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ARTICLE INFO ABSTRACT

Keywords: Blood clots form at the site of vascular injury to seal the wound and prevent bleeding. Clots are in tension
Helical fibers as they perform their biological functions and withstand hydrodynamic forces of blood flow, vessel wall
Fibrin networks

fluctuations, extravascular muscle contraction and other forces. There are several mechanisms that generate
tension in a blood clot, of which the most well-known is the contraction/retraction caused by activated
platelets. Here we show through experiments and modeling that clot tension is generated by the polymerization
of fibrin. Our mathematical model is built on the hypothesis that the shape of fibrin monomers having two-fold
symmetry and off-axis binding sites is ultimately the source of inherent tension in individual fibers and the
clot. As the diameter of a fiber grows during polymerization the fibrin monomers must suffer axial twisting
deformation so that they remain in register to form the half-staggered arrangement characteristic of fibrin
protofibrils. This deformation results in a pre-strain that causes fiber and network tension. Our results for
the pre-strain in single fibrin fibers is in agreement with experiments that measured it by cutting fibers
and measuring their relaxed length. We connect the mechanics of a fiber to that of the network using the
8-chain model of polymer elasticity. By combining this with a continuum model of swellable elastomers
we can compute the evolution of tension in a constrained fibrin gel. The temporal evolution and tensile
stresses predicted by this model are in qualitative agreement with experimental measurements of the inherent
tension of fibrin clots polymerized between two fixed rheometer plates. These experiments also revealed that
increasing thrombin concentration leads to increasing internal tension in the fibrin network. Our model may
be extended to account for other mechanisms that generate pre-strains in individual fibers and cause tension
in three-dimensional proteinaceous polymeric networks.

Inherent tension
Fiber relaxation
Blood clotting

1. Introduction is the physiological tension of the fibrin network generated by at least
two mechanisms. The most apparent and well-studied is the external
traction and compression of fibrin clots driven by activated platelets,
with each individual platelet exerting contractile forces on the order
of tens of nano-Newtons on adjacent fibrin fibers (Kim et al., 2017;

Lam et al., 2011; Pathare et al., 2021; Sun et al., 2022). However,

Blood clots are formed at the sites of vessel wall injuries to seal or
plug the damage and stem bleeding. Clots result from multiple reactions
that involve blood cells and plasma components, including fibrinogen,
the soluble protein converted enzymatically to insoluble fibrin (Weisel
and Litvinov, 2017). A three-dimensional polymeric fibrin network

comprises the scaffold of a blood clot and, in combination with em-
bedded platelets and red blood cells (Chernysh et al., 2020), largely
determines the clot’s biological and mechanical properties.

To fulfill its biomechanical function and prevent or stop bleeding,
the blood clot and the fibrin scaffold must have certain mechani-
cal resilience to be able to withstand hydrodynamic forces of blood
flow, pulsation of a vessel wall, extravascular muscle contraction, and
more (Litvinov and Weisel, 2017). Among many factors that con-
tribute to the mechanical behavior of fibrin, one of the least studied
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there is strong evidence that fibrin clots generate inherent (internal
or intrinsic) tension unrelated to platelet contractility or any other ex-
ternal mechanical perturbations. For example, the individual hydrated
fibrin fibers observed in a light microscope are straight, not sinuous,
suggesting that each fiber is under inherent tension (Britton et al.,
2019). Tension of individual fibrin fibers was introduced in Weisel
et al. (1987), and their elasticity has been shown and quantified in
AFM pulling experiments (Liu et al., 2010) and by active flexing or
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stretching a separate fibrin fiber using optical tweezers (Collet et al.,
2005). Finally, the inherent fibrin fiber tension has been established
directly by severing these fibers and watching them retract (Cone et al.,
2020). If a great number of such taut individual fibers form a three-
dimensional network, then the entire network must also be under
tension. From the general theory of polymer mechanics, tension is self-
generated in the polymers that possess some degree of non-uniformity
and thermodynamic instability of the major structural elements (Zhang
et al, 1991; Li et al., 2014). The complex spatial axial and lateral
packing of the fibrin monomers and oligomers dictates their deviation
(stretching) from the relaxed and stable conformational state that
provides a fundamental structural and thermodynamic basis for the
existence of inherent tension of fibrin networks (Torbet et al., 1981;
Caracciolo et al., 2003; Yeromonahos et al., 2010; Portale and Torbet,
2018; Jansen et al., 2020; Weisel et al., 1983; Weisel, 1986).

The inherent tension of fibrin clots has a number of conceivable
biological implications. First, it may comprise a thermodynamic mech-
anism to control the diameter of fibrin fibers, as the lateral aggregation
of protofibrils stops when the protofibril stretching energy surpasses
the energy of bonding (Weisel et al., 1987). Since fiber diameter is
related to network porosity, fiber length, branch point density, etc.,
the inherent tension of fibrin clots may modulate the overall network
structure. Second, the inherent tension in fibrin fibers can affect the rate
of fibrinolysis both at the individual fiber level (Hudson, 2017; Li et al.,
2017a; Cone et al., 2020) and in whole clot (Varji et al., 2011) because
susceptibility of fibrin to fibrinolytic enzymes depends strongly on the
mechanical tension of the proteinaceous fibrous substrate. In aggregate,
modulation of the structure of a fibrin network along with the tension
of fibers can affect the mechanical and enzymatic stability of entire
blood clots and thrombi that determine the course and outcomes of
various hemostatic disorders (Litvinov and Weisel, 2017; Feller et al.,
2022). Notably, the magnitude of inherent tension in fibrin networks
should be quite variable since it must depend on multiple local and
systemic influences that determine fibrin polymerization, including
physiological and pathological variations in blood composition.

Here, our goal is to construct a mathematical model for the evo-
lution of tension in isotropic fibrin networks by accounting for the
kinetics of the fibrin polymerization reaction that regulates the size and
structure of the fibrin fibers in a network model, accounting for the idea
in Weisel et al. (1987) that monomers make a twisted protofibril, and
the aggregation in register with a 22.5 nm repeat introduces tension.
In the following we first describe experiments for the measurement
of tension in fibrin networks during polymerization and a model for
capturing the evolution of tension in a fibrin gel. We show how tension
develops in a polymerizing fibrin fiber as its diameter increases, then
use this information in a continuum model to predict the evolution of
tension in a constrained fibrin clot.

2. Materials and methods
2.1. Sample preparation

Citrated apheresis platelet poor plasma (PPP) was obtained from
25 de-identified donors from discarded blood bank donations. Donors
were consented in accordance with the University of Pennsylvania
and State University of New York Stony Brook Blood Blank guide-
lines. Individual PPP samples were frozen at —65 °C, thawed (only
once), pooled, filtered, and then aliquoted and refrozen at —80 °C. The
fibrinogen concentration in the final PPP was 2.7 + 0.2 mg/mL. For
each testing method, a PPP aliquote was warmed to 37 °C and clots
were formed, through the addition of 20 mM calcium chloride and 0.2
U/mL or 1 U/mL human thrombin (final concentration, Sigma Aldrich).
Immediately after initiation of clotting, the plasma was used in dynamic
mechanical rheometer testing or optical turbidity testing to follow clot
formation.
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Fig. 1. Cartoon depicting the experimental setup using a rheometer. Testing apparatus,
including rheometer plates, force sensor, and humidity chamber, are shown in black.
The light purple shape represents the fibrin network material, the purple lines in the
fibrin network represent the isotropic fiber network, and the off-white ovals next to the
clot represent the mineral oil added to prevent sample drying during testing. Platelet
poor plasma (PPP) was activated with 20 mM CaCl2 and 0.2 U/mL or 1 U/mL thrombin
and placed between rheometer plates, which leads to a polymerization reaction that
forms a fibrin network. The rheometer plates are held fixed such that a tension in the
network results in pulling on the upper plate. The tensile force on the rheometer plates
generated by the polymerizing fibrin clot is measured as a function of time.

2.2. Mechanical rheometer testing

A Malvern Kinexus Ultra rheometer was used to analyze the in-
herent tensile force generated during fibrin polymerization in clotting
plasma. Plasma samples were activated, mixed, and 960 pL of the
sample was quickly transferred to the surface of the lower horizontal
plate of the rheometer. After the upper plate came into contact with the
activated plasma sample, the sample was surrounded with 300 pL of
mineral oil to prevent drying during the test (see Fig. 1). An oscillation
shear strain test was performed on each plasma clot sample, at 0.001 Hz
and 0.001% shear strain using a 40-mm parallel plate, a 0.70 mm gap
and 2 s sampling rate for 1 h. The rheometer was equipped with
a normal force sensor with a minimum detectable force of 0.001 N
and a resolution of 0.5 mN. The normal/perpendicular force generated
during formation of a plasma clot was measured as the force pushing
(positive) or pulling (negative or tensile force) on the upper plate of
the rheometer as a function of time. Normal force was converted to
normal pressure using the area of the 40-mm diameter upper plate, then
data was shifted to start at zero pascals at the start of the experiment.
Pressure leveled off at ~1000 s, and was then normalized to zero or to
the unclotted control plasma sample at this point to examine differences
in the tensile pressure generated by each sample after this time point.
At least four replicates were run for each sample.

2.3. Data analysis

To ascertain the inherent tensile force generated during the clot
formation process, the normal pressure measured by the rheometer
must be corrected for some artifacts and adjusted to 0 at time = 0. To
make these corrections, we used unclotted plasma (without thrombin)
as a control, since there will be no force generated. In order to isolate
the changes in normal pressure due to the inherent tension and remove
effects related to surface tension of the liquid phase of the sample, the
average normal pressure values for unclotted plasma were subtracted
from the individual clotted samples. Normal pressure was shifted to 0
for time = 0 and the relative changes in normal pressure we assessed
over the course of time. The normalized pressure was relatively un-
changed until ~ 1000 s. At this time point, a change in magnitude in
the negative direction was observed, representing the inherent tension
developed as the clot forms. First order differential for each sample
was calculated with GraphPad prism. The point at which the first order
differential first crossed the x-axis indicated the beginning of decreasing
normal pressure (tension generation) in each sample. The green shaded
region in Fig. 2(a) includes the time points where each sample crossed
the x-axis first (between 0-1000 s). The second point at which they



R. Spiewak et al.

Journal of the Mechanical Behavior of Biomedical Materials 133 (2022) 105328

3=
*kk
= 0.0000-
[
g % -0.0005
@ e
23 @
& & -0.00104
. 7]
E £ -0.0015+
S a
2z ] a
o
6 Q. -0.0020+
Time (s)
-0.0025 T T
-4~ 0.2U/mL Pressure -e- 1U/mL Pressure 0.2U/mL 1U/mL
(b) (@
0.5 *
- =
o ©
<} -3
e 2
g :
s ]
@ @
= a
w - -4
o ©
2 E
% 2
-6
0.0 et —
0 0 2400 3600
Time (s) -8 T T
0.2U/mL 1U/mL
-4 0.2U/mL Turbidity -# 1U/mL Turbidity

Fig. 2. (a) Average normal pressure for 0.2 U/mL thrombin (pink, triangles) and 1 U/mL thrombin samples (teal, circles) profile in plasma samples after activation of clotting.

Green shaded regions on the left indicate the range of time where first order derivatives were negative, indicating decreasing normal pressure. Red shaded regions on the right
indicate where the first order derivative crosses the x axis indicating a plateau of normal pressure across each sample. (b) Average optical density measurements of 0.2 U/mL
thrombin (black, triangles) and 1 U/mL thrombin (purple, circles) samples. Green and red ranges indicate the same as in (a). (¢) Comparison of the slope of normal pressure
in clotting plasma after normalization to unclotted plasma, as negative normal pressure is generated in samples activated with 0.2 U/mL (pink, left) and 1 U/mL (teal, right)
thrombin. (d) Comparison of the change in normal pressure in clotting plasma after normalization to unclotted plasma, as negative normal pressure is generated in the samples.
All data are represented as mean + standard error of the mean unless otherwise noted. Subfigures (c) and (d) show comparison to the unclotted plasma slope and pressure at 0 Pa/s and
0 Pa respectively. *p < 0.05, ***p < 0.001, and lack of significant differences between samples is indicated by no bar above the samples graphed. Analysis was completed using a one sample

t-test relative to a theoretical O value, as the samples were normalized to the unclotted control.

crossed the x-axis indicates when the slope became 0 and normal
pressure plateaued for the samples and no more tension was generated.
The red shaded region in Fig. 2(a) includes the time points where each
sample crossed the x-axis the second time (between 1800-2700 s). Each
sample was individually analyzed to determine the change in pressure
across this time period as well as the rate of pressure generation during
the period. The absolute pressure generated was calculated by taking
the difference between the beginning pressure values within the initial
no-tension region and the final pressure values in the plateau region.
A linear regression analysis was performed in this region to determine
the rate of force generation.

2.4. Dynamic optical turbidity testing

A Molecular Devices Spectramax Plus plate reader was used to ana-
lyze the dynamic optical density of clotting plasma. Following initiation
of clotting 100 pL plasma samples were transferred to a clear bottom
96-well plate, where surrounding wells were filled with distilled water
to prevent drying of the clots. Turbidity measurements were taken at
405 nm and 37 °C every 15 s to track clot formation over the course of
90 min. Four replicates were run for each sample.

2.5. Statistical analyses
All statistical analyses were performed using GraphPad Prism 9.0.

One sample t-test was used to determine the significance of the slope
of force generation and amount of normal force produced by clotted

blood plasma compared to an unclotted control at zero force. All data
are represented as mean + standard error of the mean unless otherwise
noted. *p < 0.05, ***p <

between samples is indicated by no bar above the samples graphed.

0.01, and lack of significant differences

3. Experimental results

The generation of normal (tensile) stress was measured in acti-
vated plasma to determine the inherent tension that is produced by
the fibrin network during the clotting process. The clot formation
kinetics, measured with turbidity, showed that clotting began at near
0 s with thrombin added at 1.0 U/mL and 600 s with 0.2 U/mL
thrombin with both clots fully formed near 1000 s (Fig. 2(b)). The
rate of tensile stress generation was higher in 1 U/mL thrombin sam-
ples (-0.001804 Pa/s, p < 0.001) than 0.2 U/mL thrombin samples
(—0.001667 Pa/s) (Fig. 2(c)). The directionality of these slopes indicates
the generation of a negative normal pressure, which corresponds to
the inherent tension of the polymerizing fibrin network. The inherent
tension was determined as the absolute magnitude of this force for
samples normalized to the unclotted plasma. Our results reveal that
clots formed at a higher thrombin concentration (1 U/mL) generated a
higher inherent tensile force (—5.45 Pa relative to the unclotted plasma
sample, p < 0.05) compared to the clots formed with 0.2 U/mL thrombin
(~2.72 Pa) (Fig. 2(d)).
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(d) Helical fiber.

Fig. 3. Schematic representations of fibrin fibers. (a) A protofibril constructed from fibrin monomers (Zhmurov et al., 2018), having two-fold axis of symmetry and off-axis binding
sites (Weisel, 1987), depicting the 22.5 nm half-staggered periodicity. Brace indicates one full monomer. (b) A protofibril modeled as a pair of helical rods. Each rod of the
protofibril is comprised of fibrin monomers stacked end to end, twisting around the other rod in a helical fashion. (c) Three helically twisted protofibrils, each formed of the
same structure as (b) but depicted and modeled here as a single rod instead, twisted around each other. Dashed lines emphasize the 22.5 nm vertical striation necessitated to
maintain longitudinal periodicity. (d) The outer shell of a helical fiber modeled as a collection of protofibrils helically twisted around the fiber core (not shown). Each protofibril
is depicted and modeled here as a single rod. All scale bars are 22.5 nm. All black areas of protein densification (Yermolenko et al., 2011) correspond to the DED structures in

the half-staggered packing. All red angular measures represent the pitch angle a.

4. Theoretical model

Here we give a brief overview of the mathematical model that will
be developed in the following sections, as well as some of the under-
lying motivation. The basis of this mathematical model is that each
fiber making up the fibrin network is under tension, and the tension
increases as the fiber diameter increases due to polymerization. The
existence of tension in fibrin fibers has been demonstrated by cutting
individual fibers and observing their retraction (Cone et al., 2020). The
origin of tension in fibrin fibers may have to do with the spatial geome-
try of monomeric fibrin and oligomeric protofibrils (Weisel et al., 1987;
Weisel, 1987). The protofibrils making up a fibrin fiber are twisted into
a helical shape in their stress-free state due to the spatial arrangement
of the symmetrical rod-like fibrin monomers that polymerize axially
and laterally (see Figs. 3(a) and 3(b)). When the protofibrils come
together to form a fiber, the molecules making up a protofibril must
be in register (Weisel et al., 1987; Medved et al., 1990), or properly
aligned perpendicularly, in order for the linkages between them to form
properly (see Figs. 3(c) and 3(d)). However, as the diameter of the fiber
increases, the stress-free helix must deform in order for the molecules
to be in register (see Fig. 3(d)), leading to some geometric frustration
from the opposing forces (Grason, 2013; Atkinson et al., 2021). This
causes strain in the helical protofibrils and induces stress. This stress is
ultimately responsible for the tension in a fibrin fiber.

No models exist for quantifying the tension in a fibrin fiber, let alone
as a function of its diameter. Here we build such a model by analyzing
the deformation of helical protofibrils and considering the change in
radius and pitch of a helical rod. The evolution of the diameter of
a fiber is given by a system of ordinary differential equations, based
on Weisel and Nagaswami (1992), which track the concentrations of
various species as the polymerization reaction proceeds. The helical
rod model for a fibrin fiber then outputs the tension in an individual
constrained fiber as a function of its (evolving) diameter. We show how

a single fiber under tension relaxes when the constraint is removed;
this mimics recent experiments in which individual fibers are cut and
allowed to relax to determine their pre-strain (Cone et al., 2020). Next,
we connect the mechanics of a single fiber to the constitutive response
of a network using the 8-chain model of polymer elasticity (Arruda and
Boyce, 1993; Qi et al., 2006; Brown et al., 2009; Purohit et al., 2011).
We then use a continuum mechanical model of swellable elastomers
(Chester and Anand, 2010) to predict the network tension as a function
of time in a constrained fibrin gel. Initially we let the network solid
volume fraction increase while holding constant the number of fibers
per unit reference volume, and then we hold constant the network solid
volume fraction to better mimic experiments.

4.1. Fibrin network polymerization model
Based on the paper of Weisel and Nagaswami (1992), the set of

differential equations modeling the polymerization of a fibrin network,
beginning with a concentration of fibrinogen, is
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where f, represents fibrinogen, f; represents fibrin monomers, f; rep-
resent fibrin oligomers comprised of i monomers, f, represent protofib-
rils, f, represent fibrin fibers, [ f;”’ ] represents total protofibrils in
fibers, [c fn] represents total fibrin (monomers) in protofibrils, [c fr] rep-
resents total fibrin in fibers, and, m is the average number of protofibrils
per fiber cross-sectional area (see Appendix A).

The parameters in this system are as follows:

* lye + 1, the minimum length for protofibrils to be capable
of lateral aggregation: Since the length of protofibrils is about
500 nm (Weisel and Litvinov, 2017; Chernysh et al., 2011) and
the half-staggered length of monomers is about 22.5 nm (Weisel
et al., 1987; Weisel and Litvinov, 2017; Chernysh et al., 2011;
Erickson and Fowler, 1983; Yermolenko et al., 2011), and thus the
number of fibrin monomers in protofibrils are about 20 (Weisel
and Litvinov, 2017), /,,, = 20 is chosen.

Fays the initial concentration of fibrin(ogen): f 4, = 2-8229 mg /mL
is chosen to match the initial fibrin(ogen) concentration value
of 5 x 10'8 molecules/L of Weisel and Nagaswami (1992) (the
experimental concentration used in Section 2.1 was 2.7 mg/mL,
but as can be seen from Fig. 5(a), this difference does not have a
large effect on the results).

k 4, the rate of fibrinopeptide A cleavage to convert fibrinogen to
fibrin monomers: k, = 1 s~1.

k,;, the rate of association of fibrin monomers to yield small
oligomers and initiate protofibril formation: k, = 6.0 x 1072
L/molecule s.

k,q, the rate of protofibril growth in length by longitudinal as-
sociation with monomers or shorter oligomers: k,, = 14 X
10717 L/molecule s.

k;, the rate of protofibril lateral aggregation to initiate a fiber:
ky; = 1.0x 107 L/molecule s.

ks, the rate of fiber growth by association with additional
protofibrils: k,, =2.0 x 107! L/molecule s.

k;4, the rate of lateral aggregation of fibers: the value k,, =
1.0 x 1071° L/molecule s is chosen to be in a similar range as the
other rate constants.

The rate constants were selected to be similarly valued to those used
by Weisel and Nagaswami (1992), and the conditions k, < k,, and
kpi <kgg in Weisel and Nagaswami (1992) were ensured.

The output parameter that is most important for this context is m,
the average number of protofibrils per fiber cross-sectional area, since
that is the one from which the radius of the fiber is estimated (see
Section 4.2). For the parameter choice given above, the evolution of
m over time can be seen in Fig. 4.

To study the effect of each parameter on the evolution of m over
time, we ran the calculations for a 20% change in each parameter and
plotted the results together (see Fig. 5). As can be seen in Fig. 5(a),
a 20% change in the initial concentration of fibrin(ogen) affects the
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slope of the increase in thickness: a larger f, causes a greater slope.
Similarly, as can be seen in Fig. 5(b), /,,, also affects the slope of the
increase in thickness, but in the opposite way: a larger /,,, results in
a smaller slope. In Fig. 5(c), it can be seen that small changes in k4
have only a very small effect similar to /,,,. Fig. 5(d) shows that small
changes in k), have a similar effect as f, , whereas Fig. 5(¢) depicts that
small changes in K pg have a similar effect as Loge- Fig. 5(f) demonstrates
that small changes in k; result in changes in the value of the asymp-
totic limit plateau region of the average number of protofibrils per fiber
m: smaller values of k; yield larger values of the limit. In contrast,
Fig. 5(g) shows that k,, has the opposite effect: smaller values of k,,
yield smaller values of the limit. Finally, Fig. 5(h) depicts that k,, has
a small affect on the slope of the asymptotic limit plateau region of
m: larger values of k., result in larger slopes in the asymptotic limit
plateau region of m.

As noted above, the rate constants k;; and k., control the value
of the asymptotic limit plateau region. These rate constants are likely
related to the energy barrier that must be surmounted by protofibrils
laterally attaching to each other and to existing fibers. Protofibrils
must deform in order for their bonding sites to align with those on
the perimeter of a fiber, and the protofibrils must deform more as
the fiber radius increases (as shown later). Once the energy required
to deform the protofibril to align its binding sites exceeds the energy
binding the protofibril to the fiber, protofibrils will no longer laterally
aggregate onto the fiber. As these binding energies are likely related to
the rate constant k;, for growing fibers through lateral aggregation of
protofibrils, the rate of lateral aggregation of protofibrils onto a fiber
will decrease as the fiber radius increases, and the rate of increase of
the number of protofibrils per fiber cross-section will also be reduced.
Thus, in theory, the rate constant k , should decrease as the fiber radius
increases, but we leave it as a constant here because our main focus is
on the development of tension in a polymerizing fibrin gel.

4.2. Fiber radius as a function of fibrin polymerization time

If the radius of the region occupied by a single protofibril is given
as r,,, then the cross-sectional area occupied by a single protofibril is
ag = n'rrzn. (10)

Similarly, if the radius of a fiber is R, then the cross-sectional area of
a fiber is given by

Afiper = TR an
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). (e) Variation of the rate of protofibril growth in length by association with oligomers k ,, (@). (f) Variation of the rate of protofibril

lateral aggregation to initiate a fiber k i (m). (g) Variation of the rate of fiber growth in diameter by association with additional protofibrils kg (ﬁ). (h) Variation

of the rate of lateral aggregation of fibers k., Cooeaie)-

Since the average number of protofibrils per fiber is given above as m, comprised of smaller longitudinal units helically twisted around a

A 19 central stem. Thus, the theory developed in Appendix C is applicable
Jiber = do M a2 to the components of both fibrin fibers and protofibrils. For a helix of

which gives us radius r and pitch p, the pitch angle is given by

ZR% = 712 m, 13) tana = |—| = i (15)

m K 2zr
or where 7 is the torsion of and « is the curvature of the helical curve.
R(t)=r,, /(). (14) Additionally, since the adjacent helical protofibrils must maintain reg-

ister required for the 22.5 nm half-staggered longitudinal band pattern
This is similar to the expression derived in Palmer and Boyce (2008). (Weisel et al., 1987; Weisel and Litvinov, 2017; Chernysh et al., 2011),

This derivation assumes a uniform density of protofibrils per fiber the pitch angle must remain constant through the cross-section of the
cross-sectional area. The simplicity of this assumption enables concrete fiber at different values of the radius r. As r evolves in time the pitch
calculations, but there is evidence of non-uniform protofibril density angle also evolves. For example, the pitch angle a = 80.8° calculated
(Yeromonahos et al., 2010; Yermolenko et al., 2011; Yang et al., 2000; from the measured quantities r = 50 nm and p = 1930 nm for fibrin
Guthold et al., 2004; Li et al., 2016, 2017b) in the fiber cross-section. fibers (Weisel et al., 1987). The pitch angle « = 85.5° calculated from
See Appendix B for a quantitative discussion of the ramifications of the extracted quantities » = 5 nm and p = 400 nm from simulations
non-uniform protofibril density. The polymerization parameters (see of equilibrated molecular structures (Zhmurov et al., 2018). Assuming
Section 4.1) which most directly control the plateau value of R(r) are also that there is no twisting moment, so that x; = k3, the magnitude
ks, and k X of the force in a protofibril can be written as (see Appendix C)
4.3. Tensile force in a fiber n(r) = '—Kb sina% <cosr2 a_ KO) , (16)
It has been observed (Weisel et al., 1987; Medved et al., 1990; where K, is a bending modulus and «, is a spontaneous curvature, both
Zhmurov et al., 2016, 2018) that protofibrils and fibrin fibers are material properties of the helical protofibrils. In a tension-free state
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with pitch angle « (for example, in a hypothetical free-floating twisted
but unstretched fiber) the total force on the fiber is F = 0. Since the
radial distribution of protofibrils is disordered (Weisel et al., 1987), the
number density of protofibrils per unit cross-sectional area is assumed
to be constant (see Appendix B for a discussion of the ramifications
of a non-uniform density) and the fiber cross-section is taken as being
circular of radius R. Then, the force balance in the tension-free fiber
cross-section is

Roar
/ = n(r)dr =0, 17

w90
where again
ay=nr?, 1s)

is the area occupied by one protofibril. Since K, a,, and «; are constant,
the integral simplifies to

R cos? a R
dr = Kodr, 19
r, r r,

m m

which gives

ko(R—r
cos? a, = —O( m)
1n(R>
rm

This sets the pitch angle of the fiber as a function of the radius R in a
stress-free state.

For a fiber of pitch angle a, # a, both twisted and stretched to
connect to a network, the total force on the fiber is F # 0. In this case,
the force balance for the cross-section of a fiber under tension is

(20)

Ronr
/ ~——n(r)dr=F. 21)
T ag
This time, the solution of the integral for the force on the fiber is
F = Z—IK,] sina, <K0(R—rm)—cos2 agln<£>> . (22)
ap I'm
If we define
_ tana, (23)
¢7 tana,

as the elastic stretch of the fiber between the twisted but unstretched
state with pitch angle «, and the twisted and stretched state with pitch
angle qa,, then the force on the fiber Eq. (22) can be considered as a
function of 4, and a,(R), where a,(R) is known from Eq. (20), and
R(t) from Eq. (14) can be calculated from the fiber polymerization
equations in Section 4.1. The result from Eq. (22) for different values
of R, in line with previously reported range of fibrin fiber radii of
25 — 115 nm (Tutwiler et al., 2020), are shown in Fig. 6 for parameter
values discussed below. Note that F = 0 at 4, = 1 for all values
of R. This will be useful when we define a stress-free intermediate
configuration in the continuum model (see Section 4.5).

The parameters in Eq. (22) are as follows: g = nrfn, the area of a cir-
cular region of radius r,, occupied by one protofibril (plus surrounding
fluid); K, the bending modulus of the fiber; 4,, the stretch of the fiber
between the twisted but unstretched state with pitch angle «, and the
twisted and stretched state with pitch angle «a,; and «), the spontaneous
curvature in the stress-free state. The radius of the area occupied by a
single protofibril is known to be r,, = 6.5 nm (Zhmurov et al., 2016,
2018; Jansen et al., 2020). With an estimate of the persistence length
of protofibrils of L, = 400 nm (Zhmurov et al., 2018) and a room
temperature of 7 = 290 K, the bending modulus can be estimated as
K, = kgTL, ~ 1600 pN nm?, where kj is the Boltzmann constant.
can be estimated in two ways: the first way utilizes the relationship
between curvature and the radius and pitch of a helix Eq. (C.52), and
the extracted quantities r, = 5 nm and p, = 400 nm from simulations of
equilibrated molecular structures of free protofibrils (Zhmurov et al.,
2018), which gives a value x, ~ 1.226 x 103 nm~!; the second way

P

rearranges Eq. (20), uses tana; = 7=, and takes the average value of «,
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Fig. 6. Tensile force F vs. stretch 4, in an individual fiber for different fiber radii.
Thicker fibers develop higher tensile forces.

Force (pN)

0 . . . . . . . . . '
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Fig. 7. Tensile force F in individual fibers vs. time ¢ in polymerization for the values
r, = 6.5 nm, K, = 1600 pN nm’, 4, = 1.501, and x, = 1.23x 10~ nm",

for the values of R = 50 nm and the range p = 1930+280 nm from Weisel
et al. (1987), which gives a value (k) ~ 1.235 x 1073 nm~!. These two
estimates are in excellent agreement, so the value x, = 1.23x 1073 nm~!
is chosen. Using these values, the tensile force F in a fiber vs. time 7 in
polymerization can be seen in Fig. 7 with 4, = 1.501 held fixed.

Fig. 7 shows that the force in a fiber is on the order of a few pN
while the scale of thermal energy kzT at T = 300 K is 4.1 pN nm.
However, thermal fluctuations of the fibers turn out to be negligible,
as can be seen from the following calculation. Thermal fluctuations are
largest at the center of a fiber fixed at both ends. With hinged-hinged
boundary conditions and taking the origin of coordinates as the center
of the fiber, the thermal fluctuations can be calculated from eqn. (20)
of Purohit et al. (2008):

L\/g—smhz Gv) : (24)
sinh (L\/be )

Suppose the length of the fiber is taken as L = 1 pm and the radius
is R =75 nm. The Young’s modulus of a fiber can be approximated as
E = 15 MPa (Collet et al., 2005) (note that this is different from the

2y ZkgT | L2
(%) = FL | 4
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Young’s modulus estimated in Section 5 where important factors in the
modulus, such as fiber cross-linking, the packing density of protofibrils
in fibers, all lateral forces, and the long and largely unstructured aC
regions, are neglected). Then, the bending modulus of the fiber is
K, = EI, with T = Zr* for a cylindrical cross-section. There will be
more fluctuations if the fiber is not as taut, so it is logical to use a
force on the lower end, F = 1 pN. Doing so, the thermal fluctuations

are 4/ (d2> ~ 0.672 nm. Therefore, thermal fluctuations here are not so

significant. This is consistent with the relatively straight fibers seen in
confocal images of clots (Litvinov and Weisel, 2017).

4.4. Kinematics of fiber relaxation after transverse cutting

According to the theory presented in Section 4.3, a fiber of length
! in a network will relax to an equilibrium length //4, when cut
transversely. This assertion can be confirmed by solving for the length
of a fiber over time as it relaxes. Here, the fiber will be modeled as
a rod relaxing through a fluid. Similar to Raj and Purohit (2011), the
kinematics over time ¢ are developed for a rod-like structure of length
I in one spatial dimension characterized by the reference configuration
variable ¢. All relevant vectors have the same direction along the length
of the fiber from ¢ = 0 to /, so they will be treated as scalars with unit
vector direction along the length of the fiber. The fiber is assumed to be
moving in a fluid, which itself is flowing with velocity v, which causes
a drag force. Thus, the spatial position of a material point ¢ at time ¢
is z(t,¢), the velocity of the spatial point is %, and the stretch

0z
o
depends on both position and time. Here a(g, t) is the current pitch
angle and we have chosen the reference state to be the one with
uniform stretch A, everywhere. The balance of linear momentum for
a segment of the fiber in this reference configuration can be written

_ tana

A= (25)

tana,

d 2 9z 2

- p=—d¢ = F(t,6;) — F(t,¢1) +/ b(t, ¢)dg, (26)
dt 91 ot <

where the linear density p is mass per unit length of the fiber, F =
F(t,¢) is the force at time ¢ acting on material point ¢, and b = b(t,¢) is a
distributed load per unit length at ¢. Here, the inertia force is negligible,
so p = 0. The distributed body force

0z2(t,¢) U)

ot @7

b(t,¢) = —d,, (

where d,, is the effective drag coefficient caused by the drag force
exerted on the fiber by the surrounding fluid. The effective drag co-
efficient d,, is estimated using results proposed by Brennen and Winet
(1977) for thin bodies in flow with low Reynolds’ number. These results
take advantage of thinness to make simplifications to approximate
solutions for the flow around these bodies, and superimpose funda-
mental singularities around the body to solve for complex flows. Exact
solutions can be obtained for mathematically simple bodies in mathe-
matically simple flows. Their expression for the axial drag coefficient
is

d = _ 2 (28)

w ] ’
In (E) +c
where y is the fluid viscosity, / is the length of the body, R is the radius

of gyration of the body, and ¢ depends on the shape of the body. For a
uniform cylinder,

c=ln2—%. 29)

As such, the linear momentum equation becomes

15 az(t,
d( 20 v) de, (30)

F(t,€2)—F(t,§1)—/

1
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which can be localized to
oF(t,¢) _ 9z(t.¢)
PP d, <—6t U> (31)

since there are no discontinuities. In this case, the fluid is not flowing,
so v = 0. Therefore, the localized balance of linear momentum becomes

OF(t.¢) _ d <0z(t, g)) . (32)

a¢ Jt

We take the constitutive law for the force F to be the same as in
Eq. (22),

F(t,¢) = 2—”Kbsinoz (KO(R—rm)—ln<£>cosza>, (33)
ap T'm
with
tana = 9z tana (34)
o¢ e

For the fiber in question, one end is assumed fixed and the free end
has no force. Therefore, the boundary conditions are

2(t,c =0)=0, (35)
F(t,¢c=1)=0. (36)
The initial condition at time ¢+ = O+ is that z(¢) = ¢ everywhere
except very close to the end which is severed. At the severed end the
tension instantaneously goes to zero. Since we integrate the PDE for the

relaxation numerically by a finite difference method we give the initial
condition in discrete form as:

S 0<¢<0.99,
z(t=0,¢) = tana, 37)
o a: (c—0.99)+099, 0999 <¢<l,

where the last (100th) element is assumed to be at zero force.
Eq. (32) can be solved using a finite difference method. Eq. (32) is
discretized for numerical calculation as

Fi,j+% - Fi,j— 4 Zip1j — Zij 38)
A¢ e A7

where j denotes the jth node and i denotes the ith time step, 4 is the
element length, and At is the time step. From this, the position of the

fiber at the next time increment can be calculated by

ol

Fij+l - Fij—1 At
V2 V2
Ziy1j = A—ga + 2z (39)
The condition
d
At < 2 (Ag)%, 40
<3 ka( 9] (40)
with the largest slope of the force-stretch relation curve
k, = 2—”Kb tan a, cos® a, <K0(R —rp) + (1 +5sin® ;) In <£>> s (41)
ag T'm

must be satisfied to ensure stability of the method.

The inputs to this partial differential equation are as follows: the
fiber radius, R; the pitch angle of the fiber in the stress-free state, «,; the
pitch angle of the fiber in the state in which it is twisted, stretched, and
connected to the network, a,; the fluid viscosity, y; and the length of the
fiber / when it is connected to the network. The fiber radius R is chosen
from the final value calculated from the polymerization over time f,
Eq. (14), which is in line with our previously reported range of fibrin
fiber radii of 25— 115 nm (Tutwiler et al., 2020). The pitch angle in the
stress-free state a, is calculated as in Eq. (20), and the pitch angle of the
fiber q, in its connected state is computed from Eq. (23) with the fixed
value 4, = 1.501 used above in Section 4.3. Since the fluid in which the
rod resides predominantly behaves like water, 4 = 1.002 x 1073 Pa s,
the fluid viscosity of water. The probability density function of the
fiber lengths P(/) in a network is a log-normal distribution function
of | with parameters y = 0.53 and ¢ = 0.78, as found in Kim et al.
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Fig. 8. Length z(t,¢ =) of the fiber relaxing over time ¢ for different initial lengths / and different stretch A, values. (a) Length z(t,¢ =) of the fiber relaxing over time ¢, with
R =78 nm, tana, =522, tane, = 7.84, 1, = 1.501, and the initial length values / = 0.5 pm, / = 0.75 pm, and / = 1.0 pm. Inset: the same curves with y-axis normalized by the initial
lengths of the fibers z(t = 0,¢ = /). For A, = 1.501, the fibers relax to the lengths 0.34 pm, 0.50 pm, and 0.67 pm, respectively, from Eq. (32), in excellent agreement with the lengths
1/, =0.33 ym, I/4, = 0.50 pm, and //4, = 0.67 pm from the theory proposed in Section 4.3. (b) Length z(t,¢ =) of the fiber relaxing over time ¢ for different stretch A, values,

with R =78 nm, tana, =5.22, | = 1.0 pm, and the stretch and pitch angle values 4, = 1.2 and tane, = 6.27, 4, = 1.501 and tana, = 7.84, and 4, = 1.8 and tana, = 9.40..

Table 1

Relaxation times ¢, and lengths, both calculated from Eq. (32) and from //4, from the
theory proposed in Section 4.3, for different initial lengths z(+ = 0,¢ = /) = /. Relaxation
time ¢, was taken as the amount of time required to reach the expected length //4,+1%
from the theory proposed in Section 4.3.

1 !

zZ(t=0,¢=D=1 ty Z(t:tf,§:l) % szm
0.5 pm 0.12 ms 0.34 pm 0.33 pm 0.81 pm
0.75 pm 0.23 ms 0.50 pm 0.50 pm 1.22 pm
1.0 pm 0.34 ms 0.67 pm 0.67 pm 1.62 pm
1.5 pm 0.62 ms 1.01 pm 1.00 pm 2.44 pm
2.0 pm 0.98 ms 1.35 pm 1.33 pm 3.25 pm

(2014). The most probable value is / = 0.9 pm, with a likely range of
about 0.5 pm </ < 2 pm (see also Appendix D). Fig. 8 depicts the length
z(t,¢ = 1) of the fiber relaxing over time ¢, with R = 78 nm, tana, = 5.22,
tana, = 7.84, 4, = 1.501, and / = 0.5 pm. For 4, = 1.501, the fiber
relaxes to the length 0.34 pm in time ¢ = 0.12 ms from Eq. (32), in
excellent agreement with the length //4, = 0.33 pm from the theory
proposed in Section 4.3. Relaxation time ¢, was taken as the amount
of time required to reach the expected length //4, +1% from the theory
proposed in Section 4.3. Relaxation times and lengths, both calculated
from Eq. (32) and from //4, from the theory proposed in Section 4.3,
for different initial lengths / are presented in table Table 1.

Studies such as Hudson et al. (2013) (specifically as interpreted
by Cone et al. (2020)) demonstrate that fibrin fibers recoil in a
timescale on the order of milliseconds or even submilliseconds. The
relaxation times ¢, given by the theory developed here agree with
the millisecond and submillisecond recoil times presented by Hudson
et al. (2013). Additionally, recent works of Cone et al. (2020) have
also measured lengths of individual fibers from fibrin networks prior
to cleavage and the subsequent fragments, and calculated the average
prestrain value as (¢) = 23 + 11%. The prestrain from the model
presented here can be calculated as
e=1- e (42)
With the value of 4, = 1.501 calculated from the mechanisms in Sec-
tion 4.5, the prestrain is e = 33%. This value is in excellent agreement
with the prestrain measured by Cone et al. (2020). This suggests that
our assumption that 4, ~ 1.5 is reasonable.

4.5. Continuum model of fibrin gel

Consider a hypothetical free fibrin fiber polymerizing in space,
beginning as a string of length L of protofibrils in this initial config-
uration. As it is not attached to any other fibers, such an imaginary
fiber would not be constrained by outside agents (note that an actual
fibrin fiber would polymerize attached to other fibers in a network
and would thus be under tension). As polymerization of this imagi-
nary fiber proceeds, protofibrils aggregate laterally around the initial
protofibril. If the fiber is not constrained in any way, the length of the
fiber will decrease as the radius increases, as outer protofibrils stretch
and protofibrils near the center contract in order for the protofibrils
to maintain register required for the 22.5 nm half-staggered pattern
(Weisel et al., 1987; Weisel and Litvinov, 2017; Chernysh et al., 2011;
Weisel, 1986). Let us assume that the stretch of this fiber (with respect
to the initial configuration of length L) is

A <1, (43)

where ¢ is the elapsed time since the start of polymerization (see
Section 4.1). If there was an unconstrained isotropic network of such
fibers which we describe as a continuum then this network will shrink
compared to its configuration at + = 0 and the deformation gradient
will be given by:

F (1 = A,(OL (44

Following the framework developed in Chester and Anand (2010) we
will call this state of the continuum as an intermediate stress-free
configuration. In this state, the length of the fibers is A,L, and the
fibers are twisted helically but are not under tension. Imagine next
that the network was actually formed between two rheometer plates
whose normals are in the z-direction. If the distance between the plates
is not allowed to change then the network is constrained and it will
pull on the plates as the fiber diameter increases. Accordingly, there
is a force along the e, direction, and there are zero forces in the e,
and e, directions. Thus, due to this constraint, the fibers will be in a
twisted and stretched state and the continuum representing the network
has stretches 4,.(t), 4,,(t), and 1, (1) measured with respect to the
intermediate state, giving a deformation gradient

0x,
,

Fe = 0x

(45)

s
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where x, is the position in the fully deformed configuration of a particle
whose position in the intermediate configuration is x,, and the elastic
right Cauchy-Green tensor is

2.0 0

C,=FF,=|0 A2 0 (46)
0 0

The total deformation gradient is then

F@) =F,OF®). 47)

Next, we need to give an expression for the stored energy density
in the continuum as a function of F. To this end, we will use the 8-
chain model proposed in Arruda and Boyce (1993), Qi et al. (2006)
and Bischoff et al. (2001). This model was shown to describe fibrin
networks (Brown et al., 2009; Purohit et al., 2011), rubbers and elas-
tomers (Arruda and Boyce, 1993; Bischoff et al., 2001), actin filament
networks (Palmer and Boyce, 2008), and other random networks.
In Brown et al. (2009) the stored energy density had two parts —
(a) due to the deformation of the fibrin fibers, for which we use the
Arruda-Boyce 8-chain model (Arruda and Boyce, 1993), and (b) due
to volumetric deformation that the 8-chain model cannot capture for
which we use a bulk-modulus. In the 8-chain model, the network
is represented by a cube of length a in the reference (undeformed)
configuration with eight fibers (or chains) of length

V3

L=7(1

connecting each of the vertices to the center of the cube.

If the sides of the cube are parallel to the principal coordinates of
the deformation, then after the deformation the length of each fiber is
A.(H)A,(1)L, where

2+ Agy + 12,
/12 = f

If the strain energy per unit reference length of the fiber in the inter-
mediate configuration due to the elastic deformation is G(4,), then the
stored energy in each fiber is G(4,)4, L, and the force—extension relation
of a fiber is
dG(4,)
di,

(48)

(49)

F(i) = (50)

The contribution of fiber deformation to the total strain energy per unit
volume is %ASLG(AB), where

33
V=V, = 5 (51)

is the density of fibers in the reference configuration. Next, we need to
account for the energy of volumetric deformation that is not captured
by the 8-chain model. If the volume of the cube in the intermediate
configuration is ¥, and the volume change of the cube to the final
configuration is 4V, then

AV eiheydes — L.

xeyez
s

(52)

The strain energy per unit intermediate volume due to this volumetric
deformation is denoted as g(4,y4,,4,.)- Thus, the strain energy density
per unit volume of the cube in the intermediate configuration is given
by

U, (4 o) = z LG(A) + 8(Aex Ay her)- (3)

ex> Aey’
By observing that the strain energy density in the reference config-
uration U is related to the strain energy density in the intermediate
configuration by

U =2u, (54)

10

Journal of the Mechanical Behavior of Biomedical Materials 133 (2022) 105328

the strain energy density in the intermediate configuration can be
converted into the strain energy density in the reference configuration
as

U(Aeys Aeys Aozs A

ey’

) = VALG(A,) + A2g(Aex Ay Aes)- (55)

Having described the kinematics and energetics of the continuum
in this way we now want to enforce equilibrium. A comprehensive
continuum mechanical theory to do this exercise for gels is given
in Chester and Anand (2010). We refer the reader to Chester and Anand
(2010) for detailed derivations of the equations used below. Similar to
the analyses in Chester and Anand (2010), the second Piola—Kirchhoff
stress can be written

ou

56

¢3C, (56)
ou

Ty =2F, — o F.T, (57)

where Ty is the reference Piola-Kirchhoff stress that satisfies the
equilibrium equation
DivT, =0 (58)

in the reference configuration. Using our expression for the stored
energy function we get,

vaL |t 00 s
T, = 32 0 Aey 0 |F(4,)+ A;f(lcxiey/lez)
e
Aoz
0
1
X O Z 0 ex ey ez (59
1
Aoz
I 0
\%
Ty = 37 0 Aey 0 | F(A) + A2f (AoxApyher)
clo 0 4,
1
W 000
x| 0 = 0 lhg e (60)
1
0 0 .
where f ( V=g ( V) 1t should be noted that the shear components of

T, and T R *are all 0 in principal coordinates. Since there are no forces
or constraints applied on the fibers in the intermediate configuration,
it is reasonable to assume F(1) = f(1) =0

In the present case with a network polymerizing in between fixed
rheometer plates with surfaces perpendicular to the axial e, direction,
forces are applied only in the axial e, direction, and

Tryx = Tgyy = 0. (61)

Due to isotropy,

Aox = Aoy = Ay (62)

are also expected, and so

A=Ay = Ay (63)
Az = Aoz 64)

Since during polymerization the rheometer plates are fixed,

A =1 (65)

Hence,

A, = Ai (66)

s
As such, equilibrium in terms of the Piola—Kirchhoff stresses reduce to
the following two equations:

)»2
O=§AF(}»)+AAf( 5> (67)
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Re = o F(Ae)+a?12f<i§), 68)
T 34 s Ag
for the two unknowns 4, and Tg,,, where now
A = 1[ % (69)
3
5

The network stress T, can be multiplied by the area of the rheometer
plate to get the force exerted on the network due to polymerization.

The unknowns in this model are as follows: L, the length of the
fiber in the imaginary reference configuration; F(4,), the force-stretch
relation of a fiber; f, the relationship between volumetric strain and
pressure; A, the stretch between the imaginary reference configuration
and the intermediate configuration; 1., the stretches between the in-
termediate configuration and the final configuration in the directions
other than that in the axial e, direction; and, in the fixed solid volume
fraction formulation, the solid volume fraction ¢,. The length of the
fiber L in the imaginary reference configuration can be found by
calculating

|

= E
from the distribution found in Kim et al. (2014), as discussed in
Section 4.4. The force-stretch relation of a fiber F(4,) is the same as
the force in a fiber Eq. (22) derived in Section 4.3. The relationship
between volumetric strain and pressure is taken to be

A\ (7
/(5)-+(E)

where K = 1314.67 Pa is a bulk modulus as found in Punter et al.
(2020). We have verified that a higher bulk modulus value of K =
100 kPa has little effect on the results. The stretch between the imag-
inary reference configuration and the intermediate configuration is
taken to be

(70)

(71)

tan a,(R(1))
A(R(M) = ———, (72)
tan o
where tan a (R(?)) is given by Eq. (20), and tanq, = % for a single

protofibril based on Zhmurov et al. (2018). The stretches A, between
the intermediate configuration and the final configuration in the direc-
tions other than that in the axial e, direction can be solved for each
elapsed polymerization time ¢ from Eq. (67). This calculated value of
A, along with the A, value, can be used to calculate 4, in Eq. (69).
In solving these equations, we use A, = 1.501. Finally, the network
Piola—Kirchhoff stress Tj., can be computed from Eq. (68).

Using the above values and choosing / = 0.5 pm, the Piola—Kirchhoff
stress Ty, as a function of polymerization time ¢ can be seen in Fig. 9.
As the clot polymerizes the tension increases, as expected. Steady state
is reached by about 1000 s, in qualitative agreement with experiments.

To study the effect of the estimated parameter length / and final
fiber radius R on the network Piola stress Ty, ,, we ran simulations with
different values for each and compared the results. Fig. 10(a) depicts
the change in Piola stress Ty,, for fiber length / values in the range
0.5 pm </ < 2.0 pm. As can be seen in Fig. 10(a), larger fiber lengths
produce smaller network Piola stresses Ty .. Additionally, as can be
seen in Fig. 10(b), thicker fibers of the same length produce larger
network Piola stresses Tg...

The above discussion held the number of fibers per unit reference
volume constant, giving a density v,,. If, instead, as in our experiments
(see Section 3) and in other experiments (Tutwiler et al., 2020), the
solid volume fraction ¢, is held constant at ¢, = 0.01 or 1%, a value
previously estimated for plasma clot fibrin networks (see Figures S3 and
S4 in the supplement of Tutwiler et al. (2020)), the density becomes

és
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Fig. 9. Piola-Kirchhoff stress Ty, in the network in the fixed number density
formulation as a function of polymerization time ¢, using the length of the fiber
connected in a network / =0.5 pm.

In this formulation, the number density of fibers varies as the solid
volume fraction is held fixed, such that in a given volume there will
be fewer but thicker fibers or more but thinner fibers to yield the same
protein concentration. When using this density in the calculations of
network stress, results for varying different input parameters are more
consistent. As can be seen in Fig. 11(a), fibers of different lengths
produced the same network stress Ty, .; this is not the same effect as
in Fig. 10(a) which held the number density of fibers fixed, where
larger fiber lengths produce smaller network Piola stresses Tjy,,. Also,
the estimated final values of the tensile stress are in agreement with
experimental results in Fig. 2. Additionally, as can be observed in
Fig. 11(b), thinner fibers of the same length produce larger network
Piola stresses Tg,., which is also different from the trend observed
in Fig. 10(b) which held the number density fixed. Recall from our
experiments that increased thrombin concentration causes decrease in
turbidity, which is related to the average protofibrils per fiber m (Weisel
and Nagaswami, 1992), leading to a decrease in R. Thus, these results
for v. = v,, are in agreement with the trend expected from Weisel
and Nagaswami (1992) and the results from our experiments where in-
creased thrombin concentration yields increased magnitude of network
stress (see Section 3). In a real network there is a distribution of fiber
lengths, so we accounted for this in rudimentary way in Appendix D
and showed that the resulting values of final tensile stress are not very
different from those reported in Fig. 11.

4.6. Summary of full mathematical model

The model can be summarized as follows: The system of ODEs,
resulting from the chemical rate equations governing fiber polymeriza-
tion, are as follows:

dif )
;f = k[ f4] (74
difyl uss
— =k LAIAT+ LA DA = kg LAALS ) + ks[4 (75)
i=1
d[f] l%J lﬂgg
==k ;[f,-uf,_,-]—[f,][f,]—[f,];[m — kg Lfu1LS;]
V) € [2,1,4] (76)
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Fig. 10. (a) Effect of estimated fiber length / on the network Piola stress Ty.. using five values of / from the most likely range of / from the experimental probability distribution
found in Kim et al. (2014), as discussed in Section 4.4. These plots assume that / remains fixed as solid volume fraction ¢, evolves with time. (b) Network Piola stress Tj.. vs.
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Fig. 11. Results for network Piola stress using the fixed solid volume fraction formulation. In this formulation, the number density of fibers varies as the solid volume concentration

is held fixed, such that in a given volume there will be fewer but thicker fibers or more but thinner fibers to yield the same protein concentration.

(a) Effect of estimated fiber

length / on the final network Piola stress Ty, using five values of / from the most likely range of / from the probability distribution found in Kim et al. (2014), as discussed in
Section 4.4. (b) Effect of final fiber radius R on final network Piola stress Ty, for constant fiber length / = 0.5 pm. Thinner fibers contribute more network Piola stress Ty... Since
the solid volume fraction during polymerization is not constant, only the values calculated from the final time in the polymerization have been included. The final solid volume

fraction for each of these points is ¢, = 0.01..

l/,,ggﬂ J
2 lagg

dg;n] —k, FZI (1 + 1 001) izlﬂgl_j[f,-]
=2k L] = kLU
d;’;’] = kL)L) = kAl L)
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The fiber radius R as a function of the average number of protofibrils

(82)

m

per fiber cross-section m is

R(t) = r,\/m(2).

The stretch connecting the imaginary reference configuration and the
intermediate configuration of a fiber, as a function of fiber radius R, is

(83)

given by
In<£§9>
tanag(R(0) | %o(RO-ry) -
Ag(R(M) = anag 700 84

27wX5

The stretch between the intermediate configuration and the final con-
figuration of the whole network in the directions other than that in the
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axial e, direction 4, is calculated by solving

)»2
0=2LiFO)+ a0 r( 2 (85)
3}/5 * e sk /15
using the force in a fiber
F = 2—”Kbsina<K0(R—rm)—coszaln<£>> (86)
W) I'm
with
o(22)
tana = A, tana, = 4, = -1, 87)

Ko(R@) = 1yy)

the stretch between the intermediate configuration and the final con-
figuration

, 2222 + 1 ©8)
¢ 32
and the relationship between volumetric strain and pressure
2 A2
= )=k(=Z-1]). 89
Then, the network Piola stress can be computed from
2
vL 2 2 '1*
Tros = ——F(A) + 24,12 = ). 90
Rez = 355 (4e) + A4 f <)~s (90)

The model takes the unknown input parameters initial concentration of
fibrinogen f, , rate of fibrinopeptide A cleavage to convert fibrinogen
to fibrin monomers k4, the rate of association of fibrin monomers to
yield small oligomers and initiate protofibril formation k,, the rate of
protofibril growth in length by association with oligomers k,, the rate
of protofibril aggregation to initiate a fiber k;, the rate of fiber growth
by association with additional protofibrils k ,, the rate of interactions
between fibers k4, and initial length of a fiber connected in a network
I. The model outputs the radius of a polymerizing fiber R(z), force on a
fiber F, the stretches A, and 4,, the relaxed length of a fiber //4,, and
the network Piola stress T, ..

5. Discussion

In this paper we have followed Weisel et al. (1987) and Weisel and
Nagaswami (1992) and modeled fibrin clot formation — from fibrinogen
to fibrin monomers and oligomers to protofibrils to fiber formation —
by a set of ODE:s for the chemical rate of change in concentration of the
reacting structures of each individual stage. The solution of that system
of ODEs gives the average number of protofibrils per fiber cross-section
as a function of polymerization time. Variation of the rate constants
involved in the intermediary biochemical reactions demonstrates that
the two most important stages determining final fiber radius are fiber
initiation by lateral aggregation of protofibrils and fiber growth by
transverse association with additional protofibrils. The resulting (final
value of) average number of protofibrils per fiber cross-sectional area
is directly related to the radius of a fiber. Therefore, we can calculate
how the radius of a fiber evolves in time. This radius is used as an
input to calculate the evolving tensile force in a fiber, which ultimately
determines the tensile force in a network constrained between two
rheometer plates.

We assumed that since the radial distribution of protofibrils is
disordered (Weisel et al., 1987; Weisel, 1986), the number density of
protofibrils per unit fiber cross-sectional area is constant. In particular,
we assumed that a single protofibril occupies a circle of radius 6.5 nm
in the fiber cross-section. Thus, if the number of protofibrils in a fiber
is known (from the solution of the ODEs), the radius of the fiber as
a function of time can be calculated. The resulting values of the fiber
radius are in line with the previously reported range of fibrin fiber radii
of 25-115 nm (Tutwiler et al., 2020). However, we note that other works

13

Journal of the Mechanical Behavior of Biomedical Materials 133 (2022) 105328

suggest that the density of protofibrils per fiber cross-sectional area is
not constant (Yang et al., 2000; Guthold et al., 2004; Yeromonahos
et al,, 2010; Yermolenko et al., 2011; Li et al., 2016, 2017b); the
number of protofibrils per fiber cross sectional area is proportional to
D'? (Guthold et al., 2004) or D402 (Lj et al., 2017b), and not D?
as we have used. It has also been suggested that the fiber core is more
dense than the periphery layers (Li et al., 2017b). We used the constant
number density assumption in our calculations due to its simplicity and
also because a specific numerical value (6.5 nm) for the inter-protofibril
distance was available (Jansen et al., 2020; Zhmurov et al., 2016,
2018). On the other hand, other works (Guthold et al., 2004; Li et al.,
2017b) provide scaling laws which do not furnish enough information
to compute actual numerical values of the fiber radius. Additionally,
even if a more accurate relationship between the number of protofibrils
per fiber cross sectional area is specified, it will only change the
computation of the radius from the average number of protofibrils in a
fiber and some details of the force in a fiber computation (see additional
details discussed in Appendix B). Our overall approach of computing
the fiber tension and the network tension will still remain the same.
Furthermore, our simple assumption of constant number density of
protofibrils per fiber cross-sectional area is able to capture a crucial
experimental observation that the Young’s modulus of a fibrin fiber
decreases with increasing radius, as demonstrated below.

Our equation (see Eq. (22)) for the force-stretch relation of a single
fiber is derived by mathematically describing ideas in Weisel et al.
(1987), which trace the origin of tension in fibrin fibers to the two-
fold axis of symmetry and off-axis binding sites of individual fibrin
monomers. This causes protofibrils to be helical as clearly seen in the
simulations of Zhmurov et al. (2018) and images of Medved et al.
(1990). If a number of such helical protofibrils are to form a fibrin
fiber by lateral aggregation then it is necessary that the individual
monomers be properly aligned. This causes some protofibrils to stretch
and others to shorten so that there is overall force balance in the cross-
section (Weisel et al., 1987). We have enforced this force balance in
a fiber cross-section by considering the equilibrium of each individual
helical protofibril, which may have stretched or shortened depending
on its location in the fiber cross-section. This force balance is expressed
as Eq. (22) and the radius R of a fiber enters as a parameter in this
equation. Starting with the force F in Eq. (22) and dividing by the
assumed cross sectional area zR?, we get the stress o in a fiber due
to external force F. Then, since this stress and the stretch in Eq. (23)
are both functions of the variable tana,, the Young’s modulus E of a
fiber may be calculated as

do/da,

4 .
= — = meKO(R -1y, sin’ a.

= 91
diefdagl; -1 ag ©n

The results of this equation can be found in Fig. 12, and the trend
of decreasing Young’s modulus with increasing radius is similar to
the trend in Li et al. (2016). There are additional contributions to
individual fiber modulus, for example fiber cross-linking, the packing
density of protofibrils in fibers, all lateral forces, and the long and
largely unstructured «C regions may have significant contribution as
well (Li et al., 2016), but we have captured the general trend in Fig. 12.
While the model is not yet entirely quantitative, incorporating ne-
glected factors mentioned above and the dependence of rate constants
on the mechanical deformations of protofibrils is likely to improve the
predictive ability of the model.

The force-stretch relation given by Egs. (22) and (23) can be com-
bined with the equation of motion of a fiber subject to fluid drag to
predict the relaxation to equilibrium of a severed fibrin fiber. Here we
have shown that the relaxation time depends on the fiber length and
radius and the resulting time scales as well as fiber pre-strains are in
excellent agreement with the cutting experiments of Cone et al. (2020).
Importantly, we made no attempt to compare the forces (or stresses) in
our calculations with those documented in Cone et al. (2020) because
the experimental values of the forces are obtained from the strains using
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Fig. 12. Calculated Young’s modulus of an individual fiber in a fibrin network vs. fiber
radius. Note the trend that the Young’s modulus decreases with increasing radius.

a Young’s modulus that is different from those calculated in Fig. 12.
Also, a simple linear relation between stress and strain in a single fibrin
fiber may not be appropriate at large strains. Finally, we acknowledge
that the process of enzymatic cleavage of a fibrin fiber (as in Lynch
et al. (2022)) is quite complex since one would have to also model
the diffusion and binding/unbinding of the enzyme together with me-
chanics of cleavage of individual protofibrils. As a fiber is digested,
it at least partially maintains its inherent tension (Lynch et al., 2022)
likely because some of the protofibrils break, but others remain intact.
This can be accounted for in the balance of forces by having fewer
protofibrils in the fiber. However, the coupling of fiber mechanics,
cleavage kinetics, and enzyme diffusion is a complex problem that is
beyond the scope of this work.

Finally, we connect the mechanical behavior of a fibrin network
to that of individual fibers by using the 8-chain model (Arruda and
Boyce, 1993; Qi et al., 2006) together with the continuum mechanics
of swellable gels (Chester and Anand, 2010). We show that the inherent
tensile stress in polymerizing fibrin networks depends on fiber length,
radius, solid volume fractions, etc. Our results from the continuum
model in Section 4.5 are in agreement with the results from experi-
ments in Section 3. The order of magnitude of the inherent tension is
the same in both experiments and continuum model and steady state
is reached by around 1000 s in both the model and the experiments.
Additionally, our continuum model can recover the trend that thinner
fibers produce larger network stress for fixed solid volume fraction as
observed in our experiments coupled with the study of the effect of
thrombin concentration on turbidity in Weisel and Nagaswami (1992),
although the predicted trends from the model are weaker than those
from experiments.

This trend in Fig. 11(b) that thinner fibers produce larger network
stress is not obvious. One hypothesis to explain this phenomenon
involves the following simplified scenario: imagine that two fixed hor-
izontal plates are connected by a “network” consisting of only vertical
fibers of uniform thickness. Since the fibrin volume fraction is constant
irrespective of the fiber radius, the total sum of the cross-sectional area
of all those fibers will be the same whether the fibers are thinner or
thicker, but there will be more thinner fibers in such a scenario than
if the fibers were thicker. Now, from Eq. (22), the force in a fiber can
be calculated as a function of the fiber radius, from which the inherent
stress in the fiber can be computed by dividing by the cross-sectional
area of a fiber z R?. If the cross-sectional area of a fiber increases faster
as the radius increases than does the force in the fiber, the inherent
stress in the fiber will decrease with radius, and the total “network”
stress will decrease with fiber radius as well.

This can be better illustrated by the use of concrete examples, such
as the three radii in Fig. 11(b), namely, R = 74 nm, R = 78 nm, and
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Table 2

Computed values for fiber (and network) stresses, given a fixed and uniform fiber radius
for a “network” of fibers vertically connected between two horizontal plates with a
fixed separation distance 0.5 pm. The fiber stretches 4, are calculated using Eq. (73)
in Eq. (67). Inherent forces in fibers F are computed from Eq. (22), using pitch angles
calculated from Eq. (23). The cross-sectional area of each fiber A, = 7R*. Inherent
fiber stresses ¢ are computed by dividing the force F by the fiber cross-sectional area

A fiber
R (nm) A F (pN) A fiper (nm?) o (Pa)
74 1.48 0.78 17,200 45.4
78 1.50 0.83 19,100 43.5
82 1.52 0.88 21,100 41.7

R = 82 nm. For these radii and choosing the same fiber length / =
0.5 pum, the resulting fiber stretches A, from using Eq. (73) in Eq. (67)
are 4, = 1.48, 4, = 1.50, and 1, = 1.52, respectively. With these values
and computing the pitch angle o, from Eq. (23), the inherent forces in
each fiber are, F = 0.78 pN, F = 0.83 pN, and F = 0.88 pN, respectively.
The cross-sectional area of each fiber is, Ay, = 17200 nm?, A, =
19100 nm?, and A, = 21100 nm?, respectively, which, combined
with the inherent forces in the fibers, yields the fiber inherent stresses,
o = 45.4 Pa, 6 = 43.5 Pa, and 41.7 Pa, respectively (see Table 2). It
should be noted that these calculations were performed in a simplified
scenario to illustrate one possible hypothesis, and they do not take into
account confounding factors such as the isotropic nature of fibrin gels
or branch points, although they give some physical intuition for the
phenomenon.

Our calculation based on the 8-chain model assumes a given con-
stant length of all fibers, but this is not the case for real fibrin networks.
The constant length we use to compute pre-tension should really be
interpreted as the average fiber length in a network. We may be able to
do slightly better by using the probability density function for the fiber
lengths and computing a probability density for the pre-tension values
obtained (see Appendix D). However, this still does not account exactly
for the different values of pre-tension in each fiber of a real fibrin gel,
although it does utilize known information about the structure of a true
fibrin network. A proper accounting of the variation of fiber lengths to
predict pre-tension in a network will likely require computations that
are beyond the scope of the research presented in this paper.

Pre-tension in fibrin networks specifically is important because it
contributes to the stability of the material. Fibrin fiber networks, as well
as many other biological networks, have connectivity (average number
of fibers connected at a junction) below the Maxwell isostatic threshold,
which, for networks with a large number of elements, is twice the
dimensionality (Maxwell and Clerk, 1864; Vahabi et al., 2016; Arzash
et al., 2019). Thus, if the fiber interactions were limited to tension and
compression central forces, the network materials would be unstable
for small deformations and would be floppy rather than rigid (Vahabi
et al., 2016; Arzash et al., 2019). The presence of pre-tension in fibrin
networks, similar to the presence of fiber bending in F-actin networks in
cytoskeletons (Head et al., 2003), active stresses generated by myosin
motors in cytoskeletal networks (Koenderink et al., 2009) and in fibrin
networks in blood clots (Jansen et al., 2013), thermal fluctuations (Qi
et al., 2006; Su and Purohit, 2012), and osmotic pressure in actin net-
works (Palmer and Boyce, 2008), stabilizes and rigidifies the network
material (Vahabi et al., 2016; Arzash et al., 2019).

Estimations of inherent stress in a fibrin fiber network, as well
as of other network material properties, will be useful in interpret-
ing experiments performed on blood clots and thrombi, in the use
of fibrin as a biomaterial — for example, the inherent tension may
comprise a thermodynamic mechanism to control fiber diameter, and
thus modulate the overall network structure — and in the application
and development of novel methods of treatment of thrombotic states
such as in mechanical thrombectomy since the susceptibility of fibrin
to fibrinolytic enzymes depends strongly on the mechanical tension of
the proteinaceous fibrous substrate (Hudson, 2017; Li et al., 2017a;
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Cone et al., 2020; Varju et al., 2011). Thus, variation of the tension in
fibers and the structure of the fibrin network can affect mechanical and
enzymatic stability of entire blood clots and thrombi, which determines
the course and outcome of hemostatic disorders (Litvinov and Weisel,
2017; Feller et al., 2022).
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Appendix A. Expanded fibrin network polymerization model

Weisel and Nagaswami (1992) propose a system of ordinary differ-
ential equations (ODESs), to describe the polymerization of fibrin fibers,
comprising fibrin network, from a fibrinogen solution. The polymeriza-
tion process they describe consists of the following steps — beginning
with a concentration of fibrinogen and thrombin (which cleaves the
A fibrinopeptides from the fibrinogen to create fibrin monomers),
association of fibrin monomers to form double-stranded half-staggered
protofibrils, and then aggregation of protofibrils into fibrin fibers,
which branch and grow to create the fibrin network gel. Their poly-
merization process includes a minimum length requirement (which we
will call /,,, + 1) for protofibrils to be capable of aggregation, which
produces the observed lag period in the number of protofibrils per fiber.
Their model, including the polymerization chemical reaction equations
and the resulting system of ODEs, for the example of /,,, = 10, is given
as follows (with some modification of the explanatory text only, to
better reflect our current understanding of fibrin polymerization):

k
fa 2r fibrinopeptide A cleavage to convert fibrinogen to
monomeric fibrin (A1)
kpi
f+f = f,  fibrin monomers associate to yield small

longitudinal oligomers,
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protofibril precursors (A.2)
kpi
HL+f> 1 (A3)
k, i
i+l (A4
Ky
Jo+f = fio (A.5)
kpi
fio+f 2 f, longer oligomers are formed until they reach the
length of protofibrils
capable of lateral association (A.6)
Kpg
fut f = f,  protofibrils grow in length (A7)

kyi
fn+frl - fr

two protofibrils aggregate laterally to initiate a fiber

(A.8)
fr+ /o k—>/g f,  additional protofibrils add to a transversely
growing fiber (A.9)
d[d’:"] = —k4[f4] (A.10)
d
% = kalfal = kulf12LF1+ LAl + 3]+ = + [f10]) = kpg [ F1LS,]
(A.11)
d
% =k LF1(Lf1-[f2]) (A12)
d
ZS] = ky[f1(Lf2] = [f3]) (A.13)
d
% =kl f1(Lfo] = Lf10]) (A14)
d
[dj;”] =kl f1Uf10] = 2k i [ Fu11 ) — K ggLFALS] (A.15)
d
Z’] = ki [f,0f] (A.16)
d[ftot]
e TV VAR S VAIVA (A.17)
dlcy ]
d{" = Lk [f1f10] + kpg £ U1 = 2k ;[ f)les, 1 = kgL, 1lef, 1 (A18)
dlcs ]
df’ =2k [ f,lles 1+ kol flles ] (A.19)
_ ) (A.20)
BT '
(£
= A.21
[f] ( )
[Cfr]
l = W, (A22)

where f, represents fibrinogen, f represents fibrin monomers, f,
through f;, represent fibrin oligomers comprised of 2 through 10
monomers, f, represent protofibrils, f, represent fibrin fibers, [f/*]
represents total protofibrils in fibers, [c, ] represents total fibrin
[monomers] in protofibrils, [cy,] represents total fibrin in fibers, n is
the average number of fibrin per protofibril, m is the average number
of protofibrils per fiber, and / is the average length of fibers.

Weisel and Nagaswami (1992) also mention that the model should
also account for  longitudinal  oligomer-monomer  and
oligomer-oligomer interactions in the intermediate stages of protofibril
formation, which are not explicitly accounted for in the above model.
A logical extension to this, which is also mentioned by Weisel and
Nagaswami (1992), would be to include protofibril growth due to
interactions with oligomers, which is also not included in the above
model. They additionally describe that a reaction can be included
to account for fiber—fiber interactions. Taking these additions into
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account, we can write the following chemical polymerization reactions:

ka
fa= 1 (A.23)
kpi | fip; i4J<lg,+1 X . .
Sy {fn+/ i+ Zlaz+ [ € laggd VEE T ag] (A.24)
k
FaH 1= fa Vi€ (L, (A.25)
k 1
fot £y 2 1, (A.26)
krg
fetfu = 1o (A.27)
kra
e = J (A.28)
These polymerization reactions result in the following system of ODEs:
d
[dft"] =~k fa] (A.29)
dify] &
= =k | LA T+ Lf] Z[f,-] = kpgLfILf ] + k4Lf 4] (A.30)
i=1
d[f] l%J Iagg
= = k| DU = LI = L1 XA = kel F,0)
i=1 i=1
V) € 121,51 (A.31)
dlf,] -
kst I Y [(V3 R VNN ) R Y V)Y
j=1 i=lygg t1—J
=2k ;i [ fllf 0] = kgL 10S0] (A.32)
d
Ei};r] =k [f ] = kpal£0S] (A.33)
dif;
T 2k pil fllfu] + kpg LA AL + K p A LFA LS (A.34)
lagg+i
dley ] lagg l%J
=k 2| Cagg D X 1 i
i=1 J=i
l”gg
+ kel Sl Z[f,-] —kyilfulles, 1 = kgglf ey ] (A.35)
i=1
dles ]
d—t’ =2kl fulles 1+ kpglfidles 1+ kp4LfILf ] (A.36)
We retain the same definitions
[ef ]
" [C;n] (A.37)
tot
= [{; ]] (A.38)
[Cfr]
= o (A.39)

The parameters in this system are as follows: /,,, + 1, the minimum
length for protofibrils to be capable of aggregation; f, , the initial
concentration of fibrinogen; k4, the rate of fibrinopeptide A cleavage
to convert fibrinogen to fibrin monomers; ks the rate of association
of fibrin monomers to yield small oligomers and initiate protofibril
formation; k,,, the rate of protofibril growth in length by association
with oligomers; k ;;, the rate of protofibril aggregation to initiate a fiber;
k ¢, the rate of fiber growth by association with additional protofibrils;
and k4, the rate of lateral interactions between fibers.

Appendix B. Non-uniform protofibril density

The results presented earlier assumed a uniform density of protofib-
rils in the fiber cross-section, which is known to be inaccurate
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(Yeromonahos et al., 2010; Yermolenko et al., 2011; Yang et al., 2000;
Guthold et al., 2004; Li et al., 2016, 2017b). Here, the modifications to
the above theory to include a non-uniform density, and the changes
in the results caused by these modifications, will be discussed. The
necessary modifications appear in two primary locations: first, the
relationship Eq. (14) between fiber radius R and average number of
protofibrils per fiber cross-section m, will be different; and second,
a density function must be included in the force balance equations
Egs. (17) and (21), which would also change the results from those
equations. Since it is known that the density of protofibrils decreases
closer to the perimeter of a fiber (Yeromonahos et al., 2010; Yer-
molenko et al., 2011; Yang et al., 2000; Guthold et al., 2004; Li et al.,
2016, 2017b), this fact must be incorporated into the theory.

To generalize the theory to include non-uniform densities of
protofibrils per fiber cross-section, the density can be described as
having a power law relationship:

—h
ap rpc

o) =1 ®.1)

where r,,. is a proportionality constant with the same units as r, which,
for the purposes of this derivation, will be taken as r,. = 20 nm in
order for the calculated fiber radii to be in the correct range, but must
be determined from experiment (and may also depend on k). A = 0
represents uniform density. Recall that q; = nrfn is the area occupied
by one protofibril under the assumption of constant density. Since it is
known that the density of protofibrils decreases closer to the perimeter
of a fiber (Yeromonahos et al., 2010; Yermolenko et al., 2011; Yang
et al., 2000; Guthold et al., 2004; Li et al., 2016, 2017b), A > 0.

Next, the relationship Eq. (14) between the fiber radius R and
the average number of protofibrils per fiber cross-section m can be
rewritten as

1 R()
m(t) = —2/ o(r)2rxrdr. (B.2)
zry Jo
This yields
2r;’c R()
m(t) = / r'=har, (B.3)
r2Jo
which reduces to
2F on
pc R
1) = . B.4
m(r) 2 2 nh (B.4)
m
Since we want m > 0, we will take 0 < 4 < 2, then
1
1- g TR g 1
R(t) = ; 2 (m(r)=h . (B.5)
F
pe

When h = 0 the result Eq. (14) is recovered. As an example, some
experimental results showed m « R%* as a minimum exponent (Li
et al., 2016) which corresponds to h = 1.6. Results for selected values
of 0 < h < 2 are depicted in Fig. B.13. Note that, as discussed in
Section 4.1, the polymerization reaction rate constants k; and k , can
be adjusted to account for this change in fiber radius.

Next, the new density function Eq. (B.1) must be included in
Eq. (17):

Ronr
/ —o(n(rydr = 0. (B.6)
m ao
Then, the equation becomes
R R
cosza/ r‘l‘hdrzx()/ rhdr. (B.7)
r, r,

Now, the solution to this integral equation also will depend on the value
of h > 0. If h =0, then the integral on the left would become

R
/ r_ldr:1n<£>;
r rm

m

(B.8)
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Fig. B.13. Effect of modifying the assumption of uniform density of protofibrils per
fiber cross-section to be non-uniform. Effect on the fiber radius R. Recall that 7 =0 is
the uniform density assumed in the main text.

if h =1, the above would be the solution for the integral on the right;
and if & is anything else, then the integral would become

R
~h g _ pl=h _ 1-h
/ r"dr=R P
,

m

(B.9)

Thus, the solution is

RS
ln(A

) p=

(B.10)
Ko RT—p;]

2., —
cos” a; =

RI=h_,1=h

Ko i otherwise.
m

For the value of h = 0, the uniform density assumed previously, this
reduces to Eq. (20).
Similarly, Eq. (21) would become

R
_/r

m

287 (),

Ll (B.11)
0]

for which the solution is

F (4. R()) = 2—”Kb sina,
o
r:}c(KO(R—rm)—coszaeln<£)), h=0
rZC(Koln(:R”)—coszae(R‘l—r;ll)), h=1

(kg (R = rl=) — cos?

. (R™"=r;?)), otherwise.

(B.12)

Again, for A = 0, the uniform density assumed previously, this reduces
to Eq. (22).

Appendix C. Force in helical rods

Since it has been observed (Weisel et al., 1987; Zhmurov et al.,
2018) that both protofibrils and fibrin fibers are comprised of smaller
units helically twisted around a central stem, the derivation for the
force in a helical fiber is presented here.

A circular helix of radius r and pitch p with right-handed chirality
can be described in lab-frame Cartesian coordinates as

r(¢) = rcos({)e; + rsin({)e, + (%) Ces, (C.1)
and we denote

1_|dr@@| _ 5 A 2

7| Tac |7V +(27r) €2
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for simplicity. If s(¢) is an arc-length coordinate along the contour of
the helix, then

¢
SO = / fO) o= £, ©3)
o | do n

and the helix can be rewritten as

r(s) = rcos(ns)e; + rsin(ys)e, + <£> nses. (C.4)
2

The tangent to the helix is given as

t(s) = dz(:) = —rnsin(ns)e; + rncos(ns)e, + (%) nes, (C.5)

which is clearly a unit vector since

teail 2,2 A 2\ _

i)’ =7 (r +(£) )—1. .6)

We can define the curvature

K= dis) =r112 (C.7)

ds
and unit normal vector
v(s) = 1 <m> = —cos(ys)e; — sin(ns)e, + Oe;, (C.8)
K ds

from which we can also define the unit binormal vector

Bs) = 1 o) = (2 nsi _(£ .

P(s) =t(s) X ¥(s) = (2” ) n sin(ns)e, (2” ) ncos(ns)e, + rne; (C.9)

and right-handed torsion

Cixp). (2,

r=({Ex¥) ds‘<2n)”' (C.10)

(Note that for a helix with left chirality, for example r(s) = rsin(s)e; +

rcos(ns)e, + (%) nses, the right-handed torsion is 7 = — % 72, but

with the given definitions the difference has no other effect.) From here
it is clear that

K242 =gl (C.11)
and thus
;o Kz_: — (C.12)
pP\_ T
<Z) -5 (C.13)

It can be verified that the three vectors i(s), #(s), and B(s) are orthonor-
mal, and that the Frenet-Serret theorem

J t(s) 0 « Ot
s V)| =[-x« 0 || V() (C.19)
1Bl [0 - o]l

holds. As such, it is logical to express the lab-frame in the Frenet frame,
using the transformations

i [ —rn sin(ys) i cos(ys) (% ) an
v(s) | = —cos(ns) — sin(ns) 0 e, (C.15)
B(s) ] 7(% ) nsin(ys) — (% ) 1 cos(ns) m €3
o] _—rn sin(gs)  —cos(ys) (ﬁ ) nsin(ys) i)
e, [=]| rncos(ns)  —sin(ns) — (ﬁ ) ncos(ns) || ¥(s) |- (C.16)
€3] ] (%) n 0 m B(s)

Having described the kinematics of a helical rod we now want to
examine equilibria with curvature « and torsion , both independent
of s. It is assumed that the helical rod can carry forces and moments
and that it is acted upon by body forces and body moments. The goal
is to find the force and moment in the helical rod, given «, z, and the
body forces and body moments. In the Frenet frame, the body force per
unit length on the helix, assumed independent of position on the helix
s, can be written

f=fi+ 1,0+ 148 (€17)
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and the force vector at any point s in the helix can be written

n(s) = nt+n, ¥ +nyp. (C.18)
The balance of forces requires
ans) Ly _o, (C.19)
ds
which, using the Frenet-Serret theorem Eq. (C.14), reduces to
dn
d_st_nVK-'-f':O (CZO)
dn,
7 —ngr+nk+ f,=0 (C.21)
dn
- +n,7+ fp=0. (C.22)
dn,

Differentiating Eq. (C.21) with respect to s, and substituting in for

ds
from Eq. (C.20) and ddlf from Eq. (C.22), results in
dznv 5
PR (zfy—xf) =0, (C.23)
which has solution
n,(s) = Acos(ns) + Bsin(ns) — iz(‘rfﬁ -k f)s (C.24)
n

where A and B are two constants. Putting Eq. (C.24) into Egs. (C.20)
and (C.22), we have

% = Ak cos(ns) + Bk sin(ns) — nﬁz(rfﬂ -kf)—f (C.25)
dnp ) pe

= —At cos(ns) — Brsin(ys) + F(Tfﬂ —Kkf)— fp (C.26)
which can be integrated with respect to s to get

n = % sin(ys) — % cos(ns) — %(rfﬂ —kf) = fis+ D, (€.27)
ny = —% sin(ns) + % oS + T (ehy ~ K1)~ fys+ Dy (C28)

where D, and Dj are arbitrary constants. Substituting Egs. (C.27),

(C.24), and (C.28) into Eq. (C.21) yields
fy=1Dg—«D,. (C.29)

It is useful to recast the force balance in the directors d;, i =1,2,3
of a material frame in the reference configuration of the circular cross-
section of the rod comprising the helix. This frame is a rotation by an
angle

d(s)=(k3—1)s

about the normal vector t, where ;5 is a constant. In this frame,

(C.30)

[d, (s) 0 cos¢ sing|[t(s)]

dy(s)|=]0 —sing cose||V(s)], (C.31)
;0] |1 0 0 [[BG)]
and

[t(s) 0 0 1[d;(s)]

V(s)|=|cos¢p —sing Off[dy(s)]. (C.32)
|B(s)| |sing cosg  0f[ds(9)]
The material frame also has the property

dd,

— =k Xxd;, i=1,2,3, (C.33)
ds
where the curvature vector can be represented
kK =k d; + k,d, + k3d3, (C.39)
or, in the Frenet frame, as
k= (K cosp — Ky sing) ¥ + (x sin g + k, cos ) B+rst (C.35)

=iyt + &P, (C.36)
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with

K| = K sin ((K3 - r) s) (C.37)
Ky = K COS ((K3 - T) s) (C.38)
k3 = constant. (C.39)

We next analyze the moments. The balance of moments can be
expressed as

dm L ixn+e=o0, (C.40)
ds

where m is the moment at any point on the helix and # is a body
moment per unit arc length. Following the example of Nizette and
Goriely (1999), to relate the moment m and the curvature vector x, we
use the constitutive relation from linear elasticity for a rod of circular
cross section

m =K, (k; —xq) d; + K, (k3 — kgp) dy + K; (k3 — K3) ds, (C.41)
where

Ky= T (C.42)
is the bending modulus with E the Young’s modulus of the rod,

K, = G”Tr4 (C.43)
is the twisting modulus with G the shear modulus of the rod, and

Koy = Ko sin ((k3 — 7)s) , (C.44)
Koy = K COS ((K’3 - T)S) R (C.45)

ko3> and i are the spontaneous curvatures of the helix in the stress-free
state. In the Frenet frame, the constitutive relation giving the moment
m can be written

m= K, (K—Ko)ﬁ+K, (13 — Kg3) 1. (C.46)
As in Nizette and Goriely (1999), we also take the body moment
Z=0. (C.47)

Now, the balance of moments reduces to the following three equations:

dicy

—2 =0 C.48
"ds ( )
K, (K3—K03)K—Kb (K—KO)T—nﬂ =0 (C.49)
n, =0, (C.50)

recalling that
K= ;2 (C.51)

(2)

Kp= —0 (C.52)

2 Po 2
ro + (Z)
and kj; are constants. Eq. (C.48) shows that k3 is constant, and

Eq. (C.49) shows that
ng =K, (5 — kp3) k — Ky (k= k) 7. (C.53)

which is therefore also a constant. Combining Eq. (C.50) with Eq.

(C.24), we have
0 = Acos(ns) + Bsin(ys) — iz(rfﬂ —kf;) Vs. (C.54)
n

In order for this equation to be true for all s, we must conclude that

A=B=0, (C.55)
tfy =xf (C.56)
Using these conclusions, Egs. (C.27) and (C.28) become

n,=D,— fis (C.57)
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Fig. D.14. Probability distributions of (b) fiber lengths as found in Kim et al. (2014), and

fraction ¢, = 0.01 as estimated in Tutwiler et al. (2020).

ng = Dg— fgs. (C.58)

However, since we have also Eq. (C.53) independent of s, from the last
equation we must conclude also that

f3=0 (C.59)
Dy=ny;=K, (x3—Kp3) k — K, (x —K9) 7 (C.60)
Since we also have Eq. (C.56), if f 5 = 0, we must also have

f,=0, (C.61)
and therefore

n =D, (C.62)
is also a constant. Thus, we have

n=Di+ (K, (k3 -Kp3) k=K, (k—k0) 7) B (C.63)
f= (K, (k3 —Ko3) k7 — K, (k — ko) 72 — kD) ¥ (C.64)

In the material frame, the body force per unit length on the helix
can be written

f = fid, + frd; + f3ds, (C.65)
and the force vector at any point s in the helix can be written
n(s) = nyd; + npd, + n3ds. (C.66)
From our previous analysis, we have
n= (K, (k3 = ko3) = Ky (k — k) £ ) (k1d, + Kydy) + D,d; (C.67)
. ( (5 — k) = Ky (i — k) & _2 - ) (od, — k), (C.68)
which gives us
n = (K, (k3 — x3) — Ky (5 = K0) %)Kl (C.69)
m = (K (k3 = x03) = Ky (x = ko) =) 2 (C.70)
=D, (C.7D)
<K 3 —kp3) T — K, (K—KO)—Z—D>K2 (C.72)
< (3 — Ko3 T—Kb(K—KO)—2—D> (C.73)
(C.74)

Suppose there is a force F = Fe; applied on the helical filament
along its axis. This applied force in the Frenet frame can be expressed

F=Fe3=F((%)r/f+rnﬁ). (C.75)
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The filament will carry the force as the force vector n = F. Thus, in the
Frenet frame, we have

D,=F (27r ) n (C.76)

K, (k3 —Kkp3) k — Ky (k — ko) = Fra. (C.77)

Solving the second of these two equations for F and substituting back
into the first, we arrive at

D, = (K, (K3 —K03) -K, (K—KO) %)T

Thus, the body force per unit length on the helix and the force vector
at any point s on the helix become

(C.78)

f=0 (C.79)
n= (K, (k3 = x3) — Ky (k = &) = ) (k1d, + Kydy + 7dsy). (C.80)
In the case when « = k3 = 0, the force vector

n K

2o (Eﬁ“ _ ) [k = (s — D)3 c.81)
from Nizette and Goriely (1999) is recovered.

The magnitude of the force vector is
I’l:‘(K, (3 — kg3) — K (K—K'O)i)‘rp (C.82)

In the main text we assume there is no twisting moment acting on the
helix, so K, (k3 — ko3) = 0.

Appendix D. Distribution of fibrin fiber lengths

Fig. D.14(a) depicts the probability distribution of fiber lengths in a
fibrin network, as found in Kim et al. (2014). The probability density
function is a log-normal distribution function of / with parameters

= 0.53 and ¢ = 0.78, as found in Kim et al. (2014). Fig. D.14(b)
depicts the probability density of / vs. the peak stress Ty, from the
simulations utilizing that / as an input parameter, with the radius for
that given / calculated by

b,

R= R
vzl

(D.1)
where the density v = 0.1 pm~>, as measured in Kim et al. (2016),
and Ty,, is also calculated using v = 0.1 pm~ from Kim et al. (2016).
The mean value of Tg,, is 1.21 Pa. This mean value is roughly of the
same order of magnitude as the network Piola stresses Ty,, calculated
from the simulations in Fig. 9. The stress values resulting from these
computations are also of the same order of magnitude as the values
produced by the experiments in Section 3.
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