double coset corresponds to the 2n cycles (12 . . . 2n)

in S2n (not all 2n cycles are in the same double coset).

To see this, let f(λ) = zλ2"(λ) for a partition λ of n. Note that for any λ, if a box 

from the lower right corner is moved to the right end of the top row, the result λ′ is still 

a partition. For example,

Lemma 4.2. With notation above, f(λ) > f(λ′).

Proof. Assume the first row of λ has a boxes and the last row has b boxes. Consider 

f(λ′)/f(λ). If b > 1, then #(λ′) = #(λ). With zλ =
∏n

i=1 imimi!, where mi is the number 

of parts of λ of length i, then from λ to λ′ only i = a, b, a + 1, b − 1 will change. Thus,

f(λ′)

f(λ)

=
ama−1(ma − 1)! · (a + 1)ma+1+1(ma+1 + 1)! · bmb−1(mb − 1)! · (b − 1)mb−1+1(mb−1 + 1)!

ama(ma)! · (a + 1)ma+1(ma+1)! · bmb(mb)! · (b − 1)mb−1(mb−1)!

=
(a + 1) · (ma+1 + 1) · (b − 1) · (mb−1 + 1)

a · ma · b · mb
=

(a + 1) · (b − 1)

a · ma · b · mb
< 1

Since a is the length of the top row and b is the length of the bottom row, ma+1 =

mb−1 = 0, and the inequality follows since ma, mb ≥ 1 and b ≤ a.

If b = 1, then #(λ′) = #(λ) − 1 and

f(λ′)

f(λ)
=

(a + 1)

2 · amam1
< 1. !

Corollary 4.3. For λ 2 n, f(λ) ≤ 2n with equality if and only if λ = (n).

Remark. It is natural to guess that f(λ) is monotone in the usual partial order on 

partitions. This fails, for example:
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Here λ < λ′, but f(λ) = 29 · 3! < 28 · 4! = f(λ′). Still, inspection of special cases suggests 

that the partial order in the lemma can be refined.

The lemma shows that the smallest double coset in Bn\S2n/Bn corresponds to id, λ =

1n, and the largest corresponds to the 2n cycle (12 . . . 2n), λ = (n).

Dividing (17) by |S2n| gives the probability measure

Pn(λ) = Z−1 · n! ·
1

2"(λ)zλ

, with Z =
1

2

(

1

2
+ 1

)

. . .

(

1

2
+ n − 1

)

(18)

This shows that Pn(λ) is the Ewens measure Pθ for θ = 1/2. The Ewens measure with 

parameter θ is usually described as a measure on the symmetric group Sn with

Pθ(η) =
θc(η)

θ(θ + 1) . . . (θ + n − 1)
, c(η) = number of cycles in η. (19)

If η is in the conjugacy class corresponding to λ 2 n, then c(η) = #(λ) and the size of the 

conjugacy class is n!/zλ. Using this, simple calculations show (18) is (19) with θ = 1/2.

The Ewens measure is perhaps the most well-studied non-uniform probability on Sn

because of its appearance in genetics. The survey by Harry Crane [26] gives a detailed 

overview of its many appearances and properties. Limit theorems for Pθ are well devel-

oped. Arratia-Barbour-Tavaré ([5], chapter 4) studies the distribution of cycles (number 

of cycles, longest and shortest cycles, etc.) under Pθ. The papers of Féray [45] study excee-

dences, inversions, and subword patterns. A host of features display a curious property: 

The limiting distribution does not change with q (!). For example, the structure of the 

descent set of an Ewens permutation matches that of a uniform permutation. An elegant, 

unified theory is developed in the papers of Kammoun [72], [71], [73]. More or less any 

natural feature of λ has been covered. These papers work for all θ so the results hold for 

Pθ in (19).

The following section gives more details. The final section suggests related problems.

4.2. Cycle indices and Poisson distributions

For a partition λ of n let ai(λ) be the number of parts of λ equal to i. Thus, 
∑n

i=1 iai(λ) = n. For σ ∈ S2n, write ai(σ) for ai(λσ) and introduce the generating 

functions:

fn(x1, . . . , xn) =
1

(2n)!

∑

σ∈S2n

n
∏

i=1

x
ai(σ)
i , n ≥ 1
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f0 = 1

and

f(t) =

∞
∑

n=0

tn

(

2n
n

)

22n
fn(x1, . . . , xn).

The following analog of Pólya’s cycle index theorem holds.

Theorem 4.4. With notation as above,

f(t) = exp

(

∞
∑

n=1

tn

2n
xn

)

Proof. The proof uses symmetric function theory as in [80]. In particular, the power 

sum symmetric functions in variables y = (y1, y2, . . . ) are pj(y) =
∑

i yj
i and, for λ =

1a12a2 . . ., pλ(y) =
∏

i pai

i . A formula at the bottom of pg 307 in [80] specializes to

∑

λ

z−1
λ 2−"(λ)pλ(y)pλ(y′) = exp

(

∞
∑

n=1

1

2n
pn(y)pn(y′)

)

. (20)

In (20), y and y′ are distinct sets of variables. We have set vλ = 2 in Macdonald’s formula 

(see the discussion following the proof). Set further y = y′ and replace y by 
√

ty to get

∑

λ

z−1
λ 2−"(λ)t|λ|pλ(y)2 = exp

(

∞
∑

n=1

tn

2n
pn(y)2

)

,

where |λ| =
∑

i λi. Since the pn are free generators of the ring of symmetric functions, 

they may be specialized to pn → √
xi (that is, setting pi(y) =

√
xi). Then the formula 

becomes

∞
∑

n=0

tn
∑

λ*n

z−1
λ 2−"(λ)

∏

i

x
ai(λ)
i = exp

(

∞
∑

n=1

tn

2n
xn

)

. (21)

As above, the inner sum is

∑

λ*n

z−1
λ 2−"(λ)

∏

i

x
ai(λ)
i = (2nn!)2

∑

σ∈S2n

∏

i

x
ai(λσ)
i =

(

2n
n

)

22n
fn. !

To bring out the probabilistic content of Theorem 4.4, recall the negative binomial 

density with parameters 1/2, 1 − t assigns mass

p1/2,1−t(n) = Z−1

(

2n
n

)

tn

22n
, Z−1 =

√
1 − t, n = 0, 1, 2, . . .
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Divide both sizes of (21) by 
√

1 − t to see

∞
∑

n=0

p1/2,1−t(n) · fn =

∞
∏

n=1

exp

(

tn

2n
xn − tn

2n

)

, (22)

using the expansion 
√

1 − t =
∏

n etn/2n. Recall the Poisson(λ) distribution on 

{0, 1, 2, . . . , } has density e−λλj/j! and moment generating function e−λ+λx. This and 

(22) gives

Corollary 4.5. Pick n ∈ {0, 1, 2, . . . } from p1/2,1−t(n) and then σ ∈ S2n from the uniform 

distribution. If σ has λσ with ai parts equal to i, then the {ai}
n
i=1 are independent with 

ai having a Poisson distribution with parameter ti/2i.

From this corollary one may prove theorems about the joint distribution of cycles 

exactly as in [89]. This gives analytic proofs of previously proved results. For example, 

for large n:

• The {ai}
n
i=1 are asymptotically independent with Poisson(1/2i) distributions.

• #(λ) has mean asymptotic to log(n)/2, variance asymptotic to log(n)/2, and normal-

ized by its mean and variance #(λ) has a limiting normal distribution.

The distributions of smallest and largest parts are similarly determined. The calcu-

lations in this section closely match the development in [96]. The results above relating 

negative binomial mixtures and permutations are special cases of more general results. 

See [85], Corollary 4.1, and their discussion of related literature. This gives a very clear 

description of the results above from the genetics perspective.

4.3. Remarks and extensions

(a) The formula of Macdonald used in Section 4.2 involved a sequence of numbers 

vi, 1 ≤ i < ∞. For a partition λ, define vλ = vλ1
vλ2

. . . vλl
multiplicatively. Macdonald 

proves

∑

λ

v−1
λ z−1

λ pλ(y)pλ(y′) = e
∑

n
pn(y)pn(y′)/(nvn).

At the right, the product means ‘something is independent’ and it is up to us to see 

what it is.

As a first example, take vi = 1 for all i. Then, proceeding as in (22) the formula 

becomes

∞
∑

n=0

tn

n
Cn(x1, . . . , xn) = e

∑

n

i=1
xiti/i,
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with Cn(x1, . . . , xn) = 1
n!

∑

σ∈Sn

∏

i x
ai(σ)
i , the cycle indicator of Sn. This is exactly 

Pólya’s cycle formula, see [89].

Taking vn ≡ 1/2 gives the results of Section 4.2 and indeed suggested the project of 

enumerating by double cosets. Macdonald considers the five following choices for vn:

1, (1 − tn)−1, 2, α, (1 − qn)/(1 − tn)

and shows that each gives celebrated special functions: Schur, Hall-Littlewood, Zonal, 

Jack, and Macdonald, respectively. We are sure that each will give rise to an interesting 

enumerative story, if only we could find out what is being counted. Indeed, in [50] Jason 

Fulman has shown that the case of vi = 1 − 1/qi enumerates F -stable maximal tori in 

GLn(F ).

(b) For the cycles of the symmetric group, Pólya’s formula shows that the limiting 

Poisson approximation is remarkably accurate. In particular, under the uniform distri-

bution on Sn:

• The first n moments of the number of fixed points of σ, a1(σ), are equal to the first 

n moments of the Poisson(1) distribution.

• More generally, the mixed moments

ESn
[ak1

1 ak2

2 . . . akl

l ]

equal the same moments of independent Poisson variables with parameters 1, 1/2, . . . ,

1/l, as long as k1 + 2k2 + . . . + lkl ≤ n.

Theorem 4.4 allows exact computation of the joint mixed moments of a1, a2, . . . for λ

chosen from Ewens(1/2) distribution. They are not equal to the limiting moments. The 

moments were first computed by Watterson in [96].

(c) We mention a q-analog of the results of this section which is parallel and ‘nice’. It 

remains to be developed. The n-dimensional symplectic group Sp2n(Fq) is a subgroup 

of GL2n(Fq) and GL2n, Sp2n is a Gelfand pair. The double cosets are nicely labeled and 

the enumerative facts are explicit enough that analogs of the results above should be 

applicable. For details, see [6].

Jimmy He ([58], [60]) worked out the convergence rates for the natural random walk 

on GL2n, Sp2n using the spherical functions. This problem was suggested to the first 

author by Jan Saxl as a way of tricking himself into learning some probability. The 

result becomes a walk on quadratic forms, and He proves a cutoff occurs.

5. Parabolic subgroups of Sn

Let λ be a partition of n (denoted λ 2 n). That is, λ = (λ1, λ2, . . . , λI) with λ1 ≥
λ2 ≥ . . . ≥ λI > 0 and λ1 + λ2 + . . . + λI = n. The parabolic subgroup Sλ is the 
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set of all permutations in Sn which permute only {1, 2, . . . , λ1} among themselves, only 

{λ1 + 1, . . . , λ1 + λ2} among themselves, and so on. Thus,

Sλ
∼= Sλ1

× Sλ2
× . . . × SλI

.

If si = (i, i +1), 1 ≤ i ≤ n −1 are the generating transpositions of Sn, then Sλ is generated 

by {si}
n−1
i=1 \ {sλ1

, sλ2
, . . . , sλI

}. The group Sλ is often called a Young subgroup.

Let µ = (µ1, . . . , µJ) be a second partition of n. This section studies the double 

cosets Sλ\Sn/Sµ. These cosets are a classical object of study; they can be indexed by 

contingency tables: I × J arrays of non-negative integers with row sums given be the 

parts of λ and column sums the parts of µ.

The mapping from Sn to tables is easy to describe: Fix σ ∈ Sn. Inspect the first 

λ1 positions in σ. Let T11 be the number of elements from {1, 2, . . . , µ1} occurring in 

these positions, T12 the number of elements from {µ1 + 1, . . . , µ1 + µ2}, . . . and T1J

the number of elements from {n − µJ + 1, . . . , n}. In general, Tij is the number of 

elements from {µ1 + . . . + µi−1 + 1, . . . , µ1 + . . . + µj} which occur in the positions 

λ1 + λ2 + . . . + λi−1 + 1 up to λ1 + . . . + λi.

Example 5.1. When n = 5, λ = (3, 2), µ = (2, 2, 1) there are five possible tables:

(

2 1 0
0 1 1

) (

2 0 1
0 2 0

) (

1 2 0
1 0 1

) (

1 1 1
1 1 0

) (

0 2 1
2 0 0

)

σ = 12345 σ = 12543 σ = 13425 σ = 13524 σ = 34512

24 12 24 48 12

Listed below each table is a permutation in the corresponding double coset, and the total 

size of the double cosest.

The mapping σ → T (σ) is Sλ ×Sµ bi-invariant and gives a coding of the double cosets. 

See [68] for further details and proof of this correspondence. Jones [70] gives a different 

coding.

Any double coset has a unique minimal length representative. This is easy to identify: 

Given T , build σ sequentially, left to right, by putting down 1, 2, . . . , T11 then µ1 +1, µ1 +

2, . . . , µ1 + T12 ... each time putting down the longest available numbers in the µj block, 

in order. Thus, in Example 5.1 the shortest double coset representative is 13524. For 

more details, see [13].

The measure induced on contingency tables by the uniform distribution on Sn is

Pλ,µ(T ) =
1

n!

∏

i,j

λi!µj !

Tij !
. (23)

This is the Fisher-Yates distribution on contingency tables, a mainstay of applied sta-

tistical work in chi-squared tests of independence. The distribution can be described by 
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a sampling without replacement problem: Suppose that an urn contains n total balls of 

I different colors, ri of color i. To empty the urn, make J sets of draws of unequal sizes. 

First draw c1 balls, next c2, and so on until there are cJ = n −∑J−1
j=1 cj balls left. Create 

a contingency table by setting Tij to be the number of color i in the jth draw.

This perspective, along with the previously defined mapping from permutations to 

cosets, proves that the distribution on contingency tables induced by the uniform dis-

tribution on Sn is indeed the Fisher-Yates: Suppose a permutation σ ∈ Sn represents a 

deck of cards labeled 1, . . . , n. Given partitions λ, µ color cards 1, . . . , µ1 with color 1, 

labels µ1 + 1, . . . , µ2 color 2 and so on. From a randomly shuffled deck, draw the first λ1

cards and count the number of each color, then draw the next λ2, and so on.

More statistical background and available distribution theory is given in the following 

section. These results give some answers to the question:

Pick σ ∈ Sn uniformly. What Sλ\Sn/Sµ double coset is it likely to be in? (24)

From (23),

|SλσSµ| =
∏

i,j

µi!λj !

Tij !
, for T = T (σ). (25)

However, enumerating the number of double cosets is a #-P complete problem. See [32].

When λ = µ = (k, n −k), the double cosets give a Gelfand pair with spherical functions 

the Hahn polynomials. The associated random walk is the Bernoulli-Laplace urn, which 

is perhaps the first Markov chain! (See [35].) More general partitions give interesting urn 

models but do not seem to admit orthogonal polynomial eigenvectors.

One final note: there has been a lot of study on the uniform distribution on the space of 

tables with fixed row and column sums. This was introduced with statistical motivation 

in [31]. The central problem has been efficient generation of such tables; enumerative 

theory is also natural but remains to be developed. See [32], [23], [37], [38], [8] and 

their references. The Fisher-Yates distribution (23) is quite different from the uniform 

and central to both the statistical applications and to the main pursuits of the present 

paper.

Section 5.1 develops statistical background and uses this to understand the size of 

various double cosets, Section 5.2 proves a new limit theorem for the number of zeros in 

T (σ). The final section discusses natural open problems.

5.1. Statistical background

Contingency tables arise whenever a population of size n is classified with two discrete 

categories. For example, Table 1 shows 592 subjects classified by 4 levels of eye color and 

4 levels of hair color.

A classic task is the chi-squared test for independence. This is based in the chi-squared 

statistic



P. Diaconis, M. Simper / Journal of Algebra 607 (2022) 214–246 235

Table 1
This table has a total of 592 entries, with row sums r1, r2, r3, r4 = 220, 215,
93, 64 and column sums c1, c2, c3, c4 = 108, 286, 71, 127. There are 1, 225, 914,
276, 768, 514 .

= 1.225 × 1015 tables with these row and column sums.

Black Brown Red Blond Total

Brown 68 119 26 7 220
Blue 20 84 17 94 215
Hazel 15 54 14 10 93
Green 5 29 14 16 64

Total 108 286 71 127 592

χ2(T ) =
∑

i,j

(

Tij − λi · µj

n

)2

/(λi · µj/n). (26)

This measure how close the table is to a natural product measure on tables. In the 

example Table 1, χ2 = 138.28.

The usual probability model for such tables considers a population of size n, with 

each individual independently assigned into one of the I × J cells with probability pij

(pij ≥ 0, 
∑

ij pij = 1). The independence model postulates

pij = αi · βj

for αi, βj ≥ 0 and 
∑

i αi =
∑

j βj = 1. A basic theorem in the subject [74] says that if n

is large and αi, βj > 0 the χ2 statistic has a limiting distribution fk(x), i.e.

P (χ2 ≤ x) →
x

∫

0

fk(t) dt,

where fk(x) is the chi-squared density with k = (I − 1)(J − 1) degrees of freedom:

fk(x) =
xk/2−1 · e−x/2

2k/2 · Γ(k/2)
, x ≥ 0. (27)

The density fk has mean k and variance 2k and it is customary to compare the observed 

χ2 statistic with the k ±
√

2k limits and reject the null hypothesis if the statistic falls 

outside this interval. In the example, k = 9 and the hypothesis of independence is 

rejected.

The above simple rendition omits many points which are carefully developed in [76], 

[1], [2].

The great statistician R.A. Fisher suggested a different calibration: Fix the row sums, 

fix the column sums and look at the conditional distribution of the table given the row 

and column sums (under the independence model). It is an elementary calculation to 

show that P(T | λi, µj) is the Fisher-Yates distribution (23). Notice that the Fisher-Yates 

distribution does not depend on the ‘nuisance parameters’ αi, βj . This is called Fishers 

exact test. There is a different line of development leading to the same distribution. This 
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is the conditional testing approach (also due to Fisher). David Freedman and David Lane 

[47], [48] give details, philosophy, and history. We only add that conditional testing is a 

rich, difficult subject (starting with the question: what to condition on?). For discussion 

and extensive pointers to the literature, see [78] (Chapter 2), [36] (Section 4).

All of this said, mathematical statisticians have long considered the distribution of 

tables with given row and column sums under the Fisher-Yates distribution.

The following central limit theorem determines the joint limiting distribution of the 

table entries Tij under the Fisher-Yates distribution. They are approximately multivari-

ate normal. As a corollary, the χ2 statistic has the appropriate chi-squared distribution. 

This can be translated into estimates of the size of various double cosets, as discusses 

after the statement.

In the following, fix I and J . Let λn = (λn
1 , . . . , λn

I ), µn = (µn
1 , . . . , µn

J) be two se-

quences of partitions of n. Suppose there are constants αi, βj with 0 < αi, βj < 1 such 

that

lim
n→∞

λn
i /n = αi, lim

n→∞
µn

j /n = βj for 1 ≤ i ≤ I, 1 ≤ j ≤ J. (28)

Let T be drawn from the Fisher-Yates distribution (23) and let

Zn
ij =

√
n

(

Tij

n
−

λn
i µn

j

n2

)

Theorem 5.2. With notation as above, assuming (28), the random vector

Zn = (Zn
11, Zn

12, . . . , Zn
1J , . . . , Zn

I1, . . . , Zn
IJ )

converges in distribution to a normal distribution with mean zero and covariance matrix

Σ =
(

Diag(α) − α · αT
)

⊗
(

Diag(β) − β · βT
)

,

for α = (α1, . . . , αI), β = (β1, . . . , βJ).

The tensor product in the definition of Σ means that covariance between the i1, j1

variable and the i2, j2 variable is given by 
(

Diag(α) − α · αT
)

i1,i2
·
(

Diag(β) − β · βT
)

j1,j2
. 

Note that since the final entry in each row (or column) is determined by the other entries, 

the IJ × IJ covariance matrix is singular with rank (I − 1)(J − 1).

Corollary 5.3. Under the conditions of Theorem 5.2, the chi-squared statistic (26) has a 

limiting chi-squared distribution (27) with k = (I − 1)(J − 1) degrees of freedom.

A very clear proof of Theorem 5.2 and the corollary is given by Kang and Klotz 

[74]. They review the history, as well as survey several approaches to the proof. Their 

argument is a classical, skillful use of Stirling’s formula and their paper is a model of 

exposition.
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The usual way of using these results, for a single entry Tij in the table, gives

P





Tij − νij
√

nσ2
ij

≤ x



 ∼ 1√
2π

x
∫

−∞

e−t2/2 dt, νij =
λiµj

n
, σ2

ij =
λiµj

n2

(

1 − λiµj

n2

)

.

Any single entry of the table has a limiting normal approximation. This can also 

be seen through the normal approximation to the hypergeometric distribution. This is 

available with a Berry-Esseen error; see [62].

The limiting χ2 approximation shows that, under the Fisher-Yates distribution, most 

tables are concentrated around the ‘independence table’

T ∗
ij =

λiµj

n
.

This T ∗ is rank one. While it does not have integer entries, it gives a good picture of the 

approximate size of a typical double coset.

To be quantitative, let us define a distance between tables T, T ′ with the same row 

and column sums:

‖T − T ′‖1 =
∑

i,j

|Tij − T ′
ij |.

This is the L1 distance, familiar as total variation from probability. Since 
∑

i,j Tij = n, 

for many tables T, T ′, ‖T − T ′‖1
.
= n. The Cauchy-Schwartz inequality shows

‖T − T ∗‖1 ≤
√

n · χ2(T ). (29)

Corollary 5.3 shows that, under the Fisher-Yates distribution, χ2(T ) is typically (I −
1)(J −1) ±

√

2(I − 1)(J − 1), and thus typically ‖T −T ∗‖ is of order 
√

n 6 n. A different 

way to say this is to divide the tables T and T ∗ by n to get probability distributions 

T , T
∗

on IJ points. Then, for most T ,

‖T − T
∗‖1 = Op

(

1√
n

)

.

Barvinok [8] studies the question in the paragraph above under the uniform distri-

bution on tables. In this setting, he shows that most tables are close (in a somewhat 

strange distance) to quite a different table T ∗∗.

Theorem 5.2 also gives an asymptotic approximation to the size of the double coset 

corresponding to the table T . Call this SλTSµ. It is easy to see that |SλTSµ| = n! ·P (T |

λ, µ) ∼ n! · ϕ(T )/
√

n with

ϕ(T ) =
e−Z−Σ

−1
−

ZT

−
/2

det(Σ−)1/2
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for Z− the vector corresponding to the upper left (I − J) × (J − 1) sub-matrix of T

(with notation as in Theorem 5.2) and Σ− the associated (I − 1)(J − 1) × (I − 1)(J − 1)

covariance matrix (that is, the covariances between the remaining (I −1) · (J −1) entries 

of the sub-matrix). Note that removing one row and one column from T removes the 

dependency so Σ− is full rank. This uses the local limit version of Theorem 5.2, which 

follows from the argument of Kang and Klotz [74]. See [22] for further details.

The asymptotics above show that the large double cosets are the ones closest to 

the independence table. This may be supplemented by the following non-asymptotic 

development.

Let T and T ′ be tables with the same row and column sums. Say that T ≺ T ′ (‘T ′

majorizes T ’) if the largest element in T ′ is greater than the largest element in T , the 

sum of the two largest elements in T ′ is greater than the sum of the two largest elements 

in T , and so on. Of course the sum of all elements in T ′ equals the sum of all elements 

of T .

Example 5.4. For tables with n = 8, λ1 = λ2 = µ1 = µ2 = 4, there is the following 

ordering

(

2 2
2 2

)

≺
(

3 1
1 3

)

≺
(

4 0
0 4

)

.

Majorization is a standard partial order on vectors [81] and Harry Joe [69] has shown 

it is useful for contingency tables.

Proposition 5.5. Let T and T ′ be tables with the same row and column sums and P the 

Fisher-Yates distribution. If T ≺ T ′, then

P (T ) > P (T ′).

Proof. From the definition (23), we have log(P (T )) = C−
∑

i,j log(Tij !) for a constant C. 

This form makes it clear the right hand side is a symmetric function of the IJ numbers 

{Tij}. The log convexity of the Gamma function shows that it is concave. A symmetric 

concave function is Schur concave: That is, order-reversing for the majorization order 

[81]. !

Remark. Joe [69] shows that, among the real-valued tables with given row and column 

sums, the independence table T ∗ is the unique smallest table in majorization order. 

He further shows that if an integer valued table is, entry-wise, within 1 of the real 

independence table, then T is the unique smallest table with integer entries. In this case, 

the corresponding double coset has P (T ) largest.

Example 5.6. Fix a positive integer a and consider an I ×J table T with all entries equal 

to a. This has constant row sums J · a and column sums I · a. It is the unique smallest 
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table with these row and column sums, and so corresponds to the largest double coset. 

For a = 2, I = 2, J = 3, this table is

T =

(

2 2 2
2 2 2

)

.

Contingency tables with fixed row and column sums form a graph with edges between 

tables that can be obtained by one move of the following: pick two rows i, i′ and two 

columns j, j′. Add +1 to the (i, j) entry, −1 to the (i′, j) entry, +1 to the (i′, j′) entry, and 

−1 to the (i, j′) entry. This graph is connected and moves up or down in the majorization 

order as the 2 ×2 table with rows i, i′ and columns j, j′ moves up or down. See Example 5.4

above.

5.2. Zeros in Fisher-Yates tables

In this section we will use r1, . . . , rI for the row sums of a table and c1, . . . , cJ for the 

column sums. One natural feature of a contingency table is its zero entries. As shown 

in Section 5.1, most tables will be close to the table T ∗ with entries T ∗
ij = ricj/n. This 

has no zero entries. Therefore, zeros are a pointer to the breakdown of the independence 

model. In statistical applications, there is also the issue of ‘structural zeros’ – categories 

such as ‘pregnant males’ which would give zero entries in cross-classified data due their 

impossibility. See [14] for discussion. The bottom line is, professional statisticians are 

always on the look-out for zeros in contingency tables. This section gives a limit theorem 

for the number of zeros under natural hypotheses.

A simple observation which leads to the theorem is that a Fisher-Yates table 

is equivalent to rows of independent multinomial vectors, conditioned on the col-

umn sums: let X1, . . . , XI be independent random vectors of length J , with Xi ∼
Multinomial(ri, {qj}J

j=1) for some probabilities qj > 0 and 
∑

j qj = 1. That is, Xi

are the occupancy counts generated by assigning ri balls to J boxes, with one ball going 

to the jth box with probability qj . The joint distribution for the vectors is then

P (X = (xij)) =

I
∏

i=1

(

ri

xi1, . . . , xiJ

)

· qxi1

1 . . . qxiJ

J . (30)

Let Y1, . . . , YI be distributed as X1, . . . , XI conditioned on the sums 
∑I

i=1 Xij = cj . 

From (30) it is clear that Y1, . . . , YI has the Fisher-Yates distribution (23), regardless of 

the choices qj .

This perspective allows us to use known limit results for multinomial distributions, 

translated to contingency tables using conditioned limit theory. For the remainder, as-

sume that the row sums ri = r are constant, so that the Xi are iid vectors. Let 

f(Xi) =
∑J

j=1 1(Xij = 0) count the number of zero-entries in the vector. [63] con-

tains limit theorems for f(Xi) as r → ∞, with either Poisson or normal limit behavior 

depending on the asymptotics of r, J and the qj .



240 P. Diaconis, M. Simper / Journal of Algebra 607 (2022) 214–246

Example 5.7. Consider an I × J table with constant column sums c = I(log(I · J) + θ). 

The row sums are determined by r = n/I. If the table is created from the counts of 

dropping n balls in I · J boxes, with each box equally likely, then the expected number 

of zero entries is

λ∗ = IJ ·

(

1 − 1

I · J

)n

= IJ ·
(

1 − c

n · J

)n

∼ IJe−c/J ∼ e−θ

If n, I, J → ∞ then λ∗ → e−θ, and the following theorem shows that the number of 

zeros has a Poisson(λ∗) distribution under these assumptions. Indeed, it shows this for 

varying column sums.

Theorem 5.8. Suppose that n → ∞ and fix sequences In, Jn, cn
j such that

In ·

Jn
∑

j=1

(

1 −
cn

j

n

)n/In

→ β.

Let Zn be the number of zeros in a Fisher-Yates contingency table of size In × Jn with 

constant row sums rn = n/In and column sums cn
1 , . . . , cn

Jn
. Then

L (Zn) → Poisson(β).

Proof. Let Xn
j ∼ Multinomial(rn, {qn

j }Jn

j=1), with the probabilities qj = cn
j /n chosen so 

that E[
∑In

i=1 Xn
ij ] = In · rn · qn

j = cn
j . Then a conditioned limit theorem (Corollary 3.5 in 

[64]) says that if

L

(

In
∑

i=1

f(Xn
i )

)

→ L(U),

where U has no normal component, then

L

(

In
∑

i=1

f(Y n
i )

)

= L

(

I
∑

i=1

f(Xn
i ) |

In
∑

i=1

Xn
ij = cn

j , 1 ≤ j ≤ Jn

)

→ L(U).

If X is a multinomial generated by dropping r balls in J boxes, with probabilities qj , 

and if

J
∑

j=1

(1 − qj)
r → α,

then the number of empty boxes is asymptotically Poisson(α) (e.g. Theorem 6D in [7]). 

Thus the condition
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Fig. 1. Results for the number of zeros from 50,000 samples of a contingency table with I = 50, J = 20, 
constant row sums r = 110, and constant column sums c = 275. The blue curve is the frequency polygon 
of a Poisson distribution with λ = 3.54.

In
Jn
∑

j=1

(

1 −
cn

j

rnIn

)rn

→ β

means that f(Xn
i ) is asymptotically Poisson(β/In) and so 

∑In

i=1 f(Xn
i ) is Poisson(β). !

Preliminary computations indicate that Theorem 5.8 will hold with row sums that do 

not vary too much. Fig. 1 shows the result from simulations for the number of zeros in 

a 50 × 20 table with row and column sums fixed.

5.3. Further questions

It is natural to ask further questions about the distribution of natural features of the 

tables representing double cosets. Three that stand out:

1. The positions of the zeros under the hypotheses of Theorem 5.8.

2. The size and distribution of the maximum entry in the table.

3. The RSK shape: Knuth’s extension of the Robinson-Schensted correspondence assigns 

to a table T a pair P, L of semi-standard Young tableux of the same shape. We 

have not seen these statistics used in statistical work. So much is known about RSK 

asymptotics that this may fall out easily.

4. Going back to Section 1: One nice development in probabilistic group theory on the 

symmetric group has been to look at the distribution of natural statistics within a 

fixed conjugacy class [51], [75]. In parallel, one could fix a double coset and look at 

the distribution of standard statistics.
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5. Going further, this section has focused on enumerative probabilistic theorems for 

parabolic subgroups of the symmetric group. The questions make sense for parabolic 

subgroups of any finite Coxeter group. An enormous amount of combinatorial de-

scription is available (how does one describe double cosets?). This is wonderfully 

summarized in the very accessible paper [13]. In any Coxeter group, each double 

coset contains a unique minimal length representative. These minimal length double 

coset representatives can be used as identifiers for the double coset. See [61] for more 

on this. The focus of [13] is understanding WS · ω · WT with ω fixed as S and T vary 

over subsets of the generating reflections.
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