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1. Introduction

Consider cross-classified data: X1, X2, ..., Xn, where Xa = (ia, ja), ia ∈ [I], ja ∈ [J] (for
[I] = {1, 2, ..., I}). Such data are often presented as an I × J contingency table T = (tij)
where tij is the number of times (i, j) happens. Suppose that X1, ..., Xn are exchangeable
and extendible. Then, de Finetti’s theorem says:

Theorem 1. For exchangeable {Xi}
∞
i=1 taking values in [I]× [J]

P[X1 = (i1, j1), ..., Xn = (in, jn)] =
∫

∆I×J
∏
i,j

p
tij

ij µ(dp),

where ∆I×J = {pij ≥ 0, ∑i,j pij = 1}. The representing measure µ is unique.

A popular model for cross classified data is

pij = θiηj .

Here is a Bayesian, parameter free, description.

Theorem 2. For exchangeable {Xi}
∞
i=1 taking values in [I]× [J], a necessary and sufficient condi-

tion for the mixing measure µ in Theorem 1 to be supported on ∆I × ∆J (with ∆I = {p1, . . . , pI :
pi ≥ 0, ∑i pi = 1}), so

P[X1 = (i1, j1), ..., Xn = (in, jn)] =
∫

∆I×∆J
∏ θ

ti∗
i η

t∗j

j µ(dθ, dη),

is that

P[X1 = (i1, j1), X2 = (i2, j2), X3 = (i3, j3), ..., Xn = (in, jn)] =

P[X1 = (i1, j2), X2 = (i2, j1), X3 = (i3, j3), ..., Xn = (in, jn)]. (1)

Condition (1) is to hold for any n ≥ 2 and any (ia, ja) 1 ≤ a ≤ n.

Proof. Condition (1) implies for all n and h ≥ 1 (surpressing P a.s. throughout)

P[X1 = (i1, j1), X2 = (i2, j2)|Xn = (in, jn), ..., Xn+h = (in+h, jn+h)] =

P[X1 = (i1, j2), X2 = (i2, j1)|Xn = (in, jn), ..., Xn+h = (in+h, jn+h)]. (2)
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Let h ↑ ∞ and then n ↑ ∞. Let T be the tail field of {Xi}
∞
i=1. Then, Doob’s increasing

and decreasing martingale theorems show

P[X1 = (i1, j1), X2 = (i2, j2)|T ] = P[X1 = (i1, j2), X2 = (i2, j1)|T ].

However, a standard form of de Finetti’s theorem says that, given T , the {Xi}
∞
i=1 are

i.i.d. with P[X1 = (i, j)] = pij. Thus

pij pi′ j′ = pij′ pi′ j for all i, i′, j, j′. (3)

Finally, observe that (3) implies (writing pi∗ := ∑j pij, p∗j := ∑i pij)

pi∗p∗j = ∑
h,l

pih pl j = ∑
hl

pij phl = pij .

We remark the following points.

1. If Xi = (Yi, Zi) condition (2) is equivalent to

L((Y1, Z1), (Y2, Z2), ..., (Yn, Zn)) = L((Y1, Zσ(1)), ..., (Yn, Zσ(n)))

for all n and σ ∈ Sn (Sn is the symmetric group over 1, 2, . . . , n). Since {(Yi, Zi)}
n
i=1

are exchangeable this is equivalent to saying the law is invariant under Sn × Sn.
2. The mixing measure µ(dθ, dη) allows general dependence between the row param-

eters θ and column parameters η. Classical Bayesian analysis of contingency tables
often chooses µ so that θ and η are independent. A parameter free version is that
under P, the row sums ti∗ and column sums t∗j are independent. It is natural to
weaken this to “close to independent” along the lines of [1] or [2]. See also [3].

3. Theorems 1 and 2 have been stated for discrete state spaces. By a standard discretiza-
tion argument, they hold for quite general spaces. For example:

Theorem 3. Let Xi = (Yi, Zi) be exchangeable with Yi ∈ Y , Zi ∈ Z , complete separable metric
spaces, 1 ≤ i < ∞. Suppose

P[X1 ∈ (A1, B1), X2 ∈ (A2, B2), ..., Xn ∈ (An, Bn)] =

P[X1 ∈ (A1, B2), X2 ∈ (A2, B1), ..., Xn ∈ (An, Bn)]

for all measurable Ai, Bi and all n. Then,

P(X1 ∈ (A1, B1), ..., Xn ∈ (An, Bn)) =
∫
P(Y )×P(Z )

n

∏
1

θ(Ai)η(Bi)µ(dθ, dη),

with P(Y ),P(Z ) the probabilities on the Borel sets of Y , Z . The mixing measure µ is unique.

4. Theorem 2 is closely related to de Finetti’s work in [1,4].
5. De Finetti’s law of large numbers holds as well, in Theorem 3

1

n ∑ δXi
(A × B) → µ(θ(A), η(B)).

One object of this paper is to develop similar parameter free de Finetti theorems for
widely used log-linear models for discrete data. Section 2 begins by relating this to an
ongoing conversation with Eugenio Regazzini. Section 3 provides needed background on
discrete exponential families and algebraic statistics. Sections 4 and 5 apply those tools to
give de Finetti style partially exchangeable theorems for some widely used hierarchical
and graphical models for contingency tables. Section 6 shows how these exponential
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family tools can be used for other Bayesian tasks: building “de Finetti priors” for “almost
exchangeability” and running the “exchange” algorithm for doubly intractable Bayesian
computation. Some philosophy and open problems are in the final section.

2. Some History

I was lucky enough to be able to speak at Eugenio Regazzini’s 60TH birthday celebra-
tion, in Milan, in 2006. My talk began this way:

� Hello, my name is Persi and I have a problem. �
For those of you not aware of the many “10 step-programs” (alcoholics anonymous,

gamblers anonymous, ...) they all begin this way, with the participants admitting to having
a problem. In my case the problem was this:

(a) After 50 years of thinking about it, I think that the subjectivist approach to probability,
induction and statistics is the only thing that works;

(b) At the same time, I have done a lot of work inventing and analyzing various schemes
for generating random samples for things like contingency tables with given row and
column sums; graphs with given degree sequences; ...; Markov Chain Monte Carlo.
These are used for things like permutation tests and Fisher’s exact test.

There is a lot of nice mathematics and hard work in (b) but such tests violate the
likelihood principle and lead to poor scientific practice. Hence my problem (I still have it):
(a) and (b) are incompatible.

There has been some progress. I now see how some of the tools developed for (b) can
be usefully employed for natural tasks suggested by (a). Not so many people care about
such inferential questions in these ’big data’ days. However, there are also lots of small
datasets where the inferential details matter. There are still useful questions for people like
Eugenio (and me).

3. Background on Exponential Families and Algebraic Statistics

The following development is closely based on [5], which should be considered for
examples, proofs and more details.

Let X be a finite set. Consider the exponential family:

pθ(x) =
1

Z(θ)
eθ·T(x) θ ∈ R

d, x ∈ X . (4)

Here, Z(θ) is a normalizing constant and T : X → N
d − {0}. If X1, X2, ..., Xn are

independent and identically distributed from (4), the statistic t = T(X1) + · · ·+ T(Xn) is
sufficient for θ. Let

Yt = {(x1, ..., xn) : T(x1) + · · ·+ T(xn) = t}.

Under (4), the distribution of X1, ..., Xn given t is uniform on Yt. It is usual to write

t =
n

∑
i=1

T(Xi) = ∑
X

σ(x)T(x) with σ(x) = #{i : T(Xi) = T(x)}.

Let
Ft = { f : X → N : ∑ f (x)T(x) = t}.

Example 1. For contingency tables X = {(i, j) : 1 ≤ i ≤ I, 1 ≤ j ≤ J}. The usual model for
independence has T(i, j) ∈ N

I+J a vector of length I + J with two non zero entries equal 1. The 1’s
in T(i, j) are in the ith place and position j of the last j places. The sufficient statistic t contains the
row and column sums of the contingency table associated to the first n observations. The set Ft is
the set of an I × J tables with these row and column sums.
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A Markov chain on this Ft can be based on the following moves: pick i 6= i′, j 6= j′ and change
the entries in the current f by adding ±1 in pattern

j j′

i + −
i′ − +

or
− +
+ −

This does not change the row sums and it does not change the column sums. If told to go
negative, just pick new i, i′, j, j′. This gives a connected, aperiodic Markov chain on Ft with a
uniform stationary distribution. See [6].

Returning to the general case, an analog of
+ −
− +

moves is given by the following:

Definition 1 (Markov basis). A Markov basis is a set of functions f1, f2, ..., fL from X to Z

such that

∑
X

fi(x)T(x) = 0 1 ≤ i ≤ L (5)

and that for any t and f , f ′ ∈ Ft there are (t1, fi1), ..., (tA, fiA
) with ti = ±1, such that

f ′ = f +
A

∑
j=1

tj fij
and f +

a

∑
j=1

tj fij
≥ 0, for 1 ≤ a ≤ A. (6)

This allows the construction of a Markov chain on Ft: from f , pick I ∈ {1, 2, ..., L}
and t = ±1 at random and consider f + t f I . If this is positive, move there. If not, stay at f .
Assumptions (5) and (6) ensure that this Markov chain is symmetric and ergodic with a
uniform stationary distribution. Below, I will use a Markov basis to formulate a de Finetti
theorem to characterize mixtures of the model (4).

One of the main contributions of [5] is a method of effectively constructing Markov
bases using polynomial algebra. For each x ∈ X , introduce an indeterminate, also called x.
Consider the ring of polynomials k[X ] in these indeterminates where k is a field, e.g., the
complex numbers. A function g : X → N is represented as a monomial X g = ∏X xg(x).
The function T : X → N

d gives a homomorphism

ϕT : k[X ] −→ k[t1, ..., td]

x 7−→ t
T1(x)
1 t

T2(x)
2 · · · t

Td(x)
d ,

extended linearly and multiplicatively (ϕT(x + y) = ϕT(x) + ϕT(y) and ϕT(x2) = ϕT(x)2

and so on). The basic object of interest is the kernel of ϕT :

IT = {p ∈ k[X ] : ϕT(p) = 0}.

This is an ideal in k[X ]. A key result of [5] is that a generating set for IT is equivalent
to a Markov basis. To state this, observe that any f : X → Z can be written f = f+ − f−
with f+(x) = max( f (x), 0) and f−(x) = max(− f (x), 0). Observe ∑ f (x)T(x) = 0 iff
X f+ −X f− ∈ IT . The key result is

Theorem 4. A collection of functions f1, f2, ..., fL is a Markov basis if and only if the set

X
fi+ −X

fi− 1 ≤ i ≤ L

generates the ideal IT .

Now, the Hilbert Basis Theorem shows that ideals in k[X ] have finite bases and
modern computer algebra packages give an effective way of finding bases.
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I do not want (or need) to develop this further. See [5] or the book by Sullivant [7] or
Aoki et al. [8]. There is even a Journal of Algebraic Statistics.

I hope that the above gives a flavor for what I mean by “working in (b) is hard honest
work”. Most of the applications are for standard frequentist tasks. In the following sections,
I will give Bayesian applications.

4. Log Linear Model for Contingency Tables

Log linear models for multiway contingency tables are a healthy part of the modern
statistics. The index set is X = ∏γ∈Γ Iγ with Γ indexing categories and Iγ the levels of γ.
Let p(x) be the probability of falling into cell x ∈ X . A log linear model can be specified
by writing:

log p(x) = ∑
a⊆Γ

ϕa(x) .

The sum ranges over subsets a of Γ and ϕa(x) means a function that only depends on x
through the coordinates in a. Thus, ϕ∅(x) is a constant and ϕΓ(x) is allowed to depend on
all coordinates. Specifying ϕa = 0 for some class of sets a determines a model. Background
and extensive references are in [9]. If the a with ϕa 6= 0 permitted form a simplicial complex
C (so a ∈ C and ∅ 6= a′ ⊆ a ⇒ a′ ∈ C) the model is called hierarchical. If C consists of
the cliques in a graph, the model is called graphical. If the graph is chordal (every cycle of
length ≥ 4 contains a chord) the graphical model is called decomposable.

Example 2 (3 way contingency tables). The graphical models for three way tables are:

2

1 3

2

1 3 1 3 2

2

1 3

Complete

independece

One variable

independent

1 and 2 conditionally

independent given 3
saturated

pijk pi∗∗p∗j∗p∗∗k pi∗∗p∗jk pi∗k p∗jk/p∗∗k pijk

Sufficient
statistics

Ti∗∗, T∗j∗, T∗∗k Ti∗∗, T∗jk Ti∗k, T∗jk Tijk

The simplest hierarchical model that is not graphical is No Three Way Interaction Model.
This can be specified by saying ’the odds rate of any pair of variables does not depend

on the third’. Thus,

pijk pi′ j′k

pij′k pi′ jk
is constant in k for fixed i, i′, j, j′. (7)

As one motivation, recall that for two variables, the independence model is specified by

pij = θiηj.

For three variables, suppose there are parameters θij, ηjk, ψik satisfying:

pijk = θijηjkψik for all i, j, k. (8)

It is easy to see that (8) entails (7) hence ’no three way interaction’. Cross multiplying
(7) entails

pijk pi′ j′k pij′k′ pi′ jk′ = pijk′ pi′ j′k′ pij′k pi′ jk. (9)

This is the form we will work with for the de Finetti theorems below.



Mathematics 2022, 10, 442 6 of 12

For background, history and examples (and some nice theorems) see ([10],
Section 8.2), [11,12], Simpsons ’paradox’ [13] is based on understanding the no three way
interaction model. Further discussion is in Section 5 below.

5. From Markov Bases to de Finetti Theorems

Suppose X is a finite set, T : X → N
d − {0} is a statistic and { fi}

L
i=1 is a Markov

basis as in Section 3. The following development shows how to translate this into de Finetti
theorems for the contingency table examples of Section 4. The first argument abstracts the
argument used for Theorem 2 above.

Lemma 1 (Key Lemma). Let X be a finite set and {Xi}
∞
i=1 an exchangeable sequence of X -valued

random variables. Suppose for all n > m

P[X1 = x1, ..., Xm = xm, Xm+1 = xm+1, ..., Xn = xn] =

P[X1 = y1, ..., Xm = ym, Xm+1 = xm+1, ..., Xn = xn]. (10)

In (10), x1, ..., xm, y1, ..., ym are fixed and xm+1, ..., xn are arbitrary. Then, if T is the tail field
of {Xi}

∞
i=1 and p(x) = P[X1 = x|T ],

m

∏
i=1

p(xi) =
m

∏
i=1

p(yi). (11)

Proof. From (10) and exchangeability

P[X1 = x1, ..., Xm = xm, Xn+1 = xn+1, ..., Xn+h = xn+h] =

P[X1 = y1, ..., Xm = ym, Xn+1 = xn+1, ..., Xn+h = xn+h]

so

P[X1 = x1, ..., Xm = xm|Xn+1 = xn+1, ..., Xn+h = xn+h] =

P[X1 = y1, ..., Xm = ym|Xn+1 = xn+1, ..., Xn+h = xn+h] .

Let h ↑ ∞ and then n ↑ ∞, use Doob’s upward and then downward martingale
convergence theorems to see:

P[X1 = x1, ..., Xm = xm|T ] = P[X1 = y1, ..., Xm = ym|T ].

Now, de Finetti’s theorem implies (11).

Remark 1. The Key Lemma shows that the p(x) satisfy certain relations. Using choices of
{xi}, {yi} derived from a Markov basis will show that p(x) satisfy the required independence
properties. Suppose that ∑X f (x)T(x) = 0, ∑X f (x) = 0 and f ∈ {0,±1}. Let S+ = {x :
f (x) = 1}, S− = {y : f (y) = −1}. Say |S+| = |S−| = m. Enumerate S+ = {x1, ..., xm},
S− = {y1, ..., ym}. Assumptions (10) and conclusion (11) will give our theorems.

Example 3 (Independence in a two way table). Let X = [I]× [J]. A minimal basis for the
independence model is given by fi,j,i′ ,j′ :

j j′

i + −
i′ − +

(all other entries = 0).

The condition of the Key Lemma becomes:

P[X1 = (i, j), X2 = (i′, j′), X3 = (i3, j3), ..., Xn = (in, jn)] =
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P[X1 = (i, j′), X2 = (i′, j), X3 = (i3, j3), ..., Xn = (in, jn)].

Passing to the limit gives
pij pi′ j′ = pij′ pi′ j

and so
pi∗p∗j = ∑

i′ j′
pij′ pi′ j = pij.

This is precisely Theorem 2 of the Introduction.

Example 4 (Complete independence in a three way table). The sufficient statistics are
Ti∗∗, T∗j∗, T∗∗k. From [5], there are two kinds of moves in a minimal basis. Up to symmetries,
these are:

Class I Class II
j j′

i + −
i′ − +

j j′

i + −
j j′

i′ − +

Passing to the limit, this entails:

pijk pij′k = pij′k pi′ jk and pijk pi′ j′k′ = pij′k pijk′ .

These may be said as ’the product of any pijk, pi′ jk remains unchanged if the middle coordinates
are exchanged’. By symmetry, this remains true if the two first or last coordinates are exchanged. As
above, this entails

pi∗∗p∗j∗p∗∗k = pijk.

These observations can be rephrased into a statement that looks more similar to the classical de
Finetti theorem; using symmetry:

Theorem 5. Let {Xi}
∞
i=1 be exchangeable, taking values in [I]× [J]× [K]. Then

P[X1 = (i1, j1, k1), ..., Xn = (in, jn, kn)] =

P[X1 = (σ(i1), ζ(j1), η(k1)), ..., Xn = (σ(in), ζ(jn), η(kn))]

for all n, {(ia, ja, ka)}n
a=1 and (σ, ζ, η) ∈ SI × SJ × SK is necessary and sufficient for there to exist

a unique µ on ∆I × ∆J × ∆K with

P[Xa = (ia, ja, ka), 1 ≤ a ≤ n] =
∫

∆I×∆J×∆K

n

∏
a=1

pia
qja rka

µ(dp, dq, dr).

Example 5 (One variable independent of the other two). Suppose, without loss, that the
graph is

1 2 3

Identify the pairs (j, k) with {1, 2, ..., L} with L = JK. The problem reduces to Example 4. A
minimal basis consists of (again, up to relabeling)

l l′

i + −
i′ − +

We may conclude
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Theorem 6. Let {Xi}
∞
i=1 be exchangeable, taking values in [I]× [J]× [K]. Then

P[X1 = (i1, j1, k1), ..., Xn = (in, jn, kn)] =

P[X1 = (σ(i1), ζ(j1, k1)), ..., Xn = (σ(in), ζ(jn, kn))]

for all n, {(ia, ja, ka)}n
a=1 and (σ, ζ) ∈ SI × SJ×K is necessary and sufficient for there to exist a

unique µ on ∆I × ∆JK with

P[Xa = (ia, ja, ka), 1 ≤ a ≤ n] =
∫

∆I×∆JK

n

∏
a=1

paqaµ(dp, dq).

Example 6 (Conditional independence). Suppose variable i and j are conditionally independent
given k.

1 3 2

Rewrite the parameter condition of section four as

p∗∗k pijk = pi∗k p∗jk for all i, j, k

The sufficient statistics are {Ti∗k}i,k, {T∗jk}jk. From [5], a minimal generating set is

jk j′k
ik + −
i′k − +

K ×
I(I − 1)

2
×

J(J − 1)

2
moves in all.

From this, the Key Lemma shows (for all i, j, k)

pijk pi′ j′k = pij′k pi′ jk.

This entails:

pi∗k p∗jk = ∑
i′ ,j′

pij′k pi′ jk = ∑
i′ j′

pijk pi′ j′k = pijk p∗∗k.

Again, phrasing the condition (10) in terms of symmetry.

Theorem 7. Let {Xi}
∞
i=1 be exchangeable, taking values in [I]× [J]× [K]. Then,

P[X1 = (ii, ji, ki), ..., Xn = (in, jn, kn)] =

P[X1 = (σk1(i1), ζk1(j1), k1), ..., Xn = (σkn(in), ζkn(jn), kn)] (12)

for all n, {(ia, ja, ka)}n
a=1 and σk, ζk ∈ SI × SJ , 1 ≤ k ≤ K, is necessary and sufficient for there to

exist a unique family µ × ∏
k
b=1 µb,r on ∆K × (∆I × ∆J)

K

P[Xa = (ia, ja, ka), 1 ≤ a ≤ n] =
∫

∆K×(∆I×∆J)K

n

∏
a=1

rka
pka

ia
qka

ja

k

∏
b=1

µb,r(pib qib)µ(dr). (13)

Both (12) and (13) have a simple interpretation. For (12), {Xi}
n
i=1 are exchangeable

3-vectors. For any k and specified sequence of values {(ia, ja, k)}n
a=1 the chance of observing

these values is unchanged under permuting the (ia, ja, k), by permutations σk ∈ SI , ζk ∈ SJ .
Here σk, ζk are allowed to depend on k.
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On the right of (13), the mixing measure may be understood as follows. There is a
probability µ on ∆K. Pick r = (r1, ..., rk) ∈ ∆K. Given this r, pick (pk, qk) from µk,r on the kth

copy of ∆I × ∆J . These choices are allowed to depend on r but are independent, conditional
on r, 1 ≤ k ≤ K.

All of this simply says that, conditional on the tail field,

P[Xa = (i, j, k)|T ] = P[Xa = (i, ∗, k)|T )P(Xa = (∗, j, k)|T ].

The first two coordinates are conditionally independent given the third.

Example 7 (No three way interaction). The model is described in Section 4. The sufficient
statistics are {Tij∗}, {Ti∗k}, {T∗jk}. Minimal Markov bases have proved intractable. See [5] or [8].
For any fixed I, J, K, the computer can produce a Markov basis but these can have a huge number of
terms. See [7,8] and their references for a surprisingly rich development.

There is a pleasant surprise. Markov bases are required to connect the associated Markov
chain. There is a natural subset, the first moves anyone considers, and and these are enough for a
satisfactory de Finetti theorem (!).

Described informally, for an I × J × K array, pick a pair of parallel planes, say the k, k′ planes
in the three dimensional array, and consider moves depicted as

j j′

i + −
i′ − +

j j′

i + −
i′ − +

k k′

These moves preserve all line sums (the sufficient statistics). They are not sufficient to
connect any two datasets with the same sufficient statistics. Using the prescription in the Key
Lemma, suppose:

P[X1 = (i, j, k), X2 = (i′, j′, k), X3 = (i, j′, k′), X4 = (i′, j, k′),

Xa = (ia, ja, ka) 5 ≤ a ≤ n] =

P[X1 = (i, j′, k), X2 = (i′, j, k), X3 = (i, j, k′), X4 = (i′, j′, k′),

Xa = (ia, ja, ka) 5 ≤ a ≤ n]. (14)

Passing to the limit gives

pijk pi′ j′k pij′k′ pi′ jk′ = pij′k pi′ jk pijk′ pi′ j′k′ . (15)

This is exactly the no three way interaction condition. Or, equivalently:

pijk pi′ j′k

pij′k pi′ jk
=

pijk′ pi′ j′k′

pij′k′ pi′ jk′
.

The odds ratios are constant on the kth and k′th planes (of course, they depend on i, j, i′, j′).
These considerations imply:

Theorem 8. Let {Xi}
∞
i=1 be exchangeable, taking values in [I]× [J]× [K]. Then, condition (14)

is necessary and sufficient for the existence of a unique probability µ on ∆I JK, supported on the no
three way interaction variety (15) satisfying

P[Xa = (ia, ja, ka), 1 ≤ a ≤ n] =
∫

∆I JK
∏ p

ηijk

ijk µ(dpijk).

We remark on the following points.
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1. It follows from theorems in [12] and [11] that, if all pijk > 0, condition (15) is equivalent
to the unique representation,

pijk = rαjkβkiγij, (16)

where r, α, β, γ have positive entries and satisfy

∑
k

αjk = ∑
i

βki = ∑
j

γij = 1 for all i, j, k

and
r ∑

i,j,k

αjkβkiγij = 1 .

The integral representation in the theorem can be stated in this parametrization. The
condition pijk > 0 is equivalent to P(X1 = (i, j, k)) > 0 on observables.

2. Condition (14) does not have an obvious symmetry interpretation.
3. Conditions (14) and (15) are stated via varying the third variable when i, j, i′, j′ are

fixed. Because of (16), if they hold in this form, they hold for any two variables fixed
as the third varies.

4. It is possible to go on, but, as John Darroch put it, ’the extensions to higher order
interactions... are not likely to be of practical interest’. The most natural development—
the generalization to decomposable models—is being developed by Paula Gablenz.

5. There are many extensions of the Key Lemma above. These allow a similar develop-
ment for more general log linear models and exponential families.

6. Discussion and Conclusions

The tools of algebraic statistics have been harnessed above to develop partial exchange-
ability for standard contingency table models. I have used them for two further Bayesian
tasks: approximate exchangeability and the problem of ’doubly intractable priors’. As both
are developed in papers, I will be brief.

Approximate exchangeability.Consider n men and m women along with a binary
outcome. If the men are judged exchangeable (for fixed outcomes for the women) and vice
versa, and, if both sequences are extendable, de Finetti [1] shows that there is a unique
prior on the unit square [0, 1]2 such that, for any outcomes t1, ..., tn, σ1, ..., σm in {0, 1}

P[X1 = t1, ..., Xn = tn, Y1 = σ1, ..., Ym = σm] =∫
[0,1]2

pS(1 − p)n−SθT(1 − θ)m−Tµ(dp, dθ),

with S = ∑
n
i=1 ti, T = ∑

m
j=1 σj.

If, for the outcome of interest, {Xi, Yj} were almost fully exchangeable (so the men/
women difference is judged practically irrelevant) the prior µ would be concentrated near
the diagonal of [0, 1]2. De Finetti suggested implementing this by considering priors of
the form

µ(dp, dθ) = Z−1e−A(p−θ)2
dpdθ

for A large.
In joint work with Sergio Bacallado and Susan Holmes [3], multivariate versions of

such priors are developed. These are required to concentrate near sub-manifolds of cubes
or products of simplicies; think about ‘approximate no three way interaction’. We used
the tools of algebraic statistics to suggest appropriate many variable polynomials which
vanish on submanifold of interest. Many ad hoc choices were involved. Sampling from
such priors or posteriors is a fresh research area. See [2,14,15].

Doubly intractable priors. Consider an exponential family as in Section 3:

pθ(x) =
1

Z(θ)
eθ·T(x) .
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Here x ∈ X a finite set, T : X → R
d and θ ∈ R

d. In many real examples, the
normalizing constant Z(θ) will be unknown and unknowable. For a Bayesian treatment,
let Π(dθ) be a prior distribution on R

d. For example, the conjugate prior.
If X1, X2, ..., Xn is as i.i.d. sample from pθ , T is a sufficient statistic and the posterior

has the form
Z(Z−1(θ))neθFΠ(dθ),

with F = ∑
n
i=1 T(Xi) and Z another normalizing constant. The problem is that Z−1(θ)

depends on θ and is unknown!
The exchange algorithm and many variants offer a useful solution. See [16,17].
In practical implementations, there is an intermediary step requiring a sample form

pT
θ′ , the measure induced by pn

θ under ∑
n
i T(xi) : X n → R. This is a discrete sampling task

and Markov basis techniques have been proved useful. See [16].
A philosophical comment. The task undertaken above, finding believable Bayesian

interpretations for widely used log linear models, goes somewhat against the grain of
standard statistical practice. I do not think anyone takes a reasonably complex, high
dimensional hierarchical model seriously. They are mostly used as a part of exploratory
data analysis; this is not to deny their usefulness. Making any sense of a high dimensional
dataset is a difficult task. Practitioners search through huge collections of models in an
automated way. Usually, any reflection suggests the underlying data is nothing like a
sample from a well specified population. Nonetheless, models are compared using product
likelihood criteria. It is a far far cry from being based on anyone’s reasoned opinion.

I have written elsewhere about finding Bayesian justification for important statistical tasks
such as graphical methods or exploratory data analysis [18]. These seem like tasks similar to
’how do you form a prior’. Different from the focus of even the most liberal Bayesian thinking.

The sufficiency approach. There is a different approach to extending de Finetti’s theorem.
This uses ‘sufficiency’. Consider exchangeable {Xi}

∞
i=1. For each n, suppose Tn : X n → Y

is a function. The {Tn} have to fit together according to simple rules satisfied in all of the
examples above. Call {Xi} partially exchangeable with respect to Tn if P[X1 = x1, . . . , Xn =
xn|Tn = tn] is uniform. Then, Diaconis and Freedman [19] show that a version of de
Finetti’s theorem holds. The law of {Xi} is a mixture of i.i.d. laws indexed by extremal laws.
In dozens of examples, these extremal laws can be identified with standard exponential
families. This last step remains to be carried out in the generality of Section 3 above. What
is required is a version of the Koopman–Pitman–Darmois theorem for discrete random
variables. This is developed in [19] when X ⊆ N and Tn(X1, . . . , Xn) = X1 + · · ·+ Xn.
Passing to interpretation, this version of partial exchangeability has the following form:

if Tn(x1, . . . , xn) = Tn(y1, . . . , yn),

then P[X1 = x1, . . . , Xn = xn] = P[X1 = y1, . . . , Xn = yn] .

This is neat mathematics (and allows a very general theoretical development). How-
ever, it does not seem as easy to think about in natural examples. Exchangeability via
symmetry is much easier. The development above is a half-way house between symme-
try and sufficiency. A close relative of the sufficiency approach is the topic of ‘extremal
models’ as developed by Martin-Löf and Lauritzen. See [20] and its references. Moreover,
Refs. [21,22] are recent extensions aimed at contingency tables.

Classical Bayesian contingency table analysis. There is a healthy development of para-
metric analysis for the examples of Section 5. This is based on natural conjugate priors. It
includes nice theory and R packages to actually carry out calculations in real problems.
Three papers that I like are [23–26]. The many wonderful contributions by I.J. Good are
still very much worth consulting. See [27] for a survey. Section 5 provides ‘observable
characterizations’ of the models. The problem of providing ‘observable characterizations’
of the associated conjugate priors (along the lines of [28]) remains open.
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