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the guesser tries to either maximise or minimise the number of times their guesses are correct,
and we will often refer to these models as games.

These sorts of models were considered by Blackwell and Hodges [2] and Efron [10] in relation
to clinical trials. Here, aiming for a fixed number of subjects, say 100, in a medical trial comprising
say 4 treatments, a deck of 100 cards with 25 labelled with each treatment is prepared. Subjects
are assigned to treatments as they come into the clinic, sequentially, using the next card (which is
then discarded). Hospital staff has the option of ruling subjects ineligible. If the staff has strong
opinions about the efficacy of treatments and observes which treatments have been given out, they
may guess what the next treatment is and bias the experiment by ruling a sickly subject ineligible.
It is clearly of interest to be able to evaluate the expected potential bias.

Card guessing is also a mainstay of classical experiments to test ‘Extra Sensory Perception’
(ESP). The most common experiment utilises a deck of 25 cards where there are 5 copies of 5 dif-
ferent types of cards (som= n= 5 in our language) where the subjects iteratively try and guess the
identity of the next card, and experimenters routinely give various kinds of feedback to enhance
‘learning’. Diaconis [6] and Diaconis and Graham [7] give a review of these problems.

In the no feedback model every strategy guesses m cards correctly in expectation. The distri-
bution of correct guesses depends on the guessing strategy: if the guesser always guesses the same
card type then the variance is 0, and it can be shown that the variance is largest if the guesser uses
a permutation of themn values, see [7].

The complete feedback model is more complicated, but optimal strategies were determined
in [7]. Given a strategy G for the guesser, let C(G, π) denote the number of correct guesses the
guesser gets in the complete feedback model if they use strategy G and the deck is shuffled accord-
ing to π . Let C+

m,n =maxG E[C(G, π)], where π ∼Sm,n and the maximum ranges over all possible

strategies G. Similarly define C−
m,n =minG E[C(G, π)]. The following is proven in [7].

Theorem 1.1. [7]. If G+ (respectively G−) is the strategy where one guesses a most likely (respectively
least likely) card at each step, then C±

m,n =E[C(G±, π)]. Moreover,

C±
m,n =m±Mn

√
m+ on(

√
m),

where Mn = �(
√

log n) is the expected maximum value of n independent standard normal
variables.

One can also consider variants of these models where π is chosen according to some non-
uniform distribution. Form= 1 the case when π is obtained from a single riffle shuffle is studied
by Ciucu [5] (no feedback), and Liu [12] (complete feedback). Analysis under repeated ‘top to
random shuffles’ is done by Pehlivan [13]. We emphasise that for our results, we only consider the
uniform distribution π ∼Sm,n.

The main focus in this paper is on a feedback model called the partial feedback model, which
returns an intermediate amount of information to the guesser. After each guess, the guesser is
only told whether their guess was correct or not (and thus not the identity of the card if they
were incorrect). This feedback protocol was recommended when conducting ESP trials and is a
natural notion of bias if card guessing experiments are performed with experimenter and subject
in the same room. Given a strategy G for this game, let P(G, π) denote the number of cards the
guesser guesses correctly using strategy G if the deck is shuffled according to π , and define P+

m,n =
maxG E[P(G, π)] andP−

m,n =minG E[P(G, π)] for themaximum andminimum expected number
of correct guesses possible, respectively.

The partial feedback model is significantly more difficult to analyse than the other two models,
and relatively little is known about it. This is in large part due to the fact that we do not understand
the optimal strategy in this game, and in particular it is not the case that the strategy G+ of guessing
a maximum likelihood card satisfies E[P(G+, π)]=P+

m,n form≥ 2, see [7]. We note that bounds

for the strategy G+ in this model were studied recently by Gural, Simper, and So [11].
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DefineN±
m,n for the no feedback model analogous to how C±

m,n andP
±
m,n were defined, and note

that N±
m,n =m. One can easily show that N+

m,n ≤P+
m,n ≤ C+

m,n for all m and n, with the reverse

inequalities holding for − instead of +. In particular, by Theorem 1.1 and the fact thatN±
m,n =m,

we obtain P±
m,n = (1+ o(1))m as m goes to infinity, for any fixed n. Motivated by this, our focus

for this paper will be in boundingP±
m,n whenm is fixed and n is large. As a point of comparison, we

first establish the value of C±
m,n in this regime. Here and throughout we let log denote the natural

logarithm.

Theorem 1.2. For m fixed and n→ ∞, we have

C+
m,n = (1+ o(1))Hm log n,

where Hm =
∑m

i=1 j
−1 is the mth harmonic number, and

C−
m,n = �(n−1/m).

The case m= 1 of Theorem 1.2 was proved in [7], and we give its simple proof to provide
some intuition. Assuming we always guess a card that is in the deck, the chance of getting the first
guess correct is 1/n, then the second is 1/(n− 1), and so on. Thus the expected value is exactly
1+ 1/2+ · · · + 1/n= log n+O(1) as claimed.

Theorem 1.2 shows that for any fixedm, in expectation the guesser can achieve arbitrarily many
or few correct guesses as n grows in the complete feedback model. In sharp contrast, we show that
the guesser cannot obtain arbitrarily many correct guesses in the partial feedback model.

Theorem 1.3. If n is sufficiently large in terms of m, we have

P+
m,n =m+O(m3/4 log1/4 m).

This resolves a 40-year-old problem of Diaconis and Graham [7], which was open even form=
2 (i.e. a deck with composition {1, 1, 2, 2, . . . , n, n}). In particular, this shows that the information
from the partial feedback model is not enough for the guesser to correctly guess asymptotically
more cards compared to when they are given no feedback at all. We suspect that the error term

in Theorem 1.3 can be improved tom1/2+o(1), which would be best possible; see the discussion in
Section 4.

We conclude this introduction with some brief remarks about the related literature. In the
partial feedback model, the enumeration of the number of permutations consistent with a given
sequence of guesses can be reduced to the evaluation of certain permanents, see Chung, Diaconis,
Graham, and Mallows [4] and Diaconis, Graham, and Holmes [8]. These papers contain applica-
tions to the partial feedback model, as well as a fascinating ‘persistence conjecture’: whenever the
guesser guesses a card type i incorrectly, it is optimal for them to continue to guess i in the next
step.

Throughout, we focused on evaluating the expected number of correct guesses. The distribu-
tion of the number of correct guesses is treated in [7], see also Proschan [14]. A variety of other
feedback mechanisms have also been explored, such as less feedback if the guesser is doing well,
and telling the guesser that their guess is ‘high’ or ‘low’, see Samaniego and Utts [15].

Our evaluation for these models gives one point for each card guessed correctly. It is also nat-
ural to consider weighted scores: a correct guess early on might be weighted more heavily than a
correct guess towards the end since more information is available to the guesser later on. This is
known as skill scoring and is discussed in [7] and Briggs and Ruppert [3].

Organisation. This paper is organised as follows. In Section 2, we prove Theorem 1.2 by analysing
the number of correct guesses made by the maximum (or minimum) likelihood guessing strat-
egy, which is guaranteed to be optimal by Theorem 1.1. In Section 3, we prove our main result
Theorem 1.3 that one cannot do much better than randomly guessing in the partial feedback
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model. The key ingredient is Lemma 3.1, which shows that in ‘typical’ game states, no matter what
card the guesser guesses the probability of guessing correctly is at most (1+ o(1))n−1. Finally, in
Section 4 we make some concluding remarks, highlighting some of the many open problems left
in this area.

2. The complete feedback model

In this section we prove Theorem 1.2. Throughout this section we treat m as a fixed value, and
hence the implicit constants in our asymptotic notation are allowed to depend onm.

Lemma 2.1. For 1≤ j≤m, let Tj be the smallest value t such that π t is the jth occurrence of
some card type. Equivalently, it is the largest t such that {π1, . . . , π t−1} contains no card type with
multiplicity at least j. If t = γ n1−1/j (here γ > 0may depend on n), we have

P[Tj > t]= 1−O(γ j),

P[Tj > t]=O(γ −j).

We postpone this proof for the moment and show how this implies the result.

Proof of Theorem 1.2. We start with the proof of the bounds on C−
m,n (the lowest expected num-

ber of correct guesses possible with complete feedback), and recall from Theorem 1.1 that this
equals E[C(G−, π)] where G− is the strategy of guessing a least likely card at each stage. Let Yt

denote the indicator function for successfully guessing π t and let Jt denote the largest multiplicity
of a card type appearing in {π1, . . . , π t−1}. Because there are mn− t + 1 total cards in the deck
when one guesses π t , we have

P[Yt = 1]=
m

∑

j=0

P[Yt = 1|Jt = j]P[Jt = j]=
m

∑

j=0

m− j

mn− t + 1
P[Jt = j].

Using 1≤m− j≤m for j<m, we find

P[Jt <m]

mn− t + 1
≤ P[Yt = 1]≤

mP[Jt <m]

mn− t + 1
.

Note that Jt <m if and only if {π1, . . . , π t−1} contains no card with multiplicity m, which
happens if and only if Tm ≥ t (since Tm is the largest t for which this occurs). Further, Tm < t
whenever t > (m− 1)n+ 1 (when there are only n− 1 cards left in the deck one of the cards must
have appearedm times), and we always have t ≥ 1≥ 0. In total we find that

(mn)−1
P[Tm ≥ t]≤ P[Yt = 1]≤mn−1

P[Tm ≥ t].

Because C(G−, π)=
∑

Yt , we conclude by linearity of expectation that

(mn)−1
∑

P[Tm ≥ t]≤ C−
m,n ≤mn−1

∑

P[Tm ≥ t],

so it will be enough to show
∑

P[Tm ≥ t]= �(n1−1/m).
Form= 1 we have Tm = 1 and the result is immediate, so assume m≥ 2. By Lemma 2.1, there

exists a sufficiently small constant c> 0 such that P[Tm ≥ cn1−1/m]≥ 1
2 . Using this and the fact

that P[Tm ≥ t]≥ P[Tm ≥ t + 1],
∑

P[Tm ≥ t]≥ cn1−1/m
P[Tm ≥ cn1−1/m]≥

1

2
cn1−1/m,

proving the lower bound.
For the upper bound, by Lemma 2.1, for all γ ≥ 1,

P[Tm ≥ γ n1−1/m]≤O(γ −m)≤O(γ −2).
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Using P[Tm ≥ t]≤ 1 for t ≤ n1−1/m and the above inequality, we find

∑

P[Tm ≥ t]≤ n1−1/m +
∞
∑

p=1

(p+1)n1−1/m−1
∑

t=pn1−1/m

O(p−2)

= n1−1/m + n1−1/m
∞
∑

p=1

O(p−2)=O(n1−1/m),

giving the desired result.
We now turn to C+

m,n. Let Xt be the indicator function of the event that we guess π t correctly

using strategy G+. Define J′t to be the largest multiplicity of a card type in {πmn, . . . , πmn−t+2}
and T′

j the largest value t such that {πmn, . . . , πmn−t+2} contains no card type with multiplicity at

least j. Similar to before we find that J′t ≥ j if and only if T′
j < t and that

P[Xmn−t+1 = 1]=
m

∑

j=1

j

t − 1
P[J′t = j]=

1

t − 1

m
∑

j=1

P[J′t ≥ j]=
1

t − 1

m
∑

j=1

P[Tj < t],

where this last step used thatTj andT
′
j have the same distribution. Using this,

∑N
k=1 k

−1 = logN +
O(1), and logm=O(1), we find

C+
m,n =

∑

t

E[Xmn−t+1]=
∑

t

∑

j

P[Tj < t]

t − 1
=

∑

j

∑

t

∑

s<t

P[Tj = s]

t − 1

=
∑

j

∑

s

P[Tj = s]
∑

t>s

1

t − 1

=
∑

j

∑

s

P[Tj = s]( logmn− log s+O(1))

=m log n+O(1)−
∑

j

E[ log Tj].

Thus to get the desired result it will be enough to show that E[ log Tj]= (1− j−1 + o(1)) log n
for all j. From now on we fix some 1≤ j≤m. Using summation by parts, we find for any 0< ε <

(2m)−1 that

E[ log Tj]=
mn
∑

t=2

log tP[Tj = t]=
mn
∑

t=2

log t(P[Tj > t − 1]− P[Tj > t])

=
mn
∑

t=1

P[Tj > t]( log (t + 1)− log t)=
mn
∑

t=1

P[Tj > t] log (1+ t−1)

=O(1)+
mn
∑

t=1

P[Tj > t]t−1 (1)

=O(1)+
∑

t≤n1−j−1−ε

(1− o(1))t−1 +
∑

t>n1−j−1−ε

P[Tj > t]t−1, (2)

where we used log (1+ t−1)= t−1 +O(t−2) to get (1) and Lemma 2.1 with γ ≤ n−ε to get (2). By
ignoring the second sum in (2), we see that E[ log Tj]≥ (1− j−1 − ε) log n+ o( log n). To get an
upper bound, we use (1), the bound P[Tj > t]≤ 1, and Lemma 2.1 with γ ≥ nε to get
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E[ log Tj]≤O(1)+
∑

t≤n1−j−1+ε

t−1 +
∑

t≥n1−j−1+ε

o(t−1)=O(1)+ (1− j−1 + ε) log n+ o( log n).

By taking ε to be arbitrarily small, we find that E[ log Tj]= (1− j−1 + o(1)) log n for all j, giving
the desired result.

It remains to prove Lemma 2.1.

Proof of Lemma 2.1. The first bound is trivial if t is of order n, so assume t = o(n). Let Fj(i) with
i ∈ [n] be the event that {π1, . . . , π t} contains at least j copies of i, and let Fj =

⋃

i Fj(i). Observe

that Tj ≥ t + 1 if and only if Fj does not occur, so it will be enough to show that P[Fj]=O(γ j) for

t = γ n1−1/j. Indeed, by a simple counting argument we find

P[Fj(i)]=
∑

j′≥j

(

t

j′

)(

mn− t

m− j′

)

(mn−m)!
(m!)n−1

·
(m!)n

(mn)!
=

∑

j′≥j

O(tj
′
n−j′)=O(tjn−j)=O(γ jn−1),

where this second to last step used tn= o(1) when taking the sum. Taking the union bound over
all i ∈ [n] gives the first result.

For a tuple x= (x1, . . . , xj) with 1≤ x1 < · · · < xj ≤ t, let A(x) be the Bernoulli variable which
is 1 if πxp is the same value for all p, and let S=

∑

x A(x). Observe that Tj ≥ t + 1 if and only
if S= 0, i.e. if no set of j indices all have the same card type. Thus it will be enough to show
P[S= 0]=O(γ −j), which we do by using Chebyshev’s inequality. To this end, let px = P[A(x)= 1]
and px,y = P[A(x)=A(y)= 1] for x �= y. Ifµ and σ 2 denote the mean and variance of S=

∑

A(x),
then by linearity of expectation we get

σ 2 =E[S2]−E[S]2 =
∑

x

px + 2
∑

x<y

px,y −
∑

x

p2x − 2
∑

x<y

pxpy ≤ µ + 2
∑

x<y

(px,y − pxpy). (3)

To compute µ, note that for all x we have

px =
m− 1

mn− 1
· · ·

m− j+ 1

mn− j+ 1
=

(m− 1)!(mn− j)!
(m− j)!(mn− 1)!

= �(n1−j), (4)

and as there are
(t
j

)

options for x, we have

µ = �(tjn1−j)= �(γ j). (5)

To bound the rest of σ 2, fix some tuple x and let Vk = {y:|{x1, . . . , xj} ∩ {y1, . . . , yj}| = k} for
0≤ k≤ j− 1. By symmetry, we see that

2
∑

x<y

(px,y − pxpy)=
(

t

j

) j−1
∑

k=0

∑

y∈Vk

(px,y − pxpy). (6)

Thus it will be enough to bound the inner sum for each k. First consider the case k> 0. In this
case px,y is the probability that some given 2j− k positions of π take on the same value. This is 0
if 2j− k>m, and otherwise by the same reasoning as above

px,y =
(m− 1)!(mn− 2j+ k)!
(m− 2j+ k)!(mn− 1)!

=O(n1−2j+k).

https://doi.org/10.1017/S0963548321000134 Published online by Cambridge University Press



Combinatorics, Probability and Computing 7

Note that |Vk| =O(tj−k), so in total this part of the sum is at most O(tj−kn−2j+k+1). Because t =
O(n), this quantity is maximised (in order of magnitude) when k is as large as possible, so we have

j−1
∑

k=1

∑

y∈Vk

(px,y − pxpy)=O(tn−j)=O(γ n−j+1−1/j)=O(γ n−j+1−1/m),

where this last step used j≤m.
It remains to deal with the case k= 0. For y ∈V0, let p

′
x,y be the probability thatA(x)=A(y)= 1

and πxq = πyq′ for all q, q
′ and p′′

x,y the probability that A(x)=A(y)= 1 and πxq �= πyq′ for any

q, q′. Observe that px,y = p′
x,y + p′′

x,y. By the same reasoning as above, we find that p′
x,y = 0 if 2j>

m and otherwise it is
(m−1)!(mn−2j)!
(m−2j)!(mn−1)! =O(tjn−2j+1). From this and the same reasoning as before,

we get
∑

y∈V0

p′
x,y =O(k2jn−2j+1)=O(tn−j+1)=O(γ n−j+1−1/m).

It remains to bound
∑

y∈V0
p′′
x,y − pxpy, and here we will need to be somewhat careful. By first

conditioning on the event A(x)= 1, we see that

p′′
x,y = px ·

mn−m

mn− j
·

m− 1

mn− j− 1
· · ·

m− j+ 1

mn− 2j+ 1
≤ px · 1 ·

(m− 1)!(mn− 2j)!
(m− j)!(mn− j)!

≤ px
(m− 1)!(mn− 2j)!

(m− j)!(mn)!
(mn)j.

By (4) we have

pxpy ≥ px
(m− 1)!(mn− 2j)!

(m− j)!(mn)!
(mn− 2j)j,

and using |V0| =O(tj) and (4) we find

∑

y∈V0

(p′′
x,y − pxpy)=O(tj) · px ·

(m− 1)!(mn− 2j)!
(m− j)!(mn)!

· ((mn)j − (mn− 2j)j)

=O(tj·n−j+1·n−2j·nj−1)=O(tjn−2j)=O(γ jn−j−1)=O(n−j)=O(n−j+1−1/m),

where this second to last step used that γ n1−1/j ≤mn implies γ j =O(n).
In total then by (3), (6), and (5), we have

σ 2 ≤ µ +O(tj · n−j+1−1/m)= µ +O(γ jn−1/m)= µ + o(µ).

In particular, for n sufficiently large we have σ 2 ≤ 4µ (and the asymptotic bound of the lemma is
trivial otherwise). Thus by Chebyshev’s inequality, we find

P[S= 0]≤ P[|S− µ| ≥ µ1/2σ/2]≤ 4µ−1 =O(γ −j),

giving the desired result.

3. The partial feedback model

3.1 Definitions and outline

Throughout this section we fix a guessing strategy G and a suitable ε = ε(m)> 0, which will be

on the order of m−1/4 log1/4 m. Our goal is to prove for large enough n that E[P(G, π)]≤ (1+
O(ε))m. In this section, we simply refer to the partial feedback model as ‘the game.’
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A history h= (g, y) of a completed game is a pair of vectors: the [n]-valued vector g of all mn
guesses made throughout the game, and the boolean vector y of feedback received, so that yt = 1 if
and only if the t-th card in the deck has value gt . A history at time t, denoted as ht , is a truncation
of some complete history h to the first t values in each vector, representing all the information
available to the guesser after they make the t-th guess.

We letH denote a sample of the history of the game given the fixed strategy G and that the deck
is shuffled according to a uniform random π ∼Sm,n. SimilarlyHt denotes a sample of the history
of the game at time t.

Given a history h= (g, y), we write Y(h) := ‖y‖ for the total number of correct guesses, where
here and throughout ‖v‖ :=

∑

|vi| is the �1 norm. Define ai(h) := |{t:gt = i}| to be the number of
times card type i has been guessed, and mi(h) :=m− |{t:gt = i and yt = 1}| to be the number of
copies of card i left to be found in the deck. For a partial history ht , the values Y(ht), ai(ht), and
mi(ht) are defined in the same way.

We are ready to outline the proof. The first and most important step is to prove the following
‘pointwise’ lemma, which roughly shows that for all typical histories ht−1, the probability that the
t-th guess is correct is at most (1+ o(1))n−1.

Lemma 3.1. For any history ht−1 of the game up to time t − 1 and any i ∈ [n],

P[π t = i|Ht−1 = ht−1]≤
mi(ht−1)

mn− ai(ht−1)− Y(ht−1)
.

Note that the fraction on the right-hand side is a natural estimate for P[π t = i|Ht−1 = ht−1]:
the numerator is exactly the number of copies of i in the deck that have yet to be found, and the
denominator is approximately the total number of positions amongst [mn] at which such a copy
could lie (this may not be exact because ai(ht−1) and Y(ht−1) can count the same position twice).
We use a simple bijective argument to prove Lemma 3.1 in Section 3.2.

The second step of the proof is to show that the term Y(Ht−1) in Lemma 3.1 is negligible with
high probability, which is done by the following lemma.

Lemma 3.2. For any 0< λ ≤ 1/6, n≥ 1152λ−2, and any fixed strategy G,

P[P(G, π)> λmn]≤ 2e−mn.

This bound is proved in Section 3.3 using Lemma 3.1 and Chernoff bounds. Combining
Lemmas 3.1 and 3.2, and since Y(ht−1)≤ Y(h), we see that with high probability for any ε > 0,

P[π t = i]≤
mi(Ht−1)

(1− ε)mn− ai(Ht−1)
.

We now break guesses into three types, based on how many times a given card i has already
been guessed. We say that guess t, say with gt = i, is subcritical if ai(Ht−1)< εmn, critical if
εmn≤ ai(Ht−1)< (1− ε)mn, and supercritical if ai(Ht−1)≥ (1− ε)mn. Note that if even a sin-
gle supercritical guess is made, then almost all guesses must have been of that same card type,
which makes the situation easy to analyse.

By adaptively renumbering the cards during the game if necessary, we may assume without loss
of generality that if there are k card types for which critical guesses are made, then they are exactly
the first k cards 1, . . . , k. For any given history h, let b0(h) be the number of subcritical guesses
made, let bi(h), 1≤ i≤ k be the number of critical guesses made with gt = i, and let b∞(h) be the
number of supercritical guesses made. Define Y0(h), Yi(h), and Y∞(h) to be the number of correct
guesses made in each regime.

We finish the proof by showing with high probability that each of the Yi(H) values are not
much larger than their means. The subcritical guesses Y0(H) are handled in Section 3.4, the critical
guesses Yi(H) in Section 3.5, and the supercritical regime is simple enough to not merit its own
subsection. The proof is then completed in Section 3.6.
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Throughout the proof we will often omit floors and ceilings for ease of presentation. For an
event E we let E denote its complement. For real valued random variables X and Y , we write
X � Y if X stochastically dominates Y , i.e. if for all x ∈R, P[X ≥ x]≥ P[Y ≥ x]. We also recall a
standard variant of the Chernoff bound, a proof of which can be found in [1].

Lemma 3.3. [1]. Let B(N, p) be a binomial random variable with N trials and probability of success
p. Then for all λ > 0,

P[B(N, p)> (1+ λ)pN]≤ e−
1
2λ2pN .

3.2 The pointwise lemma

In this section we show Lemma 3.1, which is equivalent to an upper bound on the number of π ∈
Sm,n for which at each position up through t, either πt is specified or a single value is disallowed
for πt . We reduce to the following setup.

Definition 3.4. Let m= (m1, . . . ,mn) and a= (a1, . . . , an) be vectors of non-negative integers
satisfying ‖a‖ < ‖m‖. An m-permutation is a word of length ‖m‖ over alphabet [n] where i
appears exactly mi times. An (m, a)-permutation π is an m-permutation where the first a1 terms
are not 1, the next a2 terms are not 2, and so on, so that exactly ai terms in π are forbidden from
taking value i.

It is significant that ‖a‖ < ‖m‖ strictly in the definition of (m, a)-permutations, guaranteeing
that no restrictions are made on the value of the last term. Given a history ht−1 up to time t − 1,
we letm be the vector (m1(ht−1), . . . ,mn(ht−1)), and a be the vector (a1(ht−1), . . . , an(ht−1)). We
claim that the following bound on (m, a)-permutations implies Lemma 3.1.

Lemma 3.5. If fi(m, a) is the fraction of all (m, a)-permutations for which the last term is i,
then

fi(m, a)≤
mi

‖m‖ − ai
.

Indeed, by definition fi(m, a) is the probability that the last card in π is exactly i
given the current history ht−1. But all positions past the first t − 1 are indistinguishable, so
fi(m, a) is also the probability that the next card (at index t) is i. Thus it suffices to prove
Lemma 3.5.

Proof of Lemma 3.5. It suffices to show the lemma for i= 1. First, we make a technical reduction
to the case a1 = 0 for convenience. Let π̃ be any sequence of a1 cards in which 1 does not appear
and i appears at most mi times for all i> 1. Define an (m, a, π̃)-permutation to be an (m, a)-
permutation where the first a1 terms agree with π̃ .

Define fi(m, a, π̃) to be the fraction of (m, a, π̃)-permutations, which have last term i. Since
f1(m, a) is some convex combination of the values f1(m, a, π̃), it suffices to show that for every
specific choice of π̃ ,

f1(m, a, π̃)≤
m1

‖m‖ − a1
. (7)

Let m′ be the vector of card counts remaining when the cards in π̃ are taken out, and
let a′ = (0, a2, a3, . . . , an), so that an (m, a, π̃)-permutation is just π̃ concatenated with an
(m′, a′)-permutation π ′. Sincem′

1 ≤m1, it suffices to show

f1(m
′, a′)≤

m′
1

‖m′‖
,
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which is just the case a1 = 0 in the original lemma statement. Thus, it remains to show that if
a1 = 0, we have

f1(m, a)≤
m1

‖m‖
. (8)

In fact, we will prove that for any i,

f1(m, a)

fi(m, a)
≤

m1

mi
. (9)

The case i= 1 is trivial, so we just need to prove this for i> 1, and without loss of generality we
can assume i= 2. We divide the (m, a)-permutations π which end in either 1 or 2 into classes as
follows. For each π that ends in either 1 or 2, consider all positions past the first a2, which contain
either a 1 or a 2. Let S(π) denote the set of π ′ obtained by cyclically shifting the 1’s and 2’s in these
positions within π , fixing all other values. Note that with this we never move a 1 into a forbidden
position (as a1 = 0) nor a 2 into a forbidden position (as we only shift past the first a2 positions).
It follows that every π ′ ∈ S(π) is a (m, a)-permutation ending in 1 or 2.

Note that the total number of 2’s past the first a2 positions is exactly m2, since every 2 appears
past the first a2, while the total number of 1’s past the first a2 positions is at most m1, since there
are exactly m1 1’s in total. Thus, we see that the fraction of π ′ ∈ S(π) which end in 1 is at most

m1
m1+m2

for every π . As the S(π) partition all possible (m, a)-permutations π which end in either 1

or 2, (9) follows for i= 2.
Finally, to derive (8) it suffices to write (9) as

mi

m1
f1(m, a)≤ fi(m, a)

and sum over i, noting that
∑

i fi(m, a)= 1 since every (m, a)-permutation must end in
some i.

3.3 Weak bound onP+

m,n

The next step is to show that the Y(ht−1) term in Lemma 3.1 is negligible with high probability.
Since Y(ht−1) is bounded by just Y(h), the total number of cards guessed correctly, it suffices to
show a weak upper bound on the total number of correct guesses in the form of Lemma 3.2. To
do this we first show the following.

Lemma 3.6. Let B1, . . . , Bk be (not necessarily independent) Bernoulli random variables with

P[Bt = 1|
∑

s<t Bs = x]≤ p for all t and x. Then
∑k

t=1 Bt is stochastically dominated by a binomial
random variable B(k, p).

This lemma can be proved by induction, with the induction step using the following
observation.

Lemma 3.7. Let X, X′, Y , Y ′ be integer-valued random variables such that X′ and Y ′ are {0, 1}-
valued, X � Y, and for all x ∈Z, (X′|X = x)� (Y ′|Y = x). Then,

X + X′ � Y + Y ′.

Proof. We would like to show that for any y ∈Z, P[X + X′ ≥ y]� P[Y + Y ′ ≥ y]. But clearly

P[X + X′ ≥ y]= P[X ≥ y]+ P[(X = y− 1)∧ (X′ = 1)]

= P[X ≥ y]+ P[X = y− 1]P[X′ = 1|X = y− 1]

≥ P[X ≥ y]+ P[X = y− 1]P[Y ′ = 1|Y = y− 1]
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≥ P[Y ≥ y]+ P[Y = y− 1]P[Y ′ = 1|Y = y− 1] (10)

= P[Y + Y ′ ≥ y].

Here only (10) is worth explaining. Since X � Y we have P[X ≥ y]≥ P[Y ≥ y] and P[X ≥ y]+
P[X = y− 1]≥ P[Y ≥ y]+ P[Y = y− 1], so by taking convex combinations of these two inequal-
ities, we have for any t ∈ [0, 1], P[X ≥ y]+ tP[X = y− 1]≥ P[Y ≥ y]+ tP[Y = y− 1] as well.
Taking t = P[Y ′ = 1|Y = y− 1] completes the proof.

Lemma 3.6 follows by iterating Lemma 3.7 with X =
∑

s<t Bs, X
′ = Bt , Y a binomial random

variable B(t − 1, p), and Y ′ a Bernoulli random variable with probability p.

Proof of Lemma 3.2. We first show that few correct guesses are made in the first third of the
game, i.e. when t ≤mn/3. In this case we apply Lemma 3.1 to find that for any i ∈ [n],

P[π t = i|Ht−1 = ht−1]≤
mi(ht−1)

mn− ai(ht−1)− Y(ht−1)
≤

m

mn−mn/3−mn/3
=

3

n
,

since up to this point there have been at most mn/3 correct guesses and each i has been guessed
at most mn/3 times. It follows that for t ≤mn/3, conditional on any ht−1, the probability that
the t-th guess is correct is at most 3/n. In particular the t-th guess is correct with probability at
most 3/n regardless of the value of Y(Ht−1), so by Lemma 3.6 the number of correct guesses in
the first third of the game Y(Hmn/3) is stochastically dominated by a binomial random variable
B(mn/3, 3/n). Applying Lemma 3.3 gives for all δ > 0,

P[Y(Hmn/3)> (1+ δ)m]≤ P[B(mn/3, 3/n)> (1+ δ)m]≤ e−δ2m/2.

Taking δ = λn/4− 1≥ λn/6, we find

P[Y(Hmn/3)> λmn/4]≤ e−λ2mn2/72. (11)

Let T be the set of i such that ai(ht)<mn/4 for all t, and note that there are at most four
card types not in T (since only mn total guesses are made). Let E be the event that Y(Hmn/3)≤
λmn/4, and observe that conditional on E we have Y(Ht)≤ (2/3+ λ/4)mn for all t since at most
2mn/3 correct guesses can be made in the last 2/3 of the game. Thus by Lemma 3.5 and the above
observations, we have for i ∈ T, all t >mn/3, and any possible history ht−1 for which E occurs,

P[π t = i|Ht−1 = ht−1]≤
m

mn−mn/4− (2/3+ λ/4)mn
≤

24

n
, (12)

where we used λ ≤ 1/6.
Let Y ′(H) denote the total number of correct guesses of card types i ∈ T and let Y ′′(H) denote

the total number of correct guesses involving i /∈ T. Observe that

Y(H)= Y ′(H)+ Y ′′(H)≤ Y ′(H)+ 4m≤ Y ′(H)+ λmn/2,

where this last step used n≥ 8λ−1 (which is implicit in our hypothesis of the lemma). By (12) we
see that conditional on E, Y ′(H)− Y(Hmn/3) is stochastically dominated by a binomial random
variable B(2mn/3, 24/n). Thus

P[Y(H)> λmn]≤ P[Y ′(H)> λmn/2]≤ P[Y ′(H)− Y(Hmn/3)> λmn/4|E]+ P[E]

≤ P[B(2mn/3, 24/n)> λmn/4]+ P[E]≤ e−λ2mn2/1152 + e−λ2mn2/72,

where the last inequality used the Chernoff bound with δ = λn/64− 1≥ λn/96 and (11). Using
n≥ 1152λ−2 gives the desired result.
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3.4 Concentration of subcritical guesses

In this section we handle the subcritical guesses. If Xt denotes the indicator variable that the
t-th subcritical guess is correct, then intuitively the Xt variables are dominated by Bernoulli ran-

dom variables with parameter p= 1
(1−2ε)n , so the total number of correct subcritical guesses is

dominated by a binomial distribution B(b0(H), p), where we recall that b0(H) is the number of
subcritical guesses in history H.

We would like to say that this binomial distribution is close to its expectation with high proba-
bility. It is not enough, however, to prove this for a fixed binomial distribution. Themain technical
issue is that the number of trials b0(H) can be chosen adaptively by the guesser. For example, they
can use a strategy where they repeatedly make subcritical guesses until they have guessed an above
average number of cards correctly. This is essentially equivalent to the guesser simulating a sum-
mation of Bernoulli random variables

∑mn
t=1 Bt , and then choosing some number of trials b≤mn

such that the number of correct subcritical guesses is
∑b

t=1 Bt . We thus wish to show that for Bt a

sequence of independent Bernoulli variables,
∑b

t=1 Bt is not much larger than its expectation for
all large b. Thus, no matter how the guesser chooses b they can never do much better than pb.

A weak upper bound for this probability comes from applying the Chernoff bound to all b≤
mn and then using a union bound. Unfortunately when p is very small this upper bound is not
effective. Amore careful application of the union bound gives the following technical result, where
we think of the Zk’s in its statement as centred binomial random variables.

Lemma 3.8. Let 0≤ p≤ 1, c, c′ > 0, and let 0≡ Z0, Z1, Z2, . . . be random variables such that Zk −
Zk−1 ≥ −p for all k, and such that for all integers 0≤ k′ < k and all λ > 0,

P[Zk − Zk′ > λp(k− k′)]≤ c′e−cλ2p(k−k′).

Then for all λ > 0 and integers k1 ≥ k0 ≥ 2λ−1, we have

P[∃k ∈ [k0, k1], Zk > λpk]≤
8c′k1
λk0

e−
1
256 cλ

3pk0 .

Proof. Define � = 1
2λk0 ≥ 1. The idea of the proof is to take a union bound over the events Z�a −

Z�(a−1) > λp� for all integers a≤ k1
�
, which will turn out to be strong enough to conclude the

stated result. To be precise, let 0= x0 < x1 < · · · < xr = k1 be any sequence of integers such that
1
2� ≤ xa − xa−1 ≤ � for all a> 0, and note that the number of terms in this sequence satisfies

r ≤
⌈

2k1/�
⌉

≤
8k1

λk0
. (13)

Let E be the event that Zxb > 1
8λpb� for some b. Observe that Zxb =

∑b
a=1 Zxa − Zxa−1 , so Zxb >

1
8λpb� implies that some a≤ b has

Zxa − Zxa−1 >
1

8
λp� ≥

1

8
λp(xa − xa−1).

Thus by the union bound, the hypothesis of the lemma, the fact that xa − xa−1 ≥ 1
2�, and

inequality (13), we have

P[E]≤
r

∑

a=1

P[Zxa − Zxa−1 >
1

8
λp(xa − xa−1)]≤ r · c′e−

1
128 cλ

2p� ≤
8c′k1
λk0

e−
1
256 cλ

3pk0 .

We claim that if Zk > λpk for some k ∈ [k0, k1], then E occurs. Indeed, suppose such a k exists
and let b be the smallest integer such that k≤ xb, which in particular implies xb − k≤ �. We also
have b≥ 2 because k0 ≤ k≤ b� and k0/� = 2λ−1 ≥ 2, and thus
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k≥
1

2
(b− 1)� ≥

1

4
b�. (14)

Note that Zxb − Zk ≥ −�p because Zk − Zk−1 ≥ −p for all k. Using this, � = 1
2λk0 ≤ 1

2λk, and
inequality (14), we have

Zxb > λpk− �p≥
1

2
λpk≥

1

8
pb�,

so E occurs. Thus,

P[∃k ∈ [k0, k1], Zk > λpk]≤ P[E]≤
8c′k1
λk0

e−
1
256 cλ

3pk0

as desired.

Using Lemma 3.8, we can show that subcritical guesses are well behaved.

Lemma 3.9. If ε ≤ 1
8 and n is sufficiently large in terms of ε,m, then

P

[

Y0(H)> (1+ 4ε)
b0(H)

n

]

≤ c′ε−2e−cε4m,

for some absolute constants c, c′ > 0.

Proof. Given t ≤ b0(H), let t′ be the smallest positive integer for which b0(Ht′)= t, so that t′

is the time of the t-th subcritical guess (note that t′ is itself a random variable), and let Xt :=
Y0(Ht′)− Y0(Ht′−1). In other words, Xt is the indicator of the t-th subcritical guess. Let E be the
event that Y(H)> εmn, and define Et to be the event that Y(Ht′)> εmn. Observe that E implies
that no Et occurs.

Note that Y0(H)=
∑b0(H)

t=1 Xt . Wemodify Y0(H) to ignore the events Et as follows. Define X
′
t =

Xt if Et−1 does not occur and X′
t = 0 otherwise, and let Y ′

0 =
∑b0(H)

t=1 X′
t . With L := (1+ 4ε) b0(H)

n ,
we find

P[Y0(H)> L]≤ P[(Y0(H)> L)∧ E]+ P[E]= P[(Y ′
0 > L)∧ E]+ P[E]

≤ P[Y ′
0 > L]+ P[E],

By Lemma 3.2 we know P[E]≤ 2e−mn, so for n sufficiently large the contribution of P[E] is
negligible. It remains to upper bound the probability that Y ′

0 is large. Note that X
′
t = 1 if and only

if the next term π t′ is exactly the next guess i, the total number ai(Ht′−1) of times i is guessed is at
most εmn, and the total number Y(Ht′−1) of correct guesses up to this point is also at most εmn.
We now have by Lemma 3.1 that

P[X′
t = 1|X′

1, . . . , X
′
t−1]≤

mi(Ht′−1)

mn− ai(Ht′−1)− Y(Ht′−1)
≤

m

(1− 2ε)mn
=

1

(1− 2ε)n
=: p.

Define B1, B2, . . . , Bmn to be independent Bernoulli random variables with P[Bt = 1]= p and

define Zk =
∑k

t=1 Bt − pk. By the above inequality, we see that given any history ht′−1 up to the

t′-th guess,X′
t is stochastically dominated by Bt , and hence Zk stochastically dominates

∑k
t=1 X

′
t −

pk. Observe that

b0(H)
∑

t=1

X′
t − pb0(H)>

εb0(H)

(1− 2ε)n
⇐⇒ Y ′

0 >
(1+ ε)b0(H)

(1− 2ε)n
=⇒ Y ′

0 >
(1+ 4ε)b0(H)

n
= L,
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where the last step used ε ≤ 1
8 . Because Zb0(H) stochastically dominates the above sum, we have

P[Y ′
0 > L]≤ P

⎡

⎣

b0(H)
∑

t=1

X′
t − pb0(H)>

εb0(H)

(1− 2ε)n

⎤

⎦ ≤ P

[

Zb0(H) >
εb0(H)

(1− 2ε)n

]

≤ P

[

∃k ∈ [εmn,mn], Zk >
εk

(1− 2ε)n

]

,

Where this last step used that the number of subcritical guesses b0(H) must always be at least εmn
and at mostmn.

Because Zk is a centred binomial distribution, P[Zk − Zk′ > λp(k− k′)]≤ e−
1
2λ2p(k−k′) for k′ <

k by Lemma 3.3, and also Zk − Zk−1 ≥ −p for all k by construction. If n is sufficiently large we

have εmn≥ 2ε−1, so we can apply Lemma 3.8 to the above inequality with c′ = 1
2 and c= 1 to

conclude

P[Y ′
0 > L]≤

8

(1− 2ε)ε2
e
− 1

512(1−2ε) ε
4m ≤ 16ε−2e−

1
512 ε4m,

with this last step using ε ≤ 1
4 .

3.5 Concentration of critical guesses

In the subcritical region we were able to bound the number of correct guesses by a bino-
mial random variable. For the critical region, we compare the number of correct guesses
with a hypergeometric random variable. We recall that a random variable S∼Hyp(N,m, b)
has a hypergeometric distribution (with parameters N,m, b) if for all integer 1≤ k≤m
we have

P[S= k]=
(

b

k

)(

N − b

m− k

)(

N

k

)−1

. (15)

Equivalently one can define this by uniformly shuffling a deck of N cards with m of these cards
being ‘good’, and then letting S be the number of good cards one sees in the first b draws from the
deck. From this viewpoint, if we let Rt denote the indicator variable which is 1 if the tth draw is a

good card, we see that S=
∑b

t=1 Rt and that the Rt can be defined by

P[Rt = 1|R1, . . . , Rt−1]=
m− (R1 + · · · + Rt−1)

N − t + 1
. (16)

We can use the following lemma to bound random variables by hypergeometric random
variables.

Lemma 3.10. Suppose P1, . . . , Pk and R1, . . . , Rk are {0, 1}-random variables satisfying

P[Pt = 1|P1, . . . , Pt−1]≤
m− (P1 + · · · + Pt−1)

N − t + 1

P[Rt = 1|R1, . . . , Rt−1]=
m− (R1 + · · · + Rt−1)

N − t + 1
.

Then R1 + · · · + Rk � P1 + · · · + Pk.

The proof of Lemma 3.10 follows from induction and applying Lemma 3.7 withX = R1 + · · · +
Rt−1,X

′ = Rt , Y = P1 + · · · + Pt−1, and Y
′ = Pt . The last thing we need is to use Lemma 3.8 in this

hypergeometric setting.

https://doi.org/10.1017/S0963548321000134 Published online by Cambridge University Press



Combinatorics, Probability and Computing 15

Lemma 3.11. Let N ≥m2 +m, define the indicator random variables R1, R2, . . . , RN as in (16),

and let Sb :=
∑b

t=1 Rt for all b. Then for all b and λ > 0,

P

[

Sb >
(1+ λ)bm

N

]

≤ 3e−
λ2bm
2N .

Further, for all λ > 0 and integers b0, b1 satisfying 2λ
−1 ≤ b0 ≤ b1 ≤N, we have

P

[

∃b ∈ [b0, b1], Sb >
(1+ λ)bm

N

]

≤
24b1

λb0
e−

λ3b0m
512N .

Proof. Observe that Sb ∼Hyp(N,m, b). Thus if q := b/N, we have by (15) that

P[Sb = k]=
(

qN

k

)(

(1− q)N

m− k

)(

N

m

)−1

≤
(qN)k

k!
((1− q)N)m−k

(m− k)!
m!

(N −m)m

=
(

m

k

)

qk(1− q)m−k

(

1+
m

N −m

)m

≤
(

m

k

)

qk(1− q)m−kem
2/(N−m)

≤
(

m

k

)

qk(1− q)m−k · 3,

where this last step used N −m≥m2.
We thus see that P[Sb > (1+ λ)qm] · 3−1 is at most the probability that a binomial distribu-

tion with m trials and probability q of success has at least (1+ λ)qm successes, which is at most

e−λ2qm/2 by Lemma 3.3. This gives the first result.
For the second result, define p=m/N and let Zb := Sb − pb. Note that Sb − Sb′ ∼

Hyp(N,m, b− b′) for b> b′ (since this is just a sum of b− b′ of the Rt variables), so the first
result implies

P[Zb − Zb′ > λp(b− b′)]= P[Sb − Sb′ > (1+ λ)p(b− b′)]≤ 3e−
1
2λ2pb.

We can thus apply Lemma 3.8 to the Zb variables with c′ = 3 and c= − 1
2 to conclude the

result.

Using this we can prove the following.

Lemma 3.12. For i≥ 1 finite, ε ≤ 1
4 , and n sufficiently large in terms of ε,m, we have

P

[

Yi(H)> (1+ 4ε)
bi(H)

n
+ ε2m

]

≤ c′ε−2e−cε4m

for some constants c, c′ > 0 depending only on ε.

Proof. Fix i positive and finite, and let Xt := Yi(Ht′)− Yi(Ht′−1) where t
′ is the smallest positive

integer for which bi(Ht′)= t (note that t′ is itself a random variable). In other words, Xt is the
indicator of the t-th critical guess of i. Define X′

t = Xt if Y(H)≤ εmn and define X′
t = 0 otherwise.

Let Rt be random variables as in Lemma 3.10 with N = (1− 2ε)mn, and define Sb =
∑b

i=1 Ri
for all 1≤ b≤ (1− 2ε)mn. By applying Lemma 3.5 (and noting that i was guessed εmn times
before its critical guesses started), we see

P[X′
t = 1|X′

1, . . . , X
′
t−1]≤

m− (X′
1 + · · · + X′

t−1)

(1− 2ε)mn− t + 1
.
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Thus we can apply Lemma 3.10 with X′
t taking the role of Pt , and letting

L(b)= (1+ 4ε)
b

n
+ ε2m

gives

P[Yi(H)> L(bi(H))]= P

⎡

⎣

bi(H)
∑

t=1

Xt > L(bi(H))

⎤

⎦

≤ P[Y(H)≤ εmn] · P

⎡

⎣

bi(H)
∑

t=1

X′
t > L(bi(H))

⎤

⎦ + P[Y(H)> εmn]

≤ 1 · P[Sbi(H) > L(bi(H))]+ 2e−mn

≤ P
[

∃b ∈ [1, (1− 2ε)mn], Sb > L(b)
]

+ 2e−mn,

where the second to last step used Lemma 3.2 and the last step used that the value of bi(H) must
lie in 1 and (1− 2ε)mn.

To bound P
[

∃b ∈ [1, (1− 2ε)mn], Sb > L(b)
]

, we partition [1, (1− 2ε)mn] into intervals

[bj−1, bj] (which we define below) and show that P
[

∃b ∈ [bj−1, bj], Sb > Lj(b)
]

is small for all
j, where Lj(b) is some quantity upper bounded by L(j). Taking a union bound will then give the
desired result.

Let b0 := 1
2ε

2(1− 2ε)mn≥ 2 for n sufficiently large. By taking λ = 1 in Lemma 3.11, we have

P[∃b ∈ [1, b0], Sb > ε2m]= P

[

Sb0 >
2b0m

(1− 2ε)mn

]

≤ 3e
− b0m

(1−2ε)mn = 3e−
1
4 ε2m. (17)

Define bj = 2jb0. Observe that for all b≤ bj we have ε2 ≥ 21−j b
(1−2ε)mn . Thus for j such that

21−j ≥ 4ε we find for n sufficiently large in terms of j,

Pr[∃b ∈ [bj−1, bj], Sb >
b

n
+ ε2m]≤ P

[

∃b ∈ [bj−1, bj], Sb > (1− 2ε + 21−j)
bm

(1− 2ε)mn

]

≤ P

[

∃b ∈ [bj−1, bj], Sb > (1+ 2−j)
bm

(1− 2ε)mn

]

≤ 48 · 2je−
2jb0

23j+9(1−2ε)n = 48 · 2je−2−2j−10ε2m

≤ 48ε−1e−2−10ε4m, (18)

where this third inequality used Lemma 3.11.
Let J =

⌊

log2 (ε
−1)

⌋

− 1, noting that we can apply the above bound up to bJ = 2J−1ε2(1−
2ε)mn≥ 1

8ε(1− 2ε)mn. Observe that for ε ≤ 1
8 ,

(1+ 4ε)b

n
≥

(1+ ε)b

(1− 2ε)n
.

Thus by Lemma 3.11 applied with λ = ε, we see that

P

[

∃b ∈ [bJ , (1− 2ε)mn], Sb >
(1+ 4ε)b

n

]

≤
24(1− 2ε)mn

εbJ
e
− ε3bJ

512(1−2ε)n ≤ 96ε−2e
−1+ε

2048(1−2ε) ε
4m
.

Taking the union bound over this, (17), and (18) for the at most − log2 (ε)≤ ε−1 values of j≤ J
gives the result.
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3.6 Completing the proof

We need the following simple consequence of Lemma 3.2.

Lemma 3.13. If n is sufficiently large and A is an event with P[A]= p, then

E[Y(H)|A]< −1000 log p+ 1.

Proof. By reparametrising Lemma 3.2, we get that as long as n> 6000,

P[Y(H)> 1000mx]≤ e−mx

for any x≥ 1. In particular, even after conditioning on the event A,

P[Y(H)> 1000mx|A]≤ p−1e−mx.

Choosing x0 = − 1
m log p, we find that

E[Y(H)|A]≤ 1000mx0 +
∫ ∞

x0

P[Y(H)> 1000mx|A]dx

≤ 1000mx0 +
∫ ∞

x0

e−m(x−x0)dx= 1000mx0 +
∫ ∞

0
e−mxdx≤ −1000 log p+ 1,

asmx0 = − log p and the integral is absolutely bounded by 1.

Finally we have all the tools to prove the main theorem.

Proof of Theorem 1.3. Wewill pick ε =O(( logm/m)1/4), and show that for an appropriate such
ε and n sufficiently large in terms of m and ε, E[Y(H)]≤ (1+ ε)m. To this end, we define the
following three ‘atypical’ events: E0, E1, and E∞.

• The event E0 is the event that Y0(H)> (1+ 4ε)b0(H)/n, in other words that significantly
more than the average number of subcritical guesses are correct.

• The event E1 is the event thatYi(H)> (1+ 4ε)bi(H)/n+ ε2m for some i≥ 1, in other words
that for some critical card i, significantly more than the average number of critical guesses
of card i are correct.

• The event E∞ is the event that there is at least one supercritical card. In this case, this single
card is guessed at least (1− ε)mn times.

Our goal will be to calculate the conditional expectation of Y(H) depending on whether or not
the exceptional events above occur. It will be convenient to group E0 and E1 together and define
their union A= E0 ∨ E1. Then,

E[Y(H)]= P[A]E[Y(H)|A]+ P[A∧ E∞] ·E[Y(H)|A∧ E∞]+ P[A∧ E∞]E[Y(H)|A∧ E∞]. (19)

We first observe that if none of the events E0, E1, and E∞ occur, then the conditional expectation
of Y(H) is small. Indeed, we have

E[Y(H)|A∧ E∞]=E[Y(H)|E0 ∧ E1 ∧ E∞]≤ (1+ 5ε)m, (20)

since all guesses must be subcritical or critical, and there are at most ε−1 distinct critical card types
i.

Define pj = P[Ej] for j ∈ {0, 1}. We have by Lemmas 3.9 and 3.12 that for some absolute
constants c, c′ > 0,

p0 ≤ c′ε−2e−cε4m

and

p1 ≤ c′ε−3e−cε4m,

https://doi.org/10.1017/S0963548321000134 Published online by Cambridge University Press



18 P. Diaconis et al.

where there is an extra multiplicative factor of ε−1 in the second inequality because there may be
up to ε−1 critical cards. In particular, we have

P[A]= P[E0 ∨ E1]≤ p := c′ε−3e−cε4m, (21)

possibly with a different choice of c′. By Lemma 3.13 we find

E[Y(H)|A]≤ −1000 log P[A]+ 1,

and so

P[A]E[Y(H)|A]≤ −1000P[A] log P[A]+ P[A]≤ −1000p log p+ 1,

for p defined above. By picking an appropriate ε =O(( logm/m)1/4), we find

P[A]E[Y(H)|A]≤m−
(1) + 1< εm (22)

form sufficiently large.
Finally, to control the third term of (19), note that if there is a supercritical card, at most m

guesses are correct for that card (since there are a total of m copies of that card in the deck), and
at most εmn guesses are made of any other card, so all other guesses are subcritical. In particular,
including guesses of the unique supercritical card, there at most b0(H)≤ 2εmn subcritical guesses.
Thus, by the definition of E0, we get

E[Y(H)|A∧ E∞]≤m+ (1+ 4ε)(2εm)≤ (1+ 3ε)m.

In total, using (19), (20), (22), and the inequality above, we find that form, n sufficiently large,

E[Y(H)]≤ εm+ P[A] · (1+ 5ε)m≤ (1+ 6ε)m=m+O(m3/4 log1/4 m),

completing the proof.

4. Concluding remarks

In this paper we proved results for two different feedback models. The first were bounds on C±
m,n,

which is the most/least number of cards one can guess in the complete feedback model. For fixed
m we determined C+

m,n asymptotically, and for C−
m,n we gave the correct order of magnitude.

Question 4.1. What is C−
m,n asymptotically?

We note that a more careful analysis of the proof of Theorem 1.2 gives that this value is
asymptotic to n−1

E[Tm] with Tm as in Lemma 2.1, so it suffices to compute this expectation.
Our main result was proving a tight asymptotic upper bound on P+

m,n, which is the most num-
ber of cards one can guess correctly in expectation in the partial feedback model. Specifically,
we proved P+

m,n =m+O(m3/4 logm) provided n is sufficiently large. One consequence of this
bound is the following. For π ∈Sm,n, let L(π) denote the largest integer p such that there exist
i1 < · · · < ip with πij = j for all 1≤ j≤ p. Define Lm,n =E[L(π)] where π ∼Sm,n.

Corollary 4.2. If n is sufficiently large in terms of m, we have

Lm,n ≤m+O(m3/4 logm).

Proof. Consider the strategy G in the partial feedback model, which guesses 1 until you guess
one correctly, then 2 until you guess one correctly, and so on; and if you guess n correctly,
play arbitrarily for the remaining trials. Then P(G, π)≥ L(π), and the result follows from
Theorem 1.3.
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The best lower bound we can prove is Lm,n = 
(m/ logm). This is because with high proba-
bility there is a 1 in the first roughly n logm positions, a 2 in the next n logm positions, and so on.
We suspect that the upper bound of Corollary 4.2 is closer to the truth.

Conjecture 4.3. If n is sufficiently large in terms of m, we have

Lm,n =m− o(m).

A trivial lower bound for P+
m,n is m obtained by guessing a card type uniformly at random at

each trial. A more complicated strategy gives m+ 
(m1/2) corrects guesses in expectation. We
rigorously prove this in [9], and here we give a brief sketch of the strategy. Guess 1 a total ofmn/2

times. If you guessed at least 1
2m+

√
m cards correctly, guess 2 for the rest of the game, otherwise

keep guessing 1. In the latter scenario we always get exactlym correct guesses. One can show that
the first scenario happens with some constant probability, and given this the expected number
of 2’s left in the second half of the deck is at least m/2, and in total this gives a lower bound of
m+ 
(m1/2). We suspect that this lower bound is close to the truth.

Conjecture 4.4. For all ε > 0 and n sufficiently large,

P+
m,n =m+O(m1/2+ε).

The current proof overshoots this bound at two points. The first is in Lemma 3.8 where we try
and bound the probability that an ‘adversarial’ binomial distribution deviates significantly from
its mean. Our proof of this lemma essentially only used a union bound, and it’s plausible that more
sophisticated techniques could decrease this error term.

The second point is in the bounds of Lemmas 3.9 and 3.12 where we bound the probability that
the subcritical or critical guesses are much larger than average. We note that by adding in an error
term of εm to the lower bound of Y0 in Lemma 3.9, one can decrease the probability from roughly

e−ε4m to e−ε3m, so the central issue is the critical case, and it seems like new ideas are needed here.
Another problem of interest is bounding P−

m,n, the fewest number of cards one can guess cor-

rectly in expectation in the partial feedback model. In [9] we prove P−
m,n ≤m− 
(m1/2) using an

analog of the strategy for P+
m,n. We also prove an asymptotic lower bound for P−

m,n of 1− e−m by
showing that one always has probability at least this of guessing at least one card correctly. Thus
P−
m,n = 
(1), which is again in sharp contrast to the complete feedback model where one can

get arbitrarily few correct guesses in expectation. There is still a large gap between these bounds,
and as in Theorem 1.3 we suspect that the partial feedback model does not allow one to guess
significantly fewer guesses than in the no feedback model.

Conjecture 4.5. If n is sufficiently large in terms of m, then

P−
m,n ∼m.

The central difficulty in this setting is that there does not exist an analog of Lemma 3.1 which
lower bounds P[π t = i] given that we have not guessed imany times and that we have guessed few
cards correctly. For example, say we incorrectly guessed 1 a total of (m− 1)n, so the remaining
cards are m copies of 1. Then the probability that the next card is 2 is 0 despite the fact that we
have not guessed 2 at all nor guessed any cards correctly.
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