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1. Introduction

This paper has two motivations. The first is a novel technique for deriving ‘nice’ 

generating functions for permutations with restricted positions via various statistics.

Example. Let Ft,1(n) be the set of permutations σ ∈ Sn with i − t ≤ σ(i) ≤ i + 1. Thus 

when t = 1,

F1,1(n) = {σ : |σ(i) − i| ≤ 1}.
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Fig. 1. Graph corresponding to F1,1(8).

A cycle index for Ft,1(n) is

fn =
∑

σ∈Ft,1(n)

∏

x
ai(σ)
i

where σ has ai i-cycles.

In Section 6, we show

Theorem 1.

∞
∑

n=0

fnzn =
1

1 − x1z − x2z2 − . . . − xtzt
. (1)

We are led to study such things via a novel importance sampling algorithm for gener-

ating random permutations with restricted positions. Suppose B(n) is a bipartite graph 

with vertex sets Un = {u1, u2, . . . , un} and Vn = {v1, v2, . . . , vn} and various edges 

{ui, vj} (Fig. 1).

Let M(n) be the set of perfect matchings in B(n). Throughout we suppose that M(n)

is nonempty. In a variety of statistical problems arising with truncated or censored data it 

is important to be able to study the distribution of various statistics of uniformly random 

elements of M(n). For example, as explained in [7], Lyndon Bells’ test for correlation 

on truncated data leads to ‘if you pick σ ∈ M(n) at random, what is the distribution 

of the number of involutions (i.e., 2-cycles) in σ?’ A variety of techniques, reviewed in 

Section 2(A) are available to give approximations. This paper studies sequential impor-

tance sampling: Order Un in some way, say (u1, u2, . . . , un). Consider u1 having edges 

to various vj . Some of these can be completed to a perfect matching. Call these J1. 

Pick {u1, vj} uniformly in J1. Then delete {u1, vj} and their incident edges. Proceed to 

u2, choosing {u2, vj} uniformly in J2, . . . . This always results in a perfect matching σ

and the various available sets are (reasonably) efficiently computable (see the Wikipedia 

entry on ‘matching (graph theory)’). The chance



F. Chung et al. / Advances in Applied Mathematics 126 (2021) 101916 3

Fig. 2. Histogram of T (σi) for N = 1000 samples for F70,1. The three starred values are 9.01 × 1015 (twice) 
and 3.60 × 1016.

Pr(σ) =

n−1
∏

i=1

|Ji|−1, (2)

is easy to compute. Let T (σ) =
∏n−1

i=1 |Ji|. Then

E(T ) =
∑

σ∈M(n)

Pr(σ)T (σ) = |M(n)|, (3)

gives an unbiased estimate of |M(n)|. If Q(σ) is a statistic (e.g., the number of involutions 

or the number of fixed points in σ), T (σ) allows estimating

Pu{Q(σ) ≤ x} =
1

N

N
∑

i=1

δ(Q(σi) ≤ x)T (σi).

On the left Pu is the uniform distribution on M(n). On the right, σi is an independent 

sample from the sequential importance sampling algorithm.

As an example, the following plot shows a histogram of the importance weights 

Pr(σ)−1 for a sample of size N = 1000 for estimating the number of (1, 1) permuta-

tions when n = 70 (Fig. 2).

Here, the right answer is F71 = 302, 061, 521, 170, 409. The estimate is the sample mean 

of these weights, here 3.08 . . .×1014, which is reasonably accurate. However, the estimated 

standard deviation from these data is 1.33 . . . × 1015 which is useless. Not surprisingly, 

the weights are all over the place; min = 5.49 . . . × 1011, max = 3.60 . . . × 1016.
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Table 1
F4,1 with sequential sampling probabilities.

σ 1234 2134 1324 1243 2143

P r(σ) 1/8 1/4 1/4 1/8 1/4

Importance sampling is very widely used and has resisted theoretical understanding. 

See [3] for an overview. The present paper gives a class of test cases permitting careful 

analysis.

Let us make the connection between generating functions and sequential importance 

sampling. We begin with a simple example. When t = 1, |F1,1(n)| = Fn+1, the Fibonacci 

number. For example, when n = 4, we have the following results, see Table 1.

The Pr(σ) are shown in the second row of Table 1. For example, for sequential building 

up 1234: 1 can be placed in two places. If it is matched with 1, then there are two choices 

for 2. If it is matched with 2, then there are two choices for 3 and 4 is forced. This results 

in Pr(1234) = 1/8. For 2134, if 1 is matched with 2, then 2 is forced to be matched to 1. 

Then there are two choices for 3 and 4 is forced. This results in Pr(2134) = 1/4. Notice 

that always

Pr(σ) =
1

2k(σ)
(4)

where k(σ) denotes the number of times that there were two possible choices for an edge 

in σ. This remains true for sequential importance sampling on Ft,1(n) (for the initial 

order (1, 2, 3, . . . , n)). To study the variance and needed sample size of the estimator 

in (3) requires understanding

fn(x) =
∑

σ∈Ft,1(n)

xk(σ). (5)

Our techniques give

Theorem 2. For enumerating Ft,1(n),

∞
∑

n=0

fn(x)zn =
1 + z(1 − x)(1 + xz + x2z2 + . . . + xt−1zt−1)

1 − xz − x2z2 − . . . − xtzt − xtzt+1
. (6)

We are able to use this to give a sharp asymptotics for the variance of T and sample 

size required.

Section 2 below gives background on matchings and sequential importance sampling. 

Section 3 derives results for Ft,1(n). Section 4 derives results for {σ : |σ(i) − i| ≤ 2}.

Section 5 studies two important variations of the basic algorithm. First, instead of 

‘working from the top’, a variant beginning with ‘working with every third’ shows real 

improvement (much smaller sample size required). A most interesting second variant is 
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to make the choices with non-uniform probabilities. In Section 5.4 this is shown to allow 

near perfect estimation with bounded sample size (as opposed to the exponential sample 

sizes required in all other variations.

Section 6 proves Theorem 1 for the cycle generating function.

Section 7 uses these generating functions to evaluate required sample sizes for sequen-

tial importance sampling. The result is surprising. For Ft,1(n), the sample sizes required 

are exponential but with tiny exponents. When t = 1:

N � e(0.0204...)n.

For example, when n = 200, this indicates a sample of size about 60 is adequate.

Section 8 has remarks about using our permanental techniques for ‘(t, s) matchings’.

This may begin to explain why and when importance sampling works. It has its own 

introduction and may be consulted now for further motivation.

Acknowledgments

We thank Nima Anari, Sourav Chatterjee, Brett Kolesnik and Paulo Orenstein for 

their help, described below. We particularly thank Andy Tsao who found an error in our 

earlier version of Theorem 5 and his own proof of a correct result.

2. Background

This section gives background and history on: (A)—matchings, permanents and enu-

meration, (B)—importance sampling and (C)—a different determination of sample size.

(A) Matching theory. This classical subject has been treated wonderfully in the account 

of Lovász and Plummer [14]. It can be phrased as evaluating the permanent of an n × n

(0/1) matrix M . This is

Per(M) =
∑

σ∈Sn

n
∏

i=1

Mσ(i),i.

Thus, if M is a matrix with 0 on the main diagonal and is 1’s elsewhere, Per(M)

counts the number of derangements (σ(i) �= i) [Monmort (1708)]. It can also be phrased 

as ‘rook theory’ (putting non-attacking rooks on a chessboard determined by M [18]). 

Applications in statistics are surveyed by Bapat [1] or Diaconis-Graham-Holmes [7].

Exact computation of the permanent is #P complete [20]. A variety of approxima-

tion schemes, some quite sophisticated, are developed in Chapter 3 of [2]. A celebrated 

achievement of Jerrum-Sinclair-Vigoda [12] gives a Markov chain Monte Carlo algorithm 

with a uniform stationary distribution and polynomial running time. Alas, the running 

time is order n7 and as far as we know, this algorithm has never been used.
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Of course for ‘nice’ restricted matrices, exact enumeration is possible. Examples in-

clude matrices arising as adjacency matrices of planar graphs [2] where Pfaffians and 

hence determinants enter. The matchings corresponding to Ft,1(n) above (1 ≤ t ≤ ∞)

allow exact enumeration as do {σ : σ(i) ≥ b(i)} (Ferrers boards) where b(1) ≤ b(2) ≤
. . . ≤ b(n) is a fixed set of numbers (see [11]). We have been involved in other ‘nice’ 

cases [4]. Similarly, ‘nice’ classes of restriction matrices may allow the natural ‘switch’ 

Markov chain to mix in order O∗(n7) time. A wonderful paper of Dyer-Jerrum-Muller [9]

does just this for classes of restriction matrices with bands of consecutive ones (of vary-

ing sizes) down the diagonal. Since these are typical in the censored data literature (and 

include our examples), this is real progress.

We have not seen much development around the natural theme: Fix a restriction 

matrix M . Pick σ consistent with M uniformly at random. What does σ ‘look like’? How 

many cycles, inversions, fixed points, . . . . This has been some work for derangements, 

surveyed in [6]. Ozel [16] proves central limit theorems for the number of cycles of σ

uniform in F∞,1(n).

Permanents with general entries are also of interest. The algorithms discussed here 

can be easily adapted. For example, instead of choosing j ∈ J(1) uniformly, one can 

choose with probability proportional to the absolute value of the (1, j) entry. See [2,21]

for results and an overview.

(B) Importance sampling. Importance sampling is a very widely used simulation tech-

nique. Briefly, there is a space X with a probability measure ν specified. For a real-valued 

function f on X with finite mean

I(f) =

∫

f(x)ν(dx)

one wants to estimate I(f). In applications, this is intractable. But there is an auxiliary 

probability measure μ that is ‘easy to sample from’. If μ is positive whenever ν is positive 

(ν << μ) with

ρ =
dν

dμ
,

then I(f) =
∫

f(x)ρ(x)μ(dx). So we may sample x1, x2, . . . , xN from μ and estimate 

I(f) by

Î(f) =
1

N

N
∑

i=1

f(xi)ρ(xi). (7)

The huge variety of applications and variations are surveyed in [3] and [13].

In our examples X = M , the set of perfect matchings in a bipartite graph, ν is the 

uniform distribution on M and μ is the sequential importance sampling measure. Then 

ρ(x) =
∏n

i=1 |Ji|/|M |.
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As explained in [3], the variance of Î(f) can be an unreliable measure of accuracy for 

the long-tailed distributions that occur in importance sampling. The present setup gives 

a class of cases where this can be quantified.

Example (Fibonacci permutations F1,1(n)). Consider the sequential importance sampling 

algorithm for F1,1(n). Let T (σ) = 1/Pr(σ). So,

E(T ) = |F1,1(n)| = Fn+1.

V ar(T ) = E(T 2) − E(T )2. We compute

E(T 2) =
∑

σ∈F1,1(n)

2k(σ) = fn(2)

for fn defined in (5).

Using (6) for t = 1, we have

∞
∑

n=0

fn(2)zn =
1 − z

1 − 2(z + z2)
. (8)

The denominator 1 − 2z − 2z2 = (1 − zr−1
1 )(1 − zr−1

2 ), for r1 = (−1 +
√

3)/2 = .3660 . . .

and r2 = (−1 −
√

3)/2 = −1.3660 . . . . Routine analysis shows

fn(2) = (1/2)(r−n
1 + r−n

2 ).

Here, r1 is the root of minimum modulus so the dominant term is the one with rn
1 in 

the denominator. Since E(T ) = |F1,1(n)| = Fn+1 (the (n + 1)st Fibonacci number) and 

φ := (1/2)(1 +
√

5), then

E(T )2 =
1

5
φ2(n+1) + o(1)

and

Var(T ) ∼ (1/2)(1 +
√

3)n. (9)

Putting in numerical values, we find

E(T ) ∼ 1√
5

φn+1 = (0.7236 . . .)(1.618 . . .)n, S.D.(T ) ∼ (.7071 . . .)(1.6528 . . .)n.

Thus, the variability is large compared to the mean. This suggests large sample sizes are 

required to get an accurate estimate. For a sample of size N ,
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S.D.(T )√
N


 E(T ) ⇐⇒ N 
 Var(T )

E(T )2
.

Using our approximations,

N 
 5

2φ2

(

1 +
√

3

φ2

)n

∼ (.9549 . . .)(1.0435 . . .)n ∼ (.9549 . . .)e(0.0426...)n.

Thus, while the required sample size (to make the standard deviation of (În) small 

compared to In) is exponential in n, the constant is small. For n = 200, this suggests a 

sample size of at least N = 4, 788 is needed. The following considerations show this is 

an over-estimate. Many further explicit examples are given in Section 7. The main point 

for now is that this is the first example where such calculations can be pushed through. 

They make full use of our explicit generating functions.

(C) A different determination of sample size. As explained above, the variance can be a 

poor measure of accuracy for such long-tailed distributions. In [3] (see also [19]), a theory 

is developed for the sample size required to have |E(În) − E(In)| < ε. It gives necessary 

and sufficient conditions. To state the result, define the Kullback-Liebler divergence by

L = D(ν|μ) :=

∫

ρ ln ρdμ =

∫

ln ρ dν = Eν(ln ρY ), (10)

where Y has probability distribution ν. The main result shows that “N = eL steps are 

necessary and sufficient for accuracy”.

Theorem 3.

(a) If ‖f‖2,ν < ∞ and N = eL+t for t > 0 then

E|ÎN (f) − I(f)| ≤ ‖f‖2,ν [e−t/4 + 2P 1/2
ν (ln ρ(Y ) > L + t/2)].

(b) Conversely, if f ≡ 1 and N = eL−t, t > 0, then for any δ > 0 we have

Pν{ÎN (f) > (1 − δ)} ≤ e−t/2 + Pν(ln ρ(Y ) ≤ L − t/2)/(1 − δ).

Remarks. To help parse this, suppose that ‖f‖2,ν ≤ 1, e.g., f is the indicator function 

of a set. Part (a) says that if N > eL+t and ln(ρ(Y )) is concentrated around its mean 

(Eν(ln(ρ(Y )) = L) then ÎN (f) is close to I(f) with high probability (use Markov’s 

inequality with (a)).

Conversely, part (b) shows if N < eL−t and ln(ρ(Y )) is concentrated about its mean 

then I(1) = 1 but there is only a small probability that ÎN (1) is correct.

In the case of perfect matchings, ν is the uniform distribution, μ is the sequential 

distribution P (σ), ρ is P r−1(σ)
|M | and
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L =
1

|M |
∑

σ

ln(ρ(σ)) = −Eν ln Pr(σ) − ln |M |.

The main results of this paper give sharp estimates of L and a method of proving ln(ρ(Y ))

is concentrated about its mean for a class of problems. As a numerical example, when 

t = 1 and n = 200, the use of L + 1 s.d. suggests that a sample size of at least 4, 058 is 

sufficient (compared with the 4, 788 using the variance criterion above).

In [5], Bregman’s inequality is used to prove a result for general graphs. It is shown 

that if the set {u1, u2, . . . , un} is randomly ordered then

NBreg = eL ≤ 1

|X |

n
∏

i=1

(di!)
1/di (11)

where di denotes the degree of ui. That paper was unable to prove concentration but 

making the reasonable assumption of concentration of ln(ρ(Y )), it is of interest to com-

pare the bound with the right answer (for our special class). As a numerical example, 

when t = 1 and n = 200, the Bregman bound gives NBreg at least 1.004 ×1010 (!). Thus, 

while elegant and general, it is useless for this example.

3. t-Fibonacci graphs

3.1. Introduction

This section enumerates matchings and the relevant probabilities for sequential impor-

tance sampling for bipartite graphs Bt,1(n) that we call (t, 1)-graphs. These are bipartite 

graphs with vertex sets Un = {u1, u2, . . . , un} and Vn = (v1, v2, . . . , vn) and having as 

edges all pairs {ui, vj} with −1 ≤ i − j ≤ t (when the indices are well-defined).

The perfect matchings in this graph are in bijection with t-Fibonacci sequences satis-

fying

F
(t)
n+1 = F (t)

n + F
(t)
n−1 + . . . + F

(t)
n−t, F

(t)
1 = 1, F

(t)
j = 0, j ≤ 0.

Thus, F
(1)
n starts (0, 1, 1, 2, 3, 5, . . .), the usual Fibonacci sequence (see OEIS #A000045), 

F
(2)
n starts (0, 1, 1, 2, 4, 7, . . .) (a translation of OEIS #A000073), and so on.

These sequences have a fair-sized enumerative literature (see the Wikipedia entry for 

generalized Fibonacci sequences). We have not found previous study of the associated 

matchings.

As usual, for sequential importance sampling, we form random matchings by starting 

with u1 and choosing a random edge incident to it (there are two choices) and thereafter, 

proceeding in order u2, u3, u4, . . . always randomly selecting an incident edge, as long as 

after selecting that edge (and all the previous ones), we can still complete these choices 

to a perfect matching.
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Fact 1. The only time there is a unique choice is if either, for some vertex uk, no edge has 

yet been assigned to vk−t, or the vertex is un. In the first case we must put in the edge 

{uk, vk−t}. In the second case, un must be matched with the unique vertex vk which has 

no edge yet assigned to it. In all other cases, there are always exactly two choices.

Proof. By induction on k.

Remark. Fact 1 implies that the permutations arising from the t-Fibonacci graphs have 

a simple structure. The only cycles they have are of the form (i, i + 1, i + 2, . . . , i + k)

for some k between 0 and t + 1. Thus, all the results of this section can be interpreted 

as the enumerative theory of such cycles.

A generalization of Fact 1 showing that this ‘from the top greedy algorithm’ never 

gets stuck holds for (t, s) permutations.

Before we dig into details, there is one further example which provides a useful limiting 

case.

Example (t = ∞). Here the bipartite graph has edges {ui, vj} for −1 ≤ i − j. The 

associated perfect matchings are {σ : σ(i) ≤ i +1}. By an easy induction, there are 2n−1

such matchings.

Fact 2. The usual algorithm for generating a random t = ∞ matching, starting in order 

u1, u2, u3, . . . generates an exactly uniform perfect matching.

Proof. Induction on n.

It follows that sequential importance matching is exact with t = ∞: P (σ) = 1
2n−1

for all σ and the variance is zero. This suggests that sequential importance sampling 

should be good for ‘large t’. The results below show ‘large’ is t = ln2 n + c ln2 ln2 n. More 

generally, the variances and estimated sample sizes are decreasing in t.

3.2. The matrix M
(t)
n (x)

We define

M (t)
n (x)[i, j] =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x if −1 ≤ j − i ≤ t − 1,

1 if i − j = t, or i = n, max(1, n − t) ≤ j ≤ n,

0 otherwise.

For example,
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M
(2)
8 (x) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x x 0 0 0 0 0 0
x x x 0 0 0 0 0
1 x x x 0 0 0 0
0 1 x x x 0 0 0
0 0 1 x x x 0 0
0 0 0 1 x x x 0
0 0 0 0 1 x x x
0 0 0 0 0 1 1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Let a(n) = a(t)(n) denote the permanent Per(M
(t)
n (x)). Thus, for t = 2 we have

a(0) = a(1) = 1, a(2) = 2x, a(3) = 4x2, a(4) = 6x3 + x2, a(5) = 10z4 + 3x3, . . . .

Let us write

a(n) =
∑

0≤k≤n

fn(k)xk,

b(n) = a(n)
∣

∣

x=1

where fn(k) = f
(t)
n (k) is just the number of perfect matchings in which there were k

random choices each with probability 1/2 (i.e., there were n − k vertices which had only 

one choice).

This is immediate from the definition of the permanent.

We will often suppress the exponent t when it is understood.

Fact 3. a(n) satisfies the following recurrence:

a(n) = xa(n − 1) + x2a(n − 2) + x3a(n − 3) + . . .

+ xta(n − t) + xta(n − t − 1), n ≥ t + 2,

with a(m) = 0, m < 0, a(0) = a(1) = 1 and a(j) = 2j−1xj−1 for 2 ≤ j ≤ t + 1.

Proof. For 2 ≤ j ≤ t + 1, the first two columns are identical and therefore a(j) =

2xa(j − 1). For j ≥ t + 2, we use induction on n, recursively expanding the permanent 

by the top row. The fact that the last power of x is only t and not t + 1 comes from the 

fact that the last permanent expansion has a 1 in the top corner (and not an x).

We consider the generating function G(t)(x, z) defined by

G(t)(x, z) =
∑

n≥0

a(n)zn.

From now on, we consider a fixed t and denote G(t)(x, z) = G(x, z) if there is no confusion.
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Fact 4. The generating function G(t)(x, z) = G(x, z) is given by

G(x, z) =
∑

n≥0

a(n)zn =
1 + z(1 − x)

(

1 + xz + x2z2 + . . . + xt−1zt−1
)

1 − xz − x2z2 − x3z3 − . . . − xtzt − xtzt+1
.

Proof. We use the recurrence for a(n) in Fact 3. By multiplying a(n) by zn and summing 

over all n ≥ 2, we have

G(x, z) − 1 −
t+1
∑

j=1

2j−1xj−1zj =
∑

n≥t+2

a(n)zn

=
∑

n≥t+2

(

xa(n − 1) + x2a(n − 2) + x3a(n − 3) + . . .

+ xta(n − t) + xta(n − t − 1)
)

zn

= G(x, z)
(

xz + x2z2 + x3z3 + . . . + xtzt + xtzt+1
)

−
t+1
∑

j=1

(2j−1 − 1)xj−1zj −
t

∑

j=1

xjzj − xtzt+1.

By collecting terms, we have

(1 − xz − x2z2 − . . . − xtzt − xtzt+1)G(x, z)

= 1 + z(1 − x)
(

1 + xz + . . . + xt−1zt−1
)

and Fact 4 is proved. �

Let G(1, z) =
∑

n≥0 b(n)zn =
∑

n≥0

∑

0≤k≤n fn(k)zn.

Thus, 
∑

0≤k≤n fn(k) = Per(Mn(1)) is the total number of perfect matchings in Bt(n).

Fact 5. The generating function F (z) for the b(n) =
∑

k fn(k) is

F (z) =
1

1 − z − z2 − z3 − . . . − zt − zt+1
.

Proof. Plug in x = 1 in Fact 4.

3.3. Analyzing F (z)

In order to estimate the number b(n) of perfect matchings in Bt,1(n), we use the 

generating function F (z) in Fact 5. Of particular interest is the root of minimum modulus 

in the denominator of F . (See [10] for more details.)
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Fact 6. For t ≥ 2, the polynomial P (z) = 1 − z − . . . − zt+1 has a unique real root ρ of 

minimum modulus which lies in the range given below:

1

2
+

1

2t+3
< ρ <

1

2
+

1

2t+3
+

t

22t+3
.

Wolfram [22] (Cor. 3.4) gives a proof that all the zeros of P (z) are simple and references 

to earlier work. Our inequality for ρ sharpens his result which gave

ρ <
1

2
+

1

2t+3
+

t

22t+3
<

1

2
+

1

2t+1
.

Proof. We note that

P (z) − zP (z) = 1 − 2z + zt+2.

Since P (z) does not have 1 as a root, all roots of P (z) are roots of Q(z) = 1 − 2z + zt+2

and all roots of Q(z) except for 1 are roots of P (z). To derive the range for ρ, it simply 

suffices to check that

Q(z) > 0, for z <
1

2
+

1

2t+3

Q(z) < 0, for z =
1

2
+

1

2t+3
+

t

22t+3
.

We are now ready to estimate b(n) =
∑

k f
(t)
n (k).

Theorem 4. The number b(n) of perfect matchings in Bt,1(n) satisfies

b(n) ∼ c1ρ−n

where ρ is the unique real root of P (z) = 1 − z − . . . − zt+1 in (0, 1) (see Fact 6), and c1

satisfies

c1 =
1

ρ
(

(t + 1)ρt + . . . + 3ρ2 + 2ρ + 1
) .

Numerical values and asymptotic approximations for ρ and c1 are given in Table 2

and (21).

Proof. We define two useful functions:

Sj(w) = 1 + w + w2 + . . . + wj ,

Qj(w) = 1 + 2w + 3w2 + . . . + (j + 1)wj .



14 F. Chung et al. / Advances in Applied Mathematics 126 (2021) 101916

Table 2
Table of small values of ρ(t) and c(t)

i .

t ρ(t) c
(t)
1 c

(t)
2 c

(t)
3 c

(t)
4 c

(t)
5 c

(t)
7

1 .61803 . . . .72360 . . . .52360 . . . −.88137 . . . 0.7577 . . . −2.1133 . . . .08944 . . .
2 .54369 . . . .61841 . . . .55695 . . . −1.0121 . . . 1.0032 . . . −2.8449 . . . .05950 . . .
3 .51879 . . . .56634 . . . .54310 . . . −1.0282 . . . 1.0416 . . . −3.0183 . . . .03138 . . .
4 .50866 . . . .53792 . . . .52807 . . . −1.0230 . . . 1.0367 . . . −3.0466 . . . .01580 . . .
5 .50413 . . . .52177 . . . .51730 . . . −1.0156 . . . 1.0257 . . . −3.0398 . . . .00788 . . .
10 .50012 . . . .50122 . . . .50110 . . . −1.0010 . . . 1.0019 . . . −3.0036 . . . .00024 . . .

It can be easily verified that P (z) satisfies

P (z) = 1 − z − . . . − zt+1 = (ρ − z)Rt(z)

where

Rt(z) = zt + (ρ + 1)zt−1 + . . . + (ρt−1 + . . . + 1)z + ρt + . . . + 1

=
t

∑

j=0

Sj(ρ)zt−j .

Note that Rt(ρ) = Qt(ρ).

We consider the following partial fraction decomposition of the generating function 

F (z) of f(n) which can be directly verified using the fact that St(ρ) + ρQt−1(ρ) = Qt(ρ)

and Rt(z) + (ρ − z) 
∑t−1

j=0 Qj(ρ)zt−j−1 = Qt(ρ).

F (z) =
1

P (z)
=

1

(ρ − z)Rt(z)
=

α

ρ − z
+

β(z)

Rt(z)
(12)

where

α =
1

1 + 2ρ + . . . + (t + 1)ρt
=

1

Qt(ρ)

β(z) =
zt−1 + (1 + 2ρ)zt−2 + . . . + (1 + 2ρ + . . . + tρt−1)

Qt(ρ)
=

∑t−1
j=0 Qj(ρ)zt−j−1

Qt(ρ)
.

Therefore we have

c1 =
α

ρ
=

1

ρQt(ρ)
(13)

and

b(n) ∼ c1

ρn
.

Theorem 4 is proved. �
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3.4. The first moment

Our next goal is to estimate the first moment for a fixed t:

H(t)(z) =
∑

n≥0

∑

0<k≤n

kf (t)
n (k)zn.

To obtain the generating function H(t)(z), we simply differentiate G(t)(x, z) with respect 

to x and then set x = 1. For example, for the case of t = 3, we have

H(3)(z) =
z2(z5 + 2z4 + 3z3 + 6z2 + 4z + 2)

(z4 + z3 + z2 + z − 1)2
.

In the remainder of this section, we consider a fixed t and we abbreviate H(z) = H(t)(z)

and suppress (t) in various expressions if there is no confusion.

We note that

∂

∂x
G(x, z) =

−
∑t−1

k=0

(

ixi−1 − (i + 1)xi
)

zi+1

1 − xz − x2z2 − x3z3 − . . . − xtzt − xtzt+1

+
(1 + z − xz

∑t−1
i=0 xizi)(z + 2xz2 + . . . + txt−1zt + txt−1zt+1)

(

1 − xz − x2z2 − x3z3 − . . . − xtzt − xtzt+1
)2 .

Hence,

H(z) =
∂

∂x
G(x, z)

∣

∣

∣

x=1

=
−z − z2 − . . . − zt

1 − z − z2 − z3 − . . . − zt − zt+1
+

z + 2z2 + . . . + tzt + tzt+1

(

1 − z − z2 − z3 − . . . − zt − zt+1
)2

=
−zSt−1(z)

P (z)
+

zQt(z) − zt+1

P (z)2
.

Thus we have

∑

k

kfn(k) ∼ c2(n + 1)ρ−n

where

c2 =
ρ + 2ρ2 + . . . + tρt + tρt+1

ρ2
(

(t + 1)ρt + . . . + 3ρ2 + 2ρ + 1
)2

=
Qt(ρ) − ρt

ρQt(ρ)2
.

We have so far shown
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∑

k

kfn(k) ∼ c2(n + 1)ρ−n.

In order to compute the variance, we need a sharper estimate for 
∑

k kfn(k). We will 

show the following:

Theorem 5. For a fixed t, we have

∑

k

kfn(k) ∼
(

c2(n + 1) + c3

)

ρ−n

where

c2 =
Qt(ρ) − ρt

ρQt(ρ)2
(14)

c3 =
2
(

Qt(ρ) − ρt
)

∑t
j=1

(

j+1
2

)

ρj−1

Qt(ρ)3
−

.
∑t

j=0(j + 1)2ρj − (t + 1)ρt

ρQt(ρ)2
−

∑t−1
j=0 ρj

Qt(ρ)
.

(15)

To complete the proof of Theorem 5, we will derive c3. We need to consider the residue 

of (ρ −z)−1 and in particular, such a residue which appears in the term of H(z) involving 

P (z)−2. We consider

1

P (z)2
=

1
(

1 − z − z2 − z3 − . . . − zt − zt+1
)2

=
( α

ρ − z
+

β(z)

Rt(z)

)2

∼ α2

(ρ − z)2
+

2αβ(ρ)

(ρ − z)Rt(ρ)

where α, β were defined in (12). Note that we can simplify β(ρ) as:

β(ρ) =

∑t−1
j=0 Qj(ρ)ρt−j−1

Qt(ρ)
=

∑t
j=1

(

j+1
2

)

ρj−1

Qt(ρ)
.

For the polynomial L(z) = zQt(z) − zt+1, we consider its Taylor series at z = ρ and 

we write

L(z) = L(ρ) + γ(ρ − z) + (ρ − z)2L1(z)

for some polynomial L1 where γ satisfies
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γ = −L′(ρ) (16)

= −
t

∑

j=0

(j + 1)2ρj + (t + 1)ρt. (17)

We can now compute the residues of (ρ − z)−1 and (ρ − z)−2 by putting everything 

together:

H(z) ∼ zQt(z) − zt+1

P (z)2
−

∑t
j=1 zj

P (z)

∼
(

ρQt(ρ) − ρt+1 + γ(ρ − z)
)

( α2

(ρ − z)2
+

2αβ(ρ)

(ρ − z)Rt(ρ)

)

−
∑t

j=1 ρj

(ρ − z)Rt(ρ)

∼
(

ρQt(ρ) − ρt+1
)

α2

(ρ − z)2
+

α2γ

ρ − z
+

(

ρQt(ρ) − ρt+1
)

2αβ(ρ)

(ρ − z)Rt(ρ)
−

∑t
j=1 ρj

(ρ − z)Rt(ρ)

=
ρQt(ρ) − ρt+1

Qt(ρ)2(ρ − z)2
−

.
∑t

j=0(j + 1)2ρj − (t + 1)ρt

Qt(ρ)2(ρ − z)

+
2
(

ρQt(ρ) − ρt+1
)

∑t
j=1

(

j+1
2

)

ρj−1

Qt(ρ)3(ρ − z)
−

∑t
j=1 ρj

(ρ − z)Qt(ρ)

=
Qt(ρ) − ρt

ρQt(ρ)2(1 − z
ρ )2

+
2
(

Qt(ρ) − ρt
)

∑t
j=1

(

j+1
2

)

ρj−1

Qt(ρ)3(1 − z
ρ )

−
.
∑t

j=0(j + 1)2ρj − (t + 1)ρt

ρQt(ρ)2(1 − z
ρ)

−
∑t−1

j=0 ρj

Qt(ρ)(1 − z
ρ )

=
∑

n

(

c2(n + 1)
(z

ρ

)n

+ c3

(z

ρ

)n
)

where

c2 =
Qt(ρ) − ρt

ρQt(ρ)2

c3 =
2
(

Qt(ρ) − ρt
)

∑t
j=1

(

j+1
2

)

ρj−1

Qt(ρ)3
−

.
∑t

j=0(j + 1)2ρj − (t + 1)ρt

ρQt(ρ)2
−

∑t−1
j=0 ρj

Qt(ρ)
.

Numerical and asymptotic values for c2 and c3 are given in Table 2 and (21). They 

rapidly approach 1
2 and −1, respectively. Values for the mean are in Section 7.
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3.5. The second moment

In this section we estimate the second moment for a fixed t:

∑

n≥0

∑

0<k≤n

k2f (t)
n (k)zn.

We first consider

K(t)(z) =
∑

n≥0

∑

0<k≤n

k(k − 1)f (t)
n (k)zn

since the generating function for K(t)(z) can be obtained by taking the second derivative 

of G(t)(x, z) with respect to x and then setting x = 1.

∂2

∂x2
G(x, z) =

∂2

∂x2

1 + z(1 − x)
∑t−1

j=0 xjzj

1 − ∑t
j=1 xjzj − xtzt+1

=
∂

∂x

(

∑t
j=1

(

(j − 1)xj−2 − jxj−1
)

zj

1 −
∑t

j=1 xjzj − xtzt+1

+
(1 + z − xz

∑t−1
j=0 xjzj)

(
∑t

j=1 jxj−1zj + txt−1zt+1
)

(

1 −
∑t

j=1 xjzj − xtzt+1
)2

)

.

By substituting x = 1, we have

K(z) =
∂2

∂x2
G(x, z)

∣

∣

∣

x=1

=
−

∑t
j=2 2(j − 1)zj

P (z)

+
−2

∑t
j=1 zj(zQt(z) − zt+1) +

∑t
j=2 j(j − 1)zj + t(t − 1)zt+1

P (z)2

+
2(zQt(z) − zt+1)2

P (z)3
.

To estimate the variance, we only need to estimate the contributions from the terms with 

denominators P (z)2 and P (z)3 since the contributions from the terms with denominator 

P (z) are of lower order. So, we will focus on the terms involving P (z)−3 and P (z)−2 and 

ignore the terms involving P (z)−1.

We need the following useful fact:

1

P (z)3
=

( α

ρ − z
+

β(z)

Rt(z)

)3

∼ α3

(ρ − z)3
+

3α2β(ρ)

(ρ − z)2Rt(ρ)
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for α, β defined in (13) and Rt from the proof of Theorem 4. We consider the Taylor 

series expansion of (zQt(z) − zt+1)2 at z = ρ.

(zQt(z) − zt+1)2 =
(

L(z))2

= L(ρ)2 − 2L′(ρ)L(ρ)(ρ − z) + L2(z)(ρ − z)2

= (zQt(ρ) − ρt+1)2 + 2(zQt(ρ) − ρt+1)γ(ρ − z) + L2(z)(ρ − z)2

for some polynomial L2(z) where γ is as defined in (16).

Together we have

K(z) ∼ 2(ρQt(ρ) − ρt+1)2α3

(ρ − z)3
+

4(zQt(ρ) − ρt+1)γα3

(ρ − z)2
+

6(ρQt(ρ) − ρt+1)2α2β

(ρ − z)2Rt(ρ)

+
−2

∑t
j=1 ρj(ρQt(ρ) − ρt+1) +

∑t
j=2 j(j − 1)ρj + t(t − 1)ρt+1

(ρ − z)2Rt(ρ)2

=
2(ρQt(ρ) − ρt+1)2

(ρ − z)3Qt(ρ)3
+

4(ρQt(ρ) − ρt+1)
(

−
∑t

j=0(j + 1)2ρj + (t + 1)ρt
)

(ρ − z)2Qt(ρ)3

+
6(ρQt(ρ) − ρt+1)2

∑t
j=1

(

j+1
2

)

ρj−1

(ρ − z)2Qt(ρ)4

+
−2

∑t
j=1 ρj(ρQt(ρ) − ρt+1) +

∑t
j=2 j(j − 1)ρj + t(t − 1)ρt+1

(ρ − z)2Qt(ρ)2
.

Hence, we have

H(z) ∼ c4

(

n + 2

2

)

(z

ρ

)n
+ c5(n + 1)

(z

ρ

)n
+ O(1)

(z

ρ

)n

where

c4 =
2(Qt(ρ) − ρt)2

ρQt(ρ)3
(18)

c5 =
4(Qt(ρ) − ρt)

(

−
∑t

j=0(j + 1)2ρj + (t + 1)ρt
)

ρQt(ρ)3
+

6(Qt(ρ) − ρt)2
∑t

j=1

(

j+1
2

)

ρj−1

Qt(ρ)4

+
−2

∑t−1
j=0 ρj(Qt(ρ) − ρt) +

∑t
j=2 j(j − 1)ρj−2 + t(t − 1)ρt−1

Qt(ρ)2
. (19)

Together, we have proved the following:

Theorem 6. For a fixed t, we have

∑

k

k2fn(k) =

(

c4

(

n + 2

2

)

+ (c2 + c5)(n + 1) + O(1)

)

ρ−n
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where c2, c4 and c5 are defined in (14), (18) and (19).

Numerical and asymptotic values for c2, c4 and c5 are given in Table 2 and (21). They 

rapidly approach 1
2 , 1 and −3, respectively.

3.6. The variance

We can finally evaluate the variance:

Var(n) ∼ c4

(

n+2
2

)

+ (c2 + c5)(n + 1)

c1
−

(c2(n + 1) + c3)

c1

)2

.

We note that the coefficient of n2 vanishes since c4c1 = 2c2
2. Thus, we have

Var(n) =
( 3c4

2 + c2 + c5)c1 − 2c2(c2 + c3)

c2
1

n + O(1) = c7n + O(1). (20)

Although the exact expressions for ci’s are rather complicated, there is a great deal of 

cancellation for c7 and in particular, for c5c1 − 2c2c3. By substituting the ci’s into (20), 

we have

Theorem 7.

Var(t)(n) = c7n + O(1)

=

(

(Qt(ρ) − (1 + 2t)ρt)ρt

Qt(ρ)2
+

ρ2t
∑t

j=1 j(j + 1)ρj

Qt(ρ)3

)

n + O(1)

=

(

ρt(1 + 2ρ + . . . + tρt−1 − (t + 1)ρt)
(

1 + 2ρ + . . . + tρt−1 + (t + 1)ρt
)2

+
ρ2t

∑t
j=1 j(j + 1)ρj

(

1 + 2ρ + . . . + tρt−1 + (t + 1)ρt
)3

)

n + O(1).

In Table 2, we list some values of ρ(t) and c
(t)
i for small values of t.

Rough asymptotic estimates are relatively simple. Using Fact 5, with some straight-

forward computation, we have

ρ(t) =
1

2
+ O(2−t)

Qt(ρ
(t)) = 4 + O(t2−t)

c
(t)
1 =

1

2
+ O(t2−t)

c
(t)
2 =

1

2
+ O(t2−t) (21)
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Table 3
Table of small values of c(t)

8 and c(t)
9 .

t c
(t)
8 c

(t)
9

1 .95491 . . . .04262 . . .
2 .94165 . . . .02822 . . .
3 .95441 . . . .01505 . . .
4 .96927 . . . .00768 . . .
5 .98069 . . . .00387 . . .
10 .99878 . . . .00012 . . .

c
(t)
4 = 1 + O(t2−t)

c
(t)
7 =

1

2t+2
+ O(t2−2t).

The table above is consistent with this asymptotic behavior. The results in this section 

are used to give accurate estimates of the variance and sample size required in Section 7

below.

To conclude this section, the generating function of Fact 4 will be used to get the 

asymptotic behavior of the variance of the naive importance sampling estimator T (σ) =
1

P r(σ) as in the example for F1,1(n) in Section 2. The argument is very similar to the 

facts above so we will be brief. We want to compute

K(t)
n :=

1

S2
n

∑

σ

1

Pr(σ)
∼ c

(t)
8 ec

(t)
9 n. (22)

From Fact 4, we have G(2, z) = P (z)/Q(z) with

Q(z) = 1 − 2z − (2z)2 − . . . − (2z)t − (2z)t+1.

Arguing as in Fact 6, the largest real root ρ satisfies

1

4
+

1

4t+3
< ρ <

1

4
+

1

4t+3
+

t

42t+3
.

We carry out the same analysis as above for the cases t = 1, 2, 3, 4, 5 and 10, namely, 

we derive estimates for the asymptotic behavior of the coefficients of the corresponding 

generating functions (we omit the details). This results in Table 3.

In particular, it follows that

c
(1)
9 = ln

(

3 −
√

5√
3 − 1

)

= 0.0426288 . . . .

It is not hard to show that c
(t)
8 tends to 1 and c

(t)
9 decreases like 2−t as t → ∞. These 

asymptotics are used in Section 7 to obtain variance-based estimates of the required 

sample size.
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4. The (2, 2)-graph B2,2(n)

4.1. Introduction

In this section we will consider our usual procedure for selecting a random per-

fect matching from the graph B2,2(n). This is a bipartite graph with vertex sets 

Un = {u1, u2, . . . , un} and Vn = {v1, v2, . . . vn} and with edges {ui, vj} for all i, j sat-

isfying |i − j| ≤ 2. Thus, starting with u1, we select an incident random edge {u1, vj}, 

repeating this process with vertices u2, u3, . . . , un but always making sure that at any 

point, the edges chosen so far are part of a perfect matching in B2,2(n). The number of 

perfect matchings in Gn is given by Per(Mn), the permanent of the n × n matrix Mn

where Mn[i, j] = 1 if and only if |i − j| ≤ 2. If Sn denotes Per(Mn) then it is known (see 

[15]) that Sn satisfies the linear recurrence

Sn = 2Sn−1 + 2Sn−3 − Sn−5 (23)

with the initial values S0 = 1, S1 = 1, S2 = 2, S3 = 6, S4 = 14. In particular, the 

(ordinary) generating function for Sn is given by (see [15])

F (z) =
∑

n≥0

Snzn =
1 − z

1 − 2z − 2z3 + z5
. (24)

It then follows by standard techniques (see [17]) that

Sn ∼ c1ρ−n (25)

where

c1 =
1 − ρ

ρ(2 + 6ρ2 − 5ρ4)
= 0.45463889 . . . (26)

and ρ = 0.428530860 . . . is the smallest real root of the polynomial p(z) = 1 −2z−2z3+z5.

When n = 200, Sn is approximately 1.825 × 1073. Two of our main goals for this 

section are to estimate the quantities:

Kn :=
1

S2
n

∑

σ

1

Pr(σ)
and Ln :=

1

Sn

∑

σ

ln

(

1

Pr(σ)

)

− ln(S(n)) (27)

where the sums are over all perfect matchings σ of B2,2(n).

It is not hard to see that B2,2(n) has no cycles of length greater than 3. In fact, there 

are only two types of 2-cycles ((i, i + 1), (i, i + 2)) and two types of 3-cycles ((i, i + 1, i +

2), (i, i + 2, i + 1)).
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4.2. The matrix Mn(x, y)

It is easy to see that in sequentially selecting the edges in our random perfect matching, 

it is ordinarily the case that an edge is selected with probability 1/3. However, if when 

choosing an edge for uk, it happens that no edge has yet been chosen for vk−2, then we 

must choose the edge {uk, vk−2}, i.e., this edge is chosen with probability 1. As usual, 

when we reach the final vertex un, there will be only one unoccupied vertex vk and so 

the edge for un is forced. But there is one more situation to consider, namely for the 

vertex un−1. At this point, there are only two choices for an edge for un−1 so that the 

probability of choosing either one of them is 1/2. The exception to this statement is 

when vn−3 is unoccupied in which case the edge from un−1 is forced.

All of this information can be summarized by computing the permanent of a matrix 

Mn(x, y), defined as follows. We start with the standard n × n matrix which has x′s on 

the four diagonals with −2 ≤ i − j ≤ 2 and which has the entry 1 when i − j = 2, and 

of course, 0′s everywhere else. However, to form Mn(x, y) we modify the bottom two 

rows. Namely, we replace the last three entries of the next to the last row by y, and we 

replace the last three entries of the last row by 1. (This description is only meaningful 

when n ≥ 3.) We show M8(x, y) below.

M8(x, y) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x x x 0 0 0 0 0
x x x x 0 0 0 0
1 x x x x 0 0 0
0 1 x x x x 0 0
0 0 1 x x x x 0
0 0 0 1 x x x x
0 0 0 0 1 y y y
0 0 0 0 0 1 1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

From our discussion above, it follows that the permanent PerMn = PerMn(x, y) cap-

tures all the information needed to compute the probabilities that a particular perfect 

matching will be chosen. For example, for n = 8 we find that

PerMn = 114x6y + 156x5y + 48x4y + 36x6 + 38x5 + 8x4.

This tells us that there are 114 perfect matchings in B2,2 that occur with probability 

( 1
3)6( 1

2 ), 156 that occur with probability (1
3 )5( 1

2 ), . . . , and finally 8 that occur with 

probability (1
3 )4. Of course, substituting x = y = 1 in PerMn yields the value 400 which 

is the total number of perfect matchings of B2,2(8).

4.3. A recurrence for PerMn

Let us write

PerMn = Fn(x, y) =
∑

k,l

fn(k, l)xkyl
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where fn(k, l) denotes the number of perfect matchings which have k edges chosen with 

probability 1
3 and l edges chosen with probability 1

2 . Our first goal is to find a recurrence 

for Fn = Fn(x, y). Assuming n ≥ 6, we will expand the permanent of Mn along the top 

row, and then recursively do the same thing for the resulting smaller matrices. This will 

create three different types of matrices which we show below.

A8 = Per

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x x x 0 0 0 0 0
x x x x 0 0 0 0
1 x x x x 0 0 0
0 1 x x x x 0 0
0 0 1 x x x x 0
0 0 0 1 x x x x
0 0 0 0 1 y y y
0 0 0 0 0 1 1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

B8 = Per

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x x x 0 0 0 0 0
1 x x x 0 0 0 0
0 x x x x 0 0 0
0 1 x x x x 0 0
0 0 1 x x x x 0
0 0 0 1 x x x x
0 0 0 0 1 y y y
0 0 0 0 0 1 1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

C8 = Per

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x x x 0 0 0 0 0
1 x x x 0 0 0 0
0 1 x x x 0 0 0
0 0 x x x x 0 0
0 0 1 x x x x 0
0 0 0 1 x x x x
0 0 0 0 1 y y y
0 0 0 0 0 1 1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

We only show the three matrix types for n = 8 but the corresponding cases for general 

n should be clear. We will usually suppress the variables x and y, and write An instead 

of An(x, y), etc. Now, by expanding these permanents along their top rows, we find the 

following relations:

An = xAn−1 + xBn−1 + xCn−1, (28)

Bn = xAn−1 + xAn−2 + xBn−2, (29)

Cn = xBn−1 + xAn−2 + xAn−3. (30)

To solve this system of recurrences, first substitute the value of Cn into (28) to obtain

An = xAn−1 + xBn−1 + x2Bn−2 + x2An−3 + x2An−4 (31)

which implies
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Xn := An − xAn−1 − x2An−3 − x2An−4 = xBn−1 + x2Bn−2,

Yn := xAn−1 + xAn−2 = Bn − xBn−2, (32)

from (30) and (31). Thus,

Xn+1 = xBn + x2Bn−1, (33)

Xn + xYn = xBn + xBn−1. (34)

Subtracting (34) from (33) we obtain

Xn+1 − Xn − xYn = (x2 − x)Bn−1. (35)

Now, solving (35) for Bn−1, we can substitute into (32) and get

(x − 1)(Xn + xYn) = (x2 − x)Bn + (x2 − x)Bn−1,

xXn − Xn + x2Yn − xYn = Xn+2 − Xn+1 − xYn+1 + Xn+1 − Xn − xYn,

xXn + x2Yn = Xn+2 − xYn+1. (36)

Finally, replacing Xn and Yn by their expressions in terms of An and simplifying, we 

have

An = xAn−1 + x(x + 1)An−2 + x2(x + 1)An−3

+ x2(x + 1)An−4 − x3An−5 − x3An−6, (37)

for n ≥ 7. Thus, (37) together with the initial values:

A0 = 1,

A1 = 1,

A2 = 2y,

A3 = 6xy,

A4 = 10x2y + 4x2,

A5 = 18x3y + 6x3 + 6x2y + x2,

A6 = 34x4y + 10x4 + 24x3y + 3x3 + 2x2y,

A7 = 62x5y + 20x5 + 64x4y + 14x4 + 12x3y,

determine the recurrence for An = PerMn = Fn(x, y).

Notice that if we substitute x = y = 1 in (37), we get a recurrence for Sn = PerMn:

Sn = Sn−1 + 2Sn−2 + 2Sn−3 + 2Sn−4 − Sn−5 − Sn−6 (38)
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which has the characteristic polynomial

1 − z − 2z2 − 2z3 − 2z4 + z5 + z6 = (1 + z)(1 − 2z − 2z3 + z5). (39)

Of course, this must have the factor p(z) = 1 − 2z − 2z3 + z5 which occurs in (24).

4.4. A generating function for Fn

Our next step will be to determine the generating function

G(x, y, z) =
∑

n≥0

Fn(x, y)zn =
∑

n

∑

k,l

fn(k, l)xkylzn. (40)

Theorem 8.

G(x, y, z) =
P

Q

where

P = 1 + 2x2(x − y)z5 − 2x(x − 1)(x − y)z4 − x(x2 + 2x − 4y + 1)z3 (41)

+ (−x2 − 2x + 2y)z2 + (−x + 1)z

and

Q = 1 − xz − x(x + 1)z2 − x2(x + 1)z4 + x3z5 + x3z6. (42)

Proof. We start with the recurrence for An in (36). By multiplying An by zn and sum-

ming over all n ≥ 6, we have

G(x, y, z) −
5

∑

j=0

Ajzj =
∑

n≥6

Anzn

=
∑

n≥6

(

xAn−1 + x(x + 1)An−2 + x2(x + 1)An−3

+ x2(x + 1)An−4 − x3An−5 − x3An−6

)

= G(x, y, z)
(

xz + x(x + 1)z2 + x2(x + 1)z3

+ x2(x + 1)z4 − x3z5 − x3z6
)

− xz
4

∑

j=0

Ajzj
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−x(x + 1)z2
3

∑

j=0

Ajzj − x2(x + 1)z3
2

∑

j=0

Ajzj

− x2(x + 1)z4
1

∑

j=0

Ajzj + x3z5.

After substituting for Aj for 0 ≤ j ≤ 5, we have

(1 − xz − x(x + 1)z2 − x2(x + 1)z3 − x2(x + 1)z4 + x3z5 + x3z6)G(x, z)

= 1 + 2x2(x − y)z5 − 2x(x − 1)(x − y)z4 − x(x2 + 2x − 4y + 1)z3

+ (−x2 − 2x + 2y)z2 + (−x + 1)z.

Theorem 8 is proved. �

4.5. Analyzing G(x, y, z)

We will find it convenient to split G = G(x, y, z) into two parts: one for matchings 

that don’t use y, and one for matchings that do. Thus, G = G0 + yG1 where

G0 =
1 + 2x3z5 + (−2x3 + 2x2)z4 − x(x + 1)2z3 + (−x2 − 2x)z2 + (−x + 1)z

Q
(43)

G1 =
2z2 + 4xz3 + (2x2 − 2x)z4 − 2x2z5

Q
. (44)

Substituting x = 3 in the above yields

H0 = G0

∣

∣

x=3
=

54z5 − 36z4 − 48z3 − 15z2 − 2z + 1

27z6 + 27z5 − 36z4 − 36z3 − 12z2 − 3z + 1
(45)

= 1 + z + 4x2z4 + (6x3 + x2)z5 + (10x4 + 3x3)z6 + . . . (46)

H1 = G1

∣

∣

x=3
=

2z2(xz + 1)(xz2 − xz − 1)

27z6 + 27z5 − 36z4 − 36z3 − 12z2 − 3z + 1
(47)

= 2z2 + 6xz3 + 10x2z4 + (18x3 + 6x2)z5 + (34x4 + 24x3 + 2x2)z6 + . . . . (48)

We need to get asymptotic estimates for the coefficients of H0 and H1. Let ρ1 =

0.164399 . . . denote the (real) root of minimum modulus of 27z6 + 27z5 − 36z4 − 36z3 −
12z2 − 3z + 1. Using the usual techniques for doing this, we decompose H0 and H1 into 

partial fractions where the only terms that matter for us are those with denominators 

having factors of the form (z − ρ1)k for some k ≥ 1. For H0 it turns out to be (courtesy 

of Maple):

54ρ5
1 − 36ρ4

1 − 48ρ3
1 − 15ρ2

1 − 2ρ1 + 1

(z − ρ1)(162ρ5
1 + 135ρ4

1 − 144ρ3
1 − 108ρ2

1 − 24ρ1 − 3
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while for H1 it is:

2ρ2
1(−9ρ3

1 + 6ρ2
1 + 6ρ1 + 1)

(z − ρ1)(162ρ5
1 + 135ρ4

1 − 144ρ3
1 − 108ρ2

1 − 24ρ1 − 3
.

Thus, we find:

[zk]H0 = fn(k, 0) ∼ C0ρ−k
1 , [zk]H1 = fn(k, 1) ∼ C1ρ−k

1

where

C0 =
54ρ5

1 − 36ρ4
1 − 48ρ3

1 − 15ρ2
1 − 2ρ1 + 1

(−ρ1)(162ρ5
1 + 135ρ4

1 − 144ρ3
1 − 108ρ2

1 − 24ρ1 − 3
= 0.19155 . . . ,

C1 =
2ρ2

1(−9ρ3
1 + 6ρ2

1 + 6ρ1 + 1)

(−ρ1)(162ρ5
1 + 135ρ4

1 − 144ρ3
1 − 108ρ2

1 − 24ρ1 − 3
= 0.66751 . . . .

Therefore, recalling the definition of the relative variance from (27),

Kn :=
1

S2
n

∑

σ

1

Pr(σ)

we have

Kn ∼ (C0 + 2C1)ρ−n
1

c2
1ρ−2n

=

(

C0 + 2C1

c2
1

) (

ρ2

ρ1

)n

(49)

where

C0 + 2C1

c2
1

= 0.73856 . . . ,
ρ2

ρ1
= 1.11702 . . . , ln

(

ρ2

ρ1

)

= 0.11067 . . . .

Our next goal is to estimate the sum in

Ln :=
1

Sn

∑

σ

ln

(

1

Pr(σ)

)

− ln(S(n)).

Recall from (40) that

G(x, y, z) =
∑

n≥0

Fn(x, y)zn =
∑

n

∑

k,l

fn(k, l)xkylzn,

where fn(k, l) is the number of matchings σ which have k edges chosen with probability 

1/3 and l edges chosen with probability 1/2. Hence, the probability that this σ occurs 

is just Pr(σ) = (1/3)k(1/2)l, and so,
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ln

(

1

Pr(σ)

)

= k ln 3 + l ln 2.

Thus, the sum in Ln can be split into two sums; Σ0 which is a sum over all σ = σ0 which 

have no probability 1/2 edges, and Σ1 which is a sum over all σ = σ1 which have a single 

probability 1/2 edge. In other words,

Σ0 =
∑

σ0

ln

(

1

Pr(σ0)

)

=
∑

k

fn(k, 0)(k ln 3),

Σ1 =
∑

σ1

ln

(

1

Pr(σ1)

)

=
∑

k

fn(k, 1)(k ln 3 + ln 2).

To compute the contributions of terms involving ln 3 in both Σ0 and Σ1, we differentiate 

G with respect to x, and set x = y = 1, resulting in

J0 =
z3(2z6 − 2z5 − 6z4 + 5z3 − 2z2 + 4z + 6)

(z5 − 2z3 − 2z + 1)2
.

To compute Σ1, we differentiate G with respect to y, and set x = 1, resulting in

J1 =
−2(z2 − z − 1)z2

(z5 − 2z3 − 2z + 1)
.

Expanding J1 into partial fractions, with ρ = 0.42853 . . . being the real root of minimum 

modulus of z5 − 2z3 − 2z + 1, we find the only relevant term in the expansion is:

−2ρ2(ρ2 − ρ − 1)

(5ρ4 − 6ρ2 − 2)(z − ρ)
.

Hence,

[zn]J1 ∼ K1ρ−n

where

K1 =
−2ρ2(ρ2 − ρ − 1)

(5ρ4 − 6ρ2 − 2)(−ρ)
= 0.36374.

Expanding J0 into partial fractions, we find that there are two terms of interest in the 

expansion (since the denominator of J0 has a repeated root). They are:

ρ3(2ρ6 − 2ρ5 − 6ρ4 + 5ρ3 − 2ρ2 + 4ρ + 6)

(5ρ4 − 6ρ2 − 2)2(z − ρ)2

and
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−2ρ2(25ρ10 − 20ρ9 − 87ρ8 + 61ρ7 + 67ρ6 − 44ρ5 + 45ρ4 − 54ρ3 − 8ρ2 − 16ρ − 18)

(5ρ4 − 6ρ2 − 2)3(z − ρ)
.

This implies that

[zn]J0 ∼ (K0(n + 1) + K ′
0)ρ−n

with K0 = 0.37462 . . . and K ′
0 = −0.99234 . . . (obtained by evaluating the above expres-

sions at z = 0). Therefore, we have

1

Sn

∑

σ

ln

(

1

Pr(σ)

)

=
(K0(n + 1) + K ′

0) ln 3 + K1 ln 2

c1
+ o(1)

= (0.90526 . . .)n − 0.93811 · · · + o(1).

Thus,

1

Sn

∑

σ

ln

(

1

Pr(σ)

)

− ln Sn =

((

K0 ln 3

c1

)

− ln(ρ−1)

)

n

+
(K0 + K ′

0) ln 3 + K1 ln 2

c1
− ln c1 + o(1) (50)

= (0.05786 . . .)n − 0.14987 . . . + o(1).

These asymptotics are used to compare algorithms in Section 7.

5. Two different models for generating perfect matchings in the Fibonacci graph

5.1. Introduction

All of the sections above have used a sequential importance algorithm that used 

the ‘from the top’ ordering of (u1, u2, . . . , un). It is natural to wonder if changing the 

order helps or hinders. In this section we will consider matchings in the Fibonacci 

graph B = B1,1(n). We will assume that n = 3m. We will designate the m vertices 

{u2, u5, . . . , u3k+2, . . . , u3m−1} as distinguished vertices in U3m. We can think of the ver-

tices of B as partitioned into m blocks Dk, 1 ≤ k ≤ m, where Dk consists of the six 

vertices {u3k−2, u3k−1, u3k, v3k−2, v3k−1, v3k}. We will select our random matching in B

in two phases.

For Phase I, for each distinguished vertex u3k−2 we independently choose a random 

edge incident to it in B. For Phase II, we then randomly select edges for the remaining 

vertices in U3m (now the order doesn’t matter), always making sure that each edge chosen 

is part of a perfect matching in B. In Phase I, there are three choices for each u3k−2, 

namely {u3k−2, v3k−3}, {u3k−2, v3k−2} or {u3k−2, v3k−1}. We will call the first choice an 

up edge, the second choice a level edge and the third choice a down edge. Let us consider 
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what happens between two consecutive block Dk and Dk+1. There are nine total choices 

for the edges incident to the corresponding distinguished vertices u3k−2 and u3k+1. If 

u3k−2 makes an ‘up’ or ‘level’ choice, and u3k+1 makes a ‘level’ or ‘down’ choice then 

there will be two possible choices in the second phase for the vertices u3k−1 and u3k, 

namely {u3k−1, v3k−1} and {u3k, v3k}, or {u3k−1, v3k} and {u3k, v3k−1}. Thus, for four of 

the nine choices for the edges from the two distinguished vertices, there are two choices 

for the two vertices between them. Let us say that this is a ‘good’ transition from Dk to 

Dk+1. It is easy to check that for the other five choices for edges from u3k−1 and u3k, 

there is only one possible choice for the edges from u3k−1 and u3k.

Let us denote by tm(k) the number of Phase I choices which have k ‘good’ transitions. 

Define

T (x, y) =
∑

m≥0

∑

0≤k≤m−1

tm(k)xkym.

Thus,

T (x, y) = 3 + (4x + 5)y + (4x2 + 16x + 7)y2 + (4x3 + 28x2 + 40x + 9)y3 . . . .

Note that setting x = 1 in the coefficient for yk, we get the value 3k+1, which is just 

the total number of ways that the edges can be chosen for k + 1 distinguished vertices.

5.2. A closed form for T (x, y)

Our first goal will be to derive a recurrence for the tm(k). Define am(j) to be the 

number of Phase I choices which have j ‘good’ transitions and for which the first distin-

guished vertex has an ‘up’ edge chosen. Similarly, define bm(j) to be the number of Phase 

I choices which have j ‘good’ transitions and for which the first distinguished vertex has 

a ‘level’ edge chosen, and let cm(j) be the corresponding number where a ‘down’ edge 

was chosen. It is not hard to see that the following recursive relations hold:

am(j) = am−1(j) + bm−1(j − 1) + cm−1(j − 1),

bm(j) = am−1(j) + bm−1(j − 1) + cm−1(j − 1),

cm(j) = am−1(j) + bm−1(j) + cm−1(j) (51)

with a1(0) = b1(0) = c1(0) = 1 where m ≥ 1 and 0 ≤ j ≤ m − 1. Of course, 

tm(j) = am(j) + bm(j) + cm(j). Eliminating the variables bm and cm, we end up with 

the recurrence:

am(j) = 2am−1(j) + am−1(j − 1) − am−2(j) + am−2(j − 1) (52)

with initial conditions a0(0) = a1(0) = 1 and am(j) = 0 for j ≥ m ≥ 1 or j < 0 or 

m < 0. Thus, am(0) = 1 for m ≥ 0, a2(1) = 2, a3(1) = 6, a3(2) = 2, etc.
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First we derive the generating function

A(x, y) =
∑

m≥1
0≤j≤m−1

am(j)xjym−1.

From the recurrence in (52), we consider

∑

m≥3
0≤j≤m−1

am(j)xjym−1 = A(x, y) − 1 − (1 + 2x)y

=
∑

m≥3
0≤j≤m−1

(

2am−1(j) + am−1(j − 1) − am−2(j) + am−2(j − 1)
)

= (2y + xy − y2 + xy2)A(x, y) − 2y − xy.

Thus we have

A(x, y) =
1 − y + xy

1 − 2y − y2 − xy − xy2
.

Since am(j) = bm(j), we have

B(x, y) =
∑

m≥1
0≤j≤m−1

bm(j)xjym−1

= A(x, y).

To derive the generating function

C(x, y) =
∑

m≥1
0≤j≤m−1

cm(j)xjym−1,

we consider the following sum over the recurrence (51).

∑

m≥2
0≤j≤m−1

am(j)xjym−1 = A(x, y) − 1

=
∑

m≥2
0≤j≤m−1

(

am−1(j) + bm−1(j − 1) + cm−1(j − 1)
)

= yA(x, y) + xyA(x, y) + xyC(x, y).

Thus,
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C(x, y) =
1

xy

(

A(x.y)(1 − y − xy) − 1
)

=
1 + y − xy

1 − 2y − y2 − xy − xy2
.

So, we have

T (x, y) =
∑

m≥0
0≤j≤m−1

(

am(j) + bm(j) + cm(j)
)

xjym

= 1 + y
(

A(x, y) + B(x, y) + C(x, y)
)

= 1 +
y(3 − y + xy)

1 − 2y − y2 − xy − xy2

=
1 + y − xy

1 − 2y − y2 − xy − xy2
.

5.3. Completing the computations

It is clear that since for each ‘good’ transition there are two choices for the Phase II 

process, the total number of matchings you get this way is 
∑

k 2ktm(k) = F3m+1 (the 

Fibonacci number, by our previous remarks). Let us define

fm(k) = 2ktm(k), F (x, y) =
∑

m≥0

∑

k≥0

fm(k)xkym.

Thus, the generating function for F (x, y) is:

F (x, y) = G(2x, y) =
1 − (2x − 1)y

1 − (2x + 2)y − (2x − 1)y2

= 1 + 3y + (8x + 5)y2 + (16x2 + 32x + 7)y3 . . . (53)

so that

H(y) = F (x, y)

∣

∣

∣

∣

x=1

=
1 − y

1 − 4y − y2

= 1 + 3y + 13y2 + 55y3 + . . . + F3m+1ym + . . . .

In particular, if ρ denotes the value 
√

5 − 2, which is the root with minimum modulus 

of 1 − 4y − y2 then we find

F3m+1 = c1ρ−m + o(1)

where
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c1 =
5 +

√
5

10
= 0.72360 . . . .

To compute the first moment 
∑

k≥0 kfm(k), we form

F1(x, y) =
∂F

∂x
=

y2

1 − (2x + 2)y − (2x − 1)y2,

H1(y) = F1(x, y)

∣

∣

∣

∣

x=1

=
y2

(1 − 4y − y2)2
.

The standard decomposition of H1(y) into partial fraction yields the two relevant terms

2(−2 +
√

5)2

5(y + 2 −
√

5)2
+

2
√

5

25(y + 2 −
√

5)
.

Therefore, defining

c2 =
2(−2 +

√
5)2

5(2 −
√

5)2
= 0.40000 . . .

c3 =
2
√

5

25(2 −
√

5)
= −0.75777 . . .

we find

[ym]H1(y) =
∑

k≥0

kfm(k) = (c2(m + 1) + c3)ρ−m + O(1).

To compute the second moment 
∑

k≥0 k2fm(k), we first form

F2(x, y) =
∂F1

∂x
=

−32y3(1 + y)

(2xy2 + 2xy − y2 + 2y − 1)3

and

H2(y) = F2(x, y)

∣

∣

∣

∣

x=1

=
−32y3(1 + y)

(1 − 4y − y2)3
.

Decomposing H2(y) into partial fractions yields the three relevant terms:

−4(−52 +
√

5)3(
√

(5) − 1)5
√

5

(25(y + 2 −
√

5)3)
+

(−382 + 170
√

5)

(25(y + 2 −
√

5)2)
− 18

√
5

(125(y + 2 −
√

5))
.

Hence, defining
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c4 =
−4(−52 +

√
5)3(

√
5 − 1)5

√
5

25(2 −
√

5)3
= 0.44222 . . .

c5 =
(−382 + 170

√
5)

25(2 −
√

5)2
= −1.34111 . . .

c6 =
−18

√
5

125(2 −
√

5)
= 1.36398 . . .

we have

[ym]H2(y) =
∑

k≥0

k(k − 1)fm(k) = (c4
(m + 2)(m + 1)

2
+ c5(m + 1) + c6)ρ−m + O(1).

Finally, we compute the variance from fm(k).

V ar(fm(k)) =
(c4

(m+2)(m+1)
2 + c5(m + 1) + c6) + c2(m + 1) + c3

c1
−

(

c2(m + 1) + c3

c1

)2

= c7m + O(1)

where

c7 =
(−1404

√
5 + 3140)

(25
√

5 − 3)2(−2 +
√

5))
= 0.16275 . . . .

Since n = 3m, the variance measured in terms of n is:

V ar(fm(k)) = (0.054251 . . .)n + O(1).

Two final remarks. First, using the above results, we find, for φ = 1+
√

5
2 ,

Ln =
1

F3m+1

∑

σ

ln
1

Pr(σ)
− ln(F3m+1)

=

√
5

φ

(

(c2(m + 1) + c3) ln 2

c1

)

+ m ln 3 − n ln φ − ln
1√
5

− ln φ + o(1)

=

(

ln 3

3
+

c2 ln 2
√

5

3c1φ
− ln φ

)

n +

√
5

φ

(

(c2 + c3)

c1
ln 2

)

− ln
1√
5

− ln φ + o(1)

= (0.012713 . . .)n − 0.1501 . . . + o(1). (54)

Second, let us compute Kn = 1
F 2

n+1

∑

σ
1

P r(σ) . Since there are fm(k) σ’s which come 

from Phase I choices with k good transitions, then

∑

σ

1

Pr(σ)
= 3m

∑

k

fm(k)2k.
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Table 4
Table of small values of En.

n 1 2 3 4 5 6 7

En 0 1/2 3/4 9/8 23/16 57/32 135/64

Thus, using the generating function in (53), we find that

∑

k

fm(k)2kym =
1 − 3y

1 − 6y − 3y2
= 1 + 3y + 21y2 + 135y3 + . . . .

The usual techniques now show that the coefficient of ym is equal to 1
2

(

(3 + 2
√

3)m +

(3 − 2
√

3)m
)

. Therefore,

Kn =
3m

F 2
n+1

∑

k

fm(k)2k =
5

2φ2

(

(9 + 6
√

3)1/3

φ2

)n

+ o(1).

= (.9549 . . .)(1.0262 . . .)n + o(1)

= (.9549 . . .)e(.0258... )n + o(1). (55)

In particular, K200 ≈ 168.6.

5.4. Still another method for choosing matchings in B1,1

Back to the standard Fibonacci graph B1,1, we choose edges sequentially starting from 

u1 but now when there are two choices, instead of choosing each edge with probability 

1/2, we choose the lower edge {uk, vk+1} with probability p. We want to compute K, L

and the variance for this model.

We begin with heuristics to motivate a suitable choice of p. Under the uniform dis-

tribution on F1,1(n), the expected number of transpositions (see [7], Proposition 2.4) 

is

μn =
n

2

(

1 − 1√
5

)

+
1 −

√
5

10
+ o(1) = (0.2763 . . . )n − 0.1236 . . . + o(1). (56)

Using our standard sampling method (working from the top), let En be the expected 

number of transpositions. Direct computation shows the following results, see Table 4.

It is easy to verify that En+1 = 1
2(1 + En + En−1) from which we find

En =
1

9 · 2n−1
((3n − 2)2n−1 + (−1)n).
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It follows that

En ∼ 1

3
n = (.333 . . .)n while μn ∼ 1

2

(

1 − 1√
5

)

n = (.2763 . . .)n. (57)

This suggests making fewer transpositions!

Let En(p) be the expected number of transpositions if, working in order u1, u2, . . . , 

at each choice point, a transposition is chosen with probability p. Thus,

E0(p) = E1(p) = 0, E2(p) = p, E3(p) = 2p − p2, E4(p) = 3p − 2p2 + p3.

More generally, it is easy to show that

En = (1 − p)En−1 + p(1 + En−2) (58)

from which it follows that

Theorem 9.

E(x) :=
∑

n≥0

xn
En =

p

1 + p

( x

(1 − x)2
− x

1 − (1 − p)x − px2

)

= px2 + (2p − p2)x3 . . .

and

En =

n−1
∑

i=0

(−1)i(n − i)pi+1.

Proof. We define

E
′
n = En − p

1 + p
n.

By (58), we have E′ satisfying

E
′
n = (1 − p)E′

n−1 + pE
′
n−2.

The generating function E′(x) =
∑

n≥0 E
′
nxn can be easily shown to be

E′(x) = −
p

1+p x

1 − (1 − p)x − px2

and therefore

E(x) = E′(x) +
∑

n≥0

pn

1 + p
xn

=
px

(1 + p)(1 − x)2
− px

(1 + p)(1 − (1 − p)x − px2)
. �
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We content ourselves with the approximation

En ≈ pn

1 + p
.

It is natural to choose p so that the expected number of transpositions matches the 

expectation μn (from (57)). This gives

p =
3 −

√
5

2

.
= 0.3820.

The calculations below show this is an optimal choice.

We turn next from heuristics to a careful development. Let qn(k) denote the number 

of σ which have k transpositions. It is easy to see (by induction) that qn(k) satisfies the 

recurrence

qn(k) = qn−1(k) + qn−2(k − 1) (59)

with q0(0) = q1(0) = q2(0) = q2(1) = 1 and qn(k) = 0 when the indices are out of range. 

Standard techniques show that the generating function Q(x, z) is given by

Q(x, z) =
∑

n≥0

∑

0≤k≤n/2

qn(k)xkzn

=
1

1 − z − xz2
= 1 + z + (x + 1)z2 + (2x + 1)z3 . . . . (60)

Also, let q∗
n(k) denote the number of σ which have k transpositions, one of which is at 

the very bottom (i.e., σ has the edges {un−1, vn} and {un, vn−1}). It is clear that

q∗
n(k) = qn−2(k − 1). (61)

First we treat tn(p) =
∑

σ∈Sn
T (σ). Recall that T (σ) is an unbiased estimate of 

|F1,1(n)| = Fn+1. We will choose the parameter p to minimize the relative variance 

T (σ). Figs. 3 and 4 plot the relative variance as a function of p (note that they are 

on two different scales). There is a clear minimum and Fact 7 below identifies this as 

occurring at φ−2.

Theorem 10. The generating function for tn(p) is given by

G(z) =
∑

n≥0

tn(p)zn =
1 − p

1−p z

1 − z
1−p − z2

p

. (62)

Proof. We first write

∑

σ∈Sn

T (σ) =
∑

σ∗

T (σ∗) +
∑

σ∗∗

T (σ∗∗) (63)
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Fig. 3. V ar(T (σ))
F 2

n+1

as a function of p for n = 100.

Fig. 4. V ar(T (σ))
F 2

n+1
as a function of p for n = 100.

where σ∗ ranges over all σ which have a transposition on the bottom and σ∗∗ ranges 

over all σ which do not have a transposition on the bottom. Thus, by (59) and (61), we 

have

tn(p) =
∑

σ∈Sn

T (σ) =
∑

k

q∗
n(k)

(

pk(1 − p)n−2k
)−1

+
∑

k

(qn(k) − q∗
n(k))(pk(1 − p)n−1−2k

=
1

(1 − p)n

∑

k

q∗
n(k)

( (1 − p)2

p

)k

+
1

(1 − p)n−1

∑

k

qn−1(k)
( (1 − p)2

p

)k
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=
1

(1 − p)n

∑

k

qn−2(k − 1)
( (1 − p)2

p

)k

+
1

(1 − p)n−1

∑

k

qn−1(k)
( (1 − p)2

p

)k

.

Thus,

G(z) − 1 − z =
∑

n≥2

tn(p)zn

=
∑

n≥2

(

1

(1 − p)n

∑

k

qn−2(k − 1)
( (1 − p)2

p

)k

+
1

(1 − p)n−1

∑

k

qn−1(k)
( (1 − p)2

p

)k
)

zn

=
∑

n≥2

(

1 − p)2

p

∑

k

qn−2(k − 1)
( (1 − p)2

p

)k−1

+ (1 − p)
∑

k

qn−1(k)
( (1 − p)2

p

)k
)

( z

1 − p

)n

=
z2

p
Q

( z

1 − p

)

+ z

(

Q
( z

1 − p

)

− 1

)

.

This leads to

G(z) = 1 +

z2

p + z

1 − z
1−p − z2

p

=
1 − p

1−p z

1 − z
1−p − z2

p

and Theorem 10 is proved. �

We remark that for the case of p = 1/2, Theorem 10 implies that the generating 

function in this case is

G(z) =
1 − z

1 − 2z − 2z2

which is consistent with the generating function in (8) through a different derivation.

To determine the asymptotic behavior of the coefficient of zn in G(z), we need to 

expand G(z) into partial fractions. We first simplify the form of G(z) to

G(z) =
p2z + p2 − p

(1 − p)z2 + pz + p2 − p
.

The roots of the denominator are:

r1(p) =
−p +

√

4p3 − 7p2 + 4p

2(1 − p)
, r2(p) =

−p −
√

4p3 − 7p2 + 4p

2(1 − p)
.
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The corresponding coefficients are

c1(p) =
3p3 − 4p2 + 2p − p2

√

4p3 − 7p2 + 4p
√

4p3 − 7p2 + 4p(
√

4p3 − 7p2 + 4p − p)
,

c2(p) =
3p3 − 4p2 + 2p + p2

√

4p3 − 7p2 + 4p
√

4p3 − 7p2 + 4p(
√

4p3 − 7p2 + 4p + p)
.

Hence, the coefficient tn(p) of zn in the expansion of G(z) is

tn(p) = c1(p)r1(p)−n + c2(p)r2(p)−n = c1(p)r1(p)−n + o(1).

When p = 1/2, this becomes

tn(1/2) = (1/2)

[

(

√
3 − 1

2

)−n

+
(−

√
3 − 1

2

)−n
]

= (1/2)
(

(1 +
√

3)n + (1 −
√

3)n
)

= (1/2)
(

(1 +
√

3)n
)

+ o(1) (64)

as we saw in (9).

As a consequence we have

Fact 7. The relative variance of Tn(σ) is given by

V arR(Tn(σ)) =
1

F 2
n+1

∑

σ

Tn(σ) −
(

Fn+1

Fn+1

)2

=
5c1

φ2

1

(r1φ2)n
− 1 + o(1) (65)

where c1(p) and r1(p) are given above.

It is interesting to note that something special happens at the critical value p = φ−2 =

.381966 . . . (where, as usual, φ = 1+
√

5
2 ). In this case, we have

c1(φ−2) = 1 − 1√
5

, r1(φ−2) = φ−2,

and by (65)

V arR(Tn(σ)) =
5c1

φ2
− 1 =

5 −
√

5

φ2
− 1 = 9 − 4

√
5 = .055728 . . . ,

independent of n!

Finally, we estimate

Ln =
1

Fn+1

∑

σ

ln Tn(σ) − ln Fn+1. (66)
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Fact 8.

Ln =

(

− ln (1 − p) +
1√
5φ

ln
( (1 − p)2

p

)

− ln φ

)

n

−
(√

5 − 1

10

)

ln

(

(1 − p)2

p

)

+ ln 51/2 + o(1). (67)

Note that when p = φ−2, the coefficient of n in (67) is 0 and the constant term is just 

ln 51/2. (Hint: If p = 3−
√

5
2 = 1

φ2 then 1 − p = 1
φ .)

Proof. We first simplify the computation by ignoring the distinction as to whether σ has 

a transposition at the bottom or not. This will have no effect on the asymptotic values 

we obtain. Thus, if b(σ) denotes the number of transpositions that σ has then

Pr(σ) = pb(σ)(1 − p)n−2b(σ).

Therefore,

ln(Tn(σ)) = ln

(

1

Pr(σ)

)

= ln

(

1

(1 − p)n

(

(1 − p)2

p

)b(σ)
)

= ln(1 − p)−n + b(σ) ln ρ

where ρ := (1−p)2

p . Hence, with qn(k) denoting the number of σ which have k transposi-

tions, we have

∑

σ

ln Tn(σ) = Fn+1 ln(1 − p)−n +
∑

k

kqn(k) ln ρ. (68)

Since we know the generating function for the qn(k) from (60), we differentiate it to 

obtain the generating function R(x, z) for the kqn(k):

R(x, z) =
∑

n≥0

∑

k

kqn(k)xkzn =
z2

(1 − z − xz2)2
.

Expanding R(x, z) by the usual techniques, we find the coefficient of zn is given by

∑

k

kqn(k) =

(

1

5
(n + 1) − 4

25 − 5
√

5

)

φn + o(1).

Putting these observations together, we have from (66)
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Ln = ln (1 − p)
−n

+
1

5Fn+1
nφn ln ρ − ln Fn+1 + o(1)

=

(

− ln (1 − p) +
1√
5φ

ln
( (1 − p)2

p

)

− ln φ

)

n

−
(√

5 − 1

10

)

ln

(

(1 − p)2

p

)

+ ln 51/2 + o(1)

as claimed. This proves Fact 8. �

6. Cycles in Bt,1(n)

Here we give a proof of Theorem 1. Recall, it is

Theorem 1.

∞
∑

n=0

fnzn =
1

1 − x1z − x2z2 − . . . − xtzt
, (69)

with

fn(x1, x2, . . . , xt) =
∑

σ∈Ft,1(n)

∏

x
ai(σ)
i

where σ has ai i-cycles.

Before we give the proof of Theorem 1, we consider an example of the matrix M =

M
(4)
8 as shown below.

M
(4)
8 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x1 1 0 0 0 0 0 0
x2 x1 1 0 0 0 0 0
x3 x2 x1 1 0 0 0 0
x4 x3 x2 x1 1 0 0 0
0 x4 x3 x2 x1 1 0 0
0 0 x4 x3 x2 x1 1 0
0 0 0 x4 x3 x2 x1 1
0 0 0 0 x4 x3 x2 x1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

The permanent of M is:

PerM = x8
1 + 7x6

1x2 + 6x5
1x3x3 + 15x4

1x2
2 + 5x4

1x4 + 20x3
1x2x3 + 10x2

1x3
2

+ 12x2
1x2x4 + 6x2

1x2
3 + 12x1x2

2x3 + x4
2 + 6x1x3x4 + 3x2

2x4 + 3x2x2
3 + x2

4.

The interpretation is that the bipartite graph B3,1(8) has one perfect matching with eight 

1-cycles, seven matchings which have six 1-cycles and one 2-cycle, . . . , twenty matchings 

with three 1-cycles, one 2-cycle and one 3-cycle, . . . , and finally one matching with four 
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2-cycles. The structure of the general matrix M
(t)
n and why the permanent counts these 

cycles should be clear.

Proof of Theorem 1. First we define gn(a1, . . . , at) to be the number of matchings which 

contain ai i-cycles, for 1 ≤ i ≤ t. We consider

F (x1, x2, . . . , xt, z) =
∑

n≥0

fnzn

=
∑

n≥0
0≤ai≤n−1

g(a1, a2, . . . , at)x
a1
1 xa2

2 . . . xat

t zn.

We note that gn(a1, a2, . . . , at) satisfies the following recurrence, for n ≥ 1,

gn(a1, a2, . . . , at) = gn−1(a1 − 1, a2, . . . , at) + gn−2(a1, a2 − 1, . . . , at) + . . .

+ gn−t(a1 − 1, a2, . . . , at − 1) (70)

where the base case is g0(0, 0, . . . , 0) = 1 and g(a1, . . . , at) = 0 if ai < 0 or ai ≥ n/i.

Now we sum gn(a1, . . . , at)x
a1
1 . . . xat

t over all n ≥ t + 1 and all ai’s. We have

Fn(x1, x2, . . . , xt) −
∑

0≤n≤t
0≤ai≤n−1

gn(a1, a2, . . . , at)x
a1
1 xa2

2 . . . xat

t zn

=
∑

n≥t+1
0≤ai≤n−1

gn(a1, a2, . . . , at)x
a1
1 xa2

2 . . . xat

t zn

= x1z
∑

n≥t+1
0≤ai≤n−1

gn−1(a1 − 1), a2 . . . , at)x
a1−1
1 xa2

2 . . . xat

t zn−1

+ x2z2
∑

n≥t+1
0≤ai≤n−1

gn−2(a1, a2 − 1, . . . , at)x
a1
1 xa2−1

2 . . . xat

t zn−2

+ . . . + xtz
t

∑

n≥t+1
0≤ai≤n−1

gn−t(a1, a2 . . . , at − 1)xa1
1 . . . xat−1

t zn−t

=
(

x1z + x2z2 + . . . + xtz
t
)

Fn(x1, . . . , xt, z) − W

where

W =

t
∑

i=1

xiz
i

∑

0≤n≤t
0≤ai≤n−1

gn−i(a1, . . . , ai−1, ai − 1, ai+1, . . . , at)

× xa1
1 . . . x

ai−1

i−1 xai−1
i x

ai+1

i+1 . . . zn−i.
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For n ≤ t we have

W =
t

∑

i=1

∑

0≤n≤t
0≤ai≤n−1

gn−i(a1, . . . , ai−1, ai − 1, ai+1, . . . , at)x
a1
1 . . . x

ai−1

i−1 xai

i x
ai+1

i+1 . . . zn

=
t

∑

n=1

∑

0≤ai≤n−1
1≤i≤t

(

t
∑

i=1

gn−i(a1, . . . , ai−1, ai − 1, ai+1, . . . , at)
)

× xa1
1 . . . x

ai−1

i−1 xai

i x
ai+1

i+1 . . . xatzn.

Together we have

(

1 − x1z − x2z2 − . . . − xtz
t
)

Fn(x1, . . . , xt, z)

= 1 +

t
∑

n=1

∑

0≤ai≤n−1
1≤i≤t

(

gn(a1, . . . , at)

−
t

∑

i=1

gn−i(a1, . . . , ai−1ai − 1, ai+1, . . . , at)
)

xa1 . . . xatzn

= 1.

This completes the proof of Theorem 1. �

Remarks. For fixed t and large n, it is natural to conjecture that the joint limiting 

distribution of the number of i-cycles has a multivariate normal distribution. The limiting 

means, variances and covariances are available by standard asymptotic analysis from 

Theorem 1. It should be possible to prove the limiting normality from results in ([17], 

sec. 9.6) but we have not tried to carry this out. Two special cases: setting x2 = x3 =

. . . = xt = 0 gives the generating function for the number of fixed points; setting x1 =

. . . = xt = x gives the generating function for the number of cycles.

7. Bringing it all together

7.1. Introduction

One motivation for the present study is to gain insight into the sample size required 

for accurate estimation when sequential importance sampling is used to estimate the 

number of perfect matchings in a bipartite graph. We have introduced several families 

of graphs Bt,s(n) giving rise to matchings of the form

Mt,s(n) = {σ ∈ Sn : i − t ≤ σ(i) ≤ i + s}.
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Sequential importance sampling generates random elements of Mt,s(n) with computable 

probabilities Pr(σ). Then T (σ) = 1
P r(σ) is an unbiased estimator of

M = Mt,s(n) = |Mt,s(n)|.

Two methods for estimating the sample size required for accuracy are

Nvar =
V ar(T )

M2
t,s(n)

,

and

NKL = eL where L =
1

Mt,s(n)

∑

σ∈Mt,s(n)

ln(Pr(σ)−1) − ln(Mt,s(n))

with u chosen so that Pr{ln ρ(Y ) ≥ L + u
2 } is small. We have chosen u = s.d. ln ρ(Y ). 

These are introduced and discussed in Section 2 above.

Further, several sampling schemes are considered:

• generating matchings from ‘top down’;

• generating matchings (for B1,1(n)) from ‘top down’ but non-uniformly;

• generating matchings (for B1,1(n)) in order (2, 5, 8, . . .);

• generating matchings in random order choosing the steps along the way with non-

uniform probabilities.

All of these algorithms (except the last) require sample sizes exponential in n. One of 

our main findings is that (for these problems), the constants involved are tiny, so that 

sequential importance sampling can be a much more effective technique than Markov 

chain Monte Carlo (where available bounds give O(n7) running time estimates).

This section brings together our findings. For each scenario we present the results 

in two forms. First, as N(n) 
.
= aebn with a, b given as numerical constants. Second, as 

N(200). We hasten to add that all our a, b values are the results of previous theorems 

and available exactly in terms of explicit low-degree polynomials. For example,

Nvar,top(n) ∼ 5

2φ2

(

1 +
√

3

φ2

)n

≈ (.9549 . . .)e(0.0426...)n.

We begin with B1,1(n) since results are most complete here.

7.2. Fibonacci permutations

As explained in the introduction,

M1,1(n) = {σ ∈ Sn : |σ(i) − 1| ≤ 1}
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has |M1,1(n))| = Fn+1 with Fn = 1, 1, 2, 3, 5, 8, . . . for n = 1, 2, 3, 4, 5, 6, . . . . When 

n = 200, Fn+1 = 4.539 . . . × 1041. Then

• Nvar,top(n) 
.
= (.9549 . . . )e(0.0426...)n, Nvar,top(200) 

.
= 4, 788

(see the Example in Section 2). Also,

• NKL,top(n) 
.
= e(0.0204...)n+(0.2989...)

√
n, NKL,top(200) 

.
= 4, 058.

This is proved in Section 3. As explained there, the O(
√

n) term is required for L to be 

concentrated about its mean. This is guaranteed by our sharp estimates of V ar(L). We 

have neglected these O(
√

n) term for these numerics for the next example because it is 

not available.

• NBreg(n) 
.
= (0.605 . . .)e(3.301...)n, NBreg(200) 

.
= 1.004 × 1010.

The Bregman bound, derived in [5], given at the end of Section 2 is an upper bound for 

eL based on a random order. Proof of concentration remains an open problem.

• Nvar,3(n) 
.
= (0.9544 . . .)e(0.02586...)n, Nvar,3(200) 

.
= 168.

These bounds follow from (49).

• NKL,3(n) 
.
= (2.1295 . . .)e(0.012...)n+(0.2329...)

√
n, NKL,3(200) 

.
= 728.

See Section 5 for details.

• Nvar,ran(n) 
.
= e(0.0265...)n, Nvar,ran(200) 

.
= 200.

This and the following bounds for sampling in random order are derived in [8].

• NKL,ran(n) 
.
= (2.2361 . . .)e(0.0101...)n+(0.1396...)

√
n, NKL,ran(200) 

.
= 122.

Remarks. For this example, we see that bounds on the required sample size based on the 

variance can be substantial over-estimates (but not always, as for Nvar,3 and NKL,ran). 

The deterministic ‘from top down’, random and ‘every third’ orders are roughly com-

parable with the latter two slightly better. The Bregman bound, elegant and general 

though it may be, is useless in practice. Even worse, the celebrated FPRAS for the 

Markov chain Monte Carlo procedure gives an Ω(n7) algorithm. When n = 200, this 

gives N = (1.280 . . .) × 1016.
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7.3. (2, 2)-permutations

As in Section 4, let

M2,2(n) = {σ ∈ Sn : |σ(i) − i| ≤ 2, 1 ≤ i ≤ n}.

Then

Mn = |M2,2(n)| ∼ c1ρ−n with c1 =
1 − ρ

2 + 6ρ − 5ρ2
= 0.45464 . . .

and ρ = 0.4285 . . . is the root of minimum modulus of the polynomial p(z) = 1 − 2z −
2z2 + z5. When n = 200, Mn = 1.851 . . . × 1073.

Using results from Section 4 we have

• Nvar,top(n) 
.
= (0.73856 . . .)e(0.11067...)n, Nvar,top(200) 

.
= 3.0273 × 109;

• NKL,top(n) 
.
= (0.8608...)e(0.05786...)n+(0.3387...)

√
n NKL,top(200) 

.
= 1.0985... × 107;

• NBreg(n) 
.
= (0.7725 . . .)e0.01101...)n, NBreg(200) 

.
= 2.828 × 109.

Again, the sample size estimates leaning on the variance and Bregman’s inequality are 

over-estimates.

8. Concluding remarks

In principle, the same techniques can work for matrices with s diagonals above the 

diagonal and t diagonals below the diagonal. For example, suppose s = 3, t = 4. Let 

B4,3(10) be the resulting bipartite graph and consider the corresponding matrix M =

M4,3(10) shown below. The form for the matrix Mt,s(n) in the general case should be 

clear.

M4,3(10) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x4 x4 x4 x4 0 0 0 0 0 0
x4 x4 x4 x4 x4 0 0 0 0 0
x4 x4 x4 x4 x4 x4 0 0 0 0
x4 x4 x4 x4 x4 x4 x4 0 0 0
x1 x4 x4 x4 x4 x4 x4 x4 0 0
0 x1 x4 x4 x4 x4 x4 x4 x4 0
0 0 x1 x4 x4 x4 x4 x4 x4 x4

0 0 0 x1 x3 x3 x3 x3 x3 x3

0 0 0 0 x1 x2 x2 x2 x2 x2

0 0 0 0 0 x1 x1 x1 x1 x1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Then

PerM4,3(10) = 6x4
1x2x3x4

4 + . . . + 520x3
1x2x6

4 + . . . + 24x4
1x3x4x5

4.
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Thus, there are 6 matchings that occur with probability (1/1)4(1/2)(1/3)(1/4)4, 520 

matchings that occur with probability (1/1)3(1/2)(1/4)6, etc.

To see why this is so, we first note that in general, because of the order that the 

edges are chosen, there are (usually) exactly 4 choices for each vertex uk. However, if it 

happens that at this time, vk−3 is unoccupied, then the edge {uk, vk−3} must be chosen. 

This observation accounts for the diagonal of x1’s. However, when k gets near the end, 

there are fewer choices. For example, there is only one choice for u8. Similarly, there are 

only 2 choices for u7 (which accounts for the appearance of the x2’s in row 7), except 

that if v4 happened to be unoccupied then in which case there is only one choice. Similar 

arguments apply to the occurrences of the other xk’s in the matrix, and in fact, to the 

general case with arbitrary s and t. In principle, our techniques could then be used to find 

the appropriate recurrences, generating functions, asymptotic expansions, etc. However, 

even finding a general expression for the permanent of the matrix corresponding to the 

graph Bt,t(n) seems formidable! For example, for s = t = 6, the corresponding numbers 

satisfy a recurrence of order 494 (see [15]). However, it is possible that with (a lot) more 

work, progress can be made. Be our guest!
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