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Abstract—Recently, the Centers for Disease Control and Pre-
vention (CDC) has worked with other federal agencies to identify
counties with increasing coronavirus disease 2019 (COVID-19) in-
cidence (hotspots) and offers support to local health departments to
limit the spread of the disease. Understanding the spatio-temporal
dynamics of hotspot events is of great importance to support
policy decisions and prevent large-scale outbreaks. This paper
presents a spatio-temporal Bayesian framework for early detection
of COVID-19 hotspots (at the county level) in the United States. We
assume both the observed number of cases and hotspots depend on
a class of latent random variables, which encode the underlying
spatio-temporal dynamics of the transmission of COVID-19. Such
latent variables follow a zero-mean Gaussian process, whose co-
variance is specified by a non-stationary kernel function. The most
salient feature of our kernel function is that deep neural networks
are introduced to enhance the model’s representative power while
still enjoying the interpretability of the kernel. We derive a sparse
model and fit the model using a variational learning strategy to
circumvent the computational intractability for large data sets. Our
model demonstrates better interpretability and superior hotspot-
detection performance compared to other baseline methods.

Index Terms—COVID-19 hotspots, Gaussian processes, non-
stationary kernel, spatio-temporal model.

I. INTRODUCTION

THE ongoing global pandemic caused by the coronavirus
disease (COVID-19) has spread rapidly over more than

200 countries in the world since its emergence in 2019. Even
the largest economies’ resources have been strained due to the
spread of COVID-19. Predicting potential hotspots ahead of time
can play a significant role in deploying targeted interventions,
such as testing, tracing, and isolation, and slow down the disease
spread [1].

Large-scale, population-based testing can indicate regional
hotspots, but at the cost of a delay between testing and actionable
results. Accurately identifying changes in the infection rate
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Fig. 1. Examples of COVID-19 hotspots identified by CDC [1].
In general, these hotspots define the onset of a local outbreak of COVID-19.

requires sufficient testing coverage of a given population, which
can be costly and requires substantial testing capacity. Regional
variation in testing access can also hamper the ability of public
health organizations to detect rapid changes in infection rates.
Recent studies [2] aimed at estimating the spread of COVID-19
by forecasting the number of confirmed cases or the number of
deaths. However, these methods failed to provide a satisfactory
case prediction accuracy. Therefore, there is a high unmet need
for tools and methods that can facilitate the timely and accurate
identification of infection hotspots and enable policymakers to
act effectively with minimal delay [3].

The Centers for Disease Control and Prevention (CDC) with
other federal agencies have identify counties with a significant
increase in COVID-19 incidence (hotspots) [1], which offers a
unique opportunity to investigate the spatio-temporal dynamics
between the identified hotspots. Fig. 1 gives some real examples
of the hotspots at four different counties in the state of Georgia.
The identified hotspots indicate the relative temporal increases
in confirmed cases and mark the onset of local outbreaks.

In this paper, we propose an effective COVID-19 hotspot
detection framework that utilizes the hotspot data and multiple
other data sources, including community mobility, to enhance
hotspot detection accuracy. We assume the hotspot and number
of cases in the same location depending on common priori
factors, represented by a latent spatio-temporal random variable.
This latent variable is modeled by a Gaussian process, whose
covariance is characterized by an interpretable non-stationary
kernel. We note that the non-stationarity of our kernel plays a
pivotal role in the success of our model because the spread of the
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virus shows heterogeneous spatial correlation across different
regions. For example, the virus is likely to spread more slowly
in a sparsely populated area such as rural Nebraska compared to
a densely populated area such as New York City. We formulate
our kernel function using carefully crafted feature functions
incorporating neural networks, which provide greater flexibility
in capturing the complex dynamics of the spread of COVID-19
while still being highly interpretable. To tackle the computa-
tional challenge of the Gaussian process with a large-scale data
set, we also derive a sparse model and fit the model efficiently
via a variational learning strategy. The remainder of the paper
is organized as follows. We first discuss the literature relevant
to COVID-19 hotspot detection and other related work. We
describe the data sets in Section II. We introduce the proposed
hotspot detection framework in Section III. We present an
efficient computation strategy and the learning algorithm for
our detection framework in Section IV. Finally, we present
the interpretation of our model and the numerical results on
COVID-19 data in Section V.

Related work: Hotspot detection is closely related to the
prediction of confirmed cases. Therefore, we first review some
prediction methods for completeness. Compartmental models
are mathematical modeling of infectious diseases and have been
widely used in epidemiology. In simple SIR models, [4], the pop-
ulation is assigned to compartments with labels S (susceptible), I
(infectious), and R (recovered), respectively. The transition rates
between compartments are typically modeled using differential
equations. Extensions and variants of SIR models include the
SIRD model [5], [6] which considers deceased individuals, and
the SEIR model [7]–[9] which considers exposed periods, to
name a few. Compartmental models work well when applied to
large regions/populations, such as a state or a country because
they assume a fixed/closed population. However, populations
between geographic areas, such as counties, may interact with
each other in the desired high-resolution modeling. Therefore,
we use a spatio-temporal model that is more flexible and can
capture the spread between different counties.

Much work has been done on predicting the number of
COVID-19 cases and deaths at the national level or state level,
without considering the spatial correlation across smaller re-
gions [10]–[16]. Machine learning-based approaches have also
been considered in [17]. Some work [18] attempts to use neural
networks to model the accumulative number of confirmed cases.
Recurrent neural network-based methods [19], [20] have been
applied to model the temporal dynamics of the COVID-19 out-
break. Moreover, online COVID-19 forecasting tools include the
COVID-19 simulator [21] and the COVID-19 Policy Alliance
developed by a group in MIT. In this paper, hotspot detection
is a binary classification problem, which differs in nature from
the regression investigated by these studies. Besides accurate
prediction and detection, understanding the spatial spread un-
derlying the COVID-19 outbreak is also of great importance.
An interpretable spatial model can help the government develop
efficient public health policies to slow the spread during the early
stages of COVID-19. Compared with literature that focuses on
prediction, studies evaluating the spatial spread of the COVID-
19 pandemic are still limited [22]. Previously, the spatial spread

has been studied for the outbreak of severe acute respiratory
syndrome (SARS) in Beijing, and mainland China [23], [23]–
[27] using only limited or localized data. In [28], the multivariate
Hawkes process has been applied to model the conditional
intensity of new confirmed COVID-19 cases and deaths in the
U.S. at the county-level, without considering the influence from
the big cities (main transportation hubs) and other important de-
mographic factors. In [29], two types of county-level predictive
models are developed based on the exponential and linear model,
respectively. It focuses on modeling the dynamics of cumulative
death counts. In [30], graph neural networks are adopted to
capture the spatio-temporal dynamics between various features;
however, a common disadvantage of the neural network-based
methods is the lack of interpretability, which hinders from
further understanding the mechanism underlying the COVID-19
spread.

Few studies have so far been conducted to investigate COVID-
19 hotspots and their early detection. Similar to the CDC’s
definition, a recent study [31] considers a sudden increase in
the number of cases in a specific geographical region. Unlike
hotspot detection, they focus on estimating disease prevalence
using logistic regression based on both symptoms and swab test
results. In [32], hotspots are defined as spots with the highest
incidence rate. This paper adopts statistical and spatial analysis
to determine the spatial distribution and spatial clustering pat-
terns of the COVID-19 incidence rate. To identify the COVID-19
hotspots, the Getis-Ord spatial statistic [33] was then applied.
In another work [34], topological data analysis was applied to
identify the hotspots of COVID-19 infections, which is defined
as regions with higher case counts than their surrounding areas.
However, no quantitative results, such as the estimation of con-
firmed cases or the prediction of future hotspots, were provided
in [34].

Many studies used the Gaussian process for COVID-19 case
prediction. In [35], a Gaussian process regression model is ap-
plied to mortality rate prediction in India. Unlike our model, [35]
does not consider any spatial factors in the spread of COVID-19
and instead predicts cases on a national level. Some recent
work [36], [37] have used Gaussian process models with a
squared exponential kernel to forecast cases in the United States.
However, these works provide state and national-level forecasts
less granular than the city- or county-level forecasts produced
by our model. In addition, [36], [37] use a stationary kernel,
meaning that the kernel cannot adapt to different spatial pat-
terns in different locations like the non-stationary spatial kernel
discussed in this paper.

II. COVID-19 DATA DESCRIPTION

The data sets we used in our study include the number of
cases and deaths, COVID-19 hotspots identified by the Centers
for Disease Control and Prevention (CDC), and community
mobility provided by Google. The study period is from March
15, 2020, to January 17, 2021, consisting of 50 weeks and 3,144
US counties. We excluded the data after February 2021, when a
large-scale COVID-19 vaccine rollout had been launched across
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Fig. 2. Snapshots of hotspots identified by CDC. The black circles indicate
the counties that have been identified as hotspots in that week.

the United States, which significantly shifted the dynamics of
the COVID-19 spread.

Confirmed cases and deaths: We used the data set from The
New York Times (NYT) [38]1 which includes two parts: (i)
confirmed cases are counts of individuals whose coronavirus
infections were confirmed by a laboratory test and reported
by a federal, state, territorial, or local government agency; (ii)
confirmed deaths are individuals who have died and meet the
definition for a confirmed COVID-19 case. In practice, we have
observed periodic weekly oscillations in daily reported cases
and deaths, which could have been caused by testing bias (higher
testing rates on certain days of the week). To reduce such bias,
we aggregate the number of cases and deaths of each county by
week.

Hotspots: On May 7, 2020, the CDC and other federal
agencies began identifying counties with increasing COVID-19
hotspots to better understand transmission dynamics and offer
targeted support to health departments in affected communities.
The CDC identified hotspots daily starting on January 22, 2020,
among counties in U.S. states and the District of Columbia by
applying standardized criteria developed through a collaborative
process involving multiple federal agencies [1], [39]. In general,
hotspots were defined based on relative temporal increases in
the number of cases. To match the temporal resolution with
the number of cases and deaths, we expand the definition of a
hotspot from daily-level to weekly-level. A week is identified as
a hotspot if it contains at least one hotspot day identified by CDC.
The weekly number of counties meeting hotspot criteria peaked
in early April, decreased and stabilized during mid-April–early
June, then increased again during late June–early July. The
percentage of counties in the South and West Census regions
meeting hotspot criteria increased from 10% and 13%, respec-
tively, during March–April to 28% and 22%, respectively, during
June–July. Fig. 2 gives snapshots of the identified hotspots at two
particular weeks.

Community mobility: The COVID-19 Community Mobility
Reports [40] record people’s movement by county daily, across
various categories such as retail and recreation, groceries and
pharmacies, parks, transit stations, workplaces, and residential.
The data shows how visitors to (or time spent in) categorized
places change compared to the baseline days (in percentage).
The negative percentage means that the level of mobility is lower

1One reason we use the NYT data rather than Johns Hopkins (JHU) data
https://coronavirus.jhu.edu/map.html is that JHU data have retrospective data
revision (when state update the COVID-19 definition, or have data error, etc),
while NYT data never revise its history.

Fig. 3. Overview of Google mobility data in two selected categories:
workplace and transit on two different days. Counties in red and blue indicate
their mobility is lower and higher than the normal level, respectively. The
mobility level varies over time and space due to local government policy changes
in response to COVID-19.

than the baseline, and the positive percentage represents the
opposite. The mobility on a baseline day represents a normal
value for that day of the week. This mobility report sets the
baseline as the median value from the five weeks from January
3 rd to February 6th, 2020. Similar to the two data sets mentioned
above, we aggregate each county’s mobility data by week.
Examples of two categories, transit stations, and workplaces,
are shown in Fig. 3.

III. COVID-19 HOTSPOT DETECTION FRAMEWORK

This section presents our hotspot detection framework, con-
sisting of two spatio-temporal models: confirmed cases and
hotspots. Consider weeks T = {t = 1, . . . , T} starting from
March 15, 2020 to January 17, 2021 and locations (counties)
I = {i = 1, . . . , I}, with latitude and longitude si ∈ S ⊂ R2,
i ∈ I , where S represents the space of geographic coordinate
system (GCS). The two models, respectively, focus on weekly
confirmed cases yit ∈ Z+ and identified hotspots hit ∈ {0, 1}
of COVID-19 at location i ∈ I and time t ∈ T , where hit = 1
if there is a hotspot at location i and time t, and 0, otherwise.
CDC [1] defined the hotspots based on relative temporal in-
creases in the number of cases, i.e., the occurrence of the hotspots
depends on the spatio-temporal correlation across different lo-
cations and over time, and not on the mean number of cases (see
the observation in Fig. 1). Hence, we capture the correlation
between yit and hit by connecting these two models in the
spatio-temporal space (t, si) through a latent spatio-temporal
random variable f(t, s), characterized by a Gaussian process
(GP) with zero mean and covariance specified by a kernel
function k.

The goal is to find the optimal pair of these two models that
best predict the hotspots and the cases for one week ahead. We
refer to the proposed framework as the spatio-temporal Gaussian
process (STGP).
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A. Spatio-Temporal Gaussian Process (STGP) Models

For the notational simplicity, we first denote the spatio-
temporal coordinate (t, si) by xit ∈ X , where X := T ×
S ⊂ R3 represents the spatio-temporal space. For any subset
X ⊆ X with N spatio-temporal coordinates, the set of func-
tion variables f := {f(x)}x∈X has joint zero-mean Gaussian
distribution

p(f) = N (0,KXX), (1)

where KXX is a N ×N matrix and its entries are pairwise
evaluations of k(x,x′), ∀x,x′ ∈ X.

Case model: We define a spatio-temporal model for the con-
firmed cases in the following form:

yit = µit + f(xit) + εit, i ∈ I , t ∈ T , (2)

where εit ∼ N (0,σ2
ε ) is assumed to be i.i.d. normally dis-

tributed;µit is the mean of number of confirmed cases at time t in
location i. For a set of N observed spatio-temporal coordinates
X, we denote the number of confirmed cases and their means as
y := {yit}xit∈X andµ := {µit}xit∈X, respectively. We assume
the mean of the number of confirmed cases at a particular loca-
tion relates to the covariates in its nearby counties according to an
underlying undirected graph G = (I ,E ), where I is the set of
vertices representing all the locations, and E ⊆ {(i, j) ∈ I 2} is
a set of undirected edges representing the connections between
locations. There is an edge between two vertices whenever
the corresponding locations are geographically adjacent. Let
ηit := [ηit1, . . . , ηitl, . . . , ηitL]( ∈ RL denote the data of these
covariates at location i ∈ I and time t ∈ T , and let ωit :=
[ωit1, . . . ,ωitl, . . . ,ωitL]( ∈ RL denote the parameters of the
corresponding covariates; L denotes the number of features. In
practice, we use the number of confirmed cases, the number of
deaths, and six community mobilities variables in the past two
weeks as the input covariates with L = 16. Formally, we define
µit as

µit =
∑

τ∈Ht

∑

j:(i,j)∈E

η(
jτωjτ , ∀i ∈ I , t ∈ T , (3)

where Ht = {τ : t− d ≤ τ < t} represent the recent history
with memory depth d < T .

Hotspot model: We express the conditional probability of the
hotspots h := {hit}xit∈X for a set of spatio-temporal coordi-
nates X as:

p(h|f) =
∏

xit∈X
B(hit|φ(f(xit))), (4)

where B(hit|φ(f(xit))) = φ(f(xit))hit(1− φ(f(xit)))1−hit

is the likelihood for the Bernoulli distribution and φ is a sigmoid
function.

Learning objective: We aim to detect the hotspot while taking
advantage of the information that has been recorded in the
number of confirmed cases. To this end, we learn the model
by optimizing the following combined objective:

max
θ∈Θ

'(θ) := 'h(θ) + δ'y(θ), (5)

where δ > 0 controls the ratio between two objectives and
θ ∈ Θ is the set of parameters defined in the kernel k. The
'y(θ) := log p(y) denotes the log marginal likelihood of ob-
served confirmed cases and 'h(θ) := log p(h) denotes the log
marginal likelihood of observed hotspots. We note that log
marginal likelihood of cases in the second term plays a key
role in “regularizing” the model by leveraging the information
in the case records as shown in Appendix A2. We also present the
5-fold cross-validation that quantitatively measures theF1 score
of the hotspot detection and the mean square error of the case
prediction with different δ in Appendix A. The result confirms
that the appropriate choice of δ can significantly improve the
performance of hotspot detection.

B. Spatio-Temporal Deep Neural Kernel

We discuss the choice of the kernel function k in this sub-
section. Standard GP models use a stationary covariance, in
which the covariance between any two points is a function of
their Euclidean distance. However, stationary GPs fail to adapt
to variable smoothness in the function of interest. This is of
particular importance in geophysical and other spatial data sets,
in which domain knowledge suggests that the function may vary
more quickly in some parts of the input space than in others. For
example, COVID-19 is likely to be spreading slower than in
sparsely versus densely populated regions. Here, we consider
the following non-stationary spatio-temporal kernel:

k(t, t,′ s, s′) = ν(t, t′) ·
(

R∑

r=1

w(r)
s′ υ

(r)(s, s′)

)
, (6)

where ν(t, t′) is a stationary kernel that captures temporal cor-
relation between time t and t′; υ(r)(s, s′) is a component of
the non-stationary spatial kernel which evolves over the space
andw(r)

s′ is the corresponding weight satisfying
∑R

r=1 w
(r)
s′ = 1.

R is the number of components considered. By likening the
relationship between the spatial kernel component to that of
the Gaussian component in the Gaussian mixture, we seek to
enhance the representative power of our kernel by adding more
independent components to the spatial kernel.

Stationary temporal kernel: We define the kernel function that
characterizes the temporal correlation between t, t′ ∈ T as an
stationary Gaussian function:

ν(t, t′) = exp

{
− 1

2σ2
ν

||t− t′||2
}
,

whereσν ∈ R+ is the bandwidth parameter. This kernel function
hypothesizes that the virus’ transmission is highly related to its
recent history and their correlation will decay exponentially over
time.

Non-stationary spatial kernel: To account for non-
stationarity, we now allow the smoothing kernel to depend
on spatial location s. For ease of discussion and simplicity of
notation, we omit the superscript r in υ(r)(s, s′) and w(r)

s′ , and
present the structure of a single non-stationary spatial kernel

2Online appendix is available at https://arxiv.org/abs/2106.00072
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Fig. 4. An example of the randomly generated focus points ψ and their
corresponding covariance Σ. The horizontal coordinate represents different
focus points realizations; the vertical coordinate represents the value of these
realizations. The ellipses portray the shape of the corresponding covariance for
the kernel κs(·) associated with that location s.

component. We use κs(·) to denote a kernel which is centered
at the point s and whose shape is a function of location s. Once
κs(·) is specified for all s ∈ S ⊆ R2, the correlation between
two points s and s′ is then

υ(s, s′) ∝
∫

R2

κs(u)κs′(u)du. (7)

Because of the constructive formulation under the moving
average specification, the resulting correlation function υ(s, s′)
is certain to be positive definite. We favor working with the
kernels κs(·) rather than directly with the correlation function
υ(s, s′) since this makes it difficult to ensure positive symmetry
definiteness for all s and s′. Following the idea of [41], [42],
we define each κs(·) to be a normal kernel centered at s with
spatially varying covariance matrix Σs. In this case given the
parameterized Σs and Σs′ , the correlation function is given by
an easy to compute formula

υ(s, s′)∝ |Σs + Σs′ |−
1
2

2π
exp

{
−1

2
(s′ − s)((Σs + Σs′)

−1(s′ − s)

}
.

The derivation of this formula can be found in Appendix B.
To assure that the kernel {κs(·)} vary smoothly over space

S , we parameterize Σs and then allow the parameters to evolve
with location. For this paper we will focus on a geometrically
based specification which readily extends beyond the use of the
Gaussian kernel considered here.

There is a one-to-one mapping from a bivariate normal dis-
tribution to its one standard deviation ellipse, so we define
a spatially varying family of ellipses which, in turn, defines
the spatial distribution for Σs. Let the two focus points in
Ψ ⊂ R2 denoted by ψs := (ψx(s),ψy(s)) ∈ Ψ and −ψs :=
(−ψx(s),−ψy(s)) ∈ Ψ define an ellipse centered at s with
fixed area A. This then corresponds to the Gaussian kernel with
covariance matrix Σs defined by

Σs = λ2

(
Q+ ‖ψs‖2

2 cos 2α ‖ψs‖2
2 sin 2α

‖ψs‖2
2 sin 2α Q− ‖ψs‖2

2 cos 2α

)
, (8)

where α = tan−1(ψy(s)/ψx(s)), Q =√
4 A2 + ‖ψs‖4π2/2π, and λ is a scaling parameter that

controls the overall intensity of the covariance. Fig. 4 shows a
series of randomly generated focus points and their resulting
ellipses. This demonstrates how the spatially distributed

Fig. 5. An illustration of the deep neural network that maps an arbitrary spatial
location s to its covariance Σs and the corresponding weight ws.

Fig. 6. An examples of the spatial kernel with two components∑
r
w

(r)
s υ(r)(·, s) evaluated at the same locations. This instance is constructed

using two different kernel κ, which are parameterized by two randomly gener-
ated ϕ1 and ϕ2.

pairs ψs := (ψx(s),ψy(s)) give rise to a spatially distributed
covariance matrix Σs. The derivation of (8) can be found in
Appendix C.

Neural network representation for focus points: Here we
represent the mapping ϕ : S → Ψ× [0, 1] from the location
space S to the joint space of focus point Ψ and the weight [0, 1]
using a deep neural network. To be specific, the input of the
network is the location s, and the output of the networks is
the concatenation of the corresponding focus points ψs of that
location and the weightws defined in (6). The architecture of the
neural network has been described in Fig. 5. In Fig. 6, we also
demonstrate two specific instances of the resulting spatial kernel
υ given two different κ. This implies that the neural network ϕ
encodes the non-homogeneous geographical information across
the region in spreading the virus.

IV. EFFICIENT COMPUTATION FOR LARGE-SCALE DATA SET

There are two major challenges in learning the model and
calculating the objective defined in (5). First, the GP approach is
notoriously intractable for large data sets since the computations
require the inversion of a matrix of size N ×N , which scales as
O(N3) [43]. In this study, the data set includes 3,144 counties
and more than 50 weeks extending from March 2020 to January
2021 (N = 3, 144× 50). Second, the inference of the posterior
distribution of the hotspot p(f |h) requires the calculation of
integral

∫
p(h|f)p(f)df , which is an intractable integration.

To circumvent these two issues, we derive sparse models for
both cases and hotspots similar to [44]–[46], where their log
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Fig. 7. A diagram of our graphical model. The gray and white nodes represent
the observed and latent variables, respectively; the black dots represent the input
variables; the black boxes represent the prior distribution. We use the dashed
box to highlight the joint distribution of f and u defined in (9).

marginal likelihood is computationally tractable for large data
sets and they do not require an analytical expression for inferring
the non-Gaussian posterior distribution. First, we define a small
set of inducing variables that aim to best approximate the training
data. Then we adopt a variational learning strategy for such
sparse approximation and jointly infer the inducing inputs and
other model parameters by maximizing a lower bound of the true
log marginal likelihood [44], [46]. Since the learning strategy
can be applied to the above two models, we use y to represent
both cases and hotspots for notational brevity in the following
discussion. Lastly, the objective is jointly learned by performing
stochastic gradient descent.

A. Variational Inference for Sparse Gaussian Process

Unlike the exact GP approaches approximating the true co-
variance by the Nyström approximation [43], we desire a sparse
method that directly approximates the posterior GP’s mean
and covariance function. Now we introduce a small set of M
auxiliary inducing variables u evaluated at the pseudo-inputs
Z := {z ∈ X }; Z can be a subset of the training inputs or
auxiliary pseudo-points [47]. u are function points drawn from
the same GP prior as the training functions f in (1), so the joint
distribution can be written as

p([f ,u]() = N
(
0,

[
KXX KXZ

K(
XZ KZZ

])
, (9)

where KZZ is formed by evaluating the kernel function pair-
wisely at all pairs of inducing points in Z, and KXZ is formed
by evaluating the kernel function across the data points X and
inducing points Z similarly. Fig. 7 presents the diagram of our
graphical model, consisting of observed variables y,h, latent
variable f , and the introduced auxiliary variable z.

To obtain computationally efficient inference, we approxi-
mate the posterior distribution p(f ,u|y) over random variable
vector f and u by a variational distribution q(f ,u). We as-
sume this variational distribution q(f ,u) can be factorized as
q(f ,u) = p(f |u)q(u). To jointly determine the variational pa-
rameters and model parameters, the variational evidence lower
bound (ELBO) substitutes for the marginal likelihood 'y(θ) and
'h(θ) defined in (5):

log p(y) ≥ Eq(f) [log p(y|f)]− KL [q(u)||p(u)] , (10)

where KL[q||p] denotes the Kullback–Leibler (KL) divergence
between two distributions q and p [48]. We have defined:
q(f) :=

∫
p(f |u)q(u)du and assume q(u) := N (m,S), which

is the most common way to parameterize the prior distribution of
inducing variables in terms of a mean vectorm and a covariance
matrix S. To ensure that the covariance matrix remains positive
definite, we represent it using a lower triangular formS = LL(.
This leads to the following analytical form for q(f):

q(f) = N (Am,KXX +A(S−KZZ)A
(),

where A = KXZK
−1
ZZ . In classification or regression, we also

factorize the likelihood as p(y|f) =
∏N

n=1 p(yn|fn) for the ease
of computation in (10). Therefore, the ELBO objective can be
rewritten as

'ELBO(θ,Z,m,S) :=

N∑

n=1

Eq(fn) [log p(yn|fn)]− KL [q(u)||p(u)] . (11)

In practice, the one dimensional integrals of the log-likelihood
in (11) can be computed by Gauss-Hermite quadrature [49].
In contrast to directly maximizing the marginal log likelihood
defined in (5), computing this objective and its derivatives can
be done in O(NM2) time. The derivation of the ELBO can be
found in Appendix D.

B. Prediction With Variational Posterior

To make one-week ahead predictions for the hotspots and
the number of confirmed cases, we first need to derive
the posterior distribution of prediction p(f |y,h) given the
past observation. Suppose we have the spatio-temporal co-
ordinates Xt := {xjτ}j∈I ,τ≤t and their observations yt :=
{yjτ}j∈I ,τ≤t, ht := {hjτ}j∈I ,τ≤t until time t and the opti-
mal inducing points Z. We assume that the unobserved future
data comes from the same generation process. Therefore, for
all the locations at time t+ 1, i.e., X∗ := {xj,t+1}j∈I , we
first estimate their means according to (3) denoted by µ∗ :=
{µj,t+1}j∈I , then the distribution of one-week-ahead predic-
tion f∗ := {f̂j,t+1}j∈I is given by

p(f∗|yt,ht) = N (A∗m,A∗SA
(
∗ +B∗), (12)

where A∗ = K∗ZK
−1
ZZ and B∗ = K∗∗ −K∗ZK

−1
ZZK

(
∗Z . The

K∗Z denotes a I ×M matrix and its entries are pairwise evalua-
tions ofk(x∗, z)wherex∗ ∈ X∗ andz ∈ Z. The derivation of the
predictive posterior can be found in Appendix E. The prediction
for the number of cases and the probability of hotspots therefore
can be made by plugging (12) into (2) and (4), respectively.
We consider that a detector would raise an alarm if the hotspot
probability hit for location i at time t is above the pre-set
threshold ζi. This threshold is chosen for each location by a
grid search in [0, 1]. For each location, the threshold with the
largest in-sample F1 score is chosen.

The above formula reveals that predictive posterior distri-
bution only depends on the inducing variables u at learned
spatio-temporal coordinates Z and does not depend on the f
at training coordinates. This shows that all the information from
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the training data has been summarized by the proposed posterior
distribution q(u) defined in Section IV-A and the prediction for
future weeks can be carried out efficiently.

C. Stochastic Gradient Descent Based Optimization

Now we describe our learning algorithm. The optimal pa-
rameters of the proposed model can be found by maximizing
the combined objective (5) using gradient-based optimization.
However, the full gradient evaluation can still be expensive
to carry out. With a sparse prior (inducing variables), even
though we can tackle the computational challenge in inverting
a big matrix, evaluating the gradient of the first term in (11)
still requires the full data set, which is memory-intensive if
the size of the data set N is too large. To alleviate the prob-
lem of expensive gradient evaluation, we adopt a stochastic
gradient-based method [45] and only compute the gradient of the
objective function with respect to the GP’s parameters denoted
by θ := {{ϕ(r)}r=1,...,R,σν}, evaluated on a random subset of
the data at each iteration.

Additionally, the conventional stochastic gradient descent
algorithm assumes that the parameters’ loss geometry is Eu-
clidean. This is a non-ideal assumption for the parameters of
many distributions, e.g., Gaussian. Here we follow the idea
of [45], [50] and apply adapted stochastic gradient descent to
the variational parameters (Z,m,S) in our GP model by taking
steps in the direction of the approximate natural gradient. These
gradients are computed by the usual gradient re-scaled by the
inverse Fisher information. The Kullback–Leibler divergence is
used to measure the “closeness” in the variational distribution
space. Our learning algorithm is summarized in Algorithm 1.

V. RESULTS

This section reports the numerical results of our study. In
the following examples, we consider the spatial kernel with
R = 4 components and fit the model with M = 500 induc-
ing variables using the COVID-19 data set described in Sec-
tion II. For each spatial kernel component r, we choose a three-
layer neural network with 64 nodes per layer to represent its
mapping ϕ(r) through cross-validation (Appendix G). We first
evaluate the explanatory power of the proposed framework by

investigating the learned spatial kernel function using COVID-
19 data. We demonstrate the interpretable components of our
model and visualize the spatio-temporal correlation across re-
gions discovered by our fitted model. Then we examine the result
of the hotspot detection and the case prediction by visualizing
the one-week-ahead predictions and their distribution. We em-
phasize that our model not only generates accurate predictions,
but also quantifies the uncertainty about the predictions. Lastly,
we compare our method with six other commonly-used binary
classification approaches by evaluating their out-of-sample pre-
dictive performance. The inputs to the hotspot prediction model
are past county-level case and death records, identified hotspots,
and community mobility information. For ease of presentation,
we only focus on the counties in the contiguous United States.

A. Model Interpretation

The proposed framework offers a unique opportunity for
understanding the dynamics of the spread of COVID-19 utilizing
the carefully crafted kernel design. In this experiment, we fit
the model using the entire COVID-19 data and then visually
examine the learned spatial kernel.

We first visualize the learned kernel induced feature κ(r)s of
each spatial kernel component in Fig. 8, which portrays the
spatial pattern of virus’ propagation. Recall that, for any arbitrary
s, κ(r)s is a normal kernel centered at s with spatially varying
covariance matrixΣ(r)

s , which can be uniquely represented by its
focus points. Here, we connect two focus points with a red line
at each location and plot them on the map. Length and rotation
angle of the red line at s represents the strength and direction of
the influence of location s, respectively, jointly determining the
shape of its covariance matrix Σ(r)

s . The color depth indicates
the weight w(r)

s , representing the “significance” of location s in
the kernel component r.

To intuitively interpret the learned spatial kernel, we also
visualize the kernel evaluation given one of its inputs, i.e.,∑R

r=1 w
(r)
s υ(r)(s, ·). Such kernel evaluation represents the spa-

tial correlation (or sphere of influence) of a particular location
spreading the virus. The area in darker red signals that the cor-
responding counties are more likely to become the next hotspot
if an outbreak is detected in the region of interest. In Fig. 9, we
observe that these major metropolitan areas have a substantially
different spatial correlation with their neighboring regions due
to the non-stationarity of the spatial kernel. For example, as
one of the nation’s major economic and transportation hubs,
New York has a significant impact on the entire Eastern United
States, while Atlanta only has a regional influence in the South-
eastern United States. Chicago and Los Angeles, the second
and third most populous cities in the United States, can extend
their influences to the entire north and south of the country,
respectively. Such interpretability of our spatial kernel function
could be of particular importance for the policymakers or the
local authorities, suggesting that counties with more extensive
influence on other regions should receive more attention in
epidemic prevention. We also note that increasing the number of
spatial kernel components could further enhance the flexibility
and the interpretability of the model (Appendix F); however, due
to the need for additional parameters in the neural networks, the
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Fig. 8. Visualizations of the learned kernel induced feature κ
(r)
s using COVID-19 data set. Each panel shows one of four kernel components, where the line

segment is the edge that connects two focus points of s, indicating the shape and the rotation of the kernel at that location; the shaded area shows the intensity of
the corresponding weight w(r)

s at location s; the darker the region, the larger the weight.

Fig. 9. Examples of the learned spatial kernel
∑R

r=1
w

(r)
s υ(r)(·, s) with four components evaluated at four major metropolitan areas in the U.S.. These maps

show the spatial influence of these area to other region of the U.S.. The color depth indicates the intensity of the kernel value; the darker the color the higher the
kernel’s value.

Fig. 10. Temporal view of one-week-ahead and county-wise hotspot probability p(h∗) suggested by our fitted model (δ = 10−5) using COVID-19 data.
The first 6 panels represent major metropolitan areas and the last two panels represent less populated counties in the United States.

computational time dramatically increases when R ≥ 3, with
minimal performance improvement.

B. Hotspot Detection

We evaluate the one-week-ahead in-sample prediction accu-
racy of our proposed hotspot detection framework at the county
level. We first fit the model using the entire data set from March
15, 2020, to January 17, 2021, which contains 3,144 counties and
50 weeks in total. The in-sample prediction for time t is obtained
by feeding the data before t into the fitted model and predicting
the one-week-ahead hotspots. We test our model with different
δ values and perform cross-validation to identify the optimal δ.
In Fig. 10, we report the in-sample prediction results for eight
representative locations, which include six major metropolitan
cities and two sparsely populated counties. The shaded gray
area indicates the number of cases reported in that location, and
the black star indicates the time of the identified hotspot. The

solid red line represents the corresponding estimated hotspot
probability. The hotspot probability resulting from our model
is considerably high whenever a genuine hotspot occurs and
considerably low otherwise, which confirms the effectiveness
of our framework. In Fig. 11, we visualize the prediction results
on the map to intuitively examine the predictive performance
from the spatial perspective. We select four particular weeks
representing different stages of the COVID-19 pandemic in
2020. The black dot indicates the genuinely identified hotspot,
and the color depth indicates the hotspot probability suggested
by our fitted model. As we can see, our method can capture the
spatial occurrence of these hotspots nicely, in which regions with
sparsely distributed hotspots usually have a lower probability. In
comparison, other regions with densely distributed hotspots have
a higher probability. We emphasize that our hotspot detection
framework can provide a realistic prediction that varies smoothly
over time and space due to our GP assumption. This can be
extremely useful when we try to make a continuous prediction
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Fig. 11. Spatial view of one-week-ahead and county-wise hotspot probability p(h∗) suggested by our fitted model (δ = 10−5) using real COVID-19 data.
This figure presents examples at four particular weeks, where the color depth indicates the probability of predicted hotspots and the black circles represent the
hotspots given in the data.

Fig. 12. Temporal view of one-week-ahead and county-wise case prediction y∗ suggested by our fitted model (δ = 10−5). This figure presents eight examples
for major metropolitan area (first six panels) and less populated counties (last two panels) in the United States.

Fig. 13. Spatial view of the confidence interval of one-week-ahead and county-wise case prediction y∗ at four particular weeks. The color depth indicates the
length of 95% confidence interval of the prediction; the darker the region, the more uncertain the prediction becomes.

or estimate the likelihood of a hotspot to happen at an arbitrary
spatio-temporal coordinate.

C. Case Prediction and Uncertainty Quantification

Our proposed framework also provides case prediction and
uncertainty quantification besides hotspot detection. In Fig. 12,
we present the predicted case number y∗ over time as well
as its confidence interval for the eight same locations that
appeared previously. The black dash line represents the real
reported cases, and the solid blue line represents the prediction
y∗ suggested by our case model. The one and two-σ regions are
highlighted by the dark and light blue shaded areas. As we can
see, the prediction result captures the general trend of the case
records, which confirms that the case model can successfully
extract useful information from the cases that will be used to
regularize the hotspot model by optimizing (5). We note that the
estimated confidence interval reflects the uncertainty level of
our prediction for both cases and hotspots since the confidence
interval only depends on the latent spatio-temporal variable f .
In Fig. 13, we show the confidence interval over the map for

four different weeks. The color depth indicates the uncertainty
level (the length of the confidence interval) for that location.
This intuitively tells us which area we are confident in making
predictions and how this confidence changes over space.

D. Comparison With Baselines

We adopt standard performance metrics, including precision,
recall, and F1 score. This choice is because hotspot detection
can be viewed as a binary classification problem. We aim to
identify a hotspot for a particular location at a particular week in
the data. Define the set of all identified hotspots as U , the set of
detected hotspots using our method as V . Then precision P and
recall R are defined as P = |U ∩ V |/|V |, R = |U ∩ V |/|U |,
where | · | is the number of elements in the set. The F1 score
combines the precision and recall: F1 = 2PR/(P +R) and
the higher F1 score the better. Since numbers of hotspots in
real data are highly sparse (comparing to the total number of
spatio-temporal coordinates), we do not use the ROC curve
(true positive rate versus false-positive rate) in our setting. The
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TABLE I
F1 SCORE OF OUT-OF-SAMPLE HOTSPOT DETECTIONS

evaluation procedure is described as follows. Given the observed
hotspot and other covariates (cases, deaths, and mobility) until
t, we perform detection for all the locations at time t+ 1. If
the detected hotspot were indeed identified as a genuine hotspot
by CDC, then it is a success. Otherwise, it is a misdetection.
In our data, there are 50× 3144 = 157, 200 spatio-temporal
coordinates in total, and 12,000 of them were identified as
genuine hotspots.

We compare the hotspot detection results of our proposed
method and several standard methods in binary classification,
including perceptron, logistic regression, linear support vector
machine (SVM), k-nearest neighbor (k-NN), kernel SVM with
Gaussian kernel, and decision tree; see [51] for a detailed review
of those machine learning algorithms and see Appendix H for
hyperparameter choices. Table I shows the F1 score for the
out-of-sample prediction at county-level using our method. The
result confirms that our model significantly outperforms other
baseline methods.

VI. CONCLUSION

This paper proposes a Bayesian framework that combines
hotspot detection and case prediction cohesively through a latent
spatio-temporal random variable. The latent variable is modeled
by a Gaussian process, where a flexible non-stationary kernel
function characterizes its covariance. The framework has shown
immense promise in modeling and predicting the COVID-19
hotspots in the United States. Our numerical study has also
shown that the proposed kernel enjoys great representative
power while being highly interpretable.
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