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Abstract

We study a natural Markov chain on {0, 1, . . . , n} with eigenvectors the Hahn polyno-

mials. This explicit diagonalization makes it possible to get sharp rates of convergence

to stationarity. The process, the Burnside process, is a special case of the celebrated

‘Swendsen–Wang’ or ‘data augmentation’ algorithm. The description involves the

beta-binomial distribution and Mallows model on permutations. It introduces a useful

generalization of the Burnside process.

Keywords Hahn polynomials · Burnside process · Beta-binomial distribution ·

Mallows model on permutations · Orthogonal polynomial eigenfunctions · Auxiliary
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1 Introduction

Over the past 100 years, physicists, geneticists, statisticians, and probabilists have

found positive symmetric operators (Markov chains) with orthogonal polynomial

eigenfunctions. This allows precise asymptotic analysis of high powers of the operator.

Orthogonal polynomials come in ‘families’ and an explicit diagonalization suggests
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‘deforming’ the operator so that the full family of eigenfunctions appears. These defor-

mations can turn out to be useful and natural. This paper gives an example with these

characteristics.

We start off with a high-level description of our main results. This uses the language

of Markov chains and the Burnside process. A tutorial containing background on these

topics is in Sects. 2.1 and 2.2. See also Sect. 4 for more details.

1.1 The Burnside process

Let X be a finite set. Let G be a finite group acting on X . This splits X into disjoint

orbits. Let Ox = {xg : g ∈ G} be the orbit containing x . The Burnside process

gives a practical way to choose an orbit uniformly at random. This captures a familiar

problem: enumerating unlabeled objects. For example, there are nn−2 labeled trees

on n vertices. There is no formula for the number of unlabeled trees. Indeed, there is

an emerging literature for choosing a random spanning tree of a graph. As a second

example, let X = G with G acting on itself by conjugation. Now the orbits are

conjugacy classes of G. For instance, if G = Sn , the symmetric group, the conjugacy

classes are indexed by partitions of n and the Burnside algorithm gives a novel way

to choose a random partition.

Let

Xg = {y ∈ X : yg = y}, Gx = {g ∈ G : xg = x}.

The Burnside process is a Markov chain on X :

– From x , choose g ∈ Gx uniformly at random

– From g, choose y ∈ Xg uniformly at random

One step of the chain goes from x to y. The transition matrix of this chain is

K (x, y) =
∑

g∈Gx ∩G y

1

|Gx |

1

|Xg|
, an |X | × |X | matrix.

It is easy to see that K has stationary distribution

π(x) =
z−1

|Ox |
(z = number of orbits).

This means, if the chain is run from any starting state x0, after ‘a long time’ the orbit

containing the current state is close to uniformly distributed.

In this generality, useful quantitative analysis of the Burnside process is an open

problem, even for the symmetric group.

We study a special case where analysis can be pushed through.

Let

– X = Cn
2 —the binary n-tuples

– G = Sn acting by permuting coordinates
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If x ∈ X has j ones (denoted |x | = j), the orbit

Ox = {y ∈ X : |y| = j}. (1.1)

Here 0 ≤ |x | ≤ n and the Burnside process gives a complicated way of choosing an

element uniformly from {0, 1, . . . , n}. It is instructive to see how the general algorithm

specializes:

– For x ∈ X , the permutations fixing x form the subgroup S j × Sn− j (for j = |x |)

permuting the ones among themselves and the zeros among themselves. It is easy

to choose σ ∈ Gx at random.

– For σ ∈ Sn , write σ as a product of cycles. Label the entries of each cycle,

randomly, by a zero or a one (2c(σ ) choices if σ has c(σ ) cycles). Installing this

zero/one pattern gives y. It is easy to choose y given σ .

A first result of this paper shows that, for this example, a finite number of steps are

necessary and sufficient for convergence no matter how large n is. To say this carefully,

define

‖K l
x − π‖ =

1

2

∑

y∈X

|K l(x, y) − π(y)|.

Theorem 1 For X = Cn
2 , G = Sn , the Burnside process defined above satisfies, for

all n ≥ 2, starting state x0 = (1, 1, . . . , 1) and all l ∈ {1, 2, 3, . . .},

1

4

(

1

4

)l

≤ ‖K l
x0

− π‖ ≤ 4

(

1

4

)l

. (1.2)

The development thus far does not seem to have much to do with orthogonal poly-

nomials. Indeed, we do not really understand where they come from or just when they

will appear in other versions of the Burnside process. Let us explain their appearance

here.

Let X0 = x, X1, X2, . . . be the realization of the Burnside chain of Theorem 1.

There is enough symmetry around that |X0| = |x |, |X1|, |X2|, . . . forms a Markov

chain on {0, 1, 2, . . . , n}. Let Q(i, j) be the transition matrix for this chain. The

explicit form of Q is derived in Proposition 4 below (originally it was written out in

[15, (3.1)–(3.3)]). The Q chain turns out to be symmetric with a uniform stationary

distribution u( j) = 1
n+1

, 0 ≤ j ≤ n.

Let T n
j (x) be the discrete Chebyshev polynomials on {0, . . . , n}—the orthogonal

polynomials for the uniform distribution ([10]).

Theorem 2 For the Markov chain Q(i, j) on {0, . . . , n}, the non-zero eigenvalues are

given by 1 and {
(2k

k )
2

24k }
( n

2 )
k=1. Moreover, the eigenfunctions corresponding to the zero

eigenvalues are the discrete Chebyshev polynomials on {0, 1, . . . , n} with odd degree.

The eigenfunction corresponding to the eigenvalue
(2k

k )
2

24k is the discrete Chebyshev

polynomial on {0, 1, . . . , n} with degree 2k, 1 ≤ k ≤ n
2

.
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Theorem 2 and classical analysis yield Theorem 1. The proof appears in Sect. 3.

1.2 Hahn polynomials

The discrete Chebyshev polynomials sit naturally in the family of Hahn polynomials:

for α,β > 0,

Q j (x) = 3 F2(− j, j + α + β − 1,−x;α,−n|1) (1.3)

(Set α = β = 1 for discrete Chebyshev). Q j is a polynomial of degree j for 0 ≤ j ≤ n.

The usual notation is indicated with α,β, and n sub and superscripts suppressed here.

These polynomials are orthogonal with respect to the ‘beta-binomial distribution’

defined and discussed in Sect. 2.3 below.

It is natural to ask, is there some variant of the Burnside process having Q j as

eigenfunctions? This is a mathematicians question, as per the first paragraph of this

introduction. To answer it, we found a useful abstract generalization of the general

Burnside process which we hope has a life of its own. Specialized to Cn
2 and Sn it

gives a Markov chain on {0, 1, . . . , n} with a ‘beta-binomial distribution’ having Hahn

polynomial eigenfunctions and allowing a parallel to Theorem 1.

Section 2 of this paper sets out the needed background: on Markov chains, the

Burnside process, and orthogonal polynomials (it also gives a brief overview of the

many other Markov chains with polynomial eigenfunctions—from Askey–Wilson to

Macdonald!). Theorems 1 and 2 are proved in Sect. 3. Section 4 explains our ‘twisted

Burnside process’ from first principles. The analogs of Theorems 1 and 2 are stated in

Sect. 5. In Sect. 6, following a suggestion of a referee, we pass to the limit as n tends

to infinity to find a continuous analog of the Burnside process with Jacobi polynomial

eigenfunctions. The limit is usefully related to the finite case.

2 Background

This section contains background material on the Burnside process and related ‘auxil-

iary variables’ algorithms (Sect. 2.1). The needed theory from the analytic-geometric

theory of Markov chains is in Sect. 2.2. Background on orthogonal polynomials and

connections to Markov chains (Cannings method) are in Sect. 2.3. Since our readership

has diverse backgrounds we attempt a friendly tutorial.

2.1 The Burnside process and auxiliary variables

The Burnside process was introduced by Mark Jerrum [27] as a contribution to ‘com-

putational Pólya theory.’ Pólya theory is about enumeration under symmetry: “how

many different ways can ten dice be colored with red, white, blue where the order of

the dice and the symmetry of a die are neglected?” This is a standard part of combi-

natorics. The book by Pólya and Read [37] gives a classical account. Jerrum, working

with Goldberg [22,23,28], managed to show that for carefully selected problems, these
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computations are #P-complete (this means being polynomially equivalent to dozens

of other problems that are believed to require exponential time). Our work shows that

for many natural problems, the Burnside process is highly efficient. This opens up

a research area—when is it good? Applications of the Burnside process to practical

problems in computer science [25] suggest it is worthy of study.

A different motivation comes because the Burnside process is a special case of a

wonderful ‘unifying algorithm’ called variously ‘auxiliary variables,’ ‘data augmenta-

tion,’ or ‘hit and run.’ Briefly let X be a finite or countable set, π(x) > 0 a probability

on X . The job is to invent a Markov chain to sample from π(x). Auxiliary variables

create ‘non-local’ Markov chains, able to move far away in a single step. They seem to

mix much more rapidly than standard local algorithms. Introduce a set I of auxiliary

variables. For each i ∈ I and x ∈ X , choose a proposal kernel wx (i) ≥ 0 (a way of

moving from x to i) such that
∑

i wx (i) = 1 and for each i , there is at least one x

with wx (i) > 0. These ingredients define a joint probability f (x, i) = π(x)wx (i) on

X × I . To proceed, for each i , a Markov chain Ki (x, y) with stationary distribution

f (x |i) must be specified. The auxiliary variables algorithm is

– From x , choose i with probability wx (i)

– From i , choose y with probability Ki (x, y)

The chain moves from x to y in one step. The transition matrix is

K (x, y) =
∑

i

wx (i)Ki (x, y).

A direct calculation shows that π(x) is a stationary distribution:

∑

x

π(x)K (x, y) =
∑

x

π(x)
∑

i

wx (i)Ki (x, y) =
∑

i

∑

x

wx (i)π(x)Ki (x, y)

=
∑

i

m(i)
∑

x

f (x |i)Ki (x, y) =
∑

i

m(i) f (y|i) = π(y)

(m(i) =
∑

x f (x, i) is the marginal distribution). Of course connectedness and ape-

riodicity of K must be checked so that the Perron–Frobenius theorem is in force.

A comprehensive review of this class of algorithms is in [2] which gives dozens of

examples and special cases including the celebrated Swendsen–Wang algorithm for

sampling from the Ising model.

The point for now is that essentially none of the algorithms have sharp running time

analysis. The Burnside process falls into this class: take I = G, wx (i) the uniform

distribution on Gx and Kg(x, y) the uniform distribution on Xg . The hope is, because

of the extra group structure available, analysis will be easier for this special case. That

was our initial motivation.

There has been some previous effort to study the Burnside process on X = [k]n ,

with G = Sn—here [k] = {1, 2, . . . , k}. See [15] and Example 1 in Sect. 4 for the

description of this process.

Theorems 1 and 2 study k = 2. Jerrum [27] showed that for k = 2 the total variation

mixing time is at most of order
√

n; sharpening this, Diaconis [15] proved that, for
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k = 2 and x0 = (1, . . . , 1), ‖K l
x0

−π‖ ≤ (1−c)l with c = 1
π

(with π = 3.14159 . . .).

Theorem 1 sharpens this to get the exact rate and makes the connection to orthogonal

polynomials (versus the complex, difficult argument of [15]). Aldous [1] used a clever

coupling argument to show that, for general k, ‖K l
x − π‖ ≤ n(1 − 1

k
)l . This implies l

of order log n steps suffice for k = 2. Further results are in [9].

2.2 Analysis of Markov chain convergence

For readers unfamiliar with Markov chains, the best introduction is the book by Levin

and Peres [35]. This contains all the bounds below and much more. The analytic-

geometric theory of Markov chains is well developed in Saloff-Coste’s [38].

Let X be a finite set, π(x) > 0,
∑

x π(x) = 1 a probability distribution on X .

A Markov chain on X is specified by a matrix K (x, y) ≥ 0 with
∑

y K (x, y) = 1.

Suppose that π is a stationary distribution for K :
∑

x π(x)K (x, y) = π(y) (so π is a

left eigenvector for K with eigenvalue 1). Call π, K reversible if the detailed balance

condition π(x)K (x, y) = π(y)K (y, x) is satisfied for all x, y ∈ X . All the Markov

chains below satisfy detailed balance. Let L2(π) = { f : X → R :
∑

f (x)2π(x) <

∞}. K acts on L2(π) by K f (x) =
∑

y K (x, y) f (y). Detailed balance is equivalent

to saying that 〈K f |g〉 = 〈 f |K g〉 so K is a bounded, self-adjoint operator on L2(π).

The spectral theorem is in force: there exist eigenvalues βi (1 = β0 ≥ β1 ≥ · · · ≥
β|X |−1 ≥ −1) and eigenfunctions ψi (x) (so Kψi (x) = βiψi (x)).

Throughout this section assume K is connected (for every x, y ∈ X there is l ≥ 1

with K l(x, y) > 0) and aperiodic (β|X |−1 > −1). It is useful to introduce two

distances

– Total variation distance—‖K l
x−π‖ = 1

2

∑

y |K l(x, y)−π(y)| = max‖ f ‖∞≤1 K l( f )−
π( f ). Here ‖ f ‖∞ = maxx | f (x)|,π( f ) =

∑

π(x) f (x). This equality is easy to

prove (the maximizing f is 1 at y if K l(x, y) ≥ π(y) and −1 otherwise).

– Chi-square distance—χ2
x (l) =

∑

y
(K l (x,y)−π(y))2

π(y)
.

The Cauchy–Schwarz inequality implies

4‖K l
x − π‖2 ≤ χ2

x (l). (2.1)

This is a useful route to getting bounds on convergence: bound L1 by L2 and use

eigenvalues to bound L2. Eigenvalues and eigenfunctions come in by

χ2
x (l) =

|X |−1
∑

i=1

β2l
i ψ2

i (x). (2.2)

The following lower bound on total variation and chi-square distance is proved in

[19, Lemma 2.1]. It is applied in Sect. 3.

Proposition 1 Suppose that ψ is an eigenfunction of K with eigenvalue β such that

π(ψ) = 0. Assume ‖ψ‖2 = 1. Then

χ2
x (l) ≥ |ψ(x)|2|β|2l .
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For ψ with ‖ψ‖∞ < ∞,

‖K l
x − π‖ ≥

|ψ(x)||β|l

2‖ψ‖∞
.

2.3 Orthogonal polynomials andMarkov chains

Background on orthogonal polynomials is wonderfully presented in the introductory

text by Chihara [10]. The recent encyclopedia by Ismail [26] brings in much further

material.

These are the orthogonal polynomials on {0, 1, . . . , n} with respect to the beta-

binomial distribution. For references and variations of the beta-binomial distribution

see [41]. Fix α,β > 0. Define

m( j) =

(

n

j

)

(α) j (β)n− j

(α + β)n

, (α)x = α(α + 1) · · · (α + x − 1), (α)0 = 1. (2.3)

This is a probability distribution on {0, 1, . . . , n} generated as a beta mixture of bino-

mial distributions

m( j) =

∫ 1

0

(

n

j

)

x j (1 − x)n− j Γ (α + β)

Γ (α)Γ (β)
xα−1(1 − x)β−1dx .

When α = β = 1, m( j) = 1
n+1

—the uniform distribution.

The orthogonal polynomials for m( j) are called Hahn polynomials. Detailed devel-

opment is in [29]. They have the explicit form

Q j (x) = 3 F2(− j, j + α + β − 1,−x;α,−n|1)

normalized so Q j (0) = 1, Q j (n) =
(−β− j) j

(α+1) j
. The standard form

r Fs(a1, . . . , ar ; b1, . . . , bs |x) =

∞
∑

l=0

(a1 . . . ar )l x
l

(b1 . . . bs)ll!

with (a1 . . . ar )l =
∏r

i=1(ai )l , is used. When α = β = 1 these are the discrete

Chebyshev polynomials (which we denote by T j (x))

T0(x) = 1, T1(x) =
n − 2x

n
, T2(x) =

6x2 − 6nx + n(n − 1)

n(n − 1)
.

The discrete Chebyshev polynomials satisfy the following recurrence relation ([26,

(6.2.8)])

( j + 1)(n − j)T j+1(x) = (2 j + 1)(n − 2x)T j (x) − j( j + n + 1)T j−1(x), (2.4)
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where j = 0, 1, . . . , n − 1 and T−1(x) = 0.

In Sect. 3 the proof of Theorem 2 uses ‘Cannings argument’ ([8]), a frequently used

tool for proving that a Markov chain has orthogonal polynomial eigenfunctions:

‘If the operator K sends polynomials of degree j to polynomials of degree j for

all 0 ≤ j ≤ n, then the operator has the orthogonal polynomials for the stationary

distribution as its eigenfunctions.’

The following lemma is a formal statement and proof of Cannings lemma. A very

similar argument works for multivariate polynomials.

Lemma 1 Consider a sequence of reversible Markov chains with state space Xn =

{0, 1, . . . , n}, transition matrix Kn , and stationary distribution πn (with πn(x) > 0 for

any x ∈ Xn) for n = 1, 2, . . .. For any n ∈ {1, 2, . . .}, suppose that for any polynomial

f on Xn of degree l ≤ n, Kn f is a polynomial on Xn of degree less than or equal to l.

Then we conclude that the eigenfunctions of Kn are given by orthogonal polynomials

for πn of degree less than or equal to n.

Moreover, for any l ∈ N, if we further assume that the degree l monomial in the

expansion of Kn[x l ] in terms of {1, x, . . . , xn} (note that this is well-defined for n ≥ l,

as the monomials {1, x, . . . , xn} are linearly independent on Xn) does not depend on

n for n ≥ l, then the eigenvalue of Kn that corresponds to the eigenfunction of degree

l does not depend on n for n ≥ l.

Proof We prove by induction that for any 0 ≤ l ≤ n, the orthogonal polynomial for

πn of degree l is an eigenfunction of Kn . We denote the lth orthogonal polynomial for

πn by φn,l . For l = 0, we have Kn1 = 1, where 1 is the constant function taking value

1. Now for l such that 1 ≤ l ≤ n, by the induction hypothesis we suppose that for any

0 ≤ i ≤ l − 1, Knφn,i = λn,iφn,i . Now φn,l is a polynomial of degree l, hence Knφn,l

is a polynomial of degree ≤ l. Expanding Knφn,l in terms of {φn,i }
l
i=0, we get

Knφn,l = λn,lφn,l +

l−1
∑

i=0

an,l,iφn,i (2.5)

for some λn,l , {an,l,i }
l−1
i=0. Now consider the inner product for πn defined as

〈 f , g〉πn :=

n
∑

k=0

f (k)g(k)πn(k).

Kn is self-adjoint with respect to this inner product, hence we have for any 0 ≤ i ≤
l − 1,

〈Knφn,l ,φn,i 〉πn = 〈φn,l , Knφn,i 〉πn ,

which leads to

an,l,i =
λn,i 〈φn,l ,φn,i 〉πn

〈φn,i ,φn,i 〉πn

= 0.
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Therefore, we conclude that Knφn,l = λn,lφn,l .

For the second part, it suffices to consider the case when l ≥ 1. We assume that

the degree l monomial in the expansion of Kn[x l ] in terms of {1, x, . . . , xn} does not

depend on n for n ≥ l. We also denote by λn,i the eigenvalue of Kn that corresponds

to the eigenfunction φn,i for any n, i with n ≥ i . For any n ≥ l, we expand x l in terms

of {φn,i }
l
i=0, and get

x l =

l
∑

i=0

βn,l,iφn,i (2.6)

for some {βn,l,i }
l
i=0. Then we have

Kn[x
l ] =

l
∑

i=0

βn,l,i Kn[φn,i ] =

l
∑

i=0

βn,l,iλn,iφn,i

= λn,l x
l +

l−1
∑

i=0

βn,l,i (λn,i − λn,l)φn,i . (2.7)

As the term
∑l−1

i=0 βn,l,i (λn,i − λn,l)φn,i is of degree ≤ l − 1, we conclude that the

degree l monomial in the expansion of Kn[x l ] in terms of {1, x, . . . , xn} is given by

λn,l x
l . Hence by our assumption, λn,l does not depend on n for n ≥ l. Note that the

eigenvalue of Kn that corresponds to the eigenfunction φn,l is λn,l , which does not

depend on n for n ≥ l. /0

The connections between orthogonal polynomials and Markov chains are long-

standing. Indeed, perhaps the first Markov chain—the Bernoulli–Laplace urn—is

diagonalized by Hahn polynomials. To briefly recall, Bernoulli and Laplace consid-

ered two urns, the left containing n red balls, the right containing n black balls. Each

time, a ball is picked uniformly at random and the two balls are switched. The number

of red balls in the left urn evolves as a Markov chain on {0, 1, . . . , n}. In [17] this

chain is diagonalized and shown to have Hahn polynomial eigenfunctions. That same

paper treats the Ehrenfest’s urn (with Krawtchouk polynomial eigenfunctions) and

several q-deformations of these two examples. These urn models, and the birth and

death chains discussed below, are examples of ‘local Markov chains.’ Most appear-

ances of orthogonal polynomials have occurred for such local chains (analogs of the

Laplacian). The present examples are much more vigorous.

Jacobi polynomials arise as eigenfunctions of a Markov chain constructed from

the ‘Gibbs sampler’ [19]. Extensions of this construction need the full power of the

Askey–Wilson polynomials [7].

An extensive connection between orthogonal polynomials and birth–death chains

follows from the Karlin–McGregor theory. A textbook account with full details is in

[3]. Multivariate orthogonal polynomials as in [21] arise in natural genetics problems.

See [16,31,42] for multivariate Hahn and Krawtchouk polynomials and [20] for Mac-

donald polynomials. This is just a small sample, drawn from our work with colleagues.

The list goes on and on.

123



P. Diaconis, C. Zhong

3 Proof of Theorems 1 and 2

The proof consists of three main parts. First we show that the operator Q of Sect. 1.1

sends polynomials to polynomials. Thus Cannings lemma (Lemma 1) shows that

the discrete Chebyshev polynomials are the eigenfunctions of the Burnside process

(lumped to orbits). Next, the eigenvalues are computed, proving Theorem 2. Finally,

the eigen structure and analytic tools of Sect. 2.2 are used to prove Theorem 1.

Throughout this section α = β = 1 and the stationary distribution u( j) = 1
n+1

for

0 ≤ j ≤ n.

3.1 Proof of Theorem 2

In the following, we denote by T n
j (x) the discrete Chebyshev polynomial on

{0, 1, . . . , n} with degree j (to emphasize the dependence on n). We also assume

that n is even below (the proof for odd n is similar).

Before the proof of Theorem 2, we present some preparatory lemmas.

The following lemma follows from Pólya’s cycle index theorem ([40], [18, Sect.

5]). We recall the notation. For σ in the symmetric group Sn , write ai (σ ) for the number

of i-cycles when σ is written in cycle notation. So a1(σ ) is the number of fixed points,

a2(σ ) is the number of transpositions,· · · Thus 0 ≤ ai (σ ) ≤ n and
∑n

i=1 iai (σ ) = n.

Write the cycle index of Sn as

Cn(x1, . . . , xn) =
1

n!

∑

σ∈Sn

n
∏

i=1

x
ai (σ )
i . (3.1)

The generating function of these Cn is C(t) =
∑∞

n=0 Cn tn . Pólya showed

C(t) = e
∑∞

i=1 xi
t i

i . (3.2)

Repeatedly differentiating in the xi , setting xi = 1 and comparing coefficient gives

Lemma 2 For n = 1, 2, . . ., any 1 ≤ k1 < · · · < kr ≤ n and l1, . . . , lr ≥ 1, if
∑r

i=1 ki li ≤ n, then for a random permutation σ uniformly chosen in Sn ,

( r
∏

i=1

(li )!E

[

r
∏

i=1

(

aki
(σ )

li

)

]

=

r
∏

i=1

1

k
li
i

)

; (3.3)

while if
∑r

i=1 ki li > n, then

E

[

r
∏

i=1

(

aki
(σ )

li

)

]

= 0. (3.4)

Below, by “even-order terms” we mean monomials of the form αX
l1
i1

. . . X
lk
ik

with

i1 < · · · < ik , α ∈ R and l1, . . . , lk even.
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Lemma 3 Suppose that N , a ≥ 1. The “even-order terms” in the expansion of

(
∑N

i=1 X i )
2a can be expressed as a linear combination of the following form:

k
∏

q=1

(

N
∑

i=1

X
2lq
i

)

(3.5)

for some k ≥ 1, l1, . . . , lk ≥ 1 and
∑k

q=1 lq = a. Moreover, the coefficients in the

linear combination only depend on a.

Proof By adding finitely many indeterminates and taking them to be 0 in the end,

we can assume without loss of generality that N ≥ 2a. We note that the “even-order

terms” of (
∑N

i=1 X i )
2a is a symmetric polynomial in the indeterminates X2

1, . . . , X2
N .

By the proof of [6, Proposition 2.9], it can be expressed as linear combination of the

form (3.5), and the coefficients only depend on a. /0

Proof of Theorem 2, eigenfunction part Note that T n
0 (x) = 1 and T n

1 (x) = n−2x
n

. From

this and the recurrence relation (2.4) it can be derived that for 0 ≤ k ≤ n
2

, T n
2k only

has even-order terms in (x − n
2
), and T n

2k−1 (for k ≥ 1) only has odd-order terms in

(x − n
2
).

Now as Q(i, j) = Q(i, n − j), we conclude that Q[(x − n
2
)2k−1] = 0 for any 1 ≤

k ≤ n
2

. By the previous conclusion, QT n
2k−1 = 0. Hence {T n

2k−1}
n
2

k=1 are eigenfunctions

of K corresponding to the zero eigenvalues.

In view of Lemma 1, in order to show that the rest of the eigenfunctions are also

given by the discrete Chebyshev polynomials, it suffices to show that for any a such

that 1 ≤ a ≤ n
2

, Q[(x − n
2
)2a]( j) is a polynomial in j of degree ≤ 2a (where

j ∈ {0, 1, . . . , n}). Below we verify this fact.

Suppose that we start from the orbit j . For the first step in the Burnside process,

σ1 ∈ S j and σ2 ∈ Sn− j are drawn uniformly. Let {ai }
n
i=1, {bi }

n
i=1 denote the number

of cycles of length i in σ1, σ2, respectively. For the second step, we label the entries

of each cycle by 0/1 independently. Let Zi ∼ Binomial(ai + bi ,
1
2
). The outcome

of one iteration of the Burnside process (number of coordinates labeled by 1) can be

represented by X =
∑n

i=1 i Zi . For 1 ≤ a ≤ n
2

, we denote by

W2a := E

[

(

X −
1

2
n

)2a
]

= E





(

X −
n

∑

i=1

1

2
i(ai + bi )

)2a


 . (3.6)

We note that

W2a = E



E





(

X −
n

∑

i=1

1

2
i(ai + bi )

)2a

|σ1, σ2







 . (3.7)

Below we denote by W̃2a(σ1, σ2) the conditional expectation inside the above expres-

sion.
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By the multinomial theorem and vanishing of odd moments, we obtain that

W̃2a(σ1, σ2) = E





(

n
∑

i=1

i

(

Zi −
1

2
(ai + bi )

)

)2a

|σ1, σ2





=
∑

j1+···+ jn=a,
j1,..., jn≥0

(

2a

2 j1, . . . , 2 jn

)

×
n

∏

i=1

i2 ji E

[

(

Zi −
1

2
(ai + bi )

)2 ji

|σ1, σ2

]

. (3.8)

By splitting Zi into Bernoulli random variables and using the multinomial theorem

again we obtain

E

[

(

Zi −
1

2
(ai + bi )

)2 ji

|σ1, σ2

]

=
1

22 ji

∑

pi,1+···+pi,ai +bi
= ji

pi,1,...,pi,ai +bi
≥0

(

2 ji

2pi,1, . . . , 2pi,ai +bi

)

.

(3.9)

Plugging the above expression into (3.8), we get

W̃2a(σ1, σ2) =
1

22a

∑

∑n
i=1

∑ai +bi
q=1 pi,q=a

pi,q≥0

n
∏

i=1

i2(pi,1+···+pi,ai +bi
)

×
(

2a

2p1,1, . . . , 2p1,a1+b1 , . . . , 2pn,1, . . . , 2pn,an+bn

)

. (3.10)

We note that by (3.10), 22a W̃2a can be obtained from “even-order terms” in





n
∑

i=1

ai +bi
∑

q=1

X i,q





2a

(3.11)

by substituting X i,q = i for 1 ≤ q ≤ ai + bi . Now by lemma 3, the “even-order

terms” of (
∑n

i=1

∑ai +bi

q=1 X i,q)2a can be expressed in terms of the following forms:

k
∏

r=1





n
∑

i=1

ai +bi
∑

q=1

X
2lr
i,q



 , (3.12)

with k ≥ 1, l1, . . . , lk ≥ 1 and
∑k

r=1 lr = a. Moreover, the coefficients in the linear

combination only depend on a. By substituting X i,q = i and taking expectation in
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(3.12), we get

E

[

k
∏

r=1

(

n
∑

i=1

i2lr (ai + bi )

)]

. (3.13)

In order to make use of Lemma 2, we introduce the following subspaces. We take

the base field to be R. For every monomial αX
d1

i1
· · · X

dk

ik
(i1 < · · · < ik ,α ∈ R), we

define

B(αX
d1

i1
· · · X

dk

ik
) := α(d1)! · · · (dk)!

(

X i1

d1

)

· · ·

(

X ik

dk

)

, (3.14)

and extend linearly. We also denote by

X(l1, . . . , lk) =

k
∏

r=1

(

n
∑

i=1

i2lr X i

)

, (3.15)

and B(l1, . . . , lr ) := B(X(l1, . . . , lr )). For any d ≥ 1, we define X (d, a) to be the

set of X(l1, . . . , lk) with 1 ≤ k ≤ d and l1 + · · · + lk = a, and B(d, a) to be the set

of B(l1, . . . , lk) with 1 ≤ k ≤ d and l1 + · · · + lk = a. We also define X̃ (d, a) to be

the linear span of X (d, a) and B̃(d, a) to be the linear span of B(d, a).

Now we prove that for l1 + · · · + lk = a, X̃ (k, a) = B̃(k, a), and that it is possible

to express X(l1, . . . , lk) in terms of elements of B(k, a) so that the coefficients do not

depend on n. The method is to prove the following stronger claim by induction on k: for

any l1 +· · ·+lk = a, X̃ (k, a) = B̃(k, a), X(l1, . . . , lk)− B(l1, . . . , lk) ∈ X̃ (k −1, a),

and it is possible to express X(l1, . . . , lk) in terms of elements of B(k, a), B(l1, . . . , lk)

in terms of elements of X (k, a) and X(l1, . . . , lk)− B(l1, . . . , lk) in terms of elements

of X (k −1, a) so that the coefficients do not depend on n. When k = 1, X(l1) = B(l1)

for any l1, and the result holds. For the induction step, we assume that the claim holds

for ≤ k, and consider the k + 1 case. We will make use of the following identity:

X(l1, . . . , lk+1) − B(l1, . . . , lk+1)

=
1

k + 1

k+1
∑

j=1

(X(l1, . . . , l̂ j , . . . , lk+1) − B(l1, . . . , l̂ j , . . . , lk+1))

×

(

n
∑

i=1

i2l j X i

)

+
1

k + 1

k+1
∑

j=1

∑

j ′ 3= j

B(l1, . . . , l j ′ + l j , . . . , l̂ j , . . . , lk+1).

The identity can be proved by matching individual terms on both sides. Now by

the induction hypothesis, when l1 + · · · + lk+1 = a, X(l1, . . . , l̂ j , . . . , lk+1) −
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B(l1, . . . , l̂ j , . . . , lk+1) is in X̃ (k − 1, a − l j ). Therefore, the first term of the right-

hand side is in X̃ (k, a). The second term of the right-hand side is in B̃(k, a), hence

in X̃ (k, a). Thus the left-hand side is in X̃ (k, a) = B̃(k, a). Hence X̃ (k + 1, a) =

B̃(k + 1, a). The last conclusion can also be checked from the identity.

Now E

[

∏k
r=1(

∑n
i=1 i2lr (ai + bi ))

]

can be expanded in terms of the forms (coef-

ficients do not depend on n, j)

E

[

∏

r∈Γ

(

n
∑

i=1

i2lr ai

)]

E





∏

r∈[k]\Γ

(

n
∑

i=1

i2lr bi

)



 (3.16)

where Γ ⊆ [k]. By the above result, the first factor can be expressed in terms of

elements in B(|Γ |,
∑

r∈Γ lr ), and similarly for the second factor.

Now we denote by B ′(l1, . . . , lk) the result obtained by substituting X i = ai in

B(l1, . . . , lk), and B ′′(l1, . . . , lk) similar with X i = bi . Note that by Lemma 2,

E[B ′(l1, . . . , lk)] =
∑

i1+···+ik≤ j

i
2l1−1
1 . . . i

2lk−1
k . (3.17)

It can be shown by induction on k that the above expression is a polynomial in j with

degree 2(l1+· · ·+lk). Similarly, it can be shown that E[B ′′(l1, . . . , lk)] is a polynomial

in (n − j) of degree 2(l1 + · · · + lk), hence it is also a polynomial of the same degree

in j with coefficients depending on n (but the coefficient of highest degree does not

depend on n). Putting these together, we conclude that E

[

∏k
r=1(

∑n
i=1 i2lr (ai + bi ))

]

is a polynomial of degree ≤ 2a in j , and the coefficient of its degree 2a term does not

depend on n.

We conclude that W2a is a polynomial of degree ≤ 2a in j , and its coefficient of

degree 2a does not depend on n for n ≥ 2a. This implies that the coefficient of degree

2a of E[X2a] does not depend on n for n ≥ 2a. By Lemma 1, the eigenfunctions of K

are given by the discrete Chebyshev polynomials, and the eigenvalue corresponding

to T n
2k does not depend on n as long as n ≥ 2k. /0

Now we present the proof for the eigenvalues. We make use of three lemmas in the

proof, which we also present below. The first gives needed inequalities for the gamma

function. For many further references, see [24].

Lemma 4 (Explicit Stirling approximation) For any x > 0,

√
π

( x

e

)x
(

8x3 + 4x2 + x +
1

100

)
1
6

< Γ (1 + x) <
√

π

( x

e

)x
(

8x3 + 4x2 + x +
1

30

)
1
6

. (3.18)
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From this it can be easily derived that for any x ≥ 1,

√
2π

( x

e

)x √
x < Γ (1 + x) <

√
2π

( x

e

)x √
x

(

1 +
1

x

)
1
6

)

. (3.19)

Lemma 5 (Clausen [11], see also [36])

3 F2

(

2a, 2b, a + b; a + b +
1

2
, 2a + 2b|x

)

=

(

2 F1

(

a, b; a + b +
1

2
|x

))2

.

(3.20)

Lemma 6 (Gauss’s hypergeometric theorem, see Page 2 of [5]) For a, b, c ∈ R such

that a + b < c, we have

2 F1(a, b; c|1) =
Γ (c)Γ (c − a − b)

Γ (c − a)Γ (c − b)
. (3.21)

Proof of Theorem 2, eigenvalue part We use the notation as in the statement of The-

orem 2. Let λk,n be the eigenvalue corresponding to the eigenfunction T n
2k for the

Markov chain Q(i, j) on {0, 1, . . . , n}. Note that from the determination of eigen-

functions, λk,n is constant for all n ≥ 2k, and we denote it by λk . The strategy of the

proof is to analyze the expression for λk in a system of size n and let n → ∞ to get

the desired result.

The eigenfunction that corresponds to λk has been proven previously to be

the discrete Chebyshev polynomials T n
2k . Thus by examining the first row of the

eigenvalue–eigenfunction equation, we obtain that (see Proposition 4 and [15, (3.1)–

(3.3)])

λk,n =

∑n
j=0 αn

j T n
2k( j)

T n
2k(0)

=

n
∑

j=0

αn
j T n

2k( j), (3.22)

where αn
j =

(2 j
j )(

2(n− j)
n− j )

22n .

Plugging the expression

T n
2k( j) =

2k
∑

l=0

(−2k)l(2k + 1)l(− j)l

(l!)2(−n)l

(3.23)

into the expression above, we obtain that

λk =

2k
∑

l=0

(−2k)l(2k + 1)l

(l!)2

n
∑

j=0

(− j)lα
n
j

(−n)l

. (3.24)
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Below we prove that

lim
n→∞

n
∑

j=0

(− j)lα
n
j

(−n)l

=
( 1

2
)l

l!
. (3.25)

We fix a small c > 0, and assume that n is sufficiently large below. Note that by

Lemma 4, we can derive that for n sufficiently large,

∣

∣

∣

∣

∣

∣

∑

j≤cn

(− j)lα
n
j

(−n)l

∣

∣

∣

∣

∣

∣

≤
∑

j≤cn

(

2 j
j

)(

2(n− j)
n− j

)

22n
≤

2
√

n
+

∑

1≤ j≤cn

4
√

j
√

n − j
≤

10
√

c
√

1 − c
.

(3.26)

Similarly,

∣

∣

∣

∣

∣

∣

∑

(1−c)n≤ j≤n

(− j)lα
n
j

(−n)l

∣

∣

∣

∣

∣

∣

≤
10

√
c

√
1 − c

. (3.27)

Now note that for n sufficiently large, when cn < j < (1 − c)n, we have (
j
n
)l(1 −

l+1
cn

)l ≤ (− j)l

(−n)l
≤ (

j
n
)l . Moreover, using Lemma 4, we obtain that 1

π
1√

j
√

n− j
(1 +

6
cn

)−
2
3 ≤ αn

j ≤ 1
π

1√
j
√

n− j
(1 + 6

cn
)

1
3 for cn < j < (1 − c)n. Therefore, we have

∑

cn< j<(1−c)n

(− j)lα
n
j

(−n)l

≤
(

1 +
6

cn

)
1
3 1

π

∑

cn< j<(1−c)n

1
√

j
n

√

1 − j
n

(

j

n

)l
1

n
,

(3.28)

∑

cn< j<(1−c)n

(− j)lα
n
j

(−n)l

≥
(

1 +
6

cn

)− 2
3

(1 −
l + 1

cn
)l 1

π

∑

cn< j<(1−c)n

1
√

j
n

√

1 − j
n

(

j

n

)l
1

n
. (3.29)

Now note that

lim
n→∞

1

π

∑

cn< j<(1−c)n

1
√

j
n

√

1 − j
n

(

j

n

)l
1

n
=

1

π

∫ 1−c

c

x l

√
x
√

1 − x
. (3.30)

Hence we have

1

π

∫ 1−c

c

x l

√
x
√

1 − x
−

20
√

c
√

1 − c
≤ lim inf

n→∞

n
∑

j=0

(− j)lα
n
j

(−n)l
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≤ lim sup
n→∞

n
∑

j=0

(− j)lα
n
j

(−n)l

≤
1

π

∫ 1−c

c

x l

√
x
√

1 − x
+

20
√

c
√

1 − c
.

Sending c → 0 gives

lim
n→∞

n
∑

j=0

(− j)lα
n
l

(−n)l

=
1

π

∫ 1

0

x l

√
x
√

1 − x
=

( 1
2
)l

l!
. (3.31)

Now in (3.24) we take n → ∞ and get

λk =

2k
∑

l=0

(−2k)l(2k + 1)l(
1
2
)l

(l!)3
= 3 F2

(

1

2
,−2k, 2k + 1; 1, 1|1

)

. (3.32)

Take a = −k and b = k + 1
2

in Lemma 5, we obtain that

λk = (2 F1(−k, k +
1

2
; 1|1))2. (3.33)

Finally, by Lemma 6,

2 F1

(

−k, k +
1

2
; 1|1

)

=
Γ (1)Γ ( 1

2
)

Γ (k + 1)Γ ( 1
2

− k)
=

(−1)k1 · 3 · · · · · (2k − 1)

2 · 4 · · · · · (2k)
.

(3.34)

Hence

λk =

(

2k
k

)2

24k
(3.35)

/0

3.2 Proof of Theorem 1

In this part, we prove Theorem 1 based on Theorem 2.

Proof of Theorem 1 First note that for the starting state x0 = (1, 1, . . . , 1), by Sn-

invariance of K l(x, y) and π(x) for any x, y, l, we have

‖K l
x0

− π‖ =
1

2

∑

y∈X

|K l
x0

(y) − π(y)| =
1

2

n
∑

j=0

|Ql
n( j) − u( j)| = ‖Ql

n − u‖,

where u( j) = 1
n+1

, 0 ≤ j ≤ n.
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Without loss of generality suppose n is even. The analysis for odd n is similar. By

Theorem 2,

λk =

(

2k
k

)2

24k
. (3.36)

By Lemma 4, we obtain that

λk ≤
1

πk

(

1 +
1

2k

)
1
3

. (3.37)

First we show the lower bound. By Proposition 1, taking β = λ1 = 1
4

and ψ = T n
2 ,

we obtain

‖Ql
n − u‖ ≥

1

4

(

1

4

)l

. (3.38)

Now we show the upper bound. For l = 1 the upper bound follows by the fact that

total variation distance is always upper bounded by 1. For l ≥ 2,

4‖Ql
n − u‖2 ≤ χ2

n (l) =

n
2

∑

k=1

λ2l
k β2k(4k + 1), (3.39)

where β2k ≤ n
n+2

≤ 1 (see [19, Sect. 2.5] for the estimates related to Hahn polynomials

that are used above). Therefore, we obtain that

χ2
n (l) ≤ 5

n
2

∑

k=1

kλ2l
k ≤ 15

(

1

16

)l

+

n
2

∑

k=3

k

(

2

πk

)2l

≤ 15

(

1

16

)l

+ 27

(

2

3π

)2l ∞
∑

k=1

1

k2
≤ 60

(

1

16

)l

.

Hence we conclude that

‖Ql
n − u‖ ≤ 4

(

1

4

)l

(3.40)

for any l ≥ 2.

Therefore, for any l ∈ {1, 2, . . .},

1

4

(

1

4

)l

≤ ‖K l
x0

− π‖ ≤ 4

(

1

4

)l

. (3.41)

/0
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4 The twisted Burnside process

In this section, we consider a generalization of the original Burnside process, which

we will call “twisted Burnside process.” This will allow deformation of the examples

above to give a natural process with a larger family of Hahn polynomials as eigen-

functions. Several further examples are presented. We believe that it gives many new

examples of easy to run, rapidly converging Markov chains with tunable stationary

distributions.

The setting is the same: we have a finite group G acting on a finite set X ; for x ∈ X ,

let Gx = {g ∈ G : xg = x}; for g ∈ G, let Xg = {x ∈ X : xg = x}.

We choose a positive weight w on the group G and let W (x) be the sum of w(g)

for g ∈ Gx . We also choose a positive weight v on the set X and let V (g) be the sum

of v(x) for x ∈ Xg . The new Markov chain is as follows: from x , choose g ∈ Gx with

probability
w(g)
W (x)

; given g, choose y ∈ Xg with probability
v(y)
V (g)

; the chain goes from

x to y.

Proposition 2 below gives the stationary distribution of the twisted Burnside process.

Proposition 2 The twisted Burnside process as discussed in the preceding is a

reversible Markov chain with stationary distribution

π(x) ∝ W (x)v(x) (4.1)

for x ∈ X .

Moreover, if w is constant on each conjugacy class of G and v is constant on each

orbit of X (under the action of G), then the chain can be lumped onto orbits of X . For

x ∈ X , let Ox denote the orbit containing x. The lumped chain is a reversible Markov

chain with stationary distribution

π̃(Ox ) ∝
W (x)v(x)

|Gx |
. (4.2)

Proof For any x, y ∈ X , the transition probability from x to y of the twisted Burnside

process is given by

Kx,y =
v(y)

W (x)

∑

g∈Gx ∩G y

w(g)

V (g)
. (4.3)

Note that the factor
∑

g∈Gx ∩G y

w(g)
V (g)

is symmetric in x, y. Hence if π(x) = W (x)v(x)
Z

for x ∈ X (where Z is a normalizing constant), then we have

π(x)Kx,y =
v(x)v(y)

Z

∑

g∈Gx ∩G y

w(g)

V (g)
= π(y)K y,x . (4.4)

This shows that the twisted Burnside process is reversible with stationary distribution

proportional to W (x)v(x).
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For the second part, we assume that w is constant on each conjugacy class of G and

v is constant on each orbit of X . Below we show by Dynkin’s criterion (see [30, p.

133]) that in this case the twisted Burnside process can be lumped onto orbits. Suppose

that x, y ∈ X are in the same orbit. Then there exists h ∈ G such that y = xh . Hence

G y = h−1Gx h. (4.5)

As w is constant on each conjugacy class of G, by (4.5) we have

W (y) =
∑

g∈G y

w(g) =
∑

g∈Gx

w(h−1gh) =
∑

g∈Gx

w(g) = W (x). (4.6)

For any z ∈ X , we have

∑

q∈Oz

v(q)
∑

g∈G y∩Gq

w(g)

V (g)

=
∑

q∈Oz

v(qh)
∑

g∈G y∩G
qh

w(g)

V (g)

=
∑

q∈Oz

v(q)
∑

g∈h−1(Gx ∩Gq )h

w(g)

V (g)

=
∑

q∈Oz

v(q)
∑

g∈Gx ∩Gq

w(h−1gh)

V (h−1gh)
, (4.7)

where the second equality follows from the fact that v is constant on each orbit of X .

Now note that

Xh−1gh = {xh : x ∈ Xg}. (4.8)

By (4.8) and the fact that v is constant on each orbit of X , we have

V (h−1gh) =
∑

x∈X
h−1gh

v(x) =
∑

x∈Xg

v(xh) =
∑

x∈Xg

v(x) = V (g). (4.9)

By (4.7), (4.9), and the fact that w is constant on each conjugacy class of G, we have

∑

q∈Oz

v(q)
∑

g∈G y∩Gq

w(g)

V (g)
=

∑

q∈Oz

v(q)
∑

g∈Gx ∩Gq

w(g)

V (g)
. (4.10)

Therefore, by (4.3), (4.6), and (4.10), we obtain that

∑

q∈Oz

Kx,q =
∑

q∈Oz

K y,q . (4.11)
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By Dynkin’s criterion, the chain can be lumped onto orbits of X . Note that by (4.6)

and the fact that v(x) is constant on each orbit, we have W (x)v(x) is constant on every

orbit. Thus the lumped chain is reversible with stationary distribution

π̃(Ox ) ∝ |Ox |W (x)v(x). (4.12)

By the orbit–stabilizer theorem, we have

π̃(Ox ) ∝
W (x)v(x)

|Gx |
. (4.13)

/0

An example of the twisted version of the Burnside process considered in Theorem 1

is presented below. Specializing k = 2 and γ2 = 1 in the example gives the chain with

beta-binomial stationary distribution considered in Sect. 5 below.

Example 1 Consider X = [k]n and G = Sn with G acting on X by permuting coordi-

nates. Fix k positive parameters θ, γ2, . . . , γk . We take

w(σ ) = θc(σ ), (4.14)

for every σ ∈ Sn , where c(σ ) is the number of cycles of σ . For any x = (x1, . . . , xn) ∈
X and j ∈ [k], we define

S(x, j) := #{i ∈ [n] : xi = j}. (4.15)

We further take

v(x) =

k
∏

j=2

γ
S(x, j)

j (4.16)

for every x ∈ X . Below we let γ1 := 1 to simplify notation.

Now we discuss the twisted Markov chain. From x ∈ X , we choose σ ∈ Sn

fixing x with probability w(σ )
W (x)

. This can be realized as follows: find the set of indices

I j := {l ∈ [n] : xl = j} for each j ∈ [k]; for each I j , sample a permutation σ j ∈ SI j

from the Ewens distribution with parameter θ (see Sect. 5 for details of the Ewens

distribution); σ is the product of σ j for j ∈ [k].

Given σ , we choose y ∈ X fixed by σ with probability
v(y)
V (σ )

. This can be done

as below: break σ into cycles C1, · · · , Cm , and denote by cd the length of the cycle

Cd for every d ∈ [m]; for every d ∈ [m], pick an integer rd ∈ [k] with probability
γ

cd
rd

∑k
l=1 γ

cd
l

, and take yi = rd for every i ∈ Cd . Note that for any y ∈ Xσ , yi for i ∈ Cd

takes the same value (assuming that it’s rd ). Hence the probability of generating y
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(where y ∈ Xσ ) through this procedure is

m
∏

d=1

γ
cd
rd

∑k
l=1 γ

cd

l

∝
m

∏

d=1

γ cd
rd

=

k
∏

j=2

γ
S(y, j)

j . (4.17)

Note that w is constant on each conjugacy class of G. Moreover, v(x) only depends

on S(x, j) for j ∈ [k], hence v is constant on each orbit of X . By Proposition 2, the

twisted Markov chain can be lumped onto orbits of X . For t1, . . . , tk ∈ N such that
∑k

l=1 tl = n, let t := (t1, . . . , tk) denote the orbit of X consisting of x = (x1, . . . , xn)

such that S(x, j) = t j for every j ∈ [k]. Note that for any x in the orbit t, we have

|Gx| =
∏k

j=1(t j )! and

W (x) =
∑

σ∈Sn :σ fixes x

θc(σ ) =

k
∏

j=1

(θ · · · (θ + t j − 1)) ∝
k

∏

j=1

Γ (t j + θ). (4.18)

Thus by Proposition 2, the stationary distribution of the lumped chain is

π̃(t) ∝
k

∏

j=1

Γ (t j + θ)

(t j )!

k
∏

j=2

γ
t j

j . (4.19)

Note that the term
∏k

j=1
Γ (t j +θ)

(t j )!
is proportional to the probability corresponding to

the symmetric Dirichlet-multinomial distribution of parameter (θ, . . . , θ). Thus the

twisted Burnside process offers a k-dimensional deformation of this classical distri-

bution. Specializing to the case of k = 2 and choosing parameters so that the base

beta-binomial is uniform on {0, 1, . . . , n}, the deformation is a discrete exponential

distribution truncated to this interval.

We close with a final remark. There are many probability measures on Sn that are

constant on conjugacy classes. One way to construct these is to define P(σ ) as pro-

portional to θd(σ ) where d(σ ) = d(id, σ ) for d a bi-invariant metric on Sn . In turn,

such bi-invariant metrics can be constructed as follows: Let ρ : Sn → GL(V ) be

a faithful unitary representation of Sn . Let ‖.‖ be a unitarily invariant norm on V .

Then d(σ, τ ) = ‖ρ(σ ) − ρ(τ )‖ is a bi-invariant metric on Sn . In particular, the Cay-

ley distance d(σ, τ ) = n − C(στ−1) = min #transpositions required to bring σ to τ

is bi-invariant, giving the example used above. Similarly, the Hamming distance

#{i with σ (i) different from τ (i)} is bi-invariant. A host of other examples appear

in [14, Chap. 6C]. This includes von Neumann’s useful characterization of unitarily

invariant matrix norms.

5 The twisted Burnside process and Hahn polynomials

In this section, we add a parameter to the Burnside process on Cn
2 with the group Sn

so that more general Hahn polynomials appear as eigenfunctions. The idea is simple:
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replace the uniform distribution on Sn , used in step one of the algorithm, by the Ewens

distribution

Pθ (σ ) =
1

(θ)n

θc(σ ), (θ)n = θ(θ + 1) · · · (θ + n − 1) (5.1)

where c(σ ) is the number of cycles in σ and 0 < θ < ∞ is a parameter. This

familiar distribution is studied in genetics and combinatorics [12]. It may be seen as

‘the Mallows model through the Cayley metric’ as discussed at the end of Sect. 4. This

chain was discovered via the twisted Burnside construction of Sect. 4. In hindsight,

the following simplified description is available.

On Cn
2 , from x ∈ Cn

2 with |x | = # ones in x

– Identify Gx with S|x | × Sn−|x |

– Pick σ ∈ S|x | × Sn−|x | choosing the two components independently from the

Ewens measure (5.1)

– Break σ into cycles and label the cycles 0/1 with probability 1
2

. Put this 0/1 string

into y ∈ Cn
2 .

The argument of Sect. 4 shows

Proposition 3 The twisted Burnside process given above, lumped to orbits, is a Markov

chain on {0, 1, . . . , n} with a beta-binomial distribution having parameters α = β = θ

(see (2.3)).

The transition matrix of this Markov chain, call it p
n,θ
i j , can be written explicitly.

Proposition 4 Consider the twisted Burnside process given above, lumped to orbits.

The transition matrix is given by

p
n,θ
0 j =

(

n

j

) θ
2

· · · ( θ
2

+ j − 1) θ
2

· · · ( θ
2

+ n − j − 1)

θ(θ + 1) · · · (θ + n − 1)
, (5.2)

p
n,θ
jk =

∑

max{0, j+k−n}≤l≤min{ j,k}

p
j,θ

0l p
n− j,θ

0,k−l . (5.3)

Proof We prove this using Pólya’s cycle index theorem (see (3.1),(3.2)). Note that we

have

p
n,θ
0 j =

n!

θ(θ + 1) · · · (θ + n − 1)

1

n!

∑

g∈Sn ,λ6 j

j
∏

i=1

(

ai (g)

bi (λ)

)

(
θ

2
)a1(g)+···+an(g). (5.4)

Using Pólya’s cycle index theorem by taking derivatives and multiplying, we get

p
n,θ
0 j =

(

n

j

) θ
2

· · · ( θ
2

+ j − 1) θ
2

· · · ( θ
2

+ n − j − 1)

θ(θ + 1) · · · (θ + n − 1)
. (5.5)
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Moreover, by the definition of the twisted Burnside process given above, we have

p
n,θ
jk =

∑

max{0, j+k−n}≤l≤min{ j,k}

p
j,θ
0l p

n− j,θ
0,k−l . (5.6)

/0

Theorems 1 and 2 above deform in the following form.

Theorem 3 Consider the twisted Burnside process on Cn
2 given above, lumped to

orbits. The non-zero eigenvalues of the Markov chain are given by 1 and

λk = 3 F2

(

−2k, 2k + 2θ − 1,
θ

2
; θ, θ |1

)

(5.7)

for 1 ≤ k ≤ n
2

. Moreover, the eigenfunctions corresponding to the zero eigenvalues

are the Hahn polynomials on {0, 1, . . . , n} with parameters α = β = θ of odd degree.

The eigenfunction corresponding to the eigenvalue λk is the Hahn polynomial on

{0, 1, . . . , n} with parameters α = β = θ of degree 2k, 1 ≤ k ≤ n
2

.

Theorem 4 Consider the twisted Burnside process on Cn
2 given above with θ ≥ 1.

Denote by π the stationary distribution of the chain (see Proposition 3), and denote

by K l
x0

for x0 = (1, 1, . . . , 1) the distribution after l steps starting from n ones. Then

there exist positive constants c(θ), C(θ) which only depend on θ , such that for all

n ≥ 2 and all l ≥ 1,

c(θ)

(

1

2(1 + θ)

)l

≤ ‖K l
x0

− π‖ ≤ C(θ)

(

1

2(1 + θ)

)l

. (5.8)

The proofs of Theorems 3 and 4 are similar but quite a bit more involved, to the

proofs of Theorems 1 and 2. The restriction that θ ≥ 1 in Theorem 4 is due to a

technical step in our proof (for certain estimates of the eigenvalues). We refer the

interested reader to [43,44]. This develops things for k ≥ 2 and has other approaches

to proof.

We have not (yet) succeeded in finding a two-parameter deformation of the Burn-

side process on Cn
2 which gives the full set of Hahn polynomials as eigenfunctions.

Similarly, we have not succeeded in diagonalizing the Burnside process on [k]n for

any k ≥ 3.

The point of this paper was to show (a) that orthogonal polynomials ‘pop up’

everyplace (b) seeing orthogonal polynomials as belonging to families leads to useful

extension of classical algorithms.

We are sorry not to be able to ask Dick Askey for further help.

6 A continuous limit of the Burnside process

A referee has made the welcome suggestion that we try to ‘pass to the limit’ going from

our discrete version of the Burnside process analyzed above to a continuous process.
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While we do not know a continuous version of the Cauchy–Frobenius Lemma or Pólya

theory, we were able to pass to the limit and this proved informative.

As motivation, recall that the discrete process begins with a point x ∈ Cn
2 . A

permutation in Sk × Sn−k is chosen at random (there are k ones in x), split into

cycles, and these are labeled 0/1 to give y ∈ Cn
2 . As explained, only the number of

ones enters, not their positions. So the process can be thought of as taking place on

{0, 1, 2, . . . , n}. We divide by n and form a process on [0, 1]. The analog of the cycles

of a random permutation is replaced by a stick-breaking process on [0, 1] familiar from

the Chinese restaurant process and Dirichlet random measures [4,32,39]. Combining

gives the following Markov chain on [0, 1]:

From x ∈ [0, 1], break the interval [0, x] into countably many pieces by a

stick-breaking process. Namely, let R1, R2, . . . be independent Beta(1, θ) random

variables, and define Y1 = x R1 and Y j = x(1 − R1) · · · (1 − R j−1)R j for every

j = 2, 3, . . .; then we break [0, x] into pieces of lengths Y1, Y2, . . .. Break the interval

from x to 1 in the same way. Label each interval 0/1 by flipping a fair coin. Let y be

the total length of the pieces labeled 1. This gives a Markov chain on [0, 1]. It is a

natural limiting version of our discrete Burnside process.

This Markov chain can be equivalently described as follows ([13, Sect. 3], [34,39]).

From x ∈ [0, 1], sample two independent Beta( θ
2
, θ

2
) random variables Z , Z ′. Let

y = x Z + (1 − x)Z ′, and move to y.

Theorem 5 The Markov chain above is reversible with Beta(θ, θ) stationary distri-

bution. The non-zero eigenvalues are given by 1 and

λk = 3 F2(−2k, 2k + 2θ − 1,
θ

2
; θ, θ |1) (6.1)

for k = 1, 2, . . .. An alternative expression for λk is given by

λk = E[(Z − Z ′)2k], (6.2)

where Z , Z ′ are two independent Beta( θ
2
, θ

2
) random variables.

Moreover, the eigenfunctions corresponding to the zero eigenvalues are the Jacobi

polynomials associated to the stationary distribution of odd degree. For every k =

1, 2, . . ., the eigenfunction corresponding to the eigenvalue λk is the Jacobi polynomial

associated to the stationary distribution of degree 2k.

Proof From the definition of the Markov chain, the transition density is given by

k(x, y) =

∫ min{x,y}

max{0,x+y−1}

z
θ
2 −1(x − z)

θ
2 −1

B( θ
2
, θ

2
)

(y − z)
θ
2 −1(1 − x − y + z)

θ
2 −1

B( θ
2
, θ

2
)

dz

×x1−θ (1 − x)1−θ (6.3)

for x, y ∈ [0, 1]. Let π(x) = xθ−1(1−x)θ−1

B(θ,θ)
, x ∈ [0, 1] be the probability density

function of Beta(θ, θ). We have

π(x)k(x, y) = π(y)k(y, x)
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for any x, y ∈ (0, 1). Therefore, the Markov chain is reversible with Beta(θ, θ)

stationary distribution.

Suppose that we start from x ∈ [0, 1]. Sample two independent Beta( θ
2
, θ

2
) random

variables Z , Z ′, and let y = x Z + (1 − x)Z ′. This gives one iteration of the Markov

chain. For every l = 1, 2, . . .

E[yl |x] = E[(Z − Z ′)l ]x l +

l−1
∑

j=0

(

l

j

)

E[(Z − Z ′) j (Z ′)l− j ]x j . (6.4)

The right-hand side of (6.4) is a polynomial in x of degree ≤ l with leading coefficient

given by E[(Z − Z ′)l ]. When l is odd, as the distribution of Z − Z ′ is symmetric

around 0, we have E[(Z − Z ′)l ] = 0.

By Cannings argument (the analog of Lemma 1), the non-zero eigenvalues of the

Markov chain are given by 1 and λk := E[(Z − Z ′)2k] for k = 1, 2, . . .. Moreover,

the eigenfunctions corresponding to the zero eigenvalues are the Jacobi polynomials

associated to Beta(θ, θ) of odd degree, and the eigenfunction corresponding to the

eigenvalue λk is the Jacobi polynomial associated to Beta(θ, θ) of degree 2k for every

k = 1, 2, . . ..

Finally, we show that

λk = 3 F2

(

−2k, 2k + 2θ − 1,
θ

2
; θ, θ |1

)

.

We denote by

φ2k(x) = 2 F1(−2k, 2θ + 2k − 1; θ |x) =

2k
∑

l=0

(−2k)l(2θ + 2k − 1)l

(θ)l

x l

l!
(6.5)

the Jacobi polynomial associated to Beta(θ, θ) of degree 2k, normalized so that

φ2k(0) = 1. Note that the one-step distribution starting from 0 follows the Beta( θ
2
, θ

2
)

distribution. Thus letting T ∼ Beta( θ
2
, θ

2
), we have

E[φ2k(T )] = λkφ2k(0) = λk . (6.6)

For every l = 0, 1, 2, . . .

E[T l ] =
1

B( θ
2
, θ

2
)

∫ 1

0

x l+ θ
2 −1(1 − x)

θ
2 −1dx =

( θ
2
)l

(θ)l

. (6.7)

Hence

λk = E[φ2k(T )] =

2k
∑

l=0

(−2k)l(2θ + 2k − 1)l

(θ)l

E[T l ]

l!
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= 3 F2

(

−2k, 2k + 2θ − 1,
θ

2
; θ, θ |1

)

.

/0

Remark 1 Comparison with Theorems 2 and 3 shows that this limit captures the essen-

tial features we encountered. Note that the eigenvalue λk here matches that of the

discrete chain in Theorem 3 as long as n ≥ 2k.

Remark 2 As Z , Z ′ ∈ [0, 1], we have |Z − Z ′| ≤ 1. Hence for any k = 1, 2, . . .

λk = E[|Z − Z ′|2k] ≥ E[|Z − Z ′|2k+2] = λk+1.

Therefore, the eigenvalues λk are monotone decreasing.

Remark 3 The two expressions (6.1) and (6.2) for λk lead to the following identity

2k
∑

l=0

(−2k)l(
θ
2
)l(

θ
2
)2k−l

(θ)l(θ)2k−ll!
=

2k
∑

l=0

(−2k)l(
θ
2
)l(2k + 2θ − 1)l

(θ)l(θ)ll!
. (6.8)

We did not know this identity but Dennis Stanton observes that it is a special case of

the following transformation

(a + A)n 3 F2(a, c − b,−n; c, a + A|1) = (A)n 3 F2(a, b,−n; c, 1 − A − n|1)

(6.9)

when n = 2k, a = θ
2
, c = θ, b = 2θ + 2k − 1, A = 1 − θ − 2k. One of his proofs of

(6.9) proceeds by multiplying the Pfaff transformation ([33, p. 43])

(1 − x)−a
2 F1

(

a, c − b; c|
x

x − 1

)

= 2 F1(a, b; c|x)

by (1 − x)−A and equating coefficients of xn .

Acknowledgements Richard Askey’s support and encouragement was crucial throughout our fledgling

efforts to learn and apply the beautiful subject that he built. He took us in, patiently fielded ‘stupid questions,’

introduced us to his community, and published our papers. We thank Krishnaswami Alladi, Howard Cohl,

and Dennis Stanton for their help. We also thank the anonymous referees for their useful comments.

References

1. Aldous, D., Fill, J.: Reversible Markov chains and random walks on graphs. https://www.stat.berkeley.

edu/~aldous/RWG/book.pdf (2002)

2. Andersen, H.C., Diaconis, P.: Hit and run as a unifying device. J. Soc. Fr. Stat. Rev. Stat. Appl. 148(4),

5–28 (2007)

3. Anderson, W.J.: Continuous-Time Markov Chains. Springer Series in Statistics: Probability and Its

Applications. An Applications-Oriented Approach. Springer, New York (1991)

123



P. Diaconis, C. Zhong

4. Arratia, R., Barbour, A.D., Tavaré, S.: Logarithmic Combinatorial Structures: A Probabilistic

Approach. EMS Monographs in Mathematics. European Mathematical Society (EMS), Zürich (2003)

5. Bailey, W.N.: Generalized Hypergeometric Series. Cambridge Tracts in Mathematics and Mathematical

Physics. Stechert-Hafner Inc., New York (1964)

6. Borodin, A., Olshanski, G.: Representations of the Infinite Symmetric Group, Cambridge Studies in

Advanced Mathematics, vol. 160. Cambridge University Press, Cambridge (2017)

7. Bryc, W., Wesołowski, J.: Askey-Wilson polynomials, quadratic harnesses and martingales. Ann.

Probab. 38(3), 1221–1262 (2010)

8. Cannings, C.: The latent roots of certain Markov chains arising in genetics: a new approach. I. Haploid

models. Adv. Appl. Probab. 6, 260–290 (1974)

9. Chen, W.K.: Mixing times for Burnside processes. Master’s thesis, National Chiao Tung University

(2006)

10. Chihara, T.S.: An Introduction to Orthogonal Polynomials. Mathematics and Its Applications, vol. 13.

Gordon and Breach Science Publishers, New York (1978)

11. Clausen, T.: Ueber die Fälle, wenn die Reihe von der Form...ein Quadrat von der Form...hat. J. Reine

Angew. Math. 3, 89–91 (1828)

12. Crane, H.: The ubiquitous Ewens sampling formula. Stat. Sci. 31(1), 1–19 (2016)

13. Diaconis, P.: Group representations in probability and statistics, Institute of Mathematical Statistics

Lecture Notes—Monograph Series, vol. 11. Institute of Mathematical Statistics, Hayward (1988)

14. Diaconis, P.: Analysis of a Bose-Einstein Markov chain. Ann. Inst. H. Poincaré Probab. Statist. 41(3),

409–418 (2005)

15. Diaconis, P., Griffiths, R.: An introduction to multivariate Krawtchouk polynomials and their applica-

tions. J. Stat. Plan. Inference 154, 39–53 (2014)

16. Diaconis, P., Kemperman, J.: Some new tools for Dirichlet priors. In: Bayesian Statistics, 5 (Alicante,

1994), pp. 97–106. Oxford University Press, New York (1996)

17. Diaconis, P., Ram, A.: A probabilistic interpretation of the Macdonald polynomials. Ann. Probab.

40(5), 1861–1896 (2012)

18. Diaconis, P., Shahshahani, M.: Time to reach stationarity in the Bernoulli–Laplace diffusion model.

SIAM J. Math. Anal. 18(1), 208–218 (1987)

19. Diaconis, P., Shahshahani, M.: On the eigenvalues of random matrices. J. Appl. Probab. 31A, 49–62

(1994). Studies in applied probability

20. Diaconis, P., Khare, K., Saloff-Coste, L.: Gibbs sampling, exponential families and orthogonal poly-

nomials. Stat. Sci. 23(2), 151–178 (2008). With comments and a rejoinder by the authors

21. Dunkl, C.F., Xu, Y.: Orthogonal Polynomials of Several Variables, Encyclopedia of Mathematics and

Its Applications, vol. 155, 2nd edn. Cambridge University Press, Cambridge (2014)

22. Goldberg, L.A.: Automating Pólya theory: the computational complexity of the cycle index polynomial.

Inf. Comput. 105(2), 268–288 (1993)

23. Goldberg, L.A.: Computation in permutation groups: counting and randomly sampling orbits. In:

Surveys in Combinatorics, 2001 (Sussex), London Mathematical Society Lecture Note Series, vol.

288, pp. 109–143. Cambridge University Press, Cambridge (2001)

24. Gordon, L.: A stochastic approach to the gamma function. Am. Math. Mon. 101(9), 858–865 (1994)

25. Holtzen, S., Millstein, T., Van den Broeck, G.: Generating and sampling orbits for lifted probabilistic

inference. In: Uncertainty in Artificial Intelligence, pp. 985–994. PMLR (2020)

26. Ismail, M.E.H.: Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathe-

matics and Its Applications, vol. 98. Cambridge University Press, Cambridge (2005). With two chapters

by Walter Van Assche, With a foreword by Richard A. Askey

27. Jerrum, M.: Computational Pólya theory. In: Surveys in Combinatorics, 1995 (Stirling), London Math-

ematical Society Lecture Note Series, vol. 218, pp. 103–118. Cambridge University Press, Cambridge

(1995)

28. Jerrum, M.: Uniform sampling modulo a group of symmetries using Markov chain simulation. In:

Expanding Graphs (Princeton, NJ, 1992), DIMACS Series Discrete Mathematical Theoretical Com-

puting Science, vol. 10, pp. 37–47. American Mathematical Society, Providence (1993)

29. Karlin, S., McGregor, J.L.: The Hahn polynomials, formulas and an application. Scripta Math. 26,

33–46 (1961)

30. Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Springer, New York (1976). Reprinting of the 1960

original, Undergraduate Texts in Mathematics

123



Hahn polynomials and the Burnside process

31. Khare, K., Zhou, H.: Rates of convergence of some multivariate Markov chains with polynomial

eigenfunctions. Ann. Appl. Probab. 19(2), 737–777 (2009)

32. Kingman, J.F.C.: Random discrete distribution. J. R. Stat. Soc. Ser. B. Stat. Methodol. 37, 1–22 (1975)

33. Koepf, W.: Hypergeometric Summation, 2nd edn. Universitext. Springer, London (2014). An algorith-

mic approach to summation and special function identities

34. Letac, G.: Donkey walk and Dirichlet distributions. Stat. Probab. Lett. 57(1), 17–22 (2002)

35. Levin, D.A., Peres, Y.: Markov Chains and Mixing Times. American Mathematical Society, Providence

(2017). With contributions by Elizabeth L. Wilmer, With a chapter on “Coupling from the past” by

James G. Propp and David B. Wilson

36. Milla, L.: A detailed proof of the Chudnovsky formula with means of basic complex analysis–

Ein ausführlicher Beweis der Chudnovsky-Formel mit elementarer Funktionentheorie. arXiv preprint

arXiv:1809.00533 (2018)

37. Pólya, G., Read, R.C.: Combinatorial Enumeration of Groups, Graphs, and Chemical Compounds.

Springer, New York (1987). Pólya’s contribution translated from the German by Dorothee Aeppli

38. Saloff-Coste, L.: Lectures on finite Markov chains. In: Lectures on Probability Theory and Statistics

(Saint-Flour, 1996), Lecture Notes in Mathematics, vol. 1665, pp. 301–413. Springer, Berlin (1997)

39. Sethuraman, J.: A constructive definition of Dirichlet priors. Stat. Sinica 4(2), 639–650 (1994)

40. Shepp, L.A., Lloyd, S.P.: Ordered cycle lengths in a random permutation. Trans. Am. Math. Soc. 121,

340–357 (1966)

41. Wilcox, R.R.: A review of the beta-binomial model and its extensions. J. Educ. Stat. 6(1), 3–32 (1981)

42. Xu, Y.: Tight frame with Hahn and Krawtchouk polynomials of several variables. SIGMA symmetry

integrability. Geom. Methods Appl. 10, 19 (2014). Paper 019

43. Zhong, C.: A Ewens deformation of a Bose-Einstein Markov chain (in prep)

44. Zhong, C.: PhD thesis, Stanford University (in progress)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

123


