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Abstract

We study a natural Markov chainon {0, 1, . .., n} with eigenvectors the Hahn polyno-
mials. This explicit diagonalization makes it possible to get sharp rates of convergence
to stationarity. The process, the Burnside process, is a special case of the celebrated
‘Swendsen—Wang’ or ‘data augmentation’ algorithm. The description involves the
beta-binomial distribution and Mallows model on permutations. It introduces a useful
generalization of the Burnside process.
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1 Introduction

Over the past 100 years, physicists, geneticists, statisticians, and probabilists have
found positive symmetric operators (Markov chains) with orthogonal polynomial
eigenfunctions. This allows precise asymptotic analysis of high powers of the operator.
Orthogonal polynomials come in ‘families’ and an explicit diagonalization suggests
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‘deforming’ the operator so that the full family of eigenfunctions appears. These defor-
mations can turn out to be useful and natural. This paper gives an example with these
characteristics.

We start off with a high-level description of our main results. This uses the language
of Markov chains and the Burnside process. A tutorial containing background on these
topics is in Sects. 2.1 and 2.2. See also Sect. 4 for more details.

1.1 The Burnside process

Let X be a finite set. Let G be a finite group acting on &’. This splits X into disjoint
orbits. Let Oy = {x® : g € G} be the orbit containing x. The Burnside process
gives a practical way to choose an orbit uniformly at random. This captures a familiar
problem: enumerating unlabeled objects. For example, there are n"~2 labeled trees
on n vertices. There is no formula for the number of unlabeled trees. Indeed, there is
an emerging literature for choosing a random spanning tree of a graph. As a second
example, let X = G with G acting on itself by conjugation. Now the orbits are
conjugacy classes of G. For instance, if G = §,, the symmetric group, the conjugacy
classes are indexed by partitions of n and the Burnside algorithm gives a novel way
to choose a random partition.
Let

X,={yeX:y¥=y}, Gy={geG:x8=x}.

The Burnside process is a Markov chain on A’

— From x, choose g € G, uniformly at random
— From g, choose y € X, uniformly at random

One step of the chain goes from x to y. The transition matrix of this chain is

KG,y)= )

geGNGy

1
——, an|X| x |X| matrix.
|Gl | X

It is easy to see that K has stationary distribution

m(x) = (z = number of orbits).

This means, if the chain is run from any starting state xo, after ‘a long time’ the orbit
containing the current state is close to uniformly distributed.

In this generality, useful quantitative analysis of the Burnside process is an open
problem, even for the symmetric group.

We study a special case where analysis can be pushed through.

Let

— & = Cj—the binary n-tuples
— G = §, acting by permuting coordinates
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If x € X has j ones (denoted |x| = j), the orbit

Ox={yeX:|yl=j} (1.1)
Here 0 < |x| < n and the Burnside process gives a complicated way of choosing an
element uniformly from {0, 1, ..., n}. Itis instructive to see how the general algorithm
specializes:

— For x € X, the permutations fixing x form the subgroup S; x S, ; (for j = |x|)
permuting the ones among themselves and the zeros among themselves. It is easy
to choose 0 € G, at random.

— For 0 € §,, write o as a product of cycles. Label the entries of each cycle,
randomly, by a zero or a one (2¢9) choices if o has ¢(o) cycles). Installing this
zero/one pattern gives y. It is easy to choose y given o.

A first result of this paper shows that, for this example, a finite number of steps are
necessary and sufficient for convergence no matter how large n is. To say this carefully,
define

1
1 1
Ky — 7l = > E K" (x,y) = (y)l.
yeX

Theorem 1 For X = C%, G = S, the Burnside process defined above satisfies, for
all n > 2, starting state xo = (1,1, ..., 1) andalll € {1,2,3,...},

L] l<||K’ h<4(X l (1.2)
b -7 -] . .
4\gq4) — " - \4

The development thus far does not seem to have much to do with orthogonal poly-
nomials. Indeed, we do not really understand where they come from or just when they
will appear in other versions of the Burnside process. Let us explain their appearance
here.

Let Xo = x, X1, X», ... be the realization of the Burnside chain of Theorem 1.
There is enough symmetry around that |Xo| = |x[, |X1], |X2][, ... forms a Markov
chain on {0, 1,2, ...,n}. Let Q(i, j) be the transition matrix for this chain. The
explicit form of Q is derived in Proposition 4 below (originally it was written out in
[15, (3.1)—(3.3)]). The Q chain turns out to be symmetric with a uniform stationary
distribution u(j) = +47.0 < j < n.

Let 77 (x) be the discrete Chebyshev polynomials on {0, ..., n}—the orthogonal
polynomials for the uniform distribution ([10]).

Theorem 2 For the Markov chain Q(i, j) on {0, ..., n}, the non-zero eigenvalues are
N2 n

given by 1 and {(2"42 },&iJl. Moreover, the eigenfunctions corresponding to the zero

eigenvalues are the discrete Chebyshev polynomials on {0, 1, ..., n} with odd degree.

2%y 2

The eigenfunction corresponding to the eigenvalue (;;"42

polynomial on {0, 1, ..., n} with degree 2k, 1 <k < 5

is the discrete Chebyshev
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Theorem 2 and classical analysis yield Theorem 1. The proof appears in Sect. 3.

1.2 Hahn polynomials

The discrete Chebyshev polynomials sit naturally in the family of Hahn polynomials:
fora, 8 > 0,

Qjx)=3f(=j,jta+p—1 —x;a —n[l) (1.3)

(Seta = B = 1fordiscrete Chebyshev). O is apolynomial of degree j for0 < j < n.
The usual notation is indicated with «, 8, and n sub and superscripts suppressed here.
These polynomials are orthogonal with respect to the ‘beta-binomial distribution’
defined and discussed in Sect. 2.3 below.

It is natural to ask, is there some variant of the Burnside process having Q; as
eigenfunctions? This is a mathematicians question, as per the first paragraph of this
introduction. To answer it, we found a useful abstract generalization of the general
Burnside process which we hope has a life of its own. Specialized to C7 and S, it
gives a Markov chainon {0, 1, ..., n} with a ‘beta-binomial distribution’ having Hahn
polynomial eigenfunctions and allowing a parallel to Theorem 1.

Section 2 of this paper sets out the needed background: on Markov chains, the
Burnside process, and orthogonal polynomials (it also gives a brief overview of the
many other Markov chains with polynomial eigenfunctions—from Askey—Wilson to
Macdonald!). Theorems 1 and 2 are proved in Sect. 3. Section 4 explains our ‘twisted
Burnside process’ from first principles. The analogs of Theorems 1 and 2 are stated in
Sect. 5. In Sect. 6, following a suggestion of a referee, we pass to the limit as n tends
to infinity to find a continuous analog of the Burnside process with Jacobi polynomial
eigenfunctions. The limit is usefully related to the finite case.

2 Background

This section contains background material on the Burnside process and related ‘auxil-
iary variables’ algorithms (Sect. 2.1). The needed theory from the analytic-geometric
theory of Markov chains is in Sect. 2.2. Background on orthogonal polynomials and
connections to Markov chains (Cannings method) are in Sect. 2.3. Since our readership
has diverse backgrounds we attempt a friendly tutorial.

2.1 The Burnside process and auxiliary variables

The Burnside process was introduced by Mark Jerrum [27] as a contribution to ‘com-
putational Pélya theory.” Pélya theory is about enumeration under symmetry: “how
many different ways can ten dice be colored with red, white, blue where the order of
the dice and the symmetry of a die are neglected?” This is a standard part of combi-
natorics. The book by Pdlya and Read [37] gives a classical account. Jerrum, working
with Goldberg [22,23,28], managed to show that for carefully selected problems, these
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computations are #P-complete (this means being polynomially equivalent to dozens
of other problems that are believed to require exponential time). Our work shows that
for many natural problems, the Burnside process is highly efficient. This opens up
a research area—when is it good? Applications of the Burnside process to practical
problems in computer science [25] suggest it is worthy of study.

A different motivation comes because the Burnside process is a special case of a
wonderful ‘unifying algorithm’ called variously ‘auxiliary variables,” ‘data augmenta-
tion,” or ‘hit and run.” Briefly let X’ be a finite or countable set, 7 (x) > 0 a probability
on X. The job is to invent a Markov chain to sample from 7 (x). Auxiliary variables
create ‘non-local” Markov chains, able to move far away in a single step. They seem to
mix much more rapidly than standard local algorithms. Introduce a set / of auxiliary
variables. For eachi € I and x € X, choose a proposal kernel w, (i) > 0 (a way of
moving from x to i) such that Zi wy (i) = 1 and for each i, there is at least one x
with wy (i) > 0. These ingredients define a joint probability f(x,i) = w(x)w, (i) on
X x I. To proceed, for each i, a Markov chain K;(x, y) with stationary distribution
f(x]7) must be specified. The auxiliary variables algorithm is

— From x, choose i with probability wy (i)
— From i, choose y with probability K; (x, y)

The chain moves from x to y in one step. The transition matrix is

K(x,y) =Y w(HKi(x, y).

A direct calculation shows that 77 (x) is a stationary distribution:
D a@K @, y) =Y 7@ Y weKi(x,y) =YY we(i)w(n)K;(x,y)
X x i i X

= m@) Y f&DKi(x,y) =Y m@) f(yli) =7(y)

(m(i) =), f(x, i) is the marginal distribution). Of course connectedness and ape-
riodicity of K must be checked so that the Perron—Frobenius theorem is in force.

A comprehensive review of this class of algorithms is in [2] which gives dozens of
examples and special cases including the celebrated Swendsen—Wang algorithm for
sampling from the Ising model.

The point for now is that essentially none of the algorithms have sharp running time
analysis. The Burnside process falls into this class: take I = G, w, (i) the uniform
distribution on G, and K (x, y) the uniform distribution on &. The hope is, because
of the extra group structure available, analysis will be easier for this special case. That
was our initial motivation.

There has been some previous effort to study the Burnside process on X = [k]",
with G = S,—here [k] = {1, 2,...,k}. See [15] and Example 1 in Sect. 4 for the
description of this process.

Theorems 1 and 2 study k = 2. Jerrum [27] showed that for k = 2 the total variation
mixing time is at most of order /n; sharpening this, Diaconis [15] proved that, for
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k=2andxo=(1,.... 1), KL —7|l < (1—¢) withc = L (withw = 3.14159...).
Theorem 1 sharpens this to get the exact rate and makes the connection to orthogonal
polynomials (versus the complex, difficult argument of [15]). Aldous [1] used a clever
coupling argument to show that, for general , || K )lc -l <n(l- %)l. This implies [
of order log n steps suffice for k = 2. Further results are in [9].

2.2 Analysis of Markov chain convergence

For readers unfamiliar with Markov chains, the best introduction is the book by Levin
and Peres [35]. This contains all the bounds below and much more. The analytic-
geometric theory of Markov chains is well developed in Saloff-Coste’s [38].

Let X be a finite set, 7(x) > 0, m(x) = 1 a probability distribution on X
A Markov chain on X is specified by a matrix K (x, y) > 0 with Zy K(x,y) =1
Suppose that 7 is a stationary distribution for K: > w(x)K (x, y) = 7 (y) (sow isa
left eigenvector for K with eigenvalue 1). Call r, K reversible if the detailed balance
condition 7(x)K (x, y) = w(y)K (v, x) is satisfied for all x, y € X. All the Markov
chains below satisfy detailed balance. Let LX(m)={f: X > R: f ()7 (x) <
oo}. K acts on L?(7) by Kf (x) = >y K(x, ) f(»). Detailed balance is equivalent
to saying that (K f|g) = (f|Kg) so K is a bounded, self-adjoint operator on L2(7).
The spectral theorem is in force: there exist eigenvalues f; (1 = o > B > --- >
Bixi—1 = —1) and eigenfunctions i (x) (s0 K; (x) = fi i (x).

Throughout this section assume K is connected (for every x, y € X thereis/ > 1
with Kl(x, y) > 0) and aperiodic (B)x|—1 > —1). It is useful to introduce two
distances

- TotalVariationdistance—HK)lc—n|| = % Zy K (x, y)—7(y)] = max| f.<l1 K'(f)—

7 (f). Here || fllo = maxy | f(x)], w(f) = D> 7 (x) f (x). This equality is easy to

prove (the maximizing f is 1 at y if K/(x, y) > m(y) and —1 otherwise).
- - 207y — (K'(x, ) —m(y)?
— Chi-square distance—x; (I) = Zy =) )
The Cauchy—Schwarz inequality implies

KL =712 < X20). 2.1)

This is a useful route to getting bounds on convergence: bound L' by L? and use
eigenvalues to bound L2. Eigenvalues and eigenfunctions come in by

|X|—1

XD = Y Byl 22)

i=1

The following lower bound on total variation and chi-square distance is proved in
[19, Lemma 2.1]. It is applied in Sect. 3.

Proposition 1 Suppose that  is an eigenfunction of K with eigenvalue 8 such that
7(¥) = 0. Assume |V ||*> = 1. Then

X2 = [y P1B17.
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For  with || Y|l co < 00,

RACII:ES
20 leo

!
Ky =7l =

2.3 Orthogonal polynomials and Markov chains

Background on orthogonal polynomials is wonderfully presented in the introductory
text by Chihara [10]. The recent encyclopedia by Ismail [26] brings in much further
material.

These are the orthogonal polynomials on {0, 1, ..., n} with respect to the beta-
binomial distribution. For references and variations of the beta-binomial distribution
see [41]. Fix «, B > 0. Define

m(j) = (j)%%,(a)x —al@41) - (atx—1), @o=1 (23)

This is a probability distribution on {0, 1, ..., n} generated as a beta mixture of bino-
mial distributions

. AN o Te+B) , _
— J o\ o _ \B-1
m(j) —/0 (J.)x (I —x) —F(a)F(ﬂ)x (1 —x)P"dx.

Whena =8 =1,m(j) = ﬁ—the uniform distribution.
The orthogonal polynomials for m (j) are called Hahn polynomials. Detailed devel-
opment is in [29]. They have the explicit form

Qj(x)=3F(—j,j+ta+B -1, —x;a —n[l)

normalized so Q;(0) =1, Q;(n) = CP)i The standard form

(a+1);
o0 l
(ar...ap)x
F g ey ,ba’b = by .. b
» Fy(a ar; by 1) g(bl...bs)zl!

with (ay...a,); = ]_[le(a,-)l, is used. When o« = B = 1 these are the discrete
Chebyshev polynomials (which we denote by T’ (x))

n—2x 6x% — 6nx +n(n — 1)
To(x) =1, Ti(x)= P hx) = n(n—1)

The discrete Chebyshev polynomials satisfy the following recurrence relation ([26,
(6.2.8)])

(G+Dn—=PDTjrx)=Cj+ D —2x)T;(x) — j(j +n+ DT;_1(x), 2.4)
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where j =0,1,...,n—land T_1(x) = 0.

In Sect. 3 the proof of Theorem 2 uses ‘Cannings argument’ ([8]), a frequently used
tool for proving that a Markov chain has orthogonal polynomial eigenfunctions:

‘If the operator K sends polynomials of degree j to polynomials of degree j for
all 0 < j < n, then the operator has the orthogonal polynomials for the stationary
distribution as its eigenfunctions.’

The following lemma is a formal statement and proof of Cannings lemma. A very
similar argument works for multivariate polynomials.

Lemma 1 Consider a sequence of reversible Markov chains with state space X, =
{0, 1, ..., n}, transition matrix K,,, and stationary distribution m,, (with 7, (x) > 0 for
anyx € X,)forn =1,2,.... Foranyn € {1,2, ...}, suppose that for any polynomial
f on X, ofdegreel < n, K, f is a polynomial on &,, of degree less than or equal to l.
Then we conclude that the eigenfunctions of K, are given by orthogonal polynomials
for m,, of degree less than or equal to n.

Moreover, for any | € N, if we further assume that the degree | monomial in the
expansion of K, [x']in terms of {1, x, . .., x"} (note that this is well-defined for n > I,
as the monomials {1, x, ..., x"} are linearly independent on X,,) does not depend on
n for n > 1, then the eigenvalue of K, that corresponds to the eigenfunction of degree
[ does not depend on n forn > I.

Proof We prove by induction that for any 0 < [ < n, the orthogonal polynomial for
7, of degree / is an eigenfunction of K,,. We denote the /th orthogonal polynomial for
7, by ¢ 1. Forl = 0, we have K,,1 = 1, where 1 is the constant function taking value
1. Now for [ such that 1 <[ < n, by the induction hypothesis we suppose that for any
0<i<I—1,Kypni = Ani¢n,i-Now ¢, is a polynomial of degree /, hence K, ¢, ;
is a polynomial of degree < /. Expanding K, ¢, ; in terms of {¢, ; }f.zo, we get

-1

Knd)n,l = )\n,ld’n,l + Zan,l,i¢n,i (2.5)

i=0
for some A, {an,l,i}ﬁ;(l). Now consider the inner product for 7, defined as
n
(. 8)my = Y FU)gUk)T (k).
k=0

K, is self-adjoint with respect to this inner product, hence we have for any 0 < i <
-1,

<Kn¢n,la ¢n,i>n,, = (¢n,l» Kn(,bn,i)zr,,,
which leads to

)"n,i <¢n,la ¢n,i)ml
(¢n,i, ¢n,i)n,,

=0.

anli =
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Therefore, we conclude that K¢, ;1 = Ay, i$n.i-

For the second part, it suffices to consider the case when [ > 1. We assume that
the degree [ monomial in the expansion of K, [xl ]in terms of {1, x, ..., x"} does not
depend on n for n > [. We also denote by A, ; the eigenvalue of K, that corresponds
to the eigenfunction ¢, ; for any n, i withn > i. For any n > [, we expand x! in terms
of {¢>,,,,-}§:0, and get

l
x = Z,Bn,l,i(bn,i (2.6)
i=0
for some {B,,;.; }§=0- Then we have

l l
Kalx'1 =" ButiKulpnil =Y Butitnidn.i
i=0 i=0
-1
=t Y Buti O = n )b 2.7)

i=0

As the term Zi»;}) Bn.i.i(Ani — An.1)@n.i s of degree < [ — 1, we conclude that the
degree  monomial in the expansion of K, [x'] in terms of {1, x, ..., x"} is given by
)Ln,[xl . Hence by our assumption, A, ; does not depend on n for n > [. Note that the
eigenvalue of K,, that corresponds to the eigenfunction ¢, ; is A, ;, which does not
depend on n forn > 1[. O

The connections between orthogonal polynomials and Markov chains are long-
standing. Indeed, perhaps the first Markov chain—the Bernoulli-Laplace urn—is
diagonalized by Hahn polynomials. To briefly recall, Bernoulli and Laplace consid-
ered two urns, the left containing n red balls, the right containing » black balls. Each
time, a ball is picked uniformly at random and the two balls are switched. The number
of red balls in the left urn evolves as a Markov chain on {0, 1, ..., n}. In [17] this
chain is diagonalized and shown to have Hahn polynomial eigenfunctions. That same
paper treats the Ehrenfest’s urn (with Krawtchouk polynomial eigenfunctions) and
several g-deformations of these two examples. These urn models, and the birth and
death chains discussed below, are examples of ‘local Markov chains.” Most appear-
ances of orthogonal polynomials have occurred for such local chains (analogs of the
Laplacian). The present examples are much more vigorous.

Jacobi polynomials arise as eigenfunctions of a Markov chain constructed from
the ‘Gibbs sampler’ [19]. Extensions of this construction need the full power of the
Askey—Wilson polynomials [7].

An extensive connection between orthogonal polynomials and birth—death chains
follows from the Karlin—-McGregor theory. A textbook account with full details is in
[3]. Multivariate orthogonal polynomials as in [21] arise in natural genetics problems.
See [16,31,42] for multivariate Hahn and Krawtchouk polynomials and [20] for Mac-
donald polynomials. This is just a small sample, drawn from our work with colleagues.
The list goes on and on.
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3 Proof of Theorems 1 and 2

The proof consists of three main parts. First we show that the operator Q of Sect. 1.1
sends polynomials to polynomials. Thus Cannings lemma (Lemma 1) shows that
the discrete Chebyshev polynomials are the eigenfunctions of the Burnside process
(lumped to orbits). Next, the eigenvalues are computed, proving Theorem 2. Finally,
the eigen structure and analytic tools of Sect. 2.2 are used to prove Theorem 1.

Throughout this section @« = 8 = 1 and the stationary distribution u(j) = # for
0<j=n

3.1 Proof of Theorem 2

In the following, we denote by T;’ (x) the discrete Chebyshev polynomial on
{0,1,...,n} with degree j (to emphasize the dependence on n). We also assume
that n is even below (the proof for odd # is similar).

Before the proof of Theorem 2, we present some preparatory lemmas.

The following lemma follows from Pélya’s cycle index theorem ([40], [18, Sect.
5]). We recall the notation. For ¢ in the symmetric group S,,, write a; (o) for the number
of i-cycles when o is written in cycle notation. So a; (o) is the number of fixed points,
ay (o) is the number of transpositions,- - - Thus 0 < @; (o) < n and Z?:l iaj(o) = n.
Write the cycle index of S, as

! T )
Cn(x1,...,x,,)=EZHxi : 3.1)

‘oeS,i=1

The generating function of these C,, is C(¢) = Z;’;O C,t". Pélya showed

Ct) = e’y (3.2)

Repeatedly differentiating in the x;, setting x; = 1 and comparing coefficient gives

Lemma2 Forn = 1,2,..,any 1 <ky < --- <k <nandly,...,l, > 1,if
> i_i kili < n, then for a random permutation o uniformly chosen in S,

fos[AC))-f1) e

i=1 i=1"

while if Y _i_, kil; > n, then

E []—! <a’”’lfa))} =0. (3.4)

113 9 . ) ) .
Below, by “even-order terms” we mean monomials of the form o X i: ¢ i: with
i1 <---<ig,a e Rand/y,..., [ even.
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Lemma 3 Suppose that N,a > 1. The “even-order terms” in the expansion of
(Z,N: 1 X )2 can be expressed as a linear combination of the following form:

k N
I1 ( Xflq) (3.5)
1

q:l i=

for some k > 1,11,...,lx > 1 and le;:l ly = a. Moreover, the coefficients in the
linear combination only depend on a.

Proof By adding finitely many indeterminates and taking them to be 0 in the end,
we can assume without loss of generality that N > 2a. We note that the “even-order

terms” of (Zf»\’:l X;)%@ is a symmetric polynomial in the indeterminates X2, ..., X 12\]
By the proof of [6, Proposition 2.9], it can be expressed as linear combination of the
form (3.5), and the coefficients only depend on a. O

Proof of Theorem 2, eigenfunction part Note that 7j)' (x) = 1and 7{" (x) = % From
this and the recurrence relation (2.4) it can be derived that for 0 < k < 7, Ty; only
has even-order terms in (x — %), and Ty, _, (for k > 1) only has odd-order terms in
(x — 3.

Now as Q(i, j) = Q(i,n — j), we conclude that Q[(x — %)2]‘_1] =0forany 1 <

n
n . . _ j . .
k < 5.By the previous conclusion, Q75 , = 0.Hence {T}; _,};_, are eigenfunctions

of K corresponding to the zero eigenvalues.

In view of Lemma 1, in order to show that the rest of the eigenfunctions are also
given by the discrete Chebyshev polynomials, it suffices to show that for any a such
that 1 < a < 3, O[(x — ’%)2“](j) is a polynomial in j of degree < 2a (where
j€{0,1,...,n}). Below we verify this fact.

Suppose that we start from the orbit j. For the first step in the Burnside process,
o1 € §j and 0y € S, ; are drawn uniformly. Let {a;}]"_,, {b;}?_, denote the number
of cycles of length i in o1, 07, respectively. For the second step, we label the entries
of each cycle by 0/1 independently. Let Z; ~ Binomial(a; + b;, %). The outcome
of one iteration of the Burnside process (number of coordinates labeled by 1) can be

n

represented by X = ) ', iZ;. For 1 <a < %, we denote by
| 2a n | 2a
Waq :=]E|:<X— En) :|=]E (X—;Ei(ai +bi)> : (3.6)
1=
We note that

n

2a
1
Wy =E|E (X_Zii(ai‘Fbi)) lor1,02 | |- 3.7

i=1

Below we denote by W2a (01, 02) the conditional expectation inside the above expres-
sion.
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By the multinomial theorem and vanishing of odd moments, we obtain that

n 2a
- 1
Waa(o1,00) =E <Zi (zi - 5@ +bz-))> lo1. 02

i=1

2a
= X (2j1,...,2jn)

/1+ +jn=a,
JlseeesJn=0

) 1 2ji
X Hiz"’E |:<Zi - E(ai + bi)) lo1, 02:| . (3.8)
i=1

By splitting Z; into Bernoulli random variables and using the multinomial theorem
again we obtain

B (z- ta+) : > 2
i — =(a; + b o1, 0 .
! 2 ! ! ! 2 22}’ . 2Pi,1, ey Zpi,a,‘+b;

Pi i+t Piag+b; =Ji
Pi s+ Pisaj+b; =0

(3.9)
Plugging the above expression into (3.8), we get

= 1
Waa(o1, 02) = T Z Hl2(ml+ +Pia; +b;)

Z” 1Za' 1 qu—a -

Pi, q>0
2
X( ‘ ) (3.10)
2P10s o2 2P ai4bys - > 2P 15+« s 2Dn,ay+by,

We note that by (3.10), 22a WZa can be obtained from “even-order terms” in

2
n aj+b; “

DD Xig (3.11)

i=1 g=1

by substituting X; , = i for 1 < g < a; + b;. Now by lemma 3, the “even-order
terms” of (}_7_, Z“' +bi X; q)Za can be expressed in terms of the following forms:

n aj+b;
]_[ Z Z X , (3.12)

r=1 \i=1 g=1

withk > 1,1;,...,[; > 1 and Zle [, = a. Moreover, the coefficients in the linear
combination only depend on a. By substituting X; , = i and taking expectation in
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(3.12), we get

[]‘[ (ZZZZ’(a +bi) )] (3.13)

r=1

In order to make use of Lemma 2, we introduce the following subspaces. We take

the base field to be R. For every monomial ozX;il1 .- ~XZ{" (iy < -+ < i, a € R), we
define

i Xi
BaX{" - Xy = a(d))! - (dk)'<dll> . <dkk>, (3.14)

and extend linearly. We also denote by

X(ll,...,lk)_l—[<z 2’rx> (3.15)

r=1

and B(ly,...,1l,) := B(X(1,...,1;)). Forany d > 1, we define X(d, a) to be the
setof X(I1,..., k) withl <k <dandl; +---+ [ = a, and B(d, a) to be the set
of Bli,...,.Ix)withl <k <dandli +---+ 1 =a.Wea1sodeﬁne/f(d,a) to be
the linear span of X'(d, a) and B(d, a) to be the linear span of B(d, a).

Now we prove that for [y +-- -+ = a, QE(k, a) = B(k, a), and that it is possible
to express X (/1, ..., [) in terms of elements of B(k, a) so that the coefficients do not
depend on n. The method is to prove the following stronger claim by induction on k: for
anyli+-+lk =a, X(k,a) = Bk, a), X1, ...,[k)— By, ..., Ix) € X(k—1, a),
and it is possible to express X (I, . .., lx) in terms of elements of B(k, a), B(ly, . .., lx)
in terms of elements of X' (k, a) and X (1, ..., Ix) — B(l1, ..., I;) in terms of elements
of X (k— 1, a) so that the coefficients do not depend onn. Whenk = 1, X(I1) = B(ly)
for any /1, and the result holds. For the induction step, we assume that the claim holds
for < k, and consider the k£ 4 1 case. We will make use of the following identity:

XUy oooslerr) = BUy, ooy let1)
k+1

H] Z(X(ll,..., le)) = By, L )

(Z)

k+1

ZZB(II, . e by ).

J Lj#j

The identity can be proved by matching individual terms on both §ides Now by
the induction hypothesis, when Iy + --- + k41 = a, XUy, ..., 1) —
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B, .. vesli41) 1sin X(k — 1,a — I;). Therefore, the first term of the right-
hand 51de is in X (k, a). The second term of the right-hand side is in B(k a), hence
in X(k a). Thus the left-hand side is in X(k a) = B(k a). Hence X(k +1,a) =
B (k + 1, a). The last conclusion can also be checked from the identity.

Now IE[ ]_[];:1 (Z;‘: 11 2r (a; + bl-))] can be expanded in terms of the forms (coef-
ficients do not depend on n, j)

Delne] o

rel relk\I"

where I' C [k]. By the above result, the first factor can be expressed in terms of
elements in B(|I"|, Zre r 1), and similarly for the second factor.

Now we denote by B'(l1, ..., ) the result obtained by substituting X; = a; in
B(i,...,lt),and B"(l1, ..., I) similar with X; = b;. Note that by Lemma 2,

E(B'(h.....l01= Y it (3.17)
i+t <Jj

It can be shown by induction on k that the above expression is a polynomial in j with
degree 2(Iy +- - - +1). Similarly, it can be shown that E[B” (11, . . ., [x)]is a polynomial
in (n — j) of degree 2(/1 + - - - + Ii), hence it is also a polynomial of the same degree
in j with coefficients depending on n (but the coefficient of highest degree does not
depend on n). Putting these together, we conclude that E[ ]_[Ir‘:1 ooh, i (a; + b,-))]
is a polynomial of degree < 2a in j, and the coefficient of its degree 2a term does not
depend on n.

We conclude that W, is a polynomial of degree < 2a in j, and its coefficient of
degree 2a does not depend on n for n > 2a. This implies that the coefficient of degree
2a of E[ X 2“] does not depend on n for n > 2a. By Lemma 1, the eigenfunctions of K
are given by the discrete Chebyshev polynomials, and the eigenvalue corresponding
to T, does not depend on n as long as n > 2k. O

Now we present the proof for the eigenvalues. We make use of three lemmas in the
proof, which we also present below. The first gives needed inequalities for the gamma
function. For many further references, see [24].

Lemma 4 (Explicit Stirling approximation) For any x > 0,

|
X 1 6
N1 (;) <8x +dx? 4 x + m)

X 1 §
<F(l+x)<ﬁ<z) <8x t 42 +x+30) . (3.18)
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From this it can be easily derived that for any x > 1,

Jﬂ(f)xﬁ< ra+x <J§(f)xﬁ<1+l>6). (3.19)
e e X
Lemma5 (Clausen [11], see also [36])

1 1 2
3F (2a, 2b,a +b;a+ b+ > 2a + 2b|x) = <2F1 <a, b;a+ b+ §|x)> .
(3.20)

Lemma 6 (Gauss’s hypergeometric theorem, see Page 2 of [5]) For a, b, ¢ € R such
thata + b < ¢, we have

I'c)l'(c—a—>b)
I'(c—a)(c—Db)

2Fi(a, b c|l) = (3.21)

Proof of Theorem 2, eigenvalue part We use the notation as in the statement of The-
orem 2. Let A, be the eigenvalue corresponding to the eigenfunction T for the
Markov chain Q(i, j) on {0, 1, ..., n}. Note that from the determination of eigen-
functions, At , is constant for all n > 2k, and we denote it by A;. The strategy of the
proof is to analyze the expression for Ay in a system of size n and let n — 00 to get
the desired result.

The eigenfunction that corresponds to A; has been proven previously to be
the discrete Chebyshev polynomials T,,. Thus by examining the first row of the
eigenvalue—eigenfunction equation, we obtain that (see Proposition 4 and [15, (3.1)—

(33D

Ylico i T () & .
M= = = 2L TRG): (3.22)
2k j=0
2j (21— )
where ol = DC) )ng’fj )
Plugging the expression
&\ (=2K01 2k + Di(— )
). (j) = (3.23)
* ; (D2 (=n);
into the expression above, we obtain that
i (—2k); 2k + 1), Z (=)o 324)
A = . .
= (H? pars (=n)
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Below we prove that

(=i} (3
lim Z — _T‘ (3.25)

We fix a small ¢ > 0, and assume that n is sufficiently large below. Note that by
Lemma 4, we can derive that for n sufficiently large,

5 OO 5 e _ 3 _ 10/
j<cn (=) _j§cn 22 \/_ 1<J<cnf‘n_ V1—c
(3.26)
Similarly,
5 et | _ 10ge 4o

(=n) |~ JT=c

(I—c)n<j<n

Now note that for n sufficiently large, when cn < j < (1 — ¢)n, we have (f—;)l(l —

l+l)l (=i
= =y

Iy i i 1__1
< (4)". Moreover, using Lemma 4, we obtain that — 77 \/7( +
6) 3 <o¢ < 7T\f«/i( + 6)3 for cn < j < (1 — ¢)n. Therefore, we have

(e _ (1 6> 1 ( )’ 1
— 1 < + —
Z (—}’l)] cn cn</<(l cn f\/

cn<j<(l—c)n
(3.28)

o 2
5 (et z(1+3> RS
(=n); cn ecn ' om

cn<j<(l—c)n

/ <]> 1
n n
cn<]<(1 —o)n [

Now note that

(3.29)

1

lim — ( ) - / — . (3.30)
nmee T cn<j<(1 —c)n [,/ n ¢ ﬁ I—x

Hence we have

1 [t ! 20 (=je
— a Ve < hmmfz
m)e SaT—x JI—c  n—o (=n)
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i i(—j)za;? - 1/1—C x! N 204/c
1m su — .
T s enr Trle AaTox Ve

Sending ¢ — 0 gives

n

s n 1 1 l 1
lim Z( Dy =—/ _x  _Gx (3.31)
= N N
Now in (3.24) we take n — oo and get
A —ik:(_%)’@k“)’(%)’ —h (L okaksrn (3.32)
k - l_o (l‘)3 - 3 2 2’ ’ ’ ’ . .
Takea = —kand b =k + % in Lemma 5, we obtain that
1 2
M= OQF(—k, k+ 5; 111))~. (3.33)
Finally, by Lemma 6,
1 r(ra —Dk1.3..... 2% — 1
2F1(_k,k+_;1|1)= Or@ <D (2k — 1)
2 I'(k+1I'(3 —k) 2.4 ... (2k)
(3.34)
Hence
()’
A= ;T (3.35)
O
3.2 Proof of Theorem 1
In this part, we prove Theorem 1 based on Theorem 2.
Proof of Theorem 1 First note that for the starting state xo = (1, 1,...,1), by S,-

invariance of K l(x, y) and 7 (x) for any x, y, [, we have
! 1 ! I~ . . /
1K =7l =5 D 1K) =70l = 5 3 10,() —u(Dl = 12, —ull,
yeX Jj=0
where u(j) = —=,0 < j <n.

n+1°
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Without loss of generality suppose n is even. The analysis for odd # is similar. By
Theorem 2,

Gy’
Ak = sz (3.36)
By Lemma 4, we obtain that
1
< (1+24) (3.37)
=Tk %) '

First we show the lower bound. By Proposition 1, taking § = 1| = }‘ andy =T,
we obtain

0L — ul >1(1)l (3.38)
n —4\4)" ’

Now we show the upper bound. For [ = 1 the upper bound follows by the fact that
total variation distance is always upper bounded by 1. For [ > 2,

%
410k —ull® < xa () =Y ' Bar(4k + 1), (3.39)
k=1
where By < ﬁ < 1(see[19, Sect. 2.5] for the estimates related to Hahn polynomials

that are used above). Therefore, we obtain that

n n

5 2 . 1 1 2 2 21
xp) =5Y ki <15 (E) +Zk<g>

k=1 k=3
1)/ 2\ &1 1Y/
<15 — 27 — —<60l—) .
- (16) + <3n) kz_;kz - (16)
Hence we conclude that
! 1y
10, —ull <4 <Z) (3.40)

for any [ > 2.
Therefore, for any [ € {1, 2, ...},

11y , 1
() =ik, —7i=4(5) (341)
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4 The twisted Burnside process

In this section, we consider a generalization of the original Burnside process, which
we will call “twisted Burnside process.” This will allow deformation of the examples
above to give a natural process with a larger family of Hahn polynomials as eigen-
functions. Several further examples are presented. We believe that it gives many new
examples of easy to run, rapidly converging Markov chains with tunable stationary
distributions.

The setting is the same: we have a finite group G acting on a finite set X'; forx € X,
letGy={geG:x8=x}l;forgeG,let X, ={x € X:x8=x}

We choose a positive weight w on the group G and let W (x) be the sum of w(g)
for g € G. We also choose a positive weight v on the set X and let V (g) be the sum
of v(x) for x € X,;. The new Markov chain is as follows: from x, choose g € G with

w(g) . v(y) .
W(x)® Vi(g)’

probability
xtoy.
Proposition 2 below gives the stationary distribution of the twisted Burnside process.

given g, choose y € X, with probability the chain goes from

Proposition 2 The twisted Burnside process as discussed in the preceding is a
reversible Markov chain with stationary distribution

(x) o« W(x)v(x) 4.1)

forx e X.

Moreover, if w is constant on each conjugacy class of G and v is constant on each
orbit of X (under the action of G ), then the chain can be lumped onto orbits of X. For
x € X, let Oy denote the orbit containing x. The lumped chain is a reversible Markov
chain with stationary distribution

. Wx)v(x)
O, _ 4.2
7(0x) X G| (4.2)

Proof Forany x, y € &, the transition probability from x to y of the twisted Burnside
process is given by

v(y) w(g)
Key =505 > Vo) 4.3)
geGxNGy 8
Note that the factor 3~ n¢, % is symmetric in x, y. Hence if 77 (x) = w
for x € X (where Z is a normalizing constant), then we have
V() v(y) w(g)
TN Ky =——-—= > ==Ky, (4.4)
Z V()
geGNGy

This shows that the twisted Burnside process is reversible with stationary distribution
proportional to W (x)v(x).
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For the second part, we assume that w is constant on each conjugacy class of G and
v is constant on each orbit of X'. Below we show by Dynkin’s criterion (see [30, p.
133]) that in this case the twisted Burnside process can be lumped onto orbits. Suppose
that x, y € X are in the same orbit. Then there exists 7 € G such that y = x". Hence

Gy =h"'G,h. (4.5)

As w is constant on each conjugacy class of G, by (4.5) we have

Wy =Y w@ =Y wh'gh= )Y wg =Wk, (4.6)

geGy g€Gy g€Gy
For any z € X, we have

o)
2 0@ 2y

qe0; geGyNGy

_ h w(g)
=2 Dy

qe0; geGyﬂth

_ w(g)
=2 v )

q€0; 8€h=1(GxNGy)h

w(h™gh)
=Y @) Y, oo 4.7)
qe0, 8€G:NGy V(h=lgh

where the second equality follows from the fact that v is constant on each orbit of X
Now note that

Koty = (X" 1 x € X} (4.8)

By (4.8) and the fact that v is constant on each orbit of X', we have

VinTlghy = Y0 v =) e =Y v =V, (49)

xeXh,lgh xeXy xeX,

By (4.7), (4.9), and the fact that w is constant on each conjugacy class of G, we have
w(g) w(g)
2ov@ ) V) - 2v@ Y Vi) 4.10)
qe0; geGyNGy 8 qe0; geG,NGy 8

Therefore, by (4.3), (4.6), and (4.10), we obtain that

Z Kig= Z Kyg (4.11)

qe0; qe0;
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By Dynkin’s criterion, the chain can be lumped onto orbits of X'. Note that by (4.6)
and the fact that v(x) is constant on each orbit, we have W (x)v(x) is constant on every
orbit. Thus the lumped chain is reversible with stationary distribution

T(0y) < |0 |W(x)v(x). (4.12)
By the orbit—stabilizer theorem, we have

. Wx)v(x)
Oy —_— 4.13
7(0x) x G| (4.13)

O
An example of the twisted version of the Burnside process considered in Theorem 1
is presented below. Specializing k = 2 and y» = 1 in the example gives the chain with

beta-binomial stationary distribution considered in Sect. 5 below.

Example 1 Consider X = [k]" and G = S,, with G acting on X’ by permuting coordi-

nates. Fix k positive parameters 6, y», ..., vx. We take
w(o) = 0, (4.14)
forevery o € §,, where c(o) is the number of cycles of o. Forany x = (xy, ..., x,) €

X and j € [k], we define
S, j):=#{i € [n]:x; = j}. (4.15)

We further take
k S
v =[] v, (4.16)
j=2

for every x € X'. Below we let y; := 1 to simplify notation.

Now we discuss the twisted Markov chain. From x € X, we choose o € S,
fixing x with probability %&; . This can be realized as follows: find the set of indices
Ij :=={l € [n]: x; = j} for each j € [k]; for each I, sample a permutation o; € Slj
from the Ewens distribution with parameter 6 (see Sect. 5 for details of the Ewens
distribution); o is the product of o for j € [k].

Given o, we choose y € X fixed by o with probability ",)(—yd) This can be done

as below: break ¢ into cycles Cy, - -- , Cy,, and denote by ¢4 the length of the cycle

Cy for every d € [m]; for every d € [m], pick an integer ry € [k] with probability
L'd

%, and take y; = ry for every i € C4. Note that for any y € X, y; fori € Cy

=1V

takes the same value (assuming that it’s r;). Hence the probability of generating y
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(where y € X, ) through this procedure is

m
i _ S(y/)
4.17)
Mot -1

Note that w is constant on each conjugacy class of G. Moreover, v(x) only depends
on S(x, j) for j € [k], hence v is constant on each orbit of X. By Proposition 2, the
twisted Markov chain can be lumped onto orbits of X. For 71, ..., #r € N such that
Zle t1 =n,lett ;= (t1, ..., 1y) denote the orbit of X consisting of x = (xq, ..., xp)
such that S(x, j) = t; for every j € [k]. Note that for any x in the orbit t, we have

Gxl = IT5_,(t))! and

k

k
W) = Y 0O=J[@ - @+tj—1) o [[It;+6). (4.18)

0€S8,:0 fixes x j=1 j=1

Thus by Proposition 2, the stationary distribution of the lumped chain is

. r(tj+0)
n(t)ocl_[ (’ O ]_[ vy - (4.19)
j=1
Note that the term ]_[l;zl % is proportional to the probability corresponding to
the symmetric Dirichlet-multinomial distribution of parameter (6, ..., 6). Thus the

twisted Burnside process offers a k-dimensional deformation of this classical distri-
bution. Specializing to the case of k = 2 and choosing parameters so that the base
beta-binomial is uniform on {0, 1, ..., n}, the deformation is a discrete exponential
distribution truncated to this interval.

We close with a final remark. There are many probability measures on S, that are
constant on conjugacy classes. One way to construct these is to define P (o) as pro-
portional to 09©) where d(o) = d(id, o) for d a bi-invariant metric on S,. In turn,
such bi-invariant metrics can be constructed as follows: Let p : S, — GL(V) be
a faithful unitary representation of S,. Let |.|| be a unitarily invariant norm on V.
Then d(o, t) = ||p(0) — p(7)] is a bi-invariant metric on S, . In particular, the Cay-
ley distance d(o, T) = n — C(ot~") = min #transpositions required to bring o to
is bi-invariant, giving the example used above. Similarly, the Hamming distance
#{i with o (i) different from t (i)} is bi-invariant. A host of other examples appear
in [14, Chap. 6C]. This includes von Neumann’s useful characterization of unitarily
invariant matrix norms.

5 The twisted Burnside process and Hahn polynomials

In this section, we add a parameter to the Burnside process on C3 with the group S,
so that more general Hahn polynomials appear as eigenfunctions. The idea is simple:
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replace the uniform distribution on S, used in step one of the algorithm, by the Ewens
distribution

Pg(a)=é96<“>, @), =00+1)---O+n—1) (5.1)

where c(o) is the number of cycles in 0 and 0 < 6 < oo is a parameter. This
familiar distribution is studied in genetics and combinatorics [12]. It may be seen as
‘the Mallows model through the Cayley metric’ as discussed at the end of Sect. 4. This
chain was discovered via the twisted Burnside construction of Sect. 4. In hindsight,
the following simplified description is available.

On C%, from x € C5 with |x| = # ones in x

- Identify G, with S|x| X Sn_|x|

— Pick 0 € S| x Sy—|x| choosing the two components independently from the
Ewens measure (5.1)

— Break o into cycles and label the cycles 0/1 with probability % Put this 0/1 string
intoy € C5.

The argument of Sect. 4 shows
Proposition 3 The twisted Burnside process given above, lumped to orbits, is a Markov
chainon{0, 1, ..., n}witha beta-binomial distribution having parameterso. = p = 0
(see (2.3)).

The transition matrix of this Markov chain, call it pfj’e, can be written explicitly.

Proposition 4 Consider the twisted Burnside process given above, lumped to orbits.
The transition matrix is given by

y <n)%...(%+j—1)%--'(%+”_j_l) (5.2)

Poj =\ 0@ +1)-- (0 +n—1) ’
0 0
Z P(J)z Py, ka (5-3)
max({0, j+k—n}<I<min{;j, k}

n,0
Pk

Proof We prove this using P6lya’s cycle index theorem (see (3.1),(3.2)). Note that we
have

n‘ n! ai (g) ar(g)+- +an(g)

T geSAkji=1

Using Pélya’s cycle index theorem by taking derivatives and multiplying, we get

n (n)%---<%+1—1>%---<%+n—j—1>. 55

0\ 6@ +1)--- O +n—1)
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Moreover, by the definition of the twisted Burnside process given above, we have

ne _ j.0 n—j.0
Pjrp = Z Por Pok—i - (5.6)
max{0, j+k—n}<I<min{j,k}

Theorems 1 and 2 above deform in the following form.

Theorem 3 Consider the twisted Burnside process on C} given above, lumped to
orbits. The non-zero eigenvalues of the Markov chain are given by 1 and

0
A= 3 (—2k,2k+29—1,§;9,0|1> (5.7)

for 1 < k < 5. Moreover, the eigenfunctions corresponding to the zero eigenvalues
are the Hahn polynomials on {0, 1, ..., n} with parameters « = 8 = 6 of odd degree.
The eigenfunction corresponding to the eigenvalue Ay is the Hahn polynomial on

{0, 1, ..., n} with parameters « = B = 0 of degree 2k, 1 <k < ’%

Theorem 4 Consider the twisted Burnside process on C5 given above with 6 > 1.
Denote by m the stationary distribution of the chain (see Proposition 3), and denote
by Kio forxo = (1,1, ..., 1) the distribution after [ steps starting from n ones. Then
there exist positive constants c(0), C(6) which only depend on 0, such that for all
n>2andalll > 1,

IR ; oy
c(0) (m) =Ky, — 7l = C©) (m) . (5.8)

The proofs of Theorems 3 and 4 are similar but quite a bit more involved, to the
proofs of Theorems 1 and 2. The restriction that 6 > 1 in Theorem 4 is due to a
technical step in our proof (for certain estimates of the eigenvalues). We refer the
interested reader to [43,44]. This develops things for k > 2 and has other approaches
to proof.

We have not (yet) succeeded in finding a two-parameter deformation of the Burn-
side process on C; which gives the full set of Hahn polynomials as eigenfunctions.
Similarly, we have not succeeded in diagonalizing the Burnside process on [k]" for
any k > 3.

The point of this paper was to show (a) that orthogonal polynomials ‘pop up’
everyplace (b) seeing orthogonal polynomials as belonging to families leads to useful
extension of classical algorithms.

We are sorry not to be able to ask Dick Askey for further help.

6 A continuous limit of the Burnside process

A referee has made the welcome suggestion that we try to ‘pass to the limit’ going from
our discrete version of the Burnside process analyzed above to a continuous process.
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While we do not know a continuous version of the Cauchy—Frobenius Lemma or Pdlya
theory, we were able to pass to the limit and this proved informative.

As motivation, recall that the discrete process begins with a point x € C5. A
permutation in Sx x S,—_ is chosen at random (there are k ones in x), split into
cycles, and these are labeled 0/1 to give y € Cj. As explained, only the number of
ones enters, not their positions. So the process can be thought of as taking place on
{0,1,2,...,n}. We divide by n and form a process on [0, 1]. The analog of the cycles
of arandom permutation is replaced by a stick-breaking process on [0, 1] familiar from
the Chinese restaurant process and Dirichlet random measures [4,32,39]. Combining
gives the following Markov chain on [0, 1]:

From x € [0, 1], break the interval [0, x] into countably many pieces by a
stick-breaking process. Namely, let Ry, R7, ... be independent Beta(l,0) random
variables, and define Y1 = xRy and ¥; = x(1 — Ry)---(1 — Rj_1)R; for every
Jj =2,3,...;then we break [0, x] into pieces of lengths Y7, Y>, .. .. Break the interval
from x to 1 in the same way. Label each interval 0/1 by flipping a fair coin. Let y be
the total length of the pieces labeled 1. This gives a Markov chain on [0, 1]. It is a
natural limiting version of our discrete Burnside process.

This Markov chain can be equivalently described as follows ([ 13, Sect. 3], [34,39]).
From x € [0, 1], sample two independent Beta(%, %) random variables Z, Z’. Let
y=xZ+ (1 —x)Z', and move to y.

Theorem 5 The Markov chain above is reversible with Beta(6, 0) stationary distri-
bution. The non-zero eigenvalues are given by 1 and

0
A = 3F2(—2k,2k+29—1,5;9,9|1) (6.1)
fork =1,2,.... An alternative expression for \i is given by
amo=E[(Z - 2)%], (6.2)

where Z, Z' are two independent Beta(%, %) random variables.

Moreover; the eigenfunctions corresponding to the zero eigenvalues are the Jacobi
polynomials associated to the stationary distribution of odd degree. For every k =
1,2, ..., the eigenfunction corresponding to the eigenvalue Ay is the Jacobi polynomial
associated to the stationary distribution of degree 2k.

Proof From the definition of the Markov chain, the transition density is given by

mintry)l 5=l — )3l (y— )t 1 —x — y 4+ )27
k(x,y) = 77 g
max{0.x+y—1)  B(3,7) B(5.%)

xx! 701 =)' (6.3)

dz

0—1,1_\0—1
for x,y € [0, 1]. Let w(x) = %

function of Betra(6, 0). We have

x € [0, 1] be the probability density

m(xX)k(x,y) =m(y)k(y, x)
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for any x,y € (0, 1). Therefore, the Markov chain is reversible with Beta (8, 0)
stationary distribution.

Suppose that we start from x € [0, 1]. Sample two independent Beta(%, %) random
variables Z, Z’, and let y = xZ + (1 — x)Z'. This gives one iteration of the Markov
chain. Foreveryl = 1,2, ...

-1 I
Ely'|x] =El(Z - Z) &' + ) ( .)E[(z — /(2. (6.4)
=0
The right-hand side of (6.4) is a polynomial in x of degree < [ with leading coefficient
given by E[(Z — Z’)!]. When [ is odd, as the distribution of Z — Z’ is symmetric
around 0, we have E[(Z — Z")!]1 = 0.

By Cannings argument (the analog of Lemma 1), the non-zero eigenvalues of the
Markov chain are given by 1 and A := E[(Z — Z")*] for k = 1,2, .. .. Moreover,
the eigenfunctions corresponding to the zero eigenvalues are the Jacobi polynomials
associated to Bera(0, 0) of odd degree, and the eigenfunction corresponding to the
eigenvalue )y is the Jacobi polynomial associated to Beta(6, 6) of degree 2k for every
k=1,2,....

Finally, we show that

%
M= 3> (—2]{, 2k +260 — 1, E;G,QH) .

We denote by
2 (=20),(20 + 2k — 1), %!
$ou(x) = 2F1(=2k,20 +2k — 1;600x) = ) o (65)
1=0 ©) i

the Jacobi polynomial associated to Beta(f,0) of degree 2k, normalized so that
@21 (0) = 1. Note that the one-step distribution starting from O follows the Beta(%, %)

distribution. Thus letting T ~ Beta(%, %), we have

Elgpou (T)] = A dpox (0) = Ax. (6.6)
Foreveryl =0,1,2,...
1 ! 9 &
E[T!] = /1ﬂ11—74d=lﬁ 6.7
[77] B(%,%)Ox (I-x) X O (6.7)
Hence
2%k
(=2k); (26 + 2k — 1); E[T']
e =Elgu (Tl =) o i

=0
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0
=3k <—2k, 2k +20 — 1, 5;0,9|1) .

O

Remark 1 Comparison with Theorems 2 and 3 shows that this limit captures the essen-
tial features we encountered. Note that the eigenvalue A; here matches that of the
discrete chain in Theorem 3 as long as n > 2k.

Remark2 As Z, 7' € [0, 1], we have |Z — Z'| < 1. Hence forany k = 1,2, ...
mo=ENZ = Z'P*1 2 BIZ = Z'1P*2) = hsr.
Therefore, the eigenvalues A are monotone decreasing.
Remark 3 The two expressions (6.1) and (6.2) for A; lead to the following identity
2k 2k

3 (20015 (a1 5 (=261 ($)1(2k +26 — 1),
OOkl @);(0),1! '

(6.8)

1=0 =0

We did not know this identity but Dennis Stanton observes that it is a special case of
the following transformation

(a+ Ay 3F2(a,c — b, —n;c,a+ All) = (A), 3F(a, b, —n;c,1 — A —n|l)
(6.9)

whenn =2k, a = %,c =0,b=20+42k—1,A=1-—6—2k. One of his proofs of
(6.9) proceeds by multiplying the Pfaff transformation ([33, p. 43])

(1 —x)"2F (a,c —b; c| a 1) = 2 Fi(a, b; c|x)

X —
by (1 — x)~* and equating coefficients of x”.
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