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Abstract

Consider the following experiment: a deck with m copies of n different card types is randomly shuffled,
and a guesser attempts to guess the cards sequentially as they are drawn. Each time a guess is made, some
amount of ‘feedback’ is given. For example, one could tell the guesser the true identity of the card they just
guessed (the complete feedback model) or they could be told nothing at all (the no feedback model). In this
paper we explore a partial feedback model, where upon guessing a card, the guesser is only told whether
or not their guess was correct. We show in this setting that, uniformly in n, at most m + O(m** log m)
cards can be guessed correctly in expectation. This resolves a question of Diaconis and Graham from 1981,
where even the m = 2 case was open.
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1. Introduction

Let &, be the set of words 7 over the alphabet [#n] :={1,2,. .., n} where each character in [#]
appears exactly m times in 7. We think of 7 as some way to shuffle a deck of cards which has m
suits and 7 card types. For example, a standard deck of 52 cards has n = 13 values (Ace, Two, ...,
King), each appearing m = 4 times. We find it helpful to think that m is for multiplicity and » is for
number of values. We refer to the elements of G, , as permutations, even though for m > 1 this
is technically not the case. If X is a finite set, we write x ~ X to indicate that x is chosen uniformly
at random from X.

Consider the following experiment: a deck with m copies of n different card types is randomly
shuffled according to some & ~ &, ,, and a guesser attempts to guess each card as it is drawn, and
the drawn card is discarded after the guess is made (i.e. this is sampling without replacement).
Each time a guess is made, some amount of feedback’ is given. For example, one could tell the
guesser the true identity of the card they just guessed (the complete feedback model) or they could
be told nothing at all (the no feedback model). This can also be viewed as a one player game where
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2 P. Diaconis et al.

the guesser tries to either maximise or minimise the number of times their guesses are correct,
and we will often refer to these models as games.

These sorts of models were considered by Blackwell and Hodges [2] and Efron [10] in relation
to clinical trials. Here, aiming for a fixed number of subjects, say 100, in a medical trial comprising
say 4 treatments, a deck of 100 cards with 25 labelled with each treatment is prepared. Subjects
are assigned to treatments as they come into the clinic, sequentially, using the next card (which is
then discarded). Hospital staff has the option of ruling subjects ineligible. If the staff has strong
opinions about the efficacy of treatments and observes which treatments have been given out, they
may guess what the next treatment is and bias the experiment by ruling a sickly subject ineligible.
It is clearly of interest to be able to evaluate the expected potential bias.

Card guessing is also a mainstay of classical experiments to test ‘Extra Sensory Perception’
(ESP). The most common experiment utilises a deck of 25 cards where there are 5 copies of 5 dif-
ferent types of cards (so m = n = 5 in our language) where the subjects iteratively try and guess the
identity of the next card, and experimenters routinely give various kinds of feedback to enhance
‘learning’. Diaconis [6] and Diaconis and Graham [7] give a review of these problems.

In the no feedback model every strategy guesses m cards correctly in expectation. The distri-
bution of correct guesses depends on the guessing strategy: if the guesser always guesses the same
card type then the variance is 0, and it can be shown that the variance is largest if the guesser uses
a permutation of the mn values, see [7].

The complete feedback model is more complicated, but optimal strategies were determined
in [7]. Given a strategy G for the guesser, let C(G, ) denote the number of correct guesses the
guesser gets in the complete feedback model if they use strategy G and the deck is shuffled accord-
ingto . Let Cnt)n =maxg E[C(G, )], where w ~ &,, , and the maximum ranges over all possible
strategies G. Similarly define C,, , = ming E[C(G, «)]. The following is proven in [7].

Theorem 1.1. [7]. If G (respectively G~ ) is the strategy where one guesses a most likely (respectively
least likely) card at each step, then Cf,f,n =E[C(G*, 7r)]. Moreover,

Ci,n =m= ]\/IJM/a + On(ﬂ),

where M, = ©(/logn) is the expected maximum value of n independent standard normal
variables.

One can also consider variants of these models where m is chosen according to some non-
uniform distribution. For m = 1 the case when  is obtained from a single riffle shuffle is studied
by Ciucu [5] (no feedback), and Liu [12] (complete feedback). Analysis under repeated ‘top to
random shuffles’ is done by Pehlivan [13]. We emphasise that for our results, we only consider the
uniform distribution & ~ G, .

The main focus in this paper is on a feedback model called the partial feedback model, which
returns an intermediate amount of information to the guesser. After each guess, the guesser is
only told whether their guess was correct or not (and thus not the identity of the card if they
were incorrect). This feedback protocol was recommended when conducting ESP trials and is a
natural notion of bias if card guessing experiments are performed with experimenter and subject
in the same room. Given a strategy G for this game, let P(G, ) denote the number of cards the
guesser guesses correctly using strategy G if the deck is shuffled according to 77, and define P;f, , =
maxg E[P(G, w)] and P,, , = ming E[P(G, x)] for the maximum and minimum expected number
of correct guesses possible, respectively.

The partial feedback model is significantly more difficult to analyse than the other two models,
and relatively little is known about it. This is in large part due to the fact that we do not understand
the optimal strategy in this game, and in particular it is not the case that the strategy Gt of guessing
a maximum likelihood card satisfies E[P(GT, )] = Pnt” for m > 2, see [7]. We note that bounds
for the strategy G7 in this model were studied recently by Gural, Simper, and So [11].
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Define N5, for the no feedback model analogous to how C;i; , and P}, were defined, and note
that J\/,in =m. One can easily show that N}t <P} <C[  forall m and n, with the reverse
inequalities holding for — instead of +. In particular, by Theorem 1.1 and the fact that VX, = m,
we obtain Pnjj,n = (1 + o(1))m as m goes to infinity, for any fixed n. Motivated by this, our focus
for this paper will be in bounding P,jn[,n when m is fixed and n is large. As a point of comparison, we

first establish the value of C,ﬂ,f,n in this regime. Here and throughout we let log denote the natural
logarithm.

Theorem 1.2. For m fixed and n — oo, we have
C;L')n =(1+o(1))Hy, logn,
where Hy, =Y 1, j~1 is the mth harmonic number, and
Copp=O@m™1/m),

The case m =1 of Theorem 1.2 was proved in [7], and we give its simple proof to provide
some intuition. Assuming we always guess a card that is in the deck, the chance of getting the first
guess correct is 1/n, then the second is 1/(n — 1), and so on. Thus the expected value is exactly
1+1/24---+1/n=logn+ O(1) as claimed.

Theorem 1.2 shows that for any fixed m, in expectation the guesser can achieve arbitrarily many
or few correct guesses as n grows in the complete feedback model. In sharp contrast, we show that
the guesser cannot obtain arbitrarily many correct guesses in the partial feedback model.

Theorem 1.3. If n is sufficiently large in terms of m, we have
Pr‘n“’n =m+ O(m>* logl/4 m).

This resolves a 40-year-old problem of Diaconis and Graham [7], which was open even for m =
2 (i.e. a deck with composition {1, 1,2, 2, . . ., n, n}). In particular, this shows that the information
from the partial feedback model is not enough for the guesser to correctly guess asymptotically
more cards compared to when they are given no feedback at all. We suspect that the error term
in Theorem 1.3 can be improved to m!/2+to(1) wwhich would be best possible; see the discussion in
Section 4.

We conclude this introduction with some brief remarks about the related literature. In the
partial feedback model, the enumeration of the number of permutations consistent with a given
sequence of guesses can be reduced to the evaluation of certain permanents, see Chung, Diaconis,
Graham, and Mallows [4] and Diaconis, Graham, and Holmes [8]. These papers contain applica-
tions to the partial feedback model, as well as a fascinating ‘persistence conjecture’: whenever the
guesser guesses a card type i incorrectly, it is optimal for them to continue to guess i in the next
step.

Throughout, we focused on evaluating the expected number of correct guesses. The distribu-
tion of the number of correct guesses is treated in [7], see also Proschan [14]. A variety of other
feedback mechanisms have also been explored, such as less feedback if the guesser is doing well,
and telling the guesser that their guess is ‘high’ or ‘low), see Samaniego and Utts [15].

Our evaluation for these models gives one point for each card guessed correctly. It is also nat-
ural to consider weighted scores: a correct guess early on might be weighted more heavily than a
correct guess towards the end since more information is available to the guesser later on. This is
known as skill scoring and is discussed in [7] and Briggs and Ruppert [3].

Organisation. This paper is organised as follows. In Section 2, we prove Theorem 1.2 by analysing
the number of correct guesses made by the maximum (or minimum) likelihood guessing strat-
egy, which is guaranteed to be optimal by Theorem 1.1. In Section 3, we prove our main result
Theorem 1.3 that one cannot do much better than randomly guessing in the partial feedback
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model. The key ingredient is Lemma 3.1, which shows that in ‘typical’ game states, no matter what
card the guesser guesses the probability of guessing correctly is at most (1 + o(1))n~!. Finally, in
Section 4 we make some concluding remarks, highlighting some of the many open problems left
in this area.

2. The complete feedback model

In this section we prove Theorem 1.2. Throughout this section we treat m as a fixed value, and
hence the implicit constants in our asymptotic notation are allowed to depend on m.

Lemma 2.1. For 1 <j<m, let Tj be the smallest value t such that m; is the jth occurrence of
some card type. Equivalently, it is the largest t such that {1, ..., m—1} contains no card type with
multiplicity at least j. If t = yn'~Vi (here y > 0 may depend on n), we have

P[Tj> 1] =1~ 0(),
P[T; > t] = O(y ).
We postpone this proof for the moment and show how this implies the result.

Proof of Theorem 1.2. We start with the proof of the bounds on C,, , (the lowest expected num-
ber of correct guesses possible with complete feedback), and recall from Theorem 1.1 that this
equals E[C(G™, )] where G is the strategy of guessing a least likely card at each stage. Let Y;
denote the indicator function for successfully guessing 7, and let J; denote the largest multiplicity
of a card type appearing in {1, ..., m;—1}. Because there are mn — t 4 1 total cards in the deck
when one guesses m+, we have

m m .
11— _ . o m—j ey
PIYe=11=) PIYi =1 =]IPUs ==} =Pl =]
j=0 j=0
Using 1 <m — j < m for j < m, we find
mP
PJ; < m] <PV, =1] < U < m].
mn—t41 mn—t+1
Note that J; < m if and only if {m,,..., w1} contains no card with multiplicity m, which

happens if and only if Ty, > t (since T}, is the largest ¢ for which this occurs). Further, T,, <t
whenever t > (m — 1)n + 1 (when there are only n — 1 cards left in the deck one of the cards must
have appeared m times), and we always have t > 1 > 0. In total we find that

(mm) " 'P[Typ > 1] <P[Y, =1] < mn™'P[Tyn > 1].
Because C(G~, ) = >_ Yy, we conclude by linearity of expectation that
(mn) ™'Y P[T, =1 <C,p, <mn™' Y PITy > 1],

so it will be enough to show Y P[T,, > t] = @(n!~1/m).
For m =1 we have T}, = 1 and the result is immediate, so assume m > 2. By Lemma 2.1, there

exists a sufficiently small constant ¢ > 0 such that P[T}, > cnt—1/m] > % Using this and the fact
that P[T,, > t] > P[T), > t + 1],

1
> P[Tw>t]=cn'"/"P[T, = cn' V"] > Ecnl_l/’",

proving the lower bound.
For the upper bound, by Lemma 2.1, for all y > 1,

P[T, > yn' Y™ <O(y™™) < O(y 7).
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Using P[T,,, > t] <1fort < n1=1/m and the above inequality, we find

oo (p+l)ni=l/m—1

ZIPT>t]<n11/m+Z o 0™

_pnl 1/m

[o.¢]
— nl—l/m + nl—l/m Z O(p—Z) — O(Yll_l/m),
p=1
giving the desired result.
We now turn to C,, . Let X; be the indicator function of the event that we guess x; correctly

using strategy GT. Define J; to be the largest multiplicity of a card type in {&mn, . . ., Tmn—r+2}
and T]’ the largest value t such that {m sy, . . . , T mp—r42} contains no card type with multiplicity at

least j. Similar to before we find that J; > j if and only if T} < t and that

m . m m
J r_ 1 ro 1
PXpp—tr1=1] = —PJ,=jl=—— P, >jl=—— P[T; < t],
[mﬁllghlmﬂbd;wjtqg[ﬁ]

where this last step used that Tj and TJ’ have the same distribution. Using this, Zi\lzl k~!=logN +
0O(1), and log m = O(1), we find

= ZE[an—tH Z Z
_ZZP[T =5 Z —

t>s
=ZZIP’[T]-=S log mn —log s+ O(1))
j s
=mlogn+ O(1) — ZE[log T;].
j

P[T; < t] P[T; =]

—ZZZ -

s<t

Thus to get the desired result it will be enough to show that E[ log Tj] = (1 —j ! 4 o(1)) log n
for all j. From now on we fix some 1 < j < m. Using summation by parts, we find for any 0 < ¢ <
(2m)~! that

EllogTj] =Y logtP[Tj=t]=Y logt(P[Tj > t — 1] — P[T} > ])

mn

=) PITj>t](log(t+1) —logt) = Y P[T;> t]log (1 +1t")
t=1 t=1

=0(1)+ Y P[Tj> 1]t 1)
t=1

=0+ Y A—oW)t+ > P> )
t<nl=i"1-¢ t>nl=iml e

where we used log (1 + H=t"14+ 00 2) to get (1) and Lemma 2.1 with y <n™¢ to get (2). By
ignoring the second sum in (2), we see that E[log T;] > (1 —j’1 —¢)logn+ o(log n). To get an
upper bound, we use (1), the bound P[T; > t] < 1, and Lemma 2.1 with y > n® to get

https://doi.org/10.1017/50963548321000134 Published online by Cambridge University Press



6 P. Diaconis et al.

E[logTjI<OM+ Y ¢+ > ot ™)=001)+1—j"+e)logn+o(logn).

t§n17j71+s tznl—j*hrg
By taking ¢ to be arbitrarily small, we find that E[log Tj] = (1 — j~! + o(1)) log n for all j, giving
the desired result. 0

It remains to prove Lemma 2.1.

Proof of Lemma 2.1. The first bound is trivial if ¢ is of order n, so assume ¢ = o(n). Let F;(i) with
i € [n] be the event that {my, ..., m} contains at least j copies of i, and let F; = U; F;(i). Observe

that T; > ¢ + 1 if and only if F; does not occur, so it will be enough to show that P[F;] = 0(y/) for
t = yn!~1J, Indeed, by a simple counting argument we find

#1501 =32 () (05 ) ot i = 2O =00 =007

J'zj

where this second to last step used tn = o(1) when taking the sum. Taking the union bound over
all i € [n] gives the first result.

For a tuple x = (x1, . . ., xj) withl <x; <---< xj <t, let A(x) be the Bernoulli variable which
is 1 if my, is the same value for all p, and let S=}_  A(x). Observe that T; >t + 1 if and only
if $=0, ie. if no set of j indices all have the same card type. Thus it will be enough to show
P[S = 0] = O(y /), which we do by using Chebyshev’s inequality. To this end, let p, = P[A(x) = 1]
and pyy = P[A(x) = A(y) = 1] for x # y. If u and o2 denote the mean and variance of § = > Ax),
then by linearity of expectation we get

o2 =E[S? pr+22pxy pr—zszpy<u+2z Pry = Papy) (3)

x<y X<}/ x<y
To compute u, note that for all x we have
m—1 m—j+1 (m — 1)!(mn — j)!

= e — _ 1_
px_mn—l mn_j+1_(M—j)!(mn—1)!_®(n 7, (4)

and as there are (Jt) options for x, we have

w=0(#En""7)=03)). (5)

To bound the rest of o2, fix some tuple x and let Vi = {y:|{xy, . .. s %} N {y1, ..., i}l =k} for
0 <k <j— 1. By symmetry, we see that

2)  (pry — pxpy) = Q)ZZ (Pxy — PxPy). (6)

x<y k=0 yeVx

Thus it will be enough to bound the inner sum for each k. First consider the case k > 0. In this

case py,y is the probability that some given 2j — k positions of 7 take on the same value. This is 0
if 2j — k > m, and otherwise by the same reasoning as above

(m— 1)!(mn — 2j + k)!

px,yz(m_z. Y EEEY

j + k)!(mn — 1)!

— O(n1_2j+k).
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Note that | V| = O(#7K), s0 in total this part of the sum is at most O(#~kp=2tk+1) Because t =
O(m), this quantity is maximised (in order of magnitude) when k is as large as possible, so we have

j-1
YD by —pxpy) = Otn ™) = Oy n 717 1i) = O(y n 171,
k=1 yeV
where this last step used j < m.
It remains to deal with the case k = 0. For y € V), let p;)y be the probability that A(x) = A(y) =1
and 7, =m, , forall g, q and py, the probability that A(x) =A(y)=1and my, #n yy for any
q, q . Observe that pyy = p', , + pY ,. By the same reasoning as above, we find that p/, , = 0if 2j >

(m—1)(mn—2j)!

n=aima= D1 = O(¥n=%*1). From this and the same reasoning as before,

m and otherwise it is
we get

S Py = ORIn2+1) = O +1) = O FH1-1/m)
yGVO

It remains to bound Z),e Vo px)y — PxPy> and here we will need to be somewhat careful. By first
conditioning on the event A(x) = 1, we see that
v mn —m m—1 m—j+1 (m — 1)!(mn — 2j)!
Pxy = P mn—j mn—j—1 mn—2j+1_px (m —j)!(mn — j)!
(m — 1)!(mn — 2j)! .
= (m — )!(mn)! mny.
By (4) we have
(m — D!(mn — 2j)!
PxPy = Px (mn — 2])]

(m — j)!(mn)!
and using | V| = O(#) and (4) we find

Z (P Pxpy O(tj) pr- (m — D!(mn — 2j)!

ford (m — j)!(mn)!

-((mny — (mn — 2j)j)

=0 -n T n ™ n Y = 0(n~¥) = O(y/n 1) = O(n77) = O(n T+ 1/m),

where this second to last step used that yn'~ Vi< mn implies vl =0(n).
In total then by (3), (6), and (5), we have

o <40 - n 7Y™y = 4 O(yIn™ V™) = w + o).

In particular, for n sufficiently large we have o2 < 41 (and the asymptotic bound of the lemma is
trivial otherwise). Thus by Chebyshev’s inequality, we find

PIS=0] <PlIS— | > u'?0/2) < 4u~" = Oy ),
giving the desired result. O

3. The partial feedback model
3.1 Definitions and outline
Throughout this section we fix a guessing strategy G and a suitable ¢ = £(m) > 0, which will be

on the order of m~1/4 logl/4 m. Our goal is to prove for large enough # that E[P(G, x)] <(1+
O(g))m. In this section, we simply refer to the partial feedback model as ‘the game.’
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A history h=(g, y) of a completed game is a pair of vectors: the [n]-valued vector g of all mn
guesses made throughout the game, and the boolean vector y of feedback received, so that y; = 1 if
and only if the ¢-th card in the deck has value g;. A history at time t, denoted as h;, is a truncation
of some complete history & to the first ¢ values in each vector, representing all the information
available to the guesser after they make the t-th guess.

We let H denote a sample of the history of the game given the fixed strategy G and that the deck
is shuffled according to a uniform random & ~ &, ,,. Similarly H; denotes a sample of the history
of the game at time ¢.

Given a history h = (g, y), we write Y (h) := ||y|| for the total number of correct guesses, where
here and throughout ||v|| := Y_ |v;] is the 2! norm. Define a;(h) := |{t:g: = i}| to be the number of
times card type i has been guessed, and m;(h) :== m — |{t:¢; = i and y; = 1}| to be the number of
copies of card i left to be found in the deck. For a partial history h;, the values Y(h;), a;(h;), and
m;(h;) are defined in the same way.

We are ready to outline the proof. The first and most important step is to prove the following
‘pointwise’ lemma, which roughly shows that for all typical histories /1, the probability that the
t-th guess is correct is at most (1 + o(1))n~!.

Lemma 3.1. For any history h;_y of the game up to time t — 1 and any i € [n],
mi(he—1)
mn — ai(hy—1) = Y(h—1)’

Note that the fraction on the right-hand side is a natural estimate for P[w; = i|H;—; = h;—1]:
the numerator is exactly the number of copies of i in the deck that have yet to be found, and the
denominator is approximately the total number of positions amongst [m#n] at which such a copy
could lie (this may not be exact because a;(h;—1) and Y(h;_;) can count the same position twice).
We use a simple bijective argument to prove Lemma 3.1 in Section 3.2.

The second step of the proof is to show that the term Y(H;_;) in Lemma 3.1 is negligible with
high probability, which is done by the following lemma.

Ples=ilHi—y =hi—1] <

Lemma 3.2. For any 0 < A <1/6, n> 1152172, and any fixed strategy G,
P[P(G, ) > Amn] <2e” ™",

This bound is proved in Section 3.3 using Lemma 3.1 and Chernoff bounds. Combining
Lemmas 3.1 and 3.2, and since Y (h;—1) < Y(h), we see that with high probability for any ¢ > 0,

. m;i(H¢—1)
Plme =1l = T — ey

We now break guesses into three types, based on how many times a given card i has already
been guessed. We say that guess t, say with g =1, is subcritical if a;(H;—1) < emn, critical if
emn < aj(He—1) < (1 — &)mn, and supercritical it a;(H;—1) > (1 — &)mn. Note that if even a sin-
gle supercritical guess is made, then almost all guesses must have been of that same card type,
which makes the situation easy to analyse.

By adaptively renumbering the cards during the game if necessary, we may assume without loss
of generality that if there are k card types for which critical guesses are made, then they are exactly
the first k cards 1, . . ., k. For any given history h, let by(h) be the number of subcritical guesses
made, let b;(h), 1 <i <k be the number of critical guesses made with g; = i, and let b, (h) be the
number of supercritical guesses made. Define Y (h), Y;(h), and Yo, (h) to be the number of correct
guesses made in each regime.

We finish the proof by showing with high probability that each of the Y;(H) values are not
much larger than their means. The subcritical guesses Yo(H) are handled in Section 3.4, the critical
guesses Y;(H) in Section 3.5, and the supercritical regime is simple enough to not merit its own
subsection. The proof is then completed in Section 3.6.
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Throughout the proof we will often omit floors and ceilings for ease of presentation. For an
event E we let E denote its complement. For real valued random variables X and Y, we write
X > Y if X stochastically dominates Y, i.e. if for all x € R, P[X > x] > P[Y > x]. We also recall a
standard variant of the Chernoff bound, a proof of which can be found in [1].

Lemma 3.3. [1]. Let B(N, p) be a binomial random variable with N trials and probability of success
p. Then for all A > 0,

P[B(N, p) > (1 + A)pN] < e 2*'PN.

3.2 The pointwise lemma

In this section we show Lemma 3.1, which is equivalent to an upper bound on the number of w €
& n,n for which at each position up through t, either 7, is specified or a single value is disallowed
for ;. We reduce to the following setup.

Definition 3.4. Let m = (m,,...,m,) and a=(ay, ..., a,) be vectors of non-negative integers
satisfying ||a|| < |m|. An m-permutation is a word of length ||m| over alphabet [n] where i
appears exactly m; times. An (m, a)-permutation 7 is an m-permutation where the first a; terms
are not 1, the next a, terms are not 2, and so on, so that exactly a; terms in 7 are forbidden from
taking value i.

It is significant that ||a|| < ||m| strictly in the definition of (m, a)-permutations, guaranteeing
that no restrictions are made on the value of the last term. Given a history h;—; up to time t — 1,
we let m be the vector (mq(hi_1), . .., m,(hi_1)), and a be the vector (ai(h¢_1), . . ., an(hi_1)). We
claim that the following bound on (m, a)-permutations implies Lemma 3.1.

Lemma 3.5. If fi(m, a) is the fraction of all (m,a)-permutations for which the last term is i,
then

Indeed, by definition fi(m,a) is the probability that the last card in m is exactly i
given the current history h;—;. But all positions past the first t — 1 are indistinguishable, so
fi(m, a) is also the probability that the next card (at index ¢) is i. Thus it suffices to prove
Lemma 3.5.

Proof of Lemma 3.5. It suffices to show the lemma for i = 1. First, we make a technical reduction
to the case a; = 0 for convenience. Let 7 be any sequence of a; cards in which 1 does not appear
and i appears at most m; times for all i > 1. Define an (m, a, 7)-permutation to be an (m, a)-
permutation where the first a; terms agree with 7.

Define f;(m, a, 7) to be the fraction of (m, a, 7)-permutations, which have last term i. Since
f1(m, a) is some convex combination of the values f;(m, a, 7), it suffices to show that for every
specific choice of 77,

mi
lm|| —ar”

fl(m>a)ﬁ)5 (7)

Let m’ be the vector of card counts remaining when the cards in 7 are taken out, and
let 2’ =(0,az,a3,...,a,), so that an (m, a, 7)-permutation is just # concatenated with an
(m’, a)-permutation 7. Since m} < my, it suffices to show

/

m
film',a’) < 1/ ,
[m/|
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10 P. Diaconis et al.

which is just the case a; =0 in the original lemma statement. Thus, it remains to show that if
a; =0, we have

fitm,a) < —L 8)

~ |lml|
In fact, we will prove that for any i,

filma) _my
film,a) = m;’

9)

The case i = 1 is trivial, so we just need to prove this for i > 1, and without loss of generality we
can assume i = 2. We divide the (m, a)-permutations 7 which end in either 1 or 2 into classes as
follows. For each m that ends in either 1 or 2, consider all positions past the first a,, which contain
either a 1 or a 2. Let S(7r) denote the set of 7" obtained by cyclically shifting the 1’s and 2s in these
positions within 7, fixing all other values. Note that with this we never move a 1 into a forbidden
position (as a; = 0) nor a 2 into a forbidden position (as we only shift past the first a, positions).
It follows that every 7w’ € S(;r) is a (m, a)-permutation ending in 1 or 2.

Note that the total number of 2’s past the first a; positions is exactly m;, since every 2 appears
past the first a,, while the total number of 1’s past the first a, positions is at most m, since there
are exactly m; s in total. Thus, we see that the fraction of 7" € S(7r) which end in 1 is at most
ml”}r‘mz for every 7. As the S(;r) partition all possible (m, a)-permutations 7 which end in either 1
or 2, (9) follows for i = 2.

Finally, to derive (8) it suffices to write (9) as

%ﬁmmfﬂmw

and sum over i, noting that ), fi(m,a)=1 since every (m,a)-permutation must end in
some i. O

3.3 Weak bound on Py, ,

The next step is to show that the Y(h;_;) term in Lemma 3.1 is negligible with high probability.
Since Y(h;—1) is bounded by just Y(h), the total number of cards guessed correctly, it suffices to
show a weak upper bound on the total number of correct guesses in the form of Lemma 3.2. To
do this we first show the following.

Lemma 3.6. Let By, ..., By be (not necessarily independent) Bernoulli random variables with

P[B;=1|)_,_, Bs=x] <p forallt and x. Then th;l B, is stochastically dominated by a binomial
random variable B(k, p).

This lemma can be proved by induction, with the induction step using the following
observation.

Lemma 3.7. Let X, X', Y, Y’ be integer-valued random variables such that X' and Y' are {0,1}-
valued, X = Y, and for all x € Z, (X'|X = x) = (Y'|Y = x). Then,

X+X >Y+Y.

Proof. We would like to show that for any y € Z, P[X + X' > y] = P[Y + Y’ > y]. But clearly
PX+X >y]=PX>y] +P[(X=y - 1) A (X' =1)]
=PX>y]+PX=y—1PX'=1|X=y—1]
>PX>y]+PX=y—1]P[Y =1]Y =y —1]
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>PY>y]+P[Y=y—1]P[Y =1|Y =y —1] (10)
=P[Y+Y >yl
Here only (10) is worth explaining. Since X > Y we have P[X > y] > P[Y > y] and P[X > y] +
P[X=y— 1] >P[Y > y] + P[Y =y — 1], so by taking convex combinations of these two inequal-

ities, we have for any t€[0,1], P[X>y] +P[X =y — 1] > P[Y > y] + tP[Y =y — 1] as well.
Taking t =P[Y' =1|Y = y — 1] completes the proof. O

Lemma 3.6 follows by iterating Lemma 3.7 with X =), _, B;, X' = By, Y a binomial random
variable B(t — 1, p), and Y’ a Bernoulli random variable with probability p.

Proof of Lemma 3.2. We first show that few correct guesses are made in the first third of the
game, i.e. when t < mn/3. In this case we apply Lemma 3.1 to find that for any i € [#],

mi(he—1) - m _3
mn — aj(hy—1) — Y(hy—1) — mn—mn/3 —mn/3 n’

Plr: =ilHi—1 =hi1] <

since up to this point there have been at most mn/3 correct guesses and each i has been guessed
at most mn/3 times. It follows that for ¢ < mn/3, conditional on any h;_;, the probability that
the t-th guess is correct is at most 3/n. In particular the ¢-th guess is correct with probability at
most 3/n regardless of the value of Y(H;_1), so by Lemma 3.6 the number of correct guesses in
the first third of the game Y(H,,,3) is stochastically dominated by a binomial random variable
B(mn/3,3/n). Applying Lemma 3.3 gives for all § > 0,

PlY(Hpmn3) > (14 8)m] <P[B(mn/3,3/n) > (14 8)m] < e8'm/2,
Taking § =An/4 — 1> An/6, we find

PLY (Hpn/3) > Amn/4] < e 0172, (11)

Let T be the set of i such that a;(h;) < mn/4 for all t, and note that there are at most four
card types not in T (since only mn total guesses are made). Let E be the event that Y(H,;,/3) <
Amn/4, and observe that conditional on E we have Y(H;) < (2/3 + A/4)mn for all ¢ since at most
2mmn/3 correct guesses can be made in the last 2/3 of the game. Thus by Lemma 3.5 and the above
observations, we have for i € T, all t > mn/3, and any possible history h;_; for which E occurs,

m 24

P =ilHi_1=hi1] < =0
[we=ilH—1 = h 1]_mn—mﬂ/4—(2/3"‘)‘/4)’"”_ "

(12)

where we used L < 1/6.
Let Y/'(H) denote the total number of correct guesses of card types i € T and let Y”(H) denote
the total number of correct guesses involving i ¢ T. Observe that

Y(H) = Y'(H) + Y'(H) < Y'(H) + 4m < Y'(H) + Amn/2,

where this last step used # > 8A~! (which is implicit in our hypothesis of the lemma). By (12) we
see that conditional on E, Y'(H) — Y(H,ny3) is stochastically dominated by a binomial random
variable B(2mn/3, 24/n). Thus

P[Y(H) > Amn] <P[Y'(H) > Amn/2] <P[Y'(H) — Y(Hyn/3) > Amn/4|E] + P[E]
< P[B(2mn/3,24/n) > hmn/4] + P[E] < e~ mn* /1152 4 o=d*mn?/72

where the last inequality used the Chernoff bound with § =An/64 — 1> An/96 and (11). Using
n > 1152).72 gives the desired result. O
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12 P. Diaconis et al.

3.4 Concentration of subcritical guesses

In this section we handle the subcritical guesses. If X; denotes the indicator variable that the
t-th subcritical guess is correct, then intuitively the X; variables are dominated by Bernoulli ran-
dom variables with parameter p = m, so the total number of correct subcritical guesses is
dominated by a binomial distribution B(by(H), p), where we recall that by(H) is the number of
subcritical guesses in history H.

We would like to say that this binomial distribution is close to its expectation with high proba-
bility. It is not enough, however, to prove this for a fixed binomial distribution. The main technical
issue is that the number of trials by(H) can be chosen adaptively by the guesser. For example, they
can use a strategy where they repeatedly make subcritical guesses until they have guessed an above
average number of cards correctly. This is essentially equivalent to the guesser simulating a sum-
mation of Bernoulli random variables ) ;") B;, and then choosing some number of trials b < mn
such that the number of correct subcritical guesses is Zle B:. We thus wish to show that for B; a
sequence of independent Bernoulli variables, Zle B; is not much larger than its expectation for
all large b. Thus, no matter how the guesser chooses b they can never do much better than pb.

A weak upper bound for this probability comes from applying the Chernoff bound to all b <
mn and then using a union bound. Unfortunately when p is very small this upper bound is not
effective. A more careful application of the union bound gives the following technical result, where
we think of the Z;’s in its statement as centred binomial random variables.

Lemma3.8. Let0<p<1,¢ >0, andlet 0=Zy, Z1,Z,, . . . be random variables such that Z;, —
Zix_1 > —p for all k, and such that for all integers 0 <k’ < k and all . > 0,

P(Z; — Zy > ap(k — k)] < e PEK),

Then for all . > 0 and integers ky > ko > 2171, we have

8c'k
P[3k € [ko, k1], Zx > Apk] < ;k L gk chpko.
0

Proof. Define ¢ = %)»ko > 1. The idea of the proof is to take a union bound over the events Z;, —

Zy(a—1) > Ap¥ for all integers a < %, which will turn out to be strong enough to conclude the

stated result. To be precise, let 0 = x9g < x; < - - - < x, = k1 be any sequence of integers such that
%Z <x4 — xg—1 <{forall a > 0, and note that the number of terms in this sequence satisfies

8k
r<|[2k/t] < )\—k(l) (13)

Let E be the event that Z,, > %Apbﬁ for some b. Observe that Z,, = Zgzl Zy — Zixy_y> SO Ly, >
é)\pbﬁ implies that some a < b has
1 1
Zy, —Zx, | > gkpf > gkp(xa — Xa_1).
Thus by the union bound, the hypothesis of the lemma, the fact that x;, —x,—; > %Z, and
inequality (13), we have

,
1 1,2 8c'k; 1,3
P[E] < E P(Z, —Zy > —Ap(xy —x4-1)] <7-ce BHPL < 271 p=a5gchpko
[ ]_a:1 [ Xa Xa—1 8 P( a a 1)]_ = )\kO

We claim that if Z; > Apk for some k € [k, k1], then E occurs. Indeed, suppose such a k exists
and let b be the smallest integer such that k < x;, which in particular implies x;, — k < £. We also
have b > 2 because kg < k < b¢ and ko/¢ = 217! > 2, and thus
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1 1
k> —(b—1)¢> -bL. 14
25Dtz (14)

Note that Z,, — Z; > —£p because Zj — Zy_; > —p for all k. Using this, £ = %Ako < %Ak, and
inequality (14), we have

1 1
Zy, > Apk —Lp > E)4)]( > gpbg’
so E occurs. Thus,
8c'k
[Hk € [ko, kl] Zk > kpk] < I[D[E] < — 16_*0)»3}7](0

0
as desired. O

Using Lemma 3.8, we can show that subcritical guesses are well behaved.

Lemma 3.9. Ife < ¢ and n is sufficiently large in terms of €, m, then
b
[YO(H) - (14 400 )] de~2emeem,

for some absolute constants ¢, ¢’ > 0.

Proof. Given t < by(H), let ' be the smallest positive integer for which by(Hy) =, so that ¢
is the time of the t-th subcritical guess (note that ¢’ is itself a random variable), and let X; :=
Yo(Hy) — Yo(Hy_1). In other words, X; is the indicator of the ¢-th subcritical guess. Let E be the
event that Y(H) > emn, and define E; to be the event that Y(Hy) > emn. Observe that E implies
that no E; occurs.

Note that Yo(H) = Zfi(f{ ) X;. We modify Y (H) to ignore the events E; as follows. Define X; =

X; if E;_; does not occur and X; = 0 otherwise, and let Y = Zfi(fl) X;. WithL:= (1+ 48)@,
we find

P[Yo(H) > L] < P[(Yo(H) > L) A E] + P[E] = P[(Y) > L) A E] + P[E]
<P[Y; > L] +PE],

By Lemma 3.2 we know P[E] <2e™™", so for n sufficiently large the contribution of P[E] is
negligible. It remains to upper bound the probability that Y{ is large. Note that X; = 1 if and only
if the next term 7 is exactly the next guess i, the total number a;(Hy_1) of times i is guessed is at
most emn, and the total number Y(Hy_1) of correct guesses up to this point is also at most emn.
We now have by Lemma 3.1 that

m;i(Hy_1) m 1

PX, =11X,...,X,_,] < < = =p.
X =1] t_l]_mn—ai(Hﬂ_l)—Y(Ht/_l)_(1—28)mn (1—2¢e)n P

Define By, By, . . . , Bun to be independent Bernoulli random variables with P[B; = 1] = p and
define Z; = Zle B; — pk. By the above inequality, we see that given any history hy_; up to the
'-th guess, X] is stochastically dominated by By, and hence Z; stochastically dominates Y5_, X/ —
pk. Observe that

bo(H)

Y Xi—pbo(H) >

t=1

ebo(H)
(1—2&)n

(1+e)bo(H) v (1+4¢e)bo(H) _L

— Y, >
07 (1—26)n n
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14 P. Diaconis et al.

where the last step used ¢ < %. Because Zj,(p) stochastically dominates the above sum, we have

bo(H)
/ - ebo(H) ebo(H)
PlYy>L] <P ; Xi — pbo(H) > a—20m | = P |:Zbo(H) =20

ek
<P |:3k € [emn, mn], Zy > - 28)1’!] ,

Where this last step used that the number of subcritical guesses bo(H) must always be at least emn
and at most mn. -

Because Zj is a centred binomial distribution, P[Z; — Zp > Ap(k — k)] < e 2* P=K) for K/ <
k by Lemma 3.3, and also Z; — Z;_; > —p for all k by construction. If n is sufficiently large we
have emn > 2¢~!, so we can apply Lemma 3.8 to the above inequality with ¢ = % and c=1to
conclude

]P)[Y(/) >L] < %e_mﬁm < 168_26_5%847'1,
(1 —2¢)e -

with this last step using & < i.

3.5 Concentration of critical guesses

In the subcritical region we were able to bound the number of correct guesses by a bino-
mial random variable. For the critical region, we compare the number of correct guesses
with a hypergeometric random variable. We recall that a random variable S~ Hyp(N, m, b)
has a hypergeometric distribution (with parameters N,m,b) if for all integer 1 <k<m

we have
b\ (N —b\ /[N\ !
ris=i= () G0 (k) 1

Equivalently one can define this by uniformly shuffling a deck of N cards with m of these cards
being ‘good; and then letting S be the number of good cards one sees in the first b draws from the
deck. From this viewpoint, if we let R; denote the indicator variable which is 1 if the tth draw is a

good card, we see that S = Zle R; and that the R; can be defined by
m—(Ry+---+Ry—1)
N—-t+1 '

We can use the following lemma to bound random variables by hypergeometric random
variables.

P[R;=1|Ry,...,Ri—1] =

(16)

Lemma 3.10. Suppose Py, ..., Py and Ry, ..., Ry are {0, 1}-random variables satisfying

—(Py 4 ... 4P,
Pl = 1Py, Py < Pt P

N—-t+1

m—(Ry+---+Ri-1)

P[Ry=1|Ry,...,Ri—1] = .
[Rt =1|Ry t—1] N_irl

ThenRy +---+Ry>P1+-- -+ Py

The proof of Lemma 3.10 follows from induction and applying Lemma 3.7 with X =R; + - - - +
Ri—1,X' =R, Y=P;+---+4 P;_1,and Y’ = P;. The last thing we need is to use Lemma 3.8 in this
hypergeometric setting.
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Lemma 3.11. Let N > m? +m, define the indicator random variables Ry, Ry, . . ., Ry as in (16),
and let S, == Zle Ry for all b. Then for all b and A > 0,

2 m
P |:Sb > —(1 +I\)]»)bm:| < 36_%.

Further, for all . > 0 and integers by, by satisfying 22~V < by < by <N, we have

(1+A)bm 24by _23bym
< e I2N
N — Abg

P |:E|b € [bo, bl], Sb >

Proof. Observe that S, ~ Hyp(N, m, b). Thus if g := b/N, we have by (15) that

(AN (A =N\ N\ @NF (= N)"F m)
== () (00 )G) < e

= ()ea-ar (1 = )m = (21)61"(1 — gk N
—m

MY key _ ym—k
§<k)q(l q) 3,

where this last step used N — m > m2,

We thus see that P[S, > (1 + X)gm] - 37! is at most the probability that a binomial distribu-
tion with m trials and probability g of success has at least (1 + A)gm successes, which is at most
e iam/2 by Lemma 3.3. This gives the first result.

For the second result, define p=m/N and let Z,:= S, —pb. Note that S, — Sy ~

Hyp(N,m, b —b') for b> b’ (since this is just a sum of b — b’ of the R; variables), so the first
result implies

P(Zy — Zy > Ap(b— b)) = P[Sy — Sy > (1 + A)p(b — b)] < 3¢~ 24P,

We can thus apply Lemma 3.8 to the Z;, variables with ¢ =3 and c¢= —% to conclude the
result. O

Using this we can prove the following.
Lemma 3.12. Fori> 1 finite, ¢ < }1, and n sufficiently large in terms of €, m, we have

i(H
]P)I:YI(H) > (1 + 48)# —+ gzm] < C/E—Ze—cs4m

for some constants ¢, ¢ > 0 depending only on e.

Proof. Fix i positive and finite, and let X; := Y;(Hy) — Y;(Hy_) where ¢’ is the smallest positive
integer for which b;(Hy) =t (note that ¢ is itself a random variable). In other words, X; is the
indicator of the ¢-th critical guess of i. Define X; = X, if Y(H) < emn and define X; = 0 otherwise.

Let R; be random variables as in Lemma 3.10 with N = (1 — 2¢)mn, and define S, = Z,-bzl R;

for all 1 <b < (1 —2¢e)mn. By applying Lemma 3.5 (and noting that i was guessed emn times
before its critical guesses started), we see

m— X, +---+X,_))

PIX,=1|X],...,X,_;] <
Xy =11, 1l = (1—2e)mn—t+1
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16 P. Diaconis et al.

Thus we can apply Lemma 3.10 with X] taking the role of P;, and letting

L(b)=(1 +4‘«:)é +&2m
n

gives
bi(H)
P[Y;(H) > L(b;(H))] Z X; > L(b;(H))
t=1
bi(H)
P[Y(H) < emn] - P Z X > L(bj(H)) | + P[Y(H) > emn]
t=1

<1-P[Spen > Lbi(H)] + 267

<P [Elb € [1,(1 —28)mn], S, > L(b)] 4+ 2e7™M1,

where the second to last step used Lemma 3.2 and the last step used that the value of b;(H) must
liein 1 and (1 — 2&)mn.

To bound P [Elbe [1,(1 = 2&e)mn], Sy > L(b)], we partition [1,(1 —2¢)mn] into intervals
[bj—1, bj] (which we define below) and show that P [Elb € [bj-1, b, Sp > Lj(b)] is small for all
j» where L;(b) is some quantity upper bounded by L(j). Taking a union bound will then give the
desired result.

Let by := %82(1 — 2¢)mn > 2 for n sufficiently large. By taking A = 1 in Lemma 3.11, we have

2b0m :| __bom 2

P[Ebe [1, by, Sp > e*m] =P | Spy > ———— | < 3¢~ T29m —3em18'm, (17)
(1 —=2&)mn

Define b; = 2/by. Observe that for all b < bj we have g2 >l
2177 > 4¢ we find for n sufficiently large in terms of j,

(IT Thus for j such that

b b
Priabe [bj1, by, Sp > - +&2m] <P|3b e [bj_1,bjl, Sp> (1— 26 +2'F)—
n (1 —2&)mn

. b
<P |:E|b S [b];l, bj], Sp>(1 +21)—m:|

(1—2&)mn
_ Py 102
<48.2¢ PPU-20m =48.22 7 E™
<48e~le etm, (18)

where this third inequality used Lemma 3.11.
Let J = [log, (¢7!)| — 1, noting that we can apply the above bound up to by =2/"1¢?(1 —
2e)mn > ¢ 8(1 — 2¢)mn. Observe that for e < L,
(1+4¢e)b - (1+¢)b
n ~(1—-2¢&)n
Thus by Lemma 3.11 applied with A = ¢, we see that

1 +4e)bi| _ 2401 —2e)mn _ o)
n

—lte 4
e 5l2i20m < 9687262048(1725)8 m

P [Elb € [by, (1 —2&)mn], Sp >
Sb]

Taking the union bound over this, (17), and (18) for the at most — log, (&) < ¢~ ! values of i<]
gives the result. O
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3.6 Completing the proof
We need the following simple consequence of Lemma 3.2.

Lemma 3.13. If n is sufficiently large and A is an event with P[A] = p, then
E[Y(H)|A] < —1000logp + 1.

Proof. By reparametrising Lemma 3.2, we get that as long as n > 6000,
P[Y(H) > 1000mx] <e™ ™
for any x > 1. In particular, even after conditioning on the event A,
P[Y(H) > 1000mx|A] fp_le_mx.

Choosing xp = — % log p, we find that
o0

E[Y(H)|A] < 1000mxq —I—/ P[Y(H) > 1000mx|A]ldx

X0

o
< 1000mxg +/

X0

o0
e~ M%) gy — 1000mxg + / e ™dx <—1000logp + 1,
0
as mxp = — log p and the integral is absolutely bounded by 1. O

Finally we have all the tools to prove the main theorem.

Proof of Theorem 1.3. We will pick & = O(( log m/m)'/*), and show that for an appropriate such
¢ and n sufficiently large in terms of m and ¢, E[Y(H)] < (1 4 ¢)m. To this end, we define the
following three ‘atypical events: Ey, E1, and Exo.

o The event Ej is the event that Yo(H) > (1 + 4¢)bo(H)/n, in other words that significantly
more than the average number of subcritical guesses are correct.

« The event E; is the event that Y;(H) > (1 + 4e)b;(H)/n + ¢?m for some i > 1, in other words
that for some critical card i, significantly more than the average number of critical guesses
of card i are correct.

o The event E; is the event that there is at least one supercritical card. In this case, this single
card is guessed at least (1 — &)mn times.

Our goal will be to calculate the conditional expectation of Y(H) depending on whether or not

the exceptional events above occur. It will be convenient to group Ey and E; together and define
their union A = Ej V E;. Then,

E[Y(H)] =P[A]E[Y(H)|A] + P[A A Eso] - E[Y(H)|A A Eso] + P[A A Eoo JE[Y(H)|A A Eso]. (19)

We first observe that if none of the events Ey, E;, and E, occur, then the conditional expectation
of Y(H) is small. Indeed, we have

E[Y(H)|A A Ex] =E[Y(H)|Eo A E1 A Exo] < (14 5¢)m, (20)

since all guesses must be subcritical or critical, and there are at most ¢ ~! distinct critical card types
i

Define p; =P[E;] for j€{0,1}. We have by Lemmas 3.9 and 3.12 that for some absolute
constants ¢, ¢’ > 0,

4
PO < C/8_26_CS m

and

4
pl < 6/87367(:5 m
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where there is an extra multiplicative factor of ! in the second inequality because there may be
up to ¢! critical cards. In particular, we have

P[A] =P[Ey v E;] < pi=ce e '™, 1)
possibly with a different choice of ¢’. By Lemma 3.13 we find
E[Y(H)|A] < —1000log P[A] + 1
and so
P[A]E[Y(H)|A] < —1000P[A] log P[A] + P[A] < —1000plogp + 1,
for p defined above. By picking an appropriate ¢ = O((log m/m)'/*), we find
PIAIE[Y(H)|Al <m™ %D 41 <em (22)

for m sufficiently large.

Finally, to control the third term of (19), note that if there is a supercritical card, at most m
guesses are correct for that card (since there are a total of m copies of that card in the deck), and
at most emn guesses are made of any other card, so all other guesses are subcritical. In particular,
including guesses of the unique supercritical card, there at most bo(H) < 2emn subcritical guesses.
Thus, by the definition of Ey, we get

E[Y(H)|A A Ex] < m+ (1+4e)(2em) < (1 + 3e)m
In total, using (19), (20), (22), and the inequality above, we find that for m, n sufficiently large,
E[Y(H)] < em + P[A] - (1 + 5¢)m < (1 + 68)m = m + O(m>* log"/* m),

completing the proof. O

4. Concluding remarks

In this paper we proved results for two different feedback models. The first were bounds on Cm w
which is the most/least number of cards one can guess in the complete feedback model. For fixed
m we determined C;}, , asymptotically, and for C,, , we gave the correct order of magnitude.

Question 4.1. What is C,, , asymptotically?

We note that a more careful analysis of the proof of Theorem 1.2 gives that this value is
asymptotic to n~'E[T,,] with T, as in Lemma 2.1, so it suffices to compute this expectation.

Our main result was proving a tight asymptotic upper bound on P;{ ,, which is the most num-
ber of cards one can guess correctly in expectation in the partial feedback model. Specifically,
we proved PF = m+ O(m>*log m) provided  is sufficiently large. One consequence of this
bound is the followmg For m € G, let L(;r) denote the largest integer p such that there exist
iy <---<ipwith T =] forall 1 <j <p. Define L, , = E[L(x)] where & ~ G, .

Corollary 4.2. If n is sufficiently large in terms of m, we have

Lon<m-+ O(m>/* log m).
Proof. Consider the strategy G in the partial feedback model, which guesses 1 until you guess
one correctly, then 2 until you guess one correctly, and so on; and if you guess n correctly,

play arbitrarily for the remaining trials. Then P(G,m)> L(rr), and the result follows from
Theorem 1.3. O
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The best lower bound we can prove is L, , = Q(m/ log m). This is because with high proba-
bility there is a 1 in the first roughly n log m positions, a 2 in the next n log m positions, and so on.
We suspect that the upper bound of Corollary 4.2 is closer to the truth.

Conjecture 4.3. If n is sufficiently large in terms of m, we have

Lmn=m — o(m).

A trivial lower bound for P}, is m obtained by guessing a card type uniformly at random at
each trial. A more complicated strategy gives m + Q(m'/?) corrects guesses in expectation. We
rigorously prove this in [9], and here we give a brief sketch of the strategy. Guess 1 a total of mn/2
times. If you guessed at least %m + /m cards correctly, guess 2 for the rest of the game, otherwise
keep guessing 1. In the latter scenario we always get exactly m correct guesses. One can show that
the first scenario happens with some constant probability, and given this the expected number
of 2’s left in the second half of the deck is at least m/2, and in total this gives a lower bound of
m + Q(m'/?). We suspect that this lower bound is close to the truth.

Conjecture 4.4. For all ¢ > 0 and n sufficiently large,

P, =m+O0(m/*),

The current proof overshoots this bound at two points. The first is in Lemma 3.8 where we try
and bound the probability that an ‘adversarial’ binomial distribution deviates significantly from
its mean. Our proof of this lemma essentially only used a union bound, and it’s plausible that more
sophisticated techniques could decrease this error term.

The second point is in the bounds of Lemmas 3.9 and 3.12 where we bound the probability that
the subcritical or critical guesses are much larger than average. We note that by adding in an error
term of em to the lower bound of Yy in Lemma 3.9, one can decrease the probability from roughly

e=¢'M to ¢=¢'™ 5o the central issue is the critical case, and it seems like new ideas are needed here.
Another problem of interest is bounding P, ,, the fewest number of cards one can guess cor-
rectly in expectation in the partial feedback model. In [9] we prove P, , <m — Q(m'/?) using an
analog of the strategy for P, . We also prove an asymptotic lower bound for P, of 1 —e™" by
showing that one always has probablhty at least this of guessing at least one card correctly Thus
Pppn = (1), which is again in sharp contrast to the complete feedback model where one can
get arbitrarily few correct guesses in expectation. There is still a large gap between these bounds,
and as in Theorem 1.3 we suspect that the partial feedback model does not allow one to guess
significantly fewer guesses than in the no feedback model.

Conjecture 4.5. If n is sufficiently large in terms of m, then

Pran ~ M.

The central difficulty in this setting is that there does not exist an analog of Lemma 3.1 which
lower bounds IP[r; = i] given that we have not guessed i many times and that we have guessed few
cards correctly. For example, say we incorrectly guessed 1 a total of (m — 1)n, so the remaining
cards are m copies of 1. Then the probability that the next card is 2 is 0 despite the fact that we
have not guessed 2 at all nor guessed any cards correctly.
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