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1. Introduction

This paper has two motivations. The first is a novel technique for deriving ‘nice’
generating functions for permutations with restricted positions via various statistics.

Example. Let F; 1(n) be the set of permutations o € S,, with ¢ —¢ < (i) < i+ 1. Thus
when t =1,

Fia(n) ={o:|o(i) —i] <1}
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Fig. 1. Graph corresponding to Fi,1(8).

A cycle index for F;1(n) is

£ = Z szu(a)

oc€Ft1(n)
where ¢ has a; i-cycles.
In Section 6, we show
Theorem 1.
> fun - : 1)
" 1—z12 — 2922 — ... —xy2t
n=0

We are led to study such things via a novel importance sampling algorithm for gener-
ating random permutations with restricted positions. Suppose B(n) is a bipartite graph
with vertex sets U, = {ui,ug,...,u,} and V;, = {v1,v9,...,v,} and various edges
{u;,v;} (Fig. 1).

Let M(n) be the set of perfect matchings in B(n). Throughout we suppose that M(n)
is nonempty. In a variety of statistical problems arising with truncated or censored data it
is important to be able to study the distribution of various statistics of uniformly random
elements of M(n). For example, as explained in [7], Lyndon Bells’ test for correlation
on truncated data leads to ‘if you pick ¢ € M(n) at random, what is the distribution
of the number of involutions (i.e., 2-cycles) in o7’ A variety of techniques, reviewed in
Section 2(A) are available to give approximations. This paper studies sequential impor-
tance sampling: Order U,, in some way, say (u1,us,...,u,). Consider u; having edges
to various v;. Some of these can be completed to a perfect matching. Call these J;.
Pick {u1,v;} uniformly in J;. Then delete {u1,v;} and their incident edges. Proceed to
ug, choosing {ug, v;} uniformly in Js,.... This always results in a perfect matching o
and the various available sets are (reasonably) efficiently computable (see the Wikipedia
entry on ‘matching (graph theory)’). The chance
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Fig. 2. Histogram of T'(¢;) for N = 1000 samples for Fro,1. The three starred values are 9.01 x 10'° (twice)
and 3.60 x 10'6.

Prio) = [TV~ ©)

is easy to compute. Let T'(0) = H?;ll |7;]. Then

E(T)= )  Pr(o)T(o)=|M(n), (3)

ceEM(n)

gives an unbiased estimate of |[M(n)|. If Q(o) is a statistic (e.g., the number of involutions
or the number of fixed points in o), T'(¢) allows estimating

N

PAQ(o) <} = 1 3 6(Q(00) < )T())

i=1

On the left P, is the uniform distribution on M(n). On the right, o; is an independent
sample from the sequential importance sampling algorithm.

As an example, the following plot shows a histogram of the importance weights
Pr(o)~! for a sample of size N = 1000 for estimating the number of (1,1) permuta-
tions when n = 70 (Fig. 2).

Here, the right answer is F7; = 302,061, 521, 170, 409. The estimate is the sample mean
of these weights, here 3.08 .. .x10', which is reasonably accurate. However, the estimated
standard deviation from these data is 1.33... x 10'® which is useless. Not surprisingly,
the weights are all over the place; min = 5.49... x 10!, max = 3.60... x 10'6.
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Table 1

Fa,1 with sequential sampling probabilities.
o 1234 2134 1324 1243 2143
Pr(ec)  1/8 1/4 1/4 1/8 1/4

Importance sampling is very widely used and has resisted theoretical understanding.
See [3] for an overview. The present paper gives a class of test cases permitting careful
analysis.

Let us make the connection between generating functions and sequential importance
sampling. We begin with a simple example. When ¢ = 1, |Fy 1(n)| = F,,41, the Fibonacci
number. For example, when n = 4, we have the following results, see Table 1.

The Pr(o) are shown in the second row of Table 1. For example, for sequential building
up 1234: 1 can be placed in two places. If it is matched with 1, then there are two choices
for 2. If it is matched with 2, then there are two choices for 3 and 4 is forced. This results
in Pr(1234) = 1/8. For 2134, if 1 is matched with 2, then 2 is forced to be matched to 1.
Then there are two choices for 3 and 4 is forced. This results in Pr(2134) = 1/4. Notice
that always

Pr(o) = 515 (4)

where k(o) denotes the number of times that there were two possible choices for an edge
in ¢. This remains true for sequential importance sampling on F; 1(n) (for the initial
order (1,2,3,...,n)). To study the variance and needed sample size of the estimator
in (3) requires understanding

falz)= > 2" (5)

Our techniques give

Theorem 2. For enumerating Fi 1(n),

(6)
1—xz—a2222 — ... —xtzt — gtzttl

f: fola)e" = 14+2(1—2)(1+zz+ 2222 +... +at717h
n=0
We are able to use this to give a sharp asymptotics for the variance of T" and sample
size required.
Section 2 below gives background on matchings and sequential importance sampling.
Section 3 derives results for F; 1(n). Section 4 derives results for {o : |o (i) — i < 2}.
Section 5 studies two important variations of the basic algorithm. First, instead of
‘working from the top’, a variant beginning with ‘working with every third’ shows real
improvement (much smaller sample size required). A most interesting second variant is
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to make the choices with non-uniform probabilities. In Section 5.4 this is shown to allow
near perfect estimation with bounded sample size (as opposed to the exponential sample
sizes required in all other variations.

Section 6 proves Theorem 1 for the cycle generating function.

Section 7 uses these generating functions to evaluate required sample sizes for sequen-
tial importance sampling. The result is surprising. For F; 1(n), the sample sizes required
are exponential but with tiny exponents. When t = 1:

N = (0.0204..)n

For example, when n = 200, this indicates a sample of size about 60 is adequate.
Section 8 has remarks about using our permanental techniques for ‘(¢, s) matchings’.
This may begin to explain why and when importance sampling works. It has its own

introduction and may be consulted now for further motivation.

Acknowledgments
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their help, described below. We particularly thank Andy Tsao who found an error in our
earlier version of Theorem 5 and his own proof of a correct result.

2. Background

This section gives background and history on: (A)—matchings, permanents and enu-
meration, (B)—importance sampling and (C)—a different determination of sample size.

(A) Matching theory. This classical subject has been treated wonderfully in the account
of Lovész and Plummer [14]. It can be phrased as evaluating the permanent of an n x n
(0/1) matrix M. This is

Per(M) = > [[ Mo

oc€S, i=1

Thus, if M is a matrix with 0 on the main diagonal and is 1’s elsewhere, Per(M)
counts the number of derangements (o () # ¢) [Monmort (1708)]. It can also be phrased
as ‘rook theory’ (putting non-attacking rooks on a chessboard determined by M [18]).
Applications in statistics are surveyed by Bapat [1] or Diaconis-Graham-Holmes [7].

Exact computation of the permanent is #P complete [20]. A variety of approxima-
tion schemes, some quite sophisticated, are developed in Chapter 3 of [2]. A celebrated
achievement of Jerrum-Sinclair-Vigoda [12] gives a Markov chain Monte Carlo algorithm
with a uniform stationary distribution and polynomial running time. Alas, the running
time is order n” and as far as we know, this algorithm has never been used.
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Of course for ‘nice’ restricted matrices, exact enumeration is possible. Examples in-
clude matrices arising as adjacency matrices of planar graphs [2] where Pfaffians and
hence determinants enter. The matchings corresponding to F; 1(n) above (1 <t < 00)
allow exact enumeration as do {0 : o(i) > b(i)} (Ferrers boards) where b(1) < b(2) <

. < b(n) is a fixed set of numbers (see [11]). We have been involved in other ‘nice’
cases [4]. Similarly, ‘nice’ classes of restriction matrices may allow the natural ‘switch’
Markov chain to mix in order O*(n") time. A wonderful paper of Dyer-Jerrum-Muller [9]
does just this for classes of restriction matrices with bands of consecutive ones (of vary-
ing sizes) down the diagonal. Since these are typical in the censored data literature (and
include our examples), this is real progress.

We have not seen much development around the natural theme: Fix a restriction
matrix M. Pick o consistent with M uniformly at random. What does o ‘look like’? How
many cycles, inversions, fixed points, .... This has been some work for derangements,
surveyed in [6]. Ozel [16] proves central limit theorems for the number of cycles of o
uniform in Fi 1(n).

Permanents with general entries are also of interest. The algorithms discussed here
can be easily adapted. For example, instead of choosing j € J(1) uniformly, one can
choose with probability proportional to the absolute value of the (1, j) entry. See [2,21]
for results and an overview.

(B) Importance sampling. Importance sampling is a very widely used simulation tech-
nique. Briefly, there is a space X with a probability measure v specified. For a real-valued
function f on X with finite mean

1(f) = / f(@)(dz)

one wants to estimate I(f). In applications, this is intractable. But there is an auxiliary
probability measure p that is ‘easy to sample from’. If u is positive whenever v is positive
(v << p) with

then I(f) = [ f(z)p(z)u(dz). So we may sample z1,22,...,2y from p and estimate
I(f) by

. 1
I(f) = N Zf(xi)/’(%‘)- (7)

The huge variety of applications and variations are surveyed in [3] and [13].
In our examples X = M, the set of perfect matchings in a bipartite graph, v is the
uniform distribution on M and p is the sequential importance sampling measure. Then

p(x) =TTy il /1M].
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As explained in [3], the variance of I(f) can be an unreliable measure of accuracy for
the long-tailed distributions that occur in importance sampling. The present setup gives
a class of cases where this can be quantified.

Example (Fibonacci permutations Fi.1(n)). Consider the sequential importance sampling
algorithm for 73 1(n). Let T'(0) = 1/Pr(0). So,

E(T) = |[Fi11(n)| = Fotr.

Var(T) = E(T?) — E(T)?. We compute

ET?) = Y 269 =)

0'6.7:1,1(71)

for f,, defined in (5).
Using (6) for t = 1, we have

s 1—=2
nz::Ofn@)Zn T2t ) (8)

The denominator 1 — 2z — 222 = (1 — zr; V)(1 — 21y Y), for 71 = (—1++/3)/2 = .3660. ..
and 75 = (—1 —/3)/2 = —1.3660.. ... Routine analysis shows

fn(2) = (1/2)(r " 415 ").

Here, r1 is the root of minimum modulus so the dominant term is the one with r} in
the denominator. Since E(T') = |Fy1(n)| = F,41 (the (n 4+ 1)** Fibonacci number) and
¢ := (1/2)(1 + v/5), then

1

E(T)* = ¢

¢*" ) +o(1)
and
Var(T) ~ (1/2)(1 4 v/3)". (9)

Putting in numerical values, we find

E(T) ~ %qﬁ”"‘l = (0.7236...)(1.618...)", S.D.(T) ~ (.7071...)(1.6528...)".

Thus, the variability is large compared to the mean. This suggests large sample sizes are
required to get an accurate estimate. For a sample of size IV,
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S.D.(T)
VN

Using our approximations,

< E(T) «— N>>W.

N >

5 (1 3

507 < ;f) ~ (.9549...)(1.0435.. )" ~ (.9549 . ..)e(0-0426)n

Thus, while the required sample size (to make the standard deviation of (fn) small
compared to I,,) is exponential in n, the constant is small. For n = 200, this suggests a
sample size of at least N = 4,788 is needed. The following considerations show this is
an over-estimate. Many further explicit examples are given in Section 7. The main point
for now is that this is the first example where such calculations can be pushed through.
They make full use of our explicit generating functions.

(C) A different determination of sample size. As explained above, the variance can be a
poor measure of accuracy for such long-tailed distributions. In [3] (see also [19]), a theory
is developed for the sample size required to have |E(I,) — E(I,,)| < e. It gives necessary
and sufficient conditions. To state the result, define the Kullback-Liebler divergence by

L=D(|p) := /p In pdp = /lnp dv =E,(InpY), (10)

where Y has probability distribution v. The main result shows that “N = e’ steps are
necessary and sufficient for accuracy”.

Theorem 3.
(a) If || fll2., < 0o and N = eXTt fort > 0 then
E|IN(f) = 1) < Ifll2ple™* + 2P (np(Y) > L +/2)].
(b) Conversely, if f =1 and N = el=t, t > 0, then for any 6 > 0 we have
PAIn(f)> (1 =6} < e 2+ P(np(Y) < L —t/2)/(1-9).

Remarks. To help parse this, suppose that || f|l2,, < 1, e.g., f is the indicator function
of a set. Part (a) says that if N > e and In(p(Y")) is concentrated around its mean
(E,(In(p(Y)) = L) then In(f) is close to I(f) with high probability (use Markov’s
inequality with (a)).

Conversely, part (b) shows if N < e£~* and In(p(Y")) is concentrated about its mean
then I(1) = 1 but there is only a small probability that Iy (1) is correct.

In the case of perfect ma(tt)chings, v is the uniform distribution, p is the sequential

Pr (o

distribution P(o), p is —Tar— and



F. Chung et al. / Advances in Applied Mathematics 126 (2021) 101916 9
1
L= ] > In(p(0)) = —E, In Pr(c) — In |M].
[oa

The main results of this paper give sharp estimates of L and a method of proving In(p(Y))
is concentrated about its mean for a class of problems. As a numerical example, when
t =1 and n = 200, the use of L + 1 s.d. suggests that a sample size of at least 4,058 is
sufficient (compared with the 4,788 using the variance criterion above).

In [5], Bregman’s inequality is used to prove a result for general graphs. It is shown

that if the set {uy, ua,...,u,} is randomly ordered then
1 n
R o
i=1

where d; denotes the degree of u;. That paper was unable to prove concentration but
making the reasonable assumption of concentration of In(p(Y)), it is of interest to com-
pare the bound with the right answer (for our special class). As a numerical example,
when ¢ = 1 and n = 200, the Bregman bound gives Np,, at least 1.004 x 101° (!). Thus,
while elegant and general, it is useless for this example.

3. t-Fibonacci graphs
3.1. Introduction

This section enumerates matchings and the relevant probabilities for sequential impor-
tance sampling for bipartite graphs By 1(n) that we call (¢, 1)-graphs. These are bipartite
graphs with vertex sets U, = {ui,u2,...,u,} and V,, = (v1,v2,...,v,) and having as
edges all pairs {u;,v;} with —1 < i — j <t (when the indices are well-defined).

The perfect matchings in this graph are in bijection with t-Fibonacci sequences satis-
fying

t t t
FO =FO4+FY 4 4 FY

O, FP=1,F" =0, j<0.
Thus, FY starts (0,1,1,2,3,5,...), the usual Fibonacci sequence (see OEIS #A000045),
F,(LQ) starts (0,1,1,2,4,7,...) (a translation of OEIS #A000073), and so on.

These sequences have a fair-sized enumerative literature (see the Wikipedia entry for
generalized Fibonacci sequences). We have not found previous study of the associated
matchings.

As usual, for sequential importance sampling, we form random matchings by starting
with u; and choosing a random edge incident to it (there are two choices) and thereafter,
proceeding in order us, us, ug4, . .. always randomly selecting an incident edge, as long as
after selecting that edge (and all the previous ones), we can still complete these choices
to a perfect matching.
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Fact 1. The only time there is a unique choice is if either, for some vertex uy, no edge has
yet been assigned to vg_¢, or the vertex is u,. In the first case we must put in the edge
{ug, vg—¢ }- In the second case, u,, must be matched with the unique vertex vy which has
no edge yet assigned to it. In all other cases, there are always exactly two choices.

Proof. By induction on k.

Remark. Fact 1 implies that the permutations arising from the t-Fibonacci graphs have
a simple structure. The only cycles they have are of the form (i, + 1,4+ 2,...,i + k)
for some k between 0 and ¢ + 1. Thus, all the results of this section can be interpreted
as the enumerative theory of such cycles.

A generalization of Fact 1 showing that this ‘from the top greedy algorithm’ never
gets stuck holds for (t, s) permutations.

Before we dig into details, there is one further example which provides a useful limiting
case.

Example (t = oo). Here the bipartite graph has edges {u;,v;} for —1 < ¢ — j. The
associated perfect matchings are {0 : o(i) <i+1}. By an easy induction, there are 27!

such matchings.

Fact 2. The usual algorithm for generating a random ¢ = co matching, starting in order
u1, U, us, . . . generates an exactly uniform perfect matching.

Proof. Induction on n.
It follows that sequential importance matching is exact with ¢ = oo: P(o) = 2%1
for all ¢ and the variance is zero. This suggests that sequential importance sampling

should be good for ‘large t. The results below show ‘large’ is ¢ = Ins n+ c¢lng Ing n. More
generally, the variances and estimated sample sizes are decreasing in .

3.2. The matriz M,(Lt)(x)
We define

 if-l1<j-—i<t—1,
MO (@)i,j]={1 ifi—j=t ori=n, maz(l,n—t) <j <n,

0 otherwise.

For example,
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M) () =

oo oOoOoO—RR R
SooOoOoORR &R
oo R8 &8 8 O
SOoOH8 88 OO
OoORLR8 88 OO
—_—R8 88 o000
—R 8 OO0 OO
_H8 OO0 O0Oo O

o~
=

Let a(n) = a¥(n) denote the permanent Per(M,(, (z)). Thus, for ¢ = 2 we have
a(0) = a(1) = 1,a(2) = 2z,a(3) = 422, a(4) = 62> + 2%,a(5) = 102* + 323, .. ..
Let us write

am)y= 3 fulk)a®,

0<k<n
b(n) = a(n)|,_,
where f,(k) = ,(Lt)(k) is just the number of perfect matchings in which there were k

random choices each with probability 1/2 (i.e., there were n — k vertices which had only
one choice).

This is immediate from the definition of the permanent.

We will often suppress the exponent ¢ when it is understood.

Fact 3. a(n) satisfies the following recurrence:

a(n) = za(n — 1) + 2%a(n — 2) + 2%a(n — 3) + ...
+ata(n —t) +2ta(n —t —1), n >t +2,

with a(m) =0, m <0, a(0) =a(l) =1and a(j) =29 tai~ for 2 < j <t + 1.

Proof. For 2 < j < ¢t + 1, the first two columns are identical and therefore a(j) =
2za(j — 1). For j >t 4+ 2, we use induction on n, recursively expanding the permanent
by the top row. The fact that the last power of x is only ¢ and not ¢ + 1 comes from the
fact that the last permanent expansion has a 1 in the top corner (and not an x).

We consider the generating function G()(z, z) defined by

GO (z,2) = Z a(n)z".

n>0

From now on, we consider a fixed ¢ and denote G)(z, z) = G(z, z) if there is no confusion.
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Fact 4. The generating function G (z,z) = G(x, 2) is given by

14z -2) (A taz a4+l

— n
Gla,2) = Z a(n)z" = 1—zz— 2222 — 2828 — .. — atzt — gtattl

n>0

Proof. We use the recurrence for a(n) in Fact 3. By multiplying a(n) by z™ and summing

over all n > 2, we have

t+1
G(z,z)—1— Z I gi=1,0 = Z a(n)z"
j=1

= Z (xa(n— 1) +2%a(n —2) + 2%a(n — 3) + ...
n>t+2
+zta(n —t) + 2ta(n —t — 1))2”

=Gz, 2)(zz + 2222 + 232 + .+ 2l + 2l

t+1 t
- E alzd — bttt
j=1

— z:(2j_1 — 1)xj_1zj
j=1

By collecting terms, we have

(1—xz—2%2% — ... — 22" — 2'2"TH)G(x, 2)

I+z(1—z)(1+zz+...+a' 12
and Fact 4 is proved. O

Let G(1,2) = ano b(n)z" = ano Zogkgn fn(k)z™.
Thus, } g<y<p fu(k) = Per(M, (1)) is the total number of perfect matchings in By(n)

Fact 5. The generating function F(z) for the b(n) = >, fn(k) is

1
F(Z):l—z—zQ—zB—...—

2t — Zt+1 :

Proof. Plug in z = 1 in Fact 4.

3.8. Analyzing F(z)
In order to estimate the number b(n) of perfect matchings in By 1(n), we use the

generating function F'(z) in Fact 5. Of particular interest is the root of minimum modulus

in the denominator of F. (See [10] for more details.)
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Fact 6. For t > 2, the polynomial P(2) =1 — z — ... — z!™! has a unique real root p of
minimum modulus which lies in the range given below:

1 t

1 1
5 T o3 <P <35V 5ms T oEs

Wolfram [22] (Cor. 3.4) gives a proof that all the zeros of P(z) are simple and references
to earlier work. Our inequality for p sharpens his result which gave

1 t 1 1

+ +

1
pP<g5T o243 <5 T o

9 " 9t+3
Proof. We note that
P(z) — zP(2) =1 — 2z + 2*+2,

Since P(z) does not have 1 as a root, all roots of P(z) are roots of Q(2) = 1 — 2z + 2z!*2
and all roots of Q(z) except for 1 are roots of P(z). To derive the range for p, it simply
suffices to check that

1 1
Q(Z)>0, for Z<§+2tw
1 1 t

We are now ready to estimate b(n) =", T(Lt)(k;).

Theorem 4. The number b(n) of perfect matchings in By1(n) satisfies

b(n) ~cip™"
where p is the unique real root of P(z) =1 —2—...— 2" in (0,1) (see Fact 6), and c;
satisfies
1

C1 = .
P+ Dpt 4302+ 2p+ 1)

Numerical values and asymptotic approximations for p and ¢; are given in Table 2
and (21).

Proof. We define two useful functions:

Sj(w)=1+w+w*+...+w,
Qj(w) = 142w+ 3w + ...+ (j + Duw’.
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Table 2

Table of small values of p(*) and cgt).
VO g g g g g
1 .61803. .. .72360. . . .52360. .. —.88137. .. 0.7577 ... —2.1133... .08944 . ..
2 .54369. .. .61841. .. .55695. .. —1.0121... 1.0032. .. —2.8449... .05950. ..
3 .51879. .. .56634 . .. .54310. .. —1.0282. .. 1.0416. .. —3.0183. .. .03138. ..
4 .50866 . . . .53792. .. .52807. .. —1.0230. .. 1.0367. .. —3.0466. .. .01580. ..
5 .50413. .. 52177 ... .51730. .. —1.0156. .. 1.0257. .. —3.0398. .. .00788. ..
10 .50012. .. 50122 ... .50110. .. —1.0010. .. 1.0019... —3.0036. .. .00024 . ..

It can be easily verified that P(z) satisfies
Piz)=1—z—...— 2T = (p—2)R(2)
where

R(z)=2"+(p+ 1)+ 4+ (0 . D2+t 1

t
=Y Si(p)=.
j=0
Note that R.(p) = Q:(p).
We consider the following partial fraction decomposition of the generating function

F(z) of f(n) which can be directly verified using the fact that S;(p) + pQ:_1(p) = Q:(p)
and Ry (2) + (p = 2) T2 Q5(0)2' 71 = Qulp).

"o p 22) - z1>Rt<z> T =+ 15(()> (12)

where
1 1
R R PR Ty SN )
B(z) = A (420 (L 20 ) S Qj(p)zt_j_l.
Qi (p) 0
Therefore we have
o % N in(p) (13)
and
c
b(n) ~ p—i

Theorem 4 is proved. O
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3.4. The first moment

Our next goal is to estimate the first moment for a fixed ¢:

H(t Z Z kft)

n>00<k<n

To obtain the generating function H*)(z), we simply differentiate G(*)(z, 2) with respect
to x and then set x = 1. For example, for the case of t = 3, we have

22(25 +22% +32% + 622 + 42 + 2)

3 —
HO(:) = (A4+284+22+2-1)2

In the remainder of this section, we consider a fixed ¢t and we abbreviate H(z) = H®(z)
and suppress (t) in various expressions if there is no confusion.
We note that

0 L (it i+1 i+l
= Gla,z) = ho ( —( )a’)z
ox 1 -2z — 2222 — 2323 — .. — atzt — gptztt]
(142 — 2200 al2) (2 + 2222 + . 4t~ 12t b1t
(1—zz— 2222 — 2323 — ... —atat — a:tzt“) .
Hence
0
H(z)=—G
(2) = 5-Gl@,2)| _
B —z—22— . =2 24222 + .+ttt
o l—z—22 23—t — it (1—z—22 =28 — .. —zt —zt41)?
_ —25:1(2) N 2Qq(z) — 2t

P(z) P(z)?

Thus we have

Zkfn ~eg(n+1)p™"

where

p+20%+ ... +tpt +tpttt
PP(t+1)pt+ ... +3p2+2p+1)°

_ Qt(ﬁ) -
pQ:(p)?

We have so far shown
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E kfn(k) ~ca(n+1)p~™.

In order to compute the variance, we need a sharper estimate for ), & f,, (k). We will
show the following:

Theorem 5. For a fixed t, we have

Zkfn ~ (c2(n+1) +c3)p™"

where
~ Qilp) — P
@ pQ:(p)? (4
o 2Qu) =) S O eGP - e s
- Qi(p)® pQ:(p)? Qi(p)
(15)

To complete the proof of Theorem 5, we will derive c¢3. We need to consider the residue
of (p—2z)~! and in particular, such a residue which appears in the term of H(z) involving
P(2)~2. We consider

1 1

P(Z)Q_(l—z—zz—z?’ — 2t — 2t
B o B(z) \2
_<p—z+Rt(z))

a? 2a8(p)
(=2 " (o= 2)Relp)

~

where «, § were defined in (12). Note that we can simplify 3(p) as

Yo Qi(ppt Tt S ()
Q:(p) Tl

Blp) =

For the polynomial L(z) = 2Q4(z) — z'™1, we consider its Taylor series at z = p and
we write

L(z) = L(p) +v(p — 2) + (p = 2)*L1(2)

for some polynomial L; where -y satisfies
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v=-L'(p) (16)
==> G+ + -+ 1) (A7)
j=0

We can now compute the residues of (p — z)~! and (p — 2z)~2 by putting everything

together:
2Qu(2) — 2t ZE: P
T~ =" per — = P
~ _ _. a? 2a8(p) \ il
(@) =0 410 =N * o h) ~ G IR
L 0Qulp) =pNa? - aty  (pQulp) = p")208(p) Y
(p—2)? p— e (p— 2)Re(p) (p— 2)Re(p)
_ Qi) — S D2 = (t+1)p!
Qi(p)*(p — 2)? Qi(p)*(p — 2)
" (PQt( ) — t+1) 22‘:1 (]H)PJ ! _ Z;:M}j
Qi(p)3(p—2) (p—2)Q:(p)
_ Q=g 2@ =) 3 (5!
pQi(p)?(1 — 2)? Qu(p)*(1 = 2)
D I R A G D Sy
pQi(p)*(1 - %) Qi(p)(1—2)
-3 (a0 () o))
where
oy = Q:(p) —
pQi(p)?
2@l =) T ()T oG D (1t e
B Q+(p)? pQt(p)? Qi(p)

Numerical and asymptotic values for ¢z and c3 are given in Table 2 and (21). They
rapidly approach % and —1, respectively. Values for the mean are in Section 7.
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3.5. The second moment

In this section we estimate the second moment for a fixed ¢:
oD FRIK)
n>00<k<n

We first consider

KD(z)=>" " k(k—1)f{"(k)="

n>00<k<n

since the generating function for K () (z) can be obtained by taking the second derivative
of G®(x, 2) with respect to x and then setting x = 1.

9?2 9% 1+z(1—-2x) Zt;é 292
+—5G(r,2) = 5 7 e
Ox? 1 — ijl Tizd — gtattl

Ox?
B (22_1 (= 1)ad=2 — jad=1)

—_ — t " N
Ox 1- ijl xizd — gtzttl

(142z—=az Zz;(l) zjzj)(Z§:1 Jri=lzd + txtlztﬂ))

(1- % w2l —atet)’

By substituting x = 1, we have

— Y0220 - 12
P(z)
-2 22:1 2(2Q(2) — 2 + Z;:2j(j —1)29 4 t(t — 1)z
P(2)?

+

2(2Qq(z) — 21112 .

T PRy

To estimate the variance, we only need to estimate the contributions from the terms with
denominators P(z)? and P(z)? since the contributions from the terms with denominator
P(z) are of lower order. So, we will focus on the terms involving P(z)~2 and P(z)~2 and
ignore the terms involving P(z)~!.

We need the following useful fact:

1 o B\ ad 3028(p)
- Gt Rme) C ot o A
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for «, 8 defined in (13) and R; from the proof of Theorem 4. We consider the Taylor
series expansion of (2Q¢(z) — 2!*1)? at 2 = p.
(2Qu(2) = 2"F1)? = (L(2))?
= L(p)* — 2L (p)L(p)(p — 2) + La(2)(p — 2)?
= (2Qu(p) = P +2(2Qup) — P (p — 2) + La(2)(p — 2)°

for some polynomial Ly(z) where v is as defined in (16).
Together we have

2(0Q:(p) — p'1)%a®  4(2Qu(p) — P )ve® | 6(pQuilp) — p'T)Pa?B

R~ =, o = =27 T (- 2PR()
=230 P (pQu(p) — ) + 350 G (G — 1)p? + t(t — 1)pt T
(p—2)2Re(p)?
2(0Qu(p) — p t+1>2+ 4(pQu(p) — P (= Xi—o G+ 12 + (t+1)p")
(p—2)2Qu(p)? (p—2)?Qu(p)?
N 6(pQ:(p) — p!*1)2 35, (5!
(p—2)*Q(p)*
223 e (pQ:(p) — pt+1)+ZJ 20— Dp? +t(t = 1)p**!
(p— 2)*Q(p)? '

Hence, we have

H(z)~04< ; )(g)”+c5(n+1)(§)”+0(1)(%)"
where

2(Qu(p) — p')?

4T ) (18)
- 4(Qe(p) — pt)( - Z oG+ 1)+ (t+ 1)p ) . 6(Q:(p) — pt)? Z;- (]+l)p] 1
T pQ:i(p)3 Q:(p)4

i —2 Z;;E P (Q:(p) — p*) + Zz':zj(j —Dp? 2+ t(t - 1)pt71. 19

Qi(p)?

Together, we have proved the following:

Theorem 6. For a fized t, we have

; K2 £ () = (04 (” ;L 2) +(eates)(n+1)+ 0(1)) o



20 F. Chung et al. / Advances in Applied Mathematics 126 (2021) 101916

where cq, ¢y and c5 are defined in (14), (18) and (19).

Numerical and asymptotic values for cq, ¢4 and ¢5 are given in Table 2 and (21). They
rapidly approach %, 1 and —3, respectively.

3.6. The variance

We can finally evaluate the variance:

Var(n) ~

cdﬁ%+@ﬁw@W+U_(®m+U+%U%

&] C1

We note that the coefficient of n? vanishes since c4cq = QC%. Thus, we have

3 -2
Var(n) = L2 “2”5)2; 22 ) L 001) = e+ 0(1). (20)
1

Although the exact expressions for ¢;’s are rather complicated, there is a great deal of
cancellation for ¢; and in particular, for c5c; — 2cac3. By substituting the ¢;’s into (20),
we have

Theorem 7.

Var'Y (n) = ezn + O(1)
— <(Qt(p) — (20Nt P00+ Upj) n+0(1)

+
Qt(p)? Qt(p)?
_ (pt(l +2p+ ... +tptTt = (t+1)pY)
(142p+ ...+t + (t+1)pt)°
P i+ )P
(142p+ ... +tp=1 + (t+1)pt)°

" )n+oa»

In Table 2, we list some values of p® and cZ(-t) for small values of ¢.
Rough asymptotic estimates are relatively simple. Using Fact 5, with some straight-
forward computation, we have

o0 =5 +0(7)

Qt(/’(t)) =4+ O(t2_t)

1
A = 5T o2

) = % + 027" (21)



F. Chung et al. / Advances in Applied Mathematics 126 (2021) 101916 21

Table 3

Table of small values of cgt) and cét).
t cét) c(9t>
1 .95491 ... .04262. ..
2 .94165. .. .02822. ..
3 .95441 ... .01505. ..
4 196927 . .. .00768 . ..
5 .98069. .. .00387. ..
10 .99878 ... .00012...

& =14 0@27

1
t
C;) == +O(t2 2t).

The table above is consistent with this asymptotic behavior. The results in this section
are used to give accurate estimates of the variance and sample size required in Section 7
below.

To conclude this section, the generating function of Fact 4 will be used to get the
asymptotic behavior of the variance of the naive importance sampling estimator T'(c) =
%w) as in the example for Fi 1(n) in Section 2. The argument is very similar to the
facts above so we will be brief. We want to compute

1 1 () e
K® = ?Z Prio) ~cgle® (22)
From Fact 4, we have G(2,z) = P(2)/Q(z) with
Q(z) =1-22z—(22)* — ... — (22)" — (22)""%.

Arguing as in Fact 6, the largest real root p satisfies

1 1 1 t
At Pyt s T s

We carry out the same analysis as above for the cases t = 1,2,3,4,5 and 10, namely,
we derive estimates for the asymptotic behavior of the coefficients of the corresponding
generating functions (we omit the details). This results in Table 3.

In particular, it follows that

3-V5
§) =1n <\/§ ‘C) — 0.0426288. ..

It is not hard to show that cét) tends to 1 and cét) decreases like 27t as t — 0o0. These
asymptotics are used in Section 7 to obtain variance-based estimates of the required
sample size.
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4. The (2, 2)-graph Bz 2(n)
4.1. Introduction

In this section we will consider our usual procedure for selecting a random per-
fect matching from the graph Bso(n). This is a bipartite graph with vertex sets
Up = {u1,u2,...,u,} and V,, = {v1,v2,...v,} and with edges {u;,v;} for all ¢, sat-
isfying | — j| < 2. Thus, starting with u;, we select an incident random edge {u1,v;},
repeating this process with vertices usg,us, ..., u, but always making sure that at any
point, the edges chosen so far are part of a perfect matching in Bs 2(n). The number of
perfect matchings in G,, is given by Per(M,), the permanent of the n x n matrix M,
where M,,[i, j] = 1 if and only if |i — j| < 2. If S,, denotes Per(M,,) then it is known (see
[15]) that S,, satisfies the linear recurrence

Sn=25,_1+2S5,_3—5,_5 (23)

with the initial values Sy = 1,57 = 1,55 = 2,53 = 6,5, = 14. In particular, the
(ordinary) generating function for S, is given by (see [15]

1—=z2

F(z) = Z Spzt = . (24)

1 _ 9,3 5
S0 1—22—2234+=2

It then follows by standard techniques (see [17]) that
Sp~ep™" (25)

where

1—p

= 26 —5ph) 0.45463889 . ... (26)

C1

and p = 0.428530860 . . . is the smallest real root of the polynomial p(z) = 1—22—223+25.
When n = 200, S, is approximately 1.825 x 1073. Two of our main goals for this
section are to estimate the quantities:

1 1 1 1
K, = S_TQL zg: m and L, := 5. za:ln (m) —In(S(n)) (27)

where the sums are over all perfect matchings o of By 2(n).

It is not hard to see that Bs 2(n) has no cycles of length greater than 3. In fact, there
are only two types of 2-cycles ((¢,i+ 1), (4,74 2)) and two types of 3-cycles ((¢,4+ 1,7+
2), (i,i +2,i+1)).
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4.2. The matriz M, (z,y)

It is easy to see that in sequentially selecting the edges in our random perfect matching,
it is ordinarily the case that an edge is selected with probability 1/3. However, if when
choosing an edge for ug, it happens that no edge has yet been chosen for vg_o, then we
must choose the edge {ug,vg_2}, i.e., this edge is chosen with probability 1. As usual,
when we reach the final vertex u,, there will be only one unoccupied vertex vy and so
the edge for w, is forced. But there is one more situation to consider, namely for the
vertex u,_1. At this point, there are only two choices for an edge for u,,_1 so that the
probability of choosing either one of them is 1/2. The exception to this statement is
when v,,_3 is unoccupied in which case the edge from u,,_; is forced.

All of this information can be summarized by computing the permanent of a matrix
M,,(z,y), defined as follows. We start with the standard n x n matrix which has z’s on
the four diagonals with —2 < ¢ — j < 2 and which has the entry 1 when i — j = 2, and
of course, 0's everywhere else. However, to form M, (z,y) we modify the bottom two
rows. Namely, we replace the last three entries of the next to the last row by y, and we
replace the last three entries of the last row by 1. (This description is only meaningful
when n > 3.) We show Mg(z,y) below.

Mg(x,y) =

oL 8 88 K8 OO
—_He 88 K8 OO0
—e 8 8 OO0
—_He 8 OO0 O0OO

SO R K8K KO

oo oOoOo~RER R
oo OoOrRR® &8 8
SoOooOoOrLR8 K888

From our discussion above, it follows that the permanent PerM, = PerM,(x,y) cap-
tures all the information needed to compute the probabilities that a particular perfect
matching will be chosen. For example, for n = 8 we find that

PerM,, = 114z%y + 1562°y + 48z*y + 362° + 382° + 8a*.

This tells us that there are 114 perfect matchings in Bp o that occur with probability
(3)%(3), 156 that occur with probability (3)°(3), ..., and finally 8 that occur with
probability (3)*. Of course, substituting # = y = 1 in PerM,, yields the value 400 which

is the total number of perfect matchings of Bj 2(8).
4.8. A recurrence for PerM,

Let us write

PerM, = Fy(z,y) = Y falk,Da"y'
k,l
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where f,,(k,l) denotes the number of perfect matchings which have k edges chosen with
probability % and [ edges chosen with probability % Our first goal is to find a recurrence
for F,, = F,,(x,y). Assuming n > 6, we will expand the permanent of M, along the top
row, and then recursively do the same thing for the resulting smaller matrices. This will
create three different types of matrices which we show below.

flc z = 0 0 0 0 07
x x x x 0 0 0 O
1 2 2 z 0 0 O
01 z =z = 0 O
Ag = Per 0 01 =z = = = 0}
0 0 01 = =z = «x
00 0 0 1 vy v vy
(10 0 00 0 1 1 1]
fx o = 0 0 0 0 07
1 2 = 0 0 0 O
Oz z =z 0 0 O
01 z = 0 0
Bg = Per 0 0 1 z o = = 0]
0 0 0 1 2 o= z «x
00 0 0 1 vy vy vy
|0 0 0 0 0 1 1 1}
fx z = 0 0 0 0 07
1 2z =z 0 0 0 O
01 z  « 0 0 0
0 0z 2 = 0 O
Cs = Per 0 0 1 2z o = = 0
0 0 0 1 =z =z = «x
000 0 1 y vy y
10 0 0 0 0 1 1 1}

We only show the three matrix types for n = 8 but the corresponding cases for general
n should be clear. We will usually suppress the variables x and y, and write A,, instead
of A, (z,y), etc. Now, by expanding these permanents along their top rows, we find the
following relations:

A, =zA,_1+xB,_1+x2Cp,_1, (28)
Bn = .I‘An_l + xAn_g + $Bn_2, (29)
Cn = 1'an1 + .’EAn,Q + Z'Anfg. (30)

To solve this system of recurrences, first substitute the value of C,, into (28) to obtain
An = xAn—l + .’I,'Bn_l + J)QBTL_Q + .’E2An_3 + .’17214”_4 (31)

which implies
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— 2 2 _ 2
Xn = An - (EAnfl - An73 - An74 - ‘anfl +x Bn727
Y, =axA, 1+ mAn—Z = B, —xB,_2,
from (30) and (31). Thus,

Xn+1 =xB, + szn—ly
X, +aY,=zB,+zB,_1.

Subtracting (34) from (33) we obtain
Xpy1— Xp — Yy, = (22 —2)B,_1.
Now, solving (35) for B,_1, we can substitute into (32) and get

(x —1)(X, +2Y,) = (2?2 —2)B,, + (> — 2)B,_1,

Xy, — X, + $2Yn —xY, = Xn+2 - Xn+1 - xYn+1 + Xn+1 - X, -

X, + 2%, = Xpyo — Y41

25

(32)

(36)

Finally, replacing X, and Y,, by their expressions in terms of A, and simplifying, we

have

Ay =aAn 1 +x(z+ 1A, o +2%(x+1)A,_3
+ $2(l‘ + 1)An_4 - .23314”_5 - ngn—G;

for n > 7. Thus, (37) together with the initial values:

Ag =1,
A =1,
Az = 2y,
Az = 6y,

Ay = 1022y + 422,

As = 1823y + 62° + 622y + 22,

Ag = 3daty + 102" + 2423y + 323 + 227y,
A7 = 622°y + 202° + 64xty + 142 + 1223y,

determine the recurrence for A, = PerM,, = F,(z,y).

Notice that if we substitute z =y = 1 in (37), we get a recurrence for S,, = PerM,:

Sn =5n-1+ 257172 + 25’1@73 + 257174 - Sn75 - Sn76

(38)
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which has the characteristic polynomial

1—2-222-22% - 222 4+ 25 420 = (1 4+ 2)(1 — 22 — 22° 4 2°). (39)
Of course, this must have the factor p(z) = 1 — 2z — 223 + 25 which occurs in (24).
4.4. A gemerating function for F,

Our next step will be to determine the generating function

G(x,y,z ZF x,Y)z Zan (k, Dafyl2m, (40)

n>0
Theorem 8.
P
G(z,y,z) = =
( ) 0
where
P=1+22%x—y)2’ —22(z — 1)(x —y)z* — w(2® + 20 — 4y + 1)2° (41)
+(—2® =22+ 2y)22 + (—x + 1)z
and
Q=1-xz—z(x+1)2% —2*(@+1)2* + 2325 + 23:°. (42)

Proof. We start with the recurrence for A, in (36). By multiplying A,, by 2™ and sum-
ming over all n > 6, we have

G(z,y, 2 ZA 2 = ZAnz”

n>6

= Z (xAn_l +a(z+1)A, o+ 22 (z+1)A, 3

n>6
+ $2(1' + 1>An—4 - $3An—5 - xBAn—G)

=G(z,y,2)(zz + 2(z+1)2° + 2°(x + 1)2°

4
+ 2% (z + 1)zt — 2%2° — 2720) — a:zZAjzj
=0



F. Chung et al. / Advances in Applied Mathematics 126 (2021) 101916 27

2
z(x+1)z ZA 2 —2?( +1)zSZAjzj
=0

1
—2%(x 4+ 1)2* Z A2+ a2
j=0

After substituting for A; for 0 < j <5, we have

1—zz—z(x+1)22 —2%(x + 1)23 — 2%(x + 1)2* + 2325 + 2325)G(x, 2)

=1+422%z —9)2® — 2z(x — 1)(z — y)2* — 2(2® + 22 — 4y + 1)2°
4+ (—2® =22+ 2y)22 + (—x + 1)z

Theorem 8 is proved. O
4.5. Analyzing G(z,vy, 2)

We will find it convenient to split G = G(z,y, z) into two parts: one for matchings
that don’t use y, and one for matchings that do. Thus, G = Gy 4+ yG; where

1422325 + (=223 + 222) 2% — w(x + 1)223 + (=22 — 22)22 + (—x + 1)z
o (- 2 ol 1 RN CRRICR

G - 222 + 4x23 + (2:022 22) 2% — 235225. (44)

Substituting = 3 in the above yields

5425 — 362% — 4823 — 1522 — 22+ 1
@=3 ~ 27,6 1 2725 — 362% — 3625 — 1222 — 3z + 1
=14z +4a?2* + (62° + 22)2° + (102* 4+ 32%)25 + ... (46)
B 222(xz 4+ 1) (222 — w2 — 1)
=3 27206 4+ 2725 — 3624 — 3623 — 1222 -3z +1
=222+ 622° +10222% 4 (1823 + 622)2° + (34a* + 2423 +222)20 + ... (48)

= Gy

(45)

Hi =G (47)

We need to get asymptotic estimates for the coefficients of Hy and H;. Let p; =
0.164399.. .. denote the (real) root of minimum modulus of 2725 + 2725 — 362* — 3623 —
1222 — 3z + 1. Using the usual techniques for doing this, we decompose Hy and H; into
partial fractions where the only terms that matter for us are those with denominators
having factors of the form (z — p;1)* for some k > 1. For Hy it turns out to be (courtesy
of Maple):

54p% — 36pF — 48p3 — 15p2 — 2py + 1
(z — p1)(162p5 4+ 135p% — 144p3 — 108p2 — 24p; — 3
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while for Hy it is:

2p1(=9p0% +6p7 +6p1 +1)
(z — p1)(162p° + 135p% — 144p3 — 108p2 — 24p; — 3

Thus, we find:
[zk]Ho = fu(k,0) ~ Copfk, [zk]Hl = fulk,1) ~ Clpfk
where
Co = 54pp — 36p1 — 4897 — 159 — 2p1 + 1 = 0.19155. ..,
(—p1)(162p9 + 135p} — 144p3 — 108p? — 24p; — 3
C, = 2p1(—9p1 + 6pi + Gp1 +1) — 0.66751 .. ..

(—p1)(162p% + 135p% — 1443 — 10802 — 24p; — 3

Therefore, recalling the definition of the relative variance from (27),

1 1
Kpi=— Y ——
52 ; Pr(o)

we have
Co+2C))pi" Co +2C 2\"
Ky (L2000 ( " )(p—) (49)
cp " 1 P1
where
Co + 2C 2 2
SO _o73ss6..., P =111702..., In (p—) — 0.11067. ...
c] P1 P1

Our next goal is to estimate the sum in

1 1
L, = N za:ln (PT(U)) —In(S(n)).
Recall from (40) that

G(xvyvz) = Z Fn(xay)zn = Zz.fn(kvl)xkylzna

n>0 n k|l

where f,(k,[) is the number of matchings o which have k edges chosen with probability
1/3 and [ edges chosen with probability 1/2. Hence, the probability that this o occurs
is just Pr(o) = (1/3)%(1/2), and so,
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1
| =kl {In2.
H<Pr(0)> n3+/In

Thus, the sum in L,, can be split into two sums; ¢ which is a sum over all o = g which
have no probability 1/2 edges, and ¥; which is a sum over all 0 = o7 which have a single
probability 1/2 edge. In other words,

1
Yo = %:m (W) = zk:fn(k:,o)(kln:S),

S = ;m (%) = Zk:fn(k, 1)(kIn3 +1n?2).

To compute the contributions of terms involving In 3 in both 3y and 31, we differentiate
G with respect to z, and set z = y = 1, resulting in

23(228 — 225 — 624 + 523 — 222 + 42 4 6)

J =
0 (25 — 223 — 22+ 1)2

To compute 31, we differentiate G with respect to y, and set x = 1, resulting in

—2(22 — 2 —1)2?
(25 —223 —22+1)°

Ji =

Expanding J; into partial fractions, with p = 0.42853 ... being the real root of minimum
modulus of 2° — 223 — 2z 4 1, we find the only relevant term in the expansion is:

—20*(p* —p—1)
(5p* —6p% = 2)(2 — p)

Hence,
[2"]J1 ~ Kip™"

where

—2p%(p* —p—1)
(50* = 6p? — 2)(—p)

Ky = = 0.36374.

Expanding Jy into partial fractions, we find that there are two terms of interest in the
expansion (since the denominator of Jy has a repeated root). They are:

p3(2p% — 2p° — 6p* + 5p® — 2p% + 4p + 6)
(5p* = 6p* = 2)%(z — p)?

and
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—2p?(25p0 — 20p° — 87p% + 61p7 + 67p% — 44p° + 45p* — 54p3 — 8p? — 16p — 18)
(5p* = 6p% = 2)3(2 — p)

This implies that
[Zn]Jo ~ (Ko(’n +1)+ K(/))p_n

with Koy = 0.37462... and K| = —0.99234. .. (obtained by evaluating the above expres-
sions at z = 0). Therefore, we have

i 1 _(Ko(n+1)+K(’))ln3—|—K11n2
520 (7)) - ‘ oty

= (0.90526....)n — 0.93811 - - - + o(1).

Thus,

£ n (k)= (522) )

+ (K0+K6)1n3+K11n2
¢
= (0.05786...)n — 0.14987 ...+ o(1).

—Inec; +0(1)  (50)

These asymptotics are used to compare algorithms in Section 7.
5. Two different models for generating perfect matchings in the Fibonacci graph
5.1. Introduction

All of the sections above have used a sequential importance algorithm that used
the ‘from the top’ ordering of (uj,us,...,u,). It is natural to wonder if changing the
order helps or hinders. In this section we will consider matchings in the Fibonacci
graph B = By 1(n). We will assume that n = 3m. We will designate the m vertices
{ua,us, ..., ugkt2,...,Ugm—1} as distinguished vertices in Us,,. We can think of the ver-
tices of B as partitioned into m blocks Dy,1 < k < m, where Dy consists of the six
vertices {usk—2,Usk—1, Usk, Usk—2, Usk—1, U3k - We will select our random matching in B
in two phases.

For Phase I, for each distinguished vertex usx_o we independently choose a random
edge incident to it in B. For Phase II, we then randomly select edges for the remaining
vertices in Us,, (now the order doesn’t matter), always making sure that each edge chosen
is part of a perfect matching in B. In Phase I, there are three choices for each ugg_o,
namely {usk—2,v3p—3}, {usk—2,V3k—2} or {usk_2,vsr_1}. We will call the first choice an
up edge, the second choice a level edge and the third choice a down edge. Let us consider
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what happens between two consecutive block Dy and Dy 1. There are nine total choices
for the edges incident to the corresponding distinguished vertices usp—o and uggy1. If
usp—o makes an ‘up’ or ‘level’ choice, and usy1 makes a ‘level’ or ‘down’ choice then
there will be two possible choices in the second phase for the vertices usi_1 and ugyg,
namely {usg_1,vsk—1} and {usg, vag}, or {usg—_1,vsr} and {usk, vsx—1}. Thus, for four of
the nine choices for the edges from the two distinguished vertices, there are two choices
for the two vertices between them. Let us say that this is a ‘good’ transition from Dy to
Dyyq. It is easy to check that for the other five choices for edges from wus,_1 and ugy,
there is only one possible choice for the edges from usg_1 and us.

Let us denote by t,,(k) the number of Phase I choices which have k ‘good’ transitions.
Define

T(I,y) = Z Z tm(k)xkym-

m>00<k<m-—1

Thus,
T(z,y) =3+ (4o + 5)y + (422 + 162 + 7)y? + (42 + 2822 + 40z + 9)y° .. ..

Note that setting 2 = 1 in the coefficient for y*, we get the value 3*+!, which is just
the total number of ways that the edges can be chosen for k + 1 distinguished vertices.

5.2. A closed form for T(z,y)

Our first goal will be to derive a recurrence for the t,,(k). Define a,,(j) to be the
number of Phase I choices which have j ‘good’ transitions and for which the first distin-
guished vertex has an ‘up’ edge chosen. Similarly, define b,,(j) to be the number of Phase
I choices which have j ‘good’ transitions and for which the first distinguished vertex has
a ‘level” edge chosen, and let ¢,,(j) be the corresponding number where a ‘down’ edge
was chosen. It is not hard to see that the following recursive relations hold:

amfl(j) + bmfl(j - 1) + Cmfl(j - 1);
bm(j) = am—-1(5) + bm-1(G — 1) + cm—1(j — 1),
cm(j) = am-1(3) + bm-1(J) + cm-1(J) (51)

S
3
—
.
—

Il

with a1(0) = b1(0) = ¢;(0) = 1 where m > 1 and 0 < j < m — 1. Of course,
tm(J) = am(j) + b (j) + ¢m(j). Eliminating the variables b, and ¢,,, we end up with
the recurrence:

am(]) = 2am—1(j) + am—l(j - ]-) - am—Q(j) + am—?(j - 1) (52)

with initial conditions ag(0) = a1(0) = 1 and an,(j) = 0for j > m > 1 or j < 0 or
m < 0. Thus, a,,(0) = 1 for m > 0,a2(1) = 2,a3(1) = 6,a3(2) = 2, etc.
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First we derive the generating function

Am,y) = D am(ialy™ "
m>1
0<j<m—1

From the recurrence in (52), we consider

> am(j)aly" T = A(z,y) — 1 (14 22)y
m>3
0<j<m—1

- § (2am71(j) + amfl(j - 1) - am72(j) + am72(j - 1))
m>3
0<j<m—1

=2y +ay—y* +ay®)A(z,y) — 2y — ay.

Thus we have

Since am, () = b (J), we have

B(z,y)= Y bm(j)aly™
m>1
0<j<m—1

= A(z,y).

To derive the generating function

Clay)= Y. cm(Galy™ ",
m>1
0<j<m—1

we consider the following sum over the recurrence (51).

E am(j)xjym_l = A(l’,y) -1
m>2
0<j<m—1

= Y (am1() +bmaG— D)+ ema(G— 1)
0<) 1

yA(x,y) +zyA(z,y) +2yC(z,y).

Thus,
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C(x,y) = xiy(A(my)(l —y—ay)—1)

_ 14+y—2ay
12y —y? —xy —xy?’

So, we have

T(xy)= > (am() +bm(i) + cm(5))2?y™

m>0
0<j<m-—1

=1+ y(A(x, y) + B(z,y) + C(z,y))

3—y+=x
IR Y y) i
1-2y—y? —2xy—ay
14+y—2ay

1 -2y —y? —ay -y

5.8. Completing the computations

It is clear that since for each ‘good’ transition there are two choices for the Phase II
process, the total number of matchings you get this way is >, 2%t (k) = F3pmiy (the
Fibonacci number, by our previous remarks). Let us define

fn(k) = 25t (R),  Fla,y) =Y > fm(k)aby™.

m>0 k>0
Thus, the generating function for F(z,y) is:
Fa) = 6200 = 1=ty 77
=1+3y+ (82 +5)y* + (1622 + 32z + )y . .. (53)
so that
-y

H(y)=F - - J
W =Few)| =1
=143y +13y° +550° + ... 4+ Fappry™ + ...

In particular, if p denotes the value /5 — 2, which is the root with minimum modulus
of 1 — 4y — y? then we find

Fspp1=cip” ™ +0(1)

where
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5+5
10

c1 = = 0.72360....

To compute the first moment ), .,k frn(k), we form

OF y?
Fi(z,y) = or  1-— 2z +2)y — (2z — 1)y?,
2

M) =A@y =g

The standard decomposition of H;(y) into partial fraction yields the two relevant terms

2(—2++/5)? 2v/5
5y+2-v5)2  25(y+2-+5)

Therefore, defining

_ 2(—2 + \/5)2 .
= 75(2 - \/5)2 = 0.40000...
_ 2\/5 L

CS —_— m —_— 0-75777- ..

we find

[y Hi(y) =Y kfm(k) = (calm+ 1)+ c3)p™™ + O(1).

k>0

To compute the second moment Y, <, k? fin (k), we first form

OF, —32y3(1 + y)

Fy(z,y)

" or (2zy? + 22y — y2 4+ 2y — 1)3

and

_ -32y3(1 +y)

Hy(y) = Fy(x,y) T U4y

Decomposing Hs(y) into partial fractions yields the three relevant terms:

—4(=52 + v5)*(1/(5) — 1)5v/5 N (—382 + 170/5) 18v/5
(25(y +2 — V5)%) (25(y+2-+v5)2)  (125(y+2—5))

Hence, defining
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—4(=52+V5)°(v5 - 1)5V/5

cy = =0.44222. ..
! 25(2 — v/5)3
cy = (382+—170\/—> = —1.34111.
25(2 — /5)2
o = 18V5 =1.36398. ..
125(2 — V/5)

we have

=S bk — 1) f(k) = <C4w Festm+1) +co)p™ + O(L).
k>0

Finally, we compute the variance from f,, (k).

Var(f (k)) B (64% +C5(m+ 1) +06) +02(m+ 1) +C3 _ (02(m+ 1) +63)2

C1

C1
=crm+ 0(1)
where

(—1404+/5 + 3140)
(25V5 = 3)2(—=2+ V/5))

cr = =0.16275....

Since n = 3m, the variance measured in terms of n is:

Var(fm(k)) = (0.054251..)n + O(1).

Two final remarks. First, using the above results, we find, for ¢ = 1+2\/g,

F:
n F3m+1 Z P ( 3m+1)
V5 ((CQ(m+1)+03)1n2) 1
= — +mnd—nln¢—In— —Ingp+o(1
: L 6= ~Ing-+o)
In3 ¢ In2v6 ) \/5 ((02 + c3) ) 1
= —+——1 ————In2|-In——-In¢+o0(1
(5 + 2 —mo)n 22 (122 =~ ool
= (0.012713 .. )n — 0.1501 ... + o(1). (54)
Second, let us compute K,, = F%H Yoo %@. Since there are fp,(k) o’s which come

from Phase I choices with k& good transitions, then

1 __om k
~ Pr(o) =3 gfm(kﬂ
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Table 4
Table of small values of E,,.

n 1 2 3 4 5 6 7
E., 0 1/2 3/4 9/8 23/16 57/32 135/64

Thus, using the generating function in (53), we find that

1-3
k

The usual techniques now show that the coefficient of y,, is equal to %((3 +2V3)" +
(3 —2V/3)™). Therefore,

_3m 5 [(9+6v3)12)"
Kn_FZ—me(kz)Q’“_ (7> + o(1).

n+l p ﬁ ¢2
= (.9549...)(1.0262...)" + o(1)
= (.9549.. )08 4 (1), (55)

In particular, Kop9 ~ 168.6.
5.4. Still another method for choosing matchings in By 1

Back to the standard Fibonacci graph B; 1, we choose edges sequentially starting from
u1 but now when there are two choices, instead of choosing each edge with probability
1/2, we choose the lower edge {uy,vi41} with probability p. We want to compute K, L
and the variance for this model.

We begin with heuristics to motivate a suitable choice of p. Under the uniform dis-
tribution on Fj 1(n), the expected number of transpositions (see [7], Proposition 2.4)
is

i = g <1 - \}5) + %5 +o(1) = (0.2763...)n — 0.1236... + o(1).  (56)

Using our standard sampling method (working from the top), let E,, be the expected
number of transpositions. Direct computation shows the following results, see Table 4.
It is easy to verify that E, 1 = %(1 +E, +E,_1) from which we find

E, ((3n —2)2" 1 + (=1)™).

T9.onl
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It follows that

E, ~ %n =(.333...)n  while p, ~ % (1 - %) n = (.2763...)n. (57)

This suggests making fewer transpositions!
Let E,(p) be the expected number of transpositions if, working in order uy,us, ...,
at each choice point, a transposition is chosen with probability p. Thus,

Eo(p) = E1(p) =0, Ea(p) = p, Es(p) = 2p — p?, Ea(p) = 3p — 2p° + p°.

More generally, it is easy to show that

E,.=1-pE,—1+p(l+E,_») (58)
from which it follows that
Theorem 9.
n p T T 2 2y,.3
E = ]ETL = ( — ) = 2 - e
() Z:Ow T \T oo~ Toa e )~ H e
and
n—1
E, =Y (-1)'(n—i)p*
i=0
Proof. We define
p
IE,/’L = IEn - m

By (58), we have E’ satisfying
E, =1 -p)E,_; +pE}_,.

The generating function E'(x) =" ., E;z™ can be easily shown to be

Pe) - 1"
1—(1—p)z—pz?

and therefore
E(z) = F'(z) + Z _pn o

(I+p)(1—-2)2 (14+p)(1-(1-pz—pz?)
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We content ourselves with the approximation

P
1+p

n

It is natural to choose p so that the expected number of transpositions matches the
expectation u, (from (57)). This gives

3_
2

S

p= = 0.3820.
The calculations below show this is an optimal choice.

We turn next from heuristics to a careful development. Let ¢, (k) denote the number
of o which have k transpositions. It is easy to see (by induction) that g, (k) satisfies the
recurrence

qn(k) = gn-1(k) + gn—2(k — 1) (59)

with ¢o(0) = ¢1(0) = ¢2(0) = g2(1) = 1 and ¢,,(k) = 0 when the indices are out of range.
Standard techniques show that the generating function Q(z, z) is given by

Q(%Z):Z Z qn(k)z* 2"

n>00<k<n/2
1
Also, let ¢ (k) denote the number of o which have k transpositions, one of which is at
the very bottom (i.e., o has the edges {un—_1,v,} and {uy,v,—1}). It is clear that

4 (k) = gn-2(k = 1). (61)

First we treat t,(p) = > ,cg T(0). Recall that T(c) is an unbiased estimate of
|F11(n)| = Fh+1. We will choose the parameter p to minimize the relative variance
T(c). Figs. 3 and 4 plot the relative variance as a function of p (note that they are
on two different scales). There is a clear minimum and Fact 7 below identifies this as
occurring at ¢—2.

Theorem 10. The generating function for t,(p) is given by

1— 22

G(z) = Ztn(p)zn = ﬁ- (62)

n>0 1-p P

Proof. We first write

S T(0) = Y. T(0") + 3 T(o™) (63)

gESy o**
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251

030 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48
[)

Var(T(cr))

Fig. 3. as a function of p for n = 100.

1.063
1.062+
1.0614
1.060+
1.059+
1.058+
1.057

1.056

0378 0380 0382 0384 038  0.388
P

Fig. 4. w as a function of p for n = 100.
n+41

where ¢* ranges over all ¢ which have a transposition on the bottom and ¢** ranges
over all o which do not have a transposition on the bottom. Thus, by (59) and (61), we
have

ta(p) = > T(o) = qi(k)(p" (1 —p)"~ %) " + Z (k) — g (k) (P (1 — py»—1-2k
k

w;qm(“;p)z)k e (1‘ Pry*

p
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- (1—%)”%:%2(]{ - 1)((1 _pp)2>k T —1)n—1 zk:qnl(k)((l _P)Q)k.

Thus,

Gz)—1—2z= Ztn(p)z"

=

i @<< L St (452
T ;)"—1;%1(16)((1;17)2)’“) §
Z<1 = > aneall = y(U=py
+<1p>§qun—1<k>((1;p)2)k (+5,)

This leads to

and Theorem 10 is proved. 0O

We remark that for the case of p = 1/2, Theorem 10 implies that the generating
function in this case is

1—=2

Gl2) =19, =9

which is consistent with the generating function in (8) through a different derivation.
To determine the asymptotic behavior of the coefficient of z" in G(z), we need to
expand G(z) into partial fractions. We first simplify the form of G(z) to

G2) = P’z +p° —p
(L=p)z2+pz+p?—p

The roots of the denominator are:

_ —pHA/Ap3 —Tp? 4 4p

2(1-p) ’

—p—4pP —Tp* +4p

2(1—p)

r1(p) r2(p) =
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The corresponding coefficients are

3p3 — 4p? + 2p — p?\/4p3 — Tp2 + 4p

c1\p) = 5
1) VAP — Tp? + 4Ap(\/4p® — Tp? + 4p — p)

3p® — 4p® + 2p + p*\/4p® — Tp? + 4p
C2(p)

VAP TP+ Ap(VA — TP+ Ap +p)
Hence, the coefficient t,(p) of z™ in the expansion of G(z) is
tn(p) = c1(p)r1(p) ™" + c2(p)ra(p) ™" = cr(p)ra(p) ™" + o(1).

When p = 1/2, this becomes

1a(1/2) = (1/2) [(%)‘" T (%)_"} = @/2)(a+ v+ - va))

= (1/2)((1+V3)") +o1)  (64)

as we saw in (9).
As a consequence we have

Fact 7. The relative variance of T, (o) is given by

Vara(Tio) = g ST~ () = 1o 69

where ¢1(p) and r1(p) are given above.
It is interesting to note that something special happens at the critical value p = ¢=2 =
.381966 ... (where, as usual, ¢ = 1+T‘/3) In this case, we have

_ 1 _ _
c1(e 2):1_%a (¢ 2)=¢ 27

and by (65)

5 5—1+/5

Varg(Tu(o)) = % 1= ¢—2f —1=9—4v5=.055728. ..,
independent of n!
Finally, we estimate
1
L, = i ZU:lnTn(o) —InFp,y. (66)
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Fact 8.

L, = (—1n(1—p)+ \/15¢ ln((1 —pp)Q) 111(;5)71

- <\/‘F’1; 1) In <M> +1In5Y2 4 o(1). (67)

Note that when p = ¢ =2, the coefficient of n in (67) is 0 and the constant term is just

In5/2. (Hint: If p = 3_2‘/5 = # then 1 —p = é)

Proof. We first simplify the computation by ignoring the distinction as to whether o has
a transposition at the bottom or not. This will have no effect on the asymptotic values
we obtain. Thus, if b(c) denotes the number of transpositions that o has then

Pr(o) = p"(1 —p)" =@,

Therefore,
b(o)
1 1 (1-p) )
In(7,,(c)) =1n =In
1) = (5157) ((1 S (55
In(1—p) b(o)Inp
where p := %. Hence, with g, (k) denoting the number of o which have k transposi-

tions, we have
ZlnT =F,iln(1—p +qun )In p. (68)

Since we know the generating function for the g, (k) from (60), we differentiate it to
obtain the generating function R(x, z) for the kq, (k):
2
z
kqn —_.
B3 DTN —

n>0 k

Expanding R(x, z) by the usual techniques, we find the coefficient of 2" is given by

qun ( (n 1)~ = 5f>¢”+o()

Putting these observations together, we have from (66)
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L,=In(1-p) "+

1
SFo ng"lnp—InF,41 + o(1)

= (ln(lp)+ \/15¢1n((1 —pp)Q) 1n¢)n

— <\/51; 1) In <(1 —pp)2> +ln51/2+0(1)

as claimed. This proves Fact 8. O

6. Cycles in B 1(n)

Here we give a proof of Theorem 1. Recall, it is
Theorem 1.

1

b
— 922 — ... — x2t

n2 = 69
;fz 1—z12 ( )

with

fn(xl,ﬂh,...,xt): Z Hx?i(a)

oc€Ft,1(n)

where o has a; i-cycles.

Before we give the proof of Theorem 1, we consider an example of the matrix M =
Mé4) as shown below.

—
_ oo

MM =
r3 T2 X1

T4 T3 T2 I1
0 T4 T3 T2 X1
0 0 Ty X3 T2 X1

OO oo

cooof i E

The permanent of M is:

PerM = a8 + TaSaq + 6252323 + 152123 + 5iwy + 20230003 + 102323
+ 12:1:%:32:54 + 6m§m§ + 121;1303303 + a:% + 6x123T4 + 3.%'%3?4 + 3332:1:% + l‘i.
The interpretation is that the bipartite graph Bs 1(8) has one perfect matching with eight

1-cycles, seven matchings which have six 1-cycles and one 2-cycle, ..., twenty matchings
with three 1-cycles, one 2-cycle and one 3-cycle, ..., and finally one matching with four
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)

2-cycles. The structure of the general matrix My(f and why the permanent counts these

cycles should be clear.

Proof of Theorem 1. First we define g,,(a1,...,a;) to be the number of matchings which
contain a; i-cycles, for 1 <14 < t. We consider

F(xl,xQ,...,xt,z) = anz"

n>0
= Z glay,ag,...,a)xi xe® ... xptz".
n>0
0<a;<n—1
We note that g, (a1, as,...,a;) satisfies the following recurrence, for n > 1,
gn(al, az, ... ,at) = gn_l(al — 1, ag, ... ,(J,t) —+ gn_g(al, as — 1, ey at) + .
+ gn—t(ar — 1,a2,...,a; — 1) (70)

where the base case is go(0,0,...,0) =1 and g(ay,...,a;) =01if a; <0 or a; > n/i.

Now we sum gy (aq,...,a;)z]" ... a3 over all n > ¢t + 1 and all a;’s. We have
ai ,,a2 ag . n
Fo(z1,29,...,2¢) — E gn(a1,ag, ..., a)x] xs? ... xftz
0<n<t
0<a;<n—1
— a a2 a n
= g gnlar,az, ... ap)x{ ws? .. xftz
n>t+1
0<a;<n—1
1 _
=112 E gn-1(a1 —1),az...,ap)x]' " w52 . apt2" 1
n>t+1
0<a;<n—1
2 a1 a2—1 at . n—2
+ 292 g gn—2(ai,a2 — 1,...,a)x] a5 Lxytz
n>t+1
0<a;<n-—1

t —1_n—t
+ .t xez E gn—t(@1,ag ... ,ap — )it .. xpt ™ 2"

n>t+1
0<a;<n—1

= (;rlz o022+ + xtzt)Fn(:rl, e z) =W

where

t
i
W= E Tz E gn—i(ai, ..., a;-1,a; — Laiqq, ..., a4)
i=1 0<n<t

0<a;<n—1

ai aj—1 _a;—1 _@Qit1 n—i
Xxy ...zl Tiyy -+ % .
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For n <t we have

t

— al a;—1 _a; Aitl n

W = E E Gn—ia1,...,ai—1,a; — 1, ai11,...,a0)x]" .. ;5 rirh 2
i=1 0<n<t
0<a;<n—1

t
Z (Zgnfi(alw-waifhai - 17ai+1,--~>at)>

t
n=10<a;<n—1 i=1

1<i<t
al i —1 _a;, @i+l at N
Xyt e
Together we have
2 t
(l—xlz—mgz A — Y1 )Fn(ml,...,xt,z)

=1+zt: Z (gn(ala""at)

n=10<a;<n—1
1<i<t

t
— Zgn—i(al? ey Qi—1G45 — 1, Ait1y. -+, at))x‘“ cooxttZ”
i=1
=1.
This completes the proof of Theorem 1. 0O

Remarks. For fixed ¢ and large n, it is natural to conjecture that the joint limiting
distribution of the number of i-cycles has a multivariate normal distribution. The limiting
means, variances and covariances are available by standard asymptotic analysis from
Theorem 1. It should be possible to prove the limiting normality from results in ([17],
sec. 9.6) but we have not tried to carry this out. Two special cases: setting x93 = x3 =

. = x¢ = 0 gives the generating function for the number of fixed points; setting z; =
... =y = x gives the generating function for the number of cycles.

7. Bringing it all together
7.1. Introduction

One motivation for the present study is to gain insight into the sample size required
for accurate estimation when sequential importance sampling is used to estimate the
number of perfect matchings in a bipartite graph. We have introduced several families

of graphs By s(n) giving rise to matchings of the form

Mis(n)={oceS,:i—t<o(i) <i+s}
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Sequential importance sampling generates random elements of M, (n) with computable

probabilities Pr(c). Then T'(o) = Prl(a) is an unbiased estimator of

M = M, 4(n) = My o(n)].

Two methods for estimating the sample size required for accuracy are

Var(T)
Nvar = 379 7
Mt%s(n)
and
1
Ngp =e* where L= —— In(Pr(o)™ 1) — In(M, s(n
e o, 2, o)~ (b )

with u chosen so that Pr{lnp(Y) > L+ §} is small. We have chosen u = s.d.Inp(Y").
These are introduced and discussed in Section 2 above.

Further, several sampling schemes are considered:

o generating matchings from ‘top down’;

o generating matchings (for By 1(n)) from ‘top down’ but non-uniformly;

o generating matchings (for By 1(n)) in order (2,5,8,...);

e generating matchings in random order choosing the steps along the way with non-
uniform probabilities.

All of these algorithms (except the last) require sample sizes exponential in n. One of
our main findings is that (for these problems), the constants involved are tiny, so that
sequential importance sampling can be a much more effective technique than Markov
chain Monte Carlo (where available bounds give O(n”) running time estimates).

This section brings together our findings. For each scenario we present the results

bn

in two forms. First, as N(n) = ae’™ with a,b given as numerical constants. Second, as

N(200). We hasten to add that all our a,b values are the results of previous theorems
and available exactly in terms of explicit low-degree polynomials. For example,

5 (1+v3)" 0.0426...)n
Nvar,top(n) ~ ﬁ (7) ~ (9549 .. )6( ) .
We begin with Bj 1(n) since results are most complete here.

7.2. Fibonacci permutations

As explained in the introduction,

Mii(n)={oce€S,:|o(i)—1 <1}



F. Chung et al. / Advances in Applied Mathematics 126 (2021) 101916 47

has |[M11(n))| = Fhq41 with F,, = 1,1,2,3,5,8,... for n = 1,2,3,4,5,6,.... When
n = 200, F,41 = 4.539... x 1041, Then

o Nyartop(n) = (:9549...)e(0:0426-)n N 0p(200) = 4, 788
(see the Example in Section 2). Also,
. NKL,top(n) - 6(0.0204...)n+(0.2989...)\/ﬁ7 NKL,top(zoo) = 4,058.

This is proved in Section 3. As explained there, the O(y/n) term is required for L to be
concentrated about its mean. This is guaranteed by our sharp estimates of Var(L). We
have neglected these O(y/n) term for these numerics for the next example because it is
not available.

o Npreg(n) = (0.605...)e3300In  Np . (200) = 1.004 x 10°.

The Bregman bound, derived in [5], given at the end of Section 2 is an upper bound for

el based on a random order. Proof of concentration remains an open problem.
o Nyarz(n) = (0.9544 ...)e(0:02586)n = - 5(200) = 168.

These bounds follow from (49).
o Ngps(n) = (2.1295...)e(0:012:)n+(02329.)v/n = Ny 2(200) = 728.

See Section 5 for details.
o Nuarran(n) = e0:0265)n N 0n (200) = 200.

This and the following bounds for sampling in random order are derived in [8].
o Nirran(n) = (2.2361...)e(0-0101.)n+01396)vn = Ny (200) = 122.

Remarks. For this example, we see that bounds on the required sample size based on the
variance can be substantial over-estimates (but not always, as for Nyq,3 and Nir, ran)-
The deterministic ‘from top down’, random and ‘every third’ orders are roughly com-
parable with the latter two slightly better. The Bregman bound, elegant and general
though it may be, is useless in practice. Even worse, the celebrated FPRAS for the
Markov chain Monte Carlo procedure gives an Q(n”) algorithm. When n = 200, this
gives N = (1.280...) x 106,
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7.8. (2,2)-permutations
As in Section 4, let
Maa(n)={o € S,:lo(i)—i <2, 1<i<n}.

Then

—p

M, = |M2,2<”)| ~cip " with ¢ = m

= 0.45464 . ..

and p = 0.4285... is the root of minimum modulus of the polynomial p(z) = 1 — 2z —
222 + 2°. When n = 200, M,, = 1.851... x 1073.
Using results from Section 4 we have

o Nyartop(n) = (0.73856...)e(0-11067)n = N 10p(200) = 3.0273 x 10%;
o Ngrtop(n) = (0.8608...)e(0-05786-)n+(0-338T-)vn N p 0 (200) = 1.0985... x 107;
o Npreg(n) = (0.7725...)e0010L)n Ny (200) = 2.828 x 10°.

Again, the sample size estimates leaning on the variance and Bregman’s inequality are
over-estimates.

8. Concluding remarks

In principle, the same techniques can work for matrices with s diagonals above the
diagonal and t¢ diagonals below the diagonal. For example, suppose s = 3, t = 4. Let
B4 3(10) be the resulting bipartite graph and consider the corresponding matrix M =
M, 3(10) shown below. The form for the matrix M; ¢(n) in the general case should be

clear.
_.734 Ty XTy4 T4 0 0 0 0 0 0 1
Tg Tg4 Xyq4 Tyg4 X4 0 0 0 0 0
Ty Xy Ty x4 T4 x4 0 0 0 O
Ty Xy Ty x4 T4 x4 x4 0 0 O
Tl X4 T4 Ty T4 T4 T4 T4 0 0
M, 3(10) = 0 =z 0
1 L4 T4 T4 T4 T4 T4 T4
0 0 Tr1 T4 Xy4 T4 T4 Tyg T4 X4
0 0 0 r1 X3 X3 T3 X3 I3 I3
0 0 0 0 r1 T2 X9 T2 T T2
L 0 0 0 0 0 ry 1 X1 X1 1'1_
Then

PerMy 3(10) = 6z woraxy + ... + 52005 w008 + ... + 24aizsz47].
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Thus, there are 6 matchings that occur with probability (1/1)*(1/2)(1/3)(1/4)%, 520
matchings that occur with probability (1/1)3(1/2)(1/4)8, etc.

To see why this is so, we first note that in general, because of the order that the
edges are chosen, there are (usually) exactly 4 choices for each vertex uj. However, if it
happens that at this time, v_3 is unoccupied, then the edge {uy,vi—3} must be chosen.
This observation accounts for the diagonal of x1’s. However, when k gets near the end,
there are fewer choices. For example, there is only one choice for ug. Similarly, there are
only 2 choices for u; (which accounts for the appearance of the z3’s in row 7), except
that if vy happened to be unoccupied then in which case there is only one choice. Similar
arguments apply to the occurrences of the other x;’s in the matrix, and in fact, to the
general case with arbitrary s and ¢. In principle, our techniques could then be used to find
the appropriate recurrences, generating functions, asymptotic expansions, etc. However,
even finding a general expression for the permanent of the matrix corresponding to the
graph By ;(n) seems formidable! For example, for s =t = 6, the corresponding numbers
satisfy a recurrence of order 494 (see [15]). However, it is possible that with (a lot) more
work, progress can be made. Be our guest!
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