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T ransmission electron microscopy (TEM) is a powerful tool 
for imaging material structure and characterizing material 
chemistry. Recent advances in data collection technology 

for TEM have enabled high-volume and high-resolution data 
collection at a microsecond frame rate. Taking advantage of 
these advances in data collection rates requires the develop-
ment and application of data processing tools, including im-
age analysis, feature extraction, and streaming data processing 
techniques. In this article, we highlight a few areas in materials 
science that have benefited from combining signal processing 
and statistical analysis with data collection capabilities in TEM 
and present a future outlook on opportunities of integrating sig-
nal processing with automated TEM data analysis.

Introduction
TEM has long been a powerful tool for imaging material 
structure and characterizing material chemistry. However, the 
process to resolve structural features is laborious and time in-
tensive, drastically limiting the characterization throughput. 
Recent advances in electron detector technology and computa-
tional capacity have facilitated the development of high-speed 
data collection for TEM with microsecond frame rate acquisi-
tion speeds, corresponding to hundreds of gigabytes of data 
per second [1]. This increase in data collection rates presents 
new opportunities in rapid material characterization and high-
temporal-resolution analysis of transient phenomena. How-
ever, it also presents data processing and analysis challenges, 
as the sheer volume of data precludes manual image analysis.

Concurrent with these developments in electron detection, 
exciting in situ technology developments have been made. It is 
now possible to physically simulate a wide range of extreme 
environments and record the material response in real time. 
Some of these latest developments include extreme heating 
rates while maintaining temperature accuracy within 1º, cor-
rosion and other tests in liquid environments on engineering 
materials [2], [3], high-temperature gas cells [4], high-cycle-
fatigue loading [5], local electrical biasing [6], and ultrashort 
reactions characterized using dynamic TEM experiments [7]. 
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With increasingly stable in situ testing platforms and the 
widespread availability of aberration-corrected instruments, 
in situ high-resolution TEM experiments have seen remark-
able progress, with examples including direct observations 
of thermally and electrochemically induced phase transfor-
mations [8]–[10] and defect interactions captured during 
mechanical deformation at the atomic scale [11], [12]. Many 
of the material responses induced by these environments 
are highly transient in nature, occurring in time frames 
shorter than can be accurately captured when relying on 
human reflexes. Often, the operator relies on luck to cap-
ture phenomena of interest, limiting the repeatability and 
statistical significance of the results.

This article discusses the development of data process-
ing tools for automated analysis of the microstructure and 
crystal structure of materials, with an emphasis on applying 
automated signal processing to understanding and quantify-
ing transient phenomena during in situ testing. The motiva-
tion of this work is to show how existing signal processing 
tools can be applied to large data sets generated by modern 
electron detectors to produce more quantitative, statistically 
significant results, with an emphasis on in situ testing. As 
the motivation is largely driven by technological advances 
in EM and with materials science as the main benefactor, 
many of the more advanced signal processing methods cur-
rently under development will not be discussed. The major-
ity of the examples used to highlight developments and 
showcase tool applications come from in situ TEM liquid 

cell experiments to investigate corrosion processes in thin 
metal films at the nanoscale [13]. We highlight a few areas 
that have benefited from combining signal processing and 
statistical analysis with new data collection capabilities in 
TEM and provide motivating applications and illustrative 
real data examples. 

Overview

Signal generation
In EM, an image records the total charge carried by electrons 
to a particular spatial location. In TEM mode, this spatial lo-
cation corresponds to a location on a detector screen. In scan-
ning TEM (STEM) mode, this spatial location corresponds to 
the location where the beam converges on the sample. Electrons 
scattered to different angles contain different types of informa-
tion, including diffraction contrast (arising from dynamically 
coupled electron interaction within the sample), mass/thick-
ness contrast, and phase contrast [14]. Depending on which 
electrons are used to form an image, contrast may arise from 
a combination of, among other things, crystallographic ori-
entation and strain effects, phase contrast effects, and mass/
thickness effects. In both TEM and STEM, the user is able to 
select which electrons are used to create the final image. In 
STEM, this is done by varying the camera length and detector 
used. In contrast, in TEM, this is typically done by selecting a 
single electron beam via an aperture placed at the focal plane of 
the objective lens [Figure 1(a) and (b)].

As with all imaging systems, there 
is a variety of sources of noise in EM 
images, including noise in the elec-
tronics systems, fluctuations in the 
electron source, and signal bleeding in 
the electron detectors. These sources 
most often contribute white noise to 
images and data collected during electron 
imaging. Due to the complex nature of 
electron/matter interactions, dynamical 
diffraction contrast effects must be con-
sidered while processing EM signals. 
Figure 1(c) and (d) shows a bright-field 
TEM image of a near-uniform thick-
ness, pure aluminum, ultrafine-grained 
thin film. Mass/thickness contrast effects 
are evident from the higher intensity of 
the vacuum regions compared to the 
sample. However, despite its unifor-
mity in terms of chemistry and thick-
ness, both high- and low-frequency 
contrast variations are apparent within 
the sample itself. The high-frequency 
variations arise from noise in the detec-
tion and illumination system, while the 
low-frequency variations are from dif-
fraction contrast effects arising from 
crystallographic orientation changes 

Objective
Lens

Objective
Aperture

Electron BeamElectron Beam

Dark-Field
Detector

Bright-Field
Detector

Vacuum Sample

1 µm

(a) (b)

(c) (d)

Distance (µm)
0 0.5

In
te

ns
ity

1 1.5 2

FIGURE 1. (a) STEM imaging. (b) TEM imaging. (c) An example of a bright-field TEM image of an 
aluminum thin film. (d) An intensity profile taken from the arrowed line in (c), showing both  
high- and low-frequency intensity fluctuations.
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across the sample. These contrast fluctuations must be considered 
when extracting data from EM images.

In situ experiments and data collection
Since the initial development of TEM, in situ experiments have 
played an important role in providing real-time insight into the 
nanoscale response of materials under a variety of stimuli, in-
cluding stress, heat, and corrosive environments. This becomes 
important in resolving ambiguities associated with post mor-
tem analysis alone. For example, in localized corrosion events, 
the scale at which corrosion damage initiates, which is on the 
order of nanometers, and the rate at which corrosion fronts ex-
pand into the surrounding matrix make it difficult to determine 
corrosion initiation processes using conventional post mortem 
characterization. Combining high-resolution capabilities with 
real-time acquisition can provide direct insight into the mecha-
nism of corrosion damage initiation and the role of microstruc-
tural heterogeneities on the susceptibility to local corrosion at-
tack. Understanding this local behavior and how it is influenced 
by microstructure informs material-sensitive design and con-
tributes to developing superior corrosion-resistant materials.

Due to recent advances in electron detection, in situ experi-
ments can now be recorded at microsecond temporal resolu-
tion. This is possible due to the transition from charged-coupled 
device electron detectors to direct electron detection with 
CMOS detectors. Direct electron detectors do not use a scintil-
lator screen, eliminating the need for fiber optic coupling and 
reducing the noise in the measurements. This leads to a sig-
nificant increase in the detection quantum efficiency, enabling 
low-noise and high-frame-rate imaging [15], [16]. State-of-the-
art electron detectors are now capable of collecting thousands 
of frames per second, with new detectors capable of imaging 
rates of tens of thousands of frames per second [1].

Process–structure–property relationships
The ability to collect large amounts of information on the mate-
rial’s internal structure has opened up new research avenues for 
the development of rigorous mathematical frameworks for the 
rational design of materials exhibiting a targeted set of materials 
properties and performance characteristics. Generally referred to 
as microstructure-sensitive design [17], these approaches rely on 
formulating process–structure–property (PSP) relationships for 
capturing the core knowledge needed to drive materials innova-
tion efforts efficiently. Modern artificial intelligence (AI)/ma-
chine learning (ML) tools customized for materials research [18] 
have further enhanced our ability to mine the PSP linkages from 
available materials data. However, the analysis of microscopy 
images and the extraction of quantitative and reliable statistical 
information from the raw microscopy images precedes model 
building. Therefore, image analysis is a necessary and important 
tool for advancing the knowledge of materials and their design.

Image analysis techniques for segmentation 
and feature extraction
We review several critical signal and image analysis tech-
niques for processing TEM data. The examples shown in 

this section are taken from in situ TEM corrosion experi-
ments, with the images collected in bright-field TEM mode, 
but the tools developed are applicable to a wide range of 
materials science problems. As outlined in the “Process–
Structure–Property Relationships” section, establishing 
PSP relationships is at the core of materials science. A vital 
component of this is the ability to rapidly quantify the ma-
terial response to a stimulus and spatially correlate that re-
sponse with the local microstructure. This section describes 
signal and image analysis techniques that allow direct, spa-
tial quantification of material response to a given stimulus 
using computationally efficient approaches amenable to 
large data set applications.

In the following, we present a few simple segmentation and 
feature extraction techniques commonly used in the field as 
illustrative examples. Such relatively simple techniques are 
appealing and commonly used for TEM data analysis since 
they are effective in many cases, inexpensive, computation-
ally efficient, and robust in practice, compared with the more 
sophisticated signal processing techniques. On the other hand, 
more advanced ML/AI techniques, such as deep learning, can 
be potentially developed and applied.

Segmentation for real images
Image segmentation is an image analysis procedure that helps 
extract knowledge from images by assigning semantic labels 
to all pixels in an image (e.g., “corroded” and “not corroded”). 
The label is chosen by considering information regarding the 
pixel, image generation, and physical specimen. Pixel informa-
tion includes the pixel’s location x Rd!  in space and time and 
the pixel’s value ( ) ,p x RF!  where F is a set of dimensions in 
which the pixel’s value may exist. In the simplest cases, the 
pixel’s value is a scalar charge measurement corresponding to 
the number of electrons detected at a location. However, mod-
ern STEM methods allow much more advanced data collec-
tion, and a pixel’s value can consist of many measurements in 
many dimensions. For example, electron energy loss spectros-
copy detection measures energy spectra over the 50–500-meV 
range for each pixel location [19]. STEM imaging has also 
been used to collect local diffraction patterns, called Ronchi-
grams, where each pixel’s value corresponds to its own 2D dif-
fraction pattern. This imaging technique produces hundreds 
of Ronchigrams per millisecond at a data collection speed of 
about 3.2 GB/s, and the resulting 4D measurements take up 
many hundreds of gigabytes, requiring highly parallelizable 
analysis techniques [20].

Information about image generation and the physical speci-
men cannot be extracted from the image but is based on the real 
physical conditions that control the observation or measurement 
of a signal. Some of these include known factors, such as chro-
matic aberrations that can be corrected using hardware solu-
tions in the microscope. Other conditions may not be known. In 
particular, when considering the application of in situ corrosion 
studies, there is a rapidly changing atmosphere that can inter-
fere with electron beams. Dealing with these unknown condi-
tions is an important part of the segmentation process. Other 
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parts of the segmentation process address the label assignment, 
refinement of those labels, and feature extraction.

There are many ways to approach the segmentation prob-
lem. Some of the most advanced image segmentation meth-
ods depend on deep learning [21]. However, deep learning is 
usually not a practical solution to the segmentation of TEM 
images for two main reasons: 1) it requires labeled train-
ing data that are usually unavailable for TEM images, and 
2) it takes much time to train. There is little doubt that deep 
learning will play a larger role in TEM image analysis in the 
future, and methods like transfer learning might help make 
it applicable [22]. Some of the challenges will include col-
lecting and sharing segmented data sets [23] and developing 
deep learning models that can handle TEM images that have 
memory requirements larger than available GPUs. Currently, 
unsupervised ML methods are used in TEM image analysis. 
For example, Ronchigrams have been analyzed by principal 
component analysis and k-means clustering. However, in this 
case, there is a need to develop image analysis techniques for 
large data problems since the Ronchigrams had to be downs-
ampled significantly to allow the analysis on a single CPU, 
although parallel methods could have enabled the analysis 
of the complete image. The method was not used for image 
segmentation since unsupervised classification methods need 
additional denoising and postprocessing steps to classify pix-
els and segment images accurately. A segmentation workflow 

incorporates a sequence of steps (usually denoising, labeling, 
and then postprocessing). In the following three sections, we 
discuss these steps in more detail and present them with a case 
study, as shown in Figure 2. 

Denoising
Segmentation can be sensitive to noise; in TEM imaging, there 
are many noise sources, such as user input, experimental 
changes, and instrument noise. The noise is distinct from 
actual material changes—the signals of interest—but may 
not be easy to distinguish. For instance, in corrosion ap-
plications, there can be a rapidly changing atmosphere en-
vironment when the measurements are taken, which will 
change the brightness of a recorded frame in a video; this 
introduces a form of high-frequency noise that may vary 
over time. We may identify the noise’s temporal and spatial 
characteristics in such situations, which can be categorized 
as either global or local techniques based on the spatial and 
temporal scale. In particular, global noise affects all pixels 
in the frame of a video somewhat evenly; moreover, it is 
more likely to arise due to fluctuations in the gas pressure or 
thickness of the liquid flowing over samples. On the other 
hand, local fluctuations affect only a single pixel and arise 
due to electrons arriving more (or less) in phase with one 
another at a particular point in space. On the temporal scale 
level, high-frequency noise usually results from imaging 
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FIGURE 2. An example of image segmentation taken from bright-field TEM images collected during an in situ TEM corrosion experiment. Each column is  
a different frame in the corrosion video. (a) The original image. (b) The segmented image. (c) The fine-grained corrosion velocity.
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conditions and is unrelated to material changes, and thus 
it is relatively easy to identify and remove. Low-frequency 
noise is slowly time varying and may occur on similar time 
scales, as the material’s physical changes make it more dif-
ficult to remove.

Extracting the material signal from observations is known 
as denoising. Consider a model for the observation at a discrete 
location indexed by (n, m) in the image ,Y X, , ,n m n m n me= +  
where Y ,n m  is the observation, X ,n m  corresponds to the mate-
rial signal, and ,n me  is the noise. Generally speaking, there are 
two approaches for denoising: identifying the signal (based on 
assumptions and prior knowledge) and identifying the struc-
tured noises and then removing them from the observation. 
Assume the noise is normally distributed with zero mean and 
variance :2v  N ( , ),0,n m

2+e v  and thus ( ) .Y XE , ,n m n m=  Due 
to a lack of sufficient samples to estimate the expected value, 
we make an assumption about the local smoothness property 
that the pixels (k, l) in the neighborhood of pixel (n, m), defined 
with respect to certain distance measure ( , )D $ $  and radius 

:r 02  :K ( ) ( , ) ( , ), ( , ) ,r k l D n m k l r,n m 1;= ^ h" ,  have a similar 
material signal value, .X X, ,k l n m.  This allows us to estimate 
the expected value as
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There are other variants to model noise, such as the bilateral 
filter [24]. Unlike the average computed in (1), the bilateral fil-
ter computes a weighted average, where weights for pixels in 
the neighborhood are determined by their distances to a center 
pixel and differences between pixel values.

When a pixel’s value varies over time, it can be corrected 
using spatial denoising methods since ,n me  is independent of 

,,k le  ,k n6 !  .l m!  However, suppose all the pixel values at a 
particular time are uniformly changing (as is the case when the 
atmospheric pressure changes). In that case, temporal informa-
tion needs to be considered to filter out the noise. The image’s 
brightness can characterize the temporal information over 
time. For instance, a simple measure of brightness, ,B RT!  
is a sequence of averages of frames (of size M by N) in a video 
of length T, :X RM N T! # #  /( ) .B MN X1 , ,t m n tm

M
n
N

0 0R R= = =  In 
some applications, the image brightness may remain constant 
throughout the measurement of the signal. In such a case, the 
average image brightness B R!r  can be calculated, and the 
image brightness at time t must be corrected to meet this aver-
age: .X X B B, , , ,m n t m n t t= - +) r  This requires knowing a certain 
functional form of brightness over time. For instance, if the 
form is linear, then we can use a least-squares fit to find the 
most likely brightness at a time .B Rt

T!r  However, in mass/
thickness contrast imaging, the amount of corroded area 
directly determines the image’s brightness. Since the corrosion 
growth rate is the quantity that we aim to estimate from the 
data, the functional form of B is unknown. In this situation, 
we may need to infer the brightness Btr  without making any 
assumptions on its parametric form. One possibility is to fit a 
univariate smoothing function (a piece-wise, third-order poly-
nomial that is commonly used in statistical smoothing, e.g., 

a spline function) to the data. The smoothness of the spline 
is controlled by the maximum second-order derivative at the 
edges of the intervals. The optimal “smoothness” can be deter-
mined by performing cross validation on the regularization 
parameter [25], [26].

Note that many advances have been made in the image 
analysis field beyond the techniques reviewed in the preceding. 
Such techniques are based on sparse representations (wavelets 
and dictionary learning), nonlocal (NL) methods (NL means 
and NL Bayes), and consideration of the statistical properties 
of the noises that are non-Gaussian. Such techniques have been 
are used in many different fields, e.g., for hyperspectral imag-
ing [27] and medical imaging [28]. Adapting such techniques 
for in situ TEM data could yield interesting research questions.

Labeling
Segmentation can produce a labeled image, [ , ] ,L1 M N, ! #  
or a labeled video, [ , ] .L1 M N T, ! # #  Recall that M and N are 
the sizes of the image’s spatial dimensions, L is the number of 
labels, and T is the size of the temporal dimension. Labeled 
videos allow for the extraction of rich quantitative measures 
and reduce the need for subjective human interpretation [29], 
[30]. Hence, segmentation is ideal for high-throughput imaging 
since a few key measures can then represent videos.

There is a wide array of techniques for labeling pixels in 
an image, including separating image histograms [31], spa-
tial information and graph cuts [32], and the more advanced 
end-to-end learned convolutional neural networks [33], and 
the choice of the method varies case by case. For example, 
in some corrosion studies, we may be interested only in the 
degradation of the so-called grain boundaries, which are the 
boundaries between regions in the microstructure. Labeling 
the grain boundaries requires edge detection methods. In the 
case study, the corroded area is brighter than the noncorroded 
area. Additionally, each pixel begins in an “uncorroded” state 
at .t 0=  This means we are looking for a statistically signifi-
cant change in a pixel’s value in time considering noise (this 
can be related to the change point detection discussed in the 
“Real-Time Processing: Example Sequential Change Point 
Detection” section). Here, we compute the forward finite dif-
ference, :( ) ,X X X, , , , , ,m n t m n t m n t1T = -+  and find its histogram. 
As in Figure 3, the histogram is heavily skewed toward positive 
pixel changes, indicating that these changes correspond to pix-
els changing from an “uncorroded” state to a “corroded” state.

Based on this, a pixel switches into a “corroded” state at 
time t: :S 1, ,m n t =  if the forward finite difference ( )X , ,m n tT  of 
the pixel (m, n) at time t exceeds the 99% quantile with respect 
to the empirical distribution. Then, we set labels : 1, ,m n t, =  
when S 0, ,m n ii

t
0 2R =  to indicate that the pixel is “corroded” 

and zero otherwise as “uncorroded.” Note that S , ,m n t  highly 
depends on the difference between noise and actual materi-
al changes. Even slight differences, such as those caused by 
the brightness fluctuations, can significantly impact whether 
or not we can distinguish between real material changes and 
image noise. Therefore, correct labeling strongly depends on 
the noise reduction and filtering techniques in previous steps.
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We remark that the segmentation problem here can be relat-
ed to the signal detection problem (with possibly unbalanced 
classes), where much research has been done in the signal pro-
cessing literature. For instance, in signal detection, a theory 
has been established regarding the fundamental performance 
tradeoff of the detectors between the probability of good detec-
tion versus the probability of false alarms. Drawing a precise 
connection between the two and utilizing existing theory and 
signal detection techniques for TEM data could be an interest-
ing direction.

Postprocessing
The last step in segmentation is postprocessing, which involves 
cleaning up the labeled video and extracting features. This step 
is usually highly problem specific, and case-by-case solutions 
can be developed. For instance, a common postprocessing step 
involves morphological operations, such as erosion and dila-
tion, where the boundary of a labeled region is expanded or 
contracted by a fixed number of pixels. Another commonly 
used step is morphological smoothing, which swaps the pixels’ 
labels if the majority of their neighbors have opposite labels. In 
the case study, we consider a neighborhood K ( )1,n m  and swap 
the label if it disagrees with more than 50% of the pixels in the 
neighborhood; the result appears in Figure 2.

Feature extraction from the images could be done by assess-
ing global measures, such as brightness, which can help us cal-
culate the average corrosion growth rate. However, segmentation 
enables us to obtain much more fine-grained details, as in the 
last row of Figure 2. For instance, we are interested in the corro-
sion growth rate at a particular location in physical space, link-
ing microstructural features to the local corrosion growth rate. 
This may be a critical step in designing microstructures that help 
reduce the corrosion growth rate and prevent corrosion.

Sparse feature extraction in diffraction images
In TEM, when the beam of electrons passes through the thin 
sample, the electrons are treated as waves and diffract in the 
crystal lattice in accordance to Bragg’s Law. That is, the crys-

tal structure of the sample acts as a diffraction grating for the 
electrons. These diffracted electrons can be captured as dif-
fraction patterns by imaging the focal plane of the objective 
lens. By acquiring diffraction patterns throughout an in situ ex-
periment, changes to the crystal structure, such as phase trans-
formations, precipitation, and amorphization, can be detected.

High-intensity local bright spots represent the features of 
interest in the diffraction image, and they are usually sparse. 
Figure 4 presents diffraction patterns collected during in situ 
corrosion of an iron thin film. The collected diffraction patterns 
contain a series of concentric rings around the center. Since 
most electrons transmit through the sample without interact-
ing, the center of the diffraction pattern is brightest. The high-
intensity rings around the center spot arise from diffraction 
from the iron crystal lattice. This indicates that sparse features 
exist in rings around the central part of the image. Usually, 
these spots are pixels with much higher intensities than their 
local surroundings; however, they may still not be comparable 
with the pixels in the center of the image. Additionally, rela-
tively low-intensity diffraction spots arising from the forma-
tion of iron oxide during the corrosion experiment may exist 
between the bright diffraction rings. These low-intensity spots 
provide insight into the corrosion byproducts that form and 
help us understand the corrosion process in greater detail. This 
observation, combined with a series of rings that can be iden-
tified in the diffraction image, prompts us to transform how 
the data are visualized. Instead of in the original domain, the 
nature of the data makes it more appropriate to conduct the 
study in the polar coordinate plane.

To detect and identify these sparse features in a diffraction 
pattern, we carry out sparse feature extraction. This procedure 
aims to remove the background signals in the image because 
these sparse features are small and primarily exist between the 
brighter rings. Our focus is, therefore, on the tiny bright spots 
buried between the brighter rings. A sequence of preprocessing 
steps has been developed, tailored to emphasize the character-
istics of the images. This workflow is illustrated in Figure 4. 
The process consists of two critical steps. The first is the trans-

formation of the diffraction image 
to polar coordinates, while the sec-
ond is the bright spot extraction from 
the image with other known features.

In the following, we illustrate the 
procedure using a real data exam-
ple. Note that the simple techniques 
achieved the goal here. Still, more 
sophisticated feature extraction tech-
niques can be possible; developing/
adapting such techniques for TEM 
could be an interesting research oppor-
tunity that has yet to be realized.

Diffraction image transformation
To facilitate extracting the sparse fea-
tures in the image, namely, the bright 
spots, the polar transformation aims 
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to map the diffraction image to the polar plane. The bright 
spots can be easily identified in the polar coordinate domain 
by indexing the pixels with the highest intensity values. The 
rings seen in the original image are transformed into horizon-
tal stripes, which are easier to process.

There are two primary reasons for conducting this transfor-
mation step. First and foremost, a beam stop was used while 
collecting the diffraction pattern to protect the electron detec-
tor, which creates a shadow in the image. The shadow might 
hamper the feature extraction, as it covers some parts of the 
rings in the image and needs to be carefully removed to prevent 
erroneously identified features. Additionally, it is challenging 
to identify the exact location and size of the original image 
features, due to the polar nature of diffraction imaging. For 
example, suppose there are two features of the same shape and 
size, but they are presented on two rings with a different radius 
in the diffraction image. Due to this difference in the radius, 
they will be of different sizes when visualized in the image. 
The outer ring’s feature will take up more pixels than the one 
on the inner ring, and its shape will be distorted due to the 
distance from the center. A transformation onto the polar plane 
can resolve this discrepancy induced in the diffraction.

Thresholding
To separate the diffraction between the several bright rings, 
we analyze the histogram of the image pixels at the left in 
Figure 5(a); the histogram of pixel intensities is plotted in the 
middle of the figure. As can be seen, there are several intervals 
where intensities congregate, with notable gaps in between. 

For instance, we found that very few pixels in the image have 
intensities around 0.4, 0.6, and 0.8. This phenomenon conforms 
to the observation of multiple rings in the image. It indicates 
that the rings can be separated by placing a threshold on the 
pixel intensity levels. For example, when the threshold is set 
around 0.2, the corresponding filtered image is shown at the 
right in Figure 5(a). We can see that the shape of the irregular 
object is captured by the filtered image. Therefore, if we sub-
tract this from the original image, we will eliminate this un-
necessary object. We can further separate the rings from one 
another by subsequently placing thresholds on intensity val-
ues. Overall, thresholding helps remove the undesired object 
in the diffraction image and successfully separate the several 
ring components in the visualization for further processing.

Center alignment
Another problem is to align images taken at different times dur-
ing the experiment. To identify the center of each image taken, 
we adopt circle Hough transformation [34] to the thresholded 
images with different ring structures shown in Figure 5(b). The 
circle Hough transformation is conducted with the following 
steps: 1) define the parameter space of (x, y, r), where (x, y) 
are coordinates of the center and r is the radius of the circle. 
Assign each point in the parameter space with an initial value 
of zero. 2) Preprocess the image with Gaussian blurring and a 
Canny edge detector. To find the largest visible rings, we apply 
the Canny edge detection algorithm [35] to identify the bound-
ary between the dark and bright areas accurately. 3) For each 
possible combination of parameters spanned by a circle with 
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(x, y, r), add one to its value. 4) The 
point ( , , )x y rt t t  with maximum value 
in the end becomes the circle found. 
With the center of the rings found in 
each image, we then align these im-
ages with the centers’ coordinates.

Transforming the polar coordinates
As discussed, feature extraction and the 
distortion of the images’ features moti-
vate the transformation into polar coor-
dinates. The transformation procedure 
occurs after the center of the rings in the 
image is found by Hough transforma-
tion. To convert the image into the polar 
plane, we set the center’s coordinates 
as the origin. An angle mask i  and a 
radius mask r are applied to the origi-
nal diffraction image, given the circles’ 
center. This masked portion of the im-
age is then the pixel with coordinates 
( , )ri  in the polar plane. Through this 
scheme, we can obtain the transformed 
image, as displayed in Figure 6(b).

However, it is noted that rings at 
a different radius r contain a differ-
ent number of pixels in the original 
image. For instance, the polar coor-
dinate ( ,r 10=  [ , ])0 360!i c  con-
tains more pixels than that of ( ,r 5=  

[ , ])0 360!i c  since the arc is larger. 
When this happens, we have elected 
to aggregate these pixels by taking 
their average intensities in the polar 
plane. Therefore, there is a tradeoff 
in determining the resolution of the 
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angle and the radius masks. The higher resolution might cause 
one bright spot in the original image to correspond to multiple 
pixels in the transformed polar image, scattering the feature 
itself. On the other hand, the lower resolution might result 
in multiple bright spots close to the center being cramped 
into a single pixel, losing the information. Therefore, the reso-
lution in ( , )ri  should be carefully tuned to ensure the polar 
image’s quality.

Bright spot extraction
The majority of the diffraction image’s bright spots do not have 
sharp contrast against nearby pixels. This makes detection by the 
human eye challenging. Fortunately, it is known from domain 
knowledge that the bright spots usually appear in the vicinity 
of a particular radius (though at an unknown angle). Therefore, 
we can pin down the bright spot around the specified radius. In 
this step, we focus on the pixels with a specified radius r that is 
slightly larger than the radius of the ring. Then, we formulate the 
detection objective as a sparse mean shift in the time series in-
tensity data. As in Figure 6(a), we can obtain a 360-dimensional 
signal for each transformed polar image that represents the mean 
pixel intensities across a range of angles and radius values. This 
step is where we move from visualization to actual signals. We 
use the processed and transformed image to generate time series 
signal data for further change detection analysis.

Supervised learning for labeled data
Thus far, we have focused on unsupervised methods since it is 
typically expensive to hand-label a large amount of TEM data. 
However, we may also deploy supervised learning methods for 
TEM data in scenarios where some labels are available. For ex-
ample, the image segmentation in the “Segmentation for Real 
Images” section can be considered a two-class classification 
problem in which we aim to identify whether a certain area of the 
material is corroded or not corroded. For such a purpose, we may 
consider various state-of-the-art supervised ML techniques, such 
as the support vector machine, random forests, logistic regres-
sion, and deep learning (see [36] for a detailed review). Another 
example is the signal detection problem in the “Sparse Feature 
Extraction in Diffraction Images” section, which can potentially 
be regarded as a hypothesis testing (or signal detection) problem 
by modeling the data distributions under the two hypotheses [37]. 
The ML techniques tend to have good performance when there 
is a large amount of labeled data; however, they can be less inter-
pretable (in particular, deep learning techniques). On the other 
hand, the probabilistic model-based statistical signal detection 
techniques can be more interpretable, and some have a theoreti-
cal foundation and performance guarantees.

Real-time processing: Example sequential 
change point detection
Advances in TEM technology have enabled new paradigms 
for sequential and real-time data collection, and thus in situ 
processing of the real-time data to detect emerging features 
becomes a highly desired property for new TEM systems. 
 Currently, the data are captured in real time but analyzed 

 offline, limiting the experimenter’s ability to explore in detail 
regions of interest while at the microscope.

Real-time processing of streaming data includes a wide 
range of signal processing techniques (see, e.g., a tutorial in 
[38]). There are new challenges and opportunities provided by 
the new TEM instruments to perform in situ and/or sequential 
data acquisitions [39]. For instance, when sequential acquisitions 
are performed, computational imaging problems include regis-
tration, drift mitigation, superresolution, deblurring, and particle 
tracking. To date, there is limited development in signal process-
ing techniques, as described previously for in situ TEM.

Here, we focus on a specific real-time processing tech-
nique, online change detection, as an illustration. Sequential 
change detection is an important technique for in situ TEM, 
as it provides automatic and unsupervised labeling of the data. 
The signal detection task in TEM has two characteristics. 
First, each observation is a very high-dimensional vector, so 
we need to develop an algorithm that can sequentially handle a 
large amount of data. Second, the change is sparse in the sense 
that among all the parameters, only a small proportion of the 
parameter changes after the unknown change point. Sequen-
tial adaptive change detection for in situ TEM signal detec-
tion has been developed in [40] and [41] based on advances in 
statistical sequential (real-time) change point detection (see a 
general survey in [42]). The algorithm is developed by assum-
ing Gaussian observations and that the signal is a sparse mean 
shift. The method can precisely control false alarms and be 
computed recursively, thus automating detection in real time. 
In this section, we present our two sequential adaptive detec-
tion algorithms that can process images in real time and detect 
change points that mark the appearance of salient features in 
the videos.

Change point detection problem setup
Assume a sequence of d-dimensional observations ,X1  ,X2 f 
that are independent identically distributed (i.i.d.) random vari-
ables from a multivariate normal distribution N ( , )Idi  that has 
unknown mean parameter Rd!i  and where Id  denotes a d-
by-d identity matrix. We will estimate i  online to be adaptive. 
Consider the sequential change point detection problem that 
the underlying distribution of the data changes from a known 
state to an unknown state after an unknown change-point .o  
Without a loss of generality, we assume that the prechange 
mean is an all-zero vector. The postchange mean is unknown 
and belongs to a set A  defined as A : ,s0< < #i i= " ,  where 

0:< <  is the number of nonzero entries of i  and s is a prescribed 
value to characterize the sparsity. Formally, we consider the 
following sequential hypothesis test:
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The goal is to detect the change as quickly as possible after 
it occurs under the false alarm constraint. We will consider 
 likelihood ratio-based detection procedures that we call the 
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adaptive cumulative sum algorithm [(CUSUM) ACM] and 
adaptive SRRS [adaptive Shiryaev-Roberts (ASR)] procedures. 

Online change point detection procedures
Now we derive the detection statistics. For each putative 
change point location k before the current time t, the post-
change samples are , , ,X Xk tf" ,  and the postchange param-
eter is estimated as ( , , ),X X, ,k i k i k ifi i=t t  .i k$  Denote fi  as 
the density function for N ( , ) .Idi  The likelihood ratio at time t 
for a hypothetical change point location k is given by (initial-
ized with ),k k 1 0i i=-t
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f X

f X
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where ,k tK  can be computed recursively since
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Since the change point location o  is unknown, due to the 
maximum likelihood principle, we take the maximum of the 
statistics over all possible values of k. We consider window-
limited versions [43] to avoid infinite memory by taking the 
maximum over [ , ],k t w t! -  where w is a prescribed window 
size. This leads to the ACM procedure

 ( ) : ,inf max logT b t b1 ,ACM
t w k t

k t 2$ K=
# #-$ .  (4)

where b is a prespecified threshold to control the false alarm 
rate. The Shiryaev–Roberts procedure is defined similarly by 
replacing the maximization over k in (4) with the summation, 
which can be justified from a Bayesian prior assumption. As 
shown in [40], the performance of the ACM and ASR is very 
similar. However, the likelihood ratio in (3) can explode when 
d is very large. Thus, in practice, we prefer to use the ACM 
procedure to avoid possible numerical issues.

Computationally efficient online parameter estimation
The detection statistic requires a sequence ,k tit" , of estimators 
from streaming data. In practice, to achieve the computational 
efficiency required by the online algorithm, we construct a se-
quence of estimators using online mirror descent (OMD). The 
main idea of OMD is that, at each time step, for any k, the esti-
mator ,k t 1i -t  is updated using the new sample Xt  by balancing 
the tendency to stay close to the previous estimate against the 
tendency to move in the direction of the greatest local decrease 
of the loss function. The advantages of OMD are 1) it allows a 
simple one-sample update: the update from ,k t 1i -t  to ,k tit  uses 
only the current sample ,Xt  and the update for the detection 
statistic has a simple recursive scheme. This is the main dif-
ference from the traditional generalized likelihood ratio (GLR) 
statistic [44], where each ,k tit  is the exact maximum likelihood 
estimate obtained using all the historical samples. 2) OMD is 
a generic algorithm for solving the online convex optimization 
problem [45]. In [40], it is proved that even these approximate 
maximum likelihood estimation schemes have minimal statis-
tical efficiency.

Real data example
For TEM problems, considering the property that the change 
usually corresponds to a sparse mean shift (a sparse feature), 
we can adapt the general ACM and ASR for exponential family 
distributions in [40] to the case when the signal is distributed as 
a Gaussian with a sparse mean vector and set the constraint set 
A  for the unknown parameter to be : s1< < #i iC= " , (refer to 
[46] for an automatic choice of s) as a convex relaxation of the 
nonconvex set that contains all sparse vectors with an upper 
bound on the sparsity level. Here, 1$< <  and 2$< <  denote the 1,  
and 2,  norms in the Euclidean space, respectively.

Figure 7 gives an example of extracted signals for 15 consec-
utive angles; clearly, a few angles contain significant changes, 
which will be captured by the sequential change point detection 
algorithm. Here, ( )T bACM  and ( )T bASR  with RdC=  both stop 
at time ,t 18=  the CUSUM procedure with an all-one post-
change mean vector stops at time ,t 24=  and the GLR proce-
dure stops at time .t 4=  Domain knowledge tells us that the 
change happens at time .t 17=  So, the detection delay of our 
methods is one, while that of the CUSUM procedure is seven 
(meaning it takes two samples to detect). The GLR procedure 
raises a false alarm because it is too sensitive to noise.

Spatial correlations in diffraction space
Feature tracking has long had application in EM for purposes 
of drift correction. More recently, Fourier transform-based 
cross correlation techniques have been applied to diffraction 
space to track shifts in diffraction spots and disks [47], [48]. In 
this approach, a grid of diffraction patterns is collected from an 
area of interest using scanning nanobeam electron diffraction 
(NBED). Similar to high-angular-resolution electron backscat-
ter diffraction [49], [50], this approach relates small shifts in 
diffraction space to point-to-point rotations and changes in lat-
tice parameters in real space. By collecting diffraction patterns 
in a grid pattern using NBED, strain gradient and crystallo-
graphic rotation maps can be produced at significantly larger 
scales than geometric phase analysis-based approaches and at 
spatial resolutions approaching 1 nm. Although the theoretical 
basis for relating shifts in diffraction patterns to the phase, ori-
entation, and strain state of material has been well understood 
for decades, it is only with the recent advent of efficient elec-
tron detectors that nanobeam diffraction has been recognized 
as a viable property mapping technique. Practical applications 
were first demonstrated just over five years ago, with numer-
ous materials science applications soon following, including 
measuring lattice parameter changes associated with chemical 
gradients in novel piezoelectric materials [51], tracking strains 
and elemental disorder associated with dislocation motion in 
stainless steel and aluminum alloys [52], [53], and measuring 
strains in multilayered materials [47].

Diffraction patterns are essentially a reciprocal space rep-
resentation of the probed sample volume. Thus, the spacing of 
diffraction disk ghkl  is equal to the inverse of the atomic plane 
spacing, .dhkl  More formally, shifts in diffraction spot spacing 
can be used to calculate the 2D deformation gradient tensor,  .F  
This tensor can be decomposed using a polar decomposition into 
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an elastic strain gradient component (the symmetric portion of 
)F  and a rigid body rotation tensor (the asymmetric portion of 
).F  The accuracy of the deformation gradient tensor measure-

ments is directly related to how accurately the locations of the 
diffraction features (generally spots) in the diffraction patterns 
can be identified. As even single-pixel precision is inadequate for 
detecting most strains present in materials of interest, subpixel 
routines have been developed and are discussed in the following.

To enable rapid identification of disk locations, fast Fourier 
transforms are used to calculate the correlation between a ref-
erence disk and the NBED pattern according to

 F
F

( ) ,f g
f g

f g1)
$

= c
- F

F F$
) "
"

"
"

,
,

,
, 3  (5)

where F  is the Fourier transform, * indicates the convolu-
tion, and Xr  indicates the complex conjugate of X; 1 c-  gives 
the weighting of the Fourier coefficients, with 0c=  cor-
responding to a standard cross correlation and 1c=  corre-

sponding to a phase correlation. Once calculated, the peaks in 
the correlation can be taken to be the location of the center of 
each diffraction disk. The reference disk can be a measured 
disk collected in a vacuum or a simulated disk based on the 
convergence angle and camera length used during diffrac-
tion. Under the kinematical theory of electron diffraction, the 
disks in the diffraction pattern all have uniform contrast, with 
the size of a disk determined by the convergence angle of the 
electron beam. However, due to the thickness and density of 
TEM samples, electrons usually undergo multiple scattering 
events, necessitating the application of dynamical theory to 
understand the contrast variations in the diffraction disks. 
This dynamic contrast varies as a function of thickness, sam-
ple bending, and localized strain field gradients [see example 
diffraction patterns in Figure 8(a) and (b)]. Since all these in-
fluences are found in most TEM samples of interest, these 
contrast variations must be accounted for when determining 
the locations of the diffraction disks.  Beyond these dynamical 
diffraction effects, diffraction patterns contain random noise 
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common to all detectors. These sources of contrast fluctua-
tions have motivated various software- and hardware-oriented 
solutions to increase the accuracy of the correlations.

Figure 8 describes the influence of c  in (5). As can be seen, 
the peak becomes much more localized as the correlation shifts 
to phase correlation over standard cross correlation. Pekin et al. 
explored a number of correlation and filtering-based approach-
es to determine the best method of determining diffraction disk 
location, optimizing both the accuracy and precision of the 
measurements as well as the computational expense [55]. They 
found that while standard cross correlations performed well on 

noisy patterns, low-frequency contrast fluctuations led to large 
systematic errors. In contrast, phase correlations performed 
well on patterns with low-frequency fluctuations but showed 
significant errors when high-frequency noise was present. 
They found that setting .0 5c=  provided the best compro-
mise. Filtering further increased the accuracy of the correla-
tions, especially in the presence of high-frequency noise.

Using simulated and experimental patterns, they found 
that prefiltering the patterns led to a significant increase in 
the accuracy and precision of identifying diffraction spots. 
Because NBED data sets often include tens or hundreds of 
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thousands of distinct diffraction patterns, methods that rely 
on iterative processes to sharpen images and identify fea-
tures, such as Canny filters, followed by circle fitting were 
ruled out. Instead, a simple Sobel filter used to sharpen 
edges of geometric shapes was found to improve the accura-
cy and precision of the correlation measurements while still 
being computationally efficient. Subpixel resolution in the 
correlations is achieved using a local upsampling approach 
in frequency space before fitting a parabolic curve. Since 
the calculations are performed as matrix multiplications in 
the frequency domain, the refining process adds little com-
putational expense.

While these software-based solutions improve the accuracy 
and precision of disk identification, which in turn improves 
the resolution of the elastic strain gradient measurements, the 
resolution is still limited to measuring relatively large elastic 
strains. To further increase the accuracy of disk registration, 
hardware solutions have been proposed 
and implemented, which decrease the 
influence of dynamical diffraction 
effects. One such approach is to use a 
precessed electron beam to average out 
dynamical diffraction effects, leading to 
quasi-kinematical diffraction and reduc-
ing the prevalence of low-frequency 
contrast fluctuations in the diffraction 
patterns [56], [57]. Rather than the elec-
tron beam entering the sample parallel 
to the optic axis of the microscope, the 
beam is rotated at a fixed angle during 
pattern collection. While this approach 
has shown improvement in disk regis-
tration, with the correlation precision 
approximately twice as good as achieved 
through standard NBED, it comes at a 
high cost, as precession coils must be 
added to the microscope column.

To achieve similar gains in resolu-
tion, Zeltmann et al. and Guzzinati et al. 
have proposed adding patterned aper-
tures to the illumination system of the 
microscope [58], [59]. In their approach, 
known as Bessel beam diffraction, 
Guzzinati et al. add a ring-shaped aper-
ture, giving a parallel precession effect 
where the beam does not need to be 
rotated. Zeltmann et al. use a “bullseye” 
detector to shape the beam. In both cases, 
the aperture pattern is passed to the dif-
fraction disks themselves, resulting in 
shapes that can be readily identified 
using correlation algorithms. Figure 9 
offers a comparison between the pat-
terns and correlation values of NBED 
patterns using standard [Figure 9(a)] and 
bullseye [Figure 9(b)] apertures.

Future outlook
As electron detector technologies and computational power 
continue to increase, the techniques described in this article 
are likewise expected to improve efficiency and accuracy. 
However, data collection in TEM is still heavily reliant on user 
input. This creates a bottleneck in materials discovery, which is 
increasingly being recognized as a limiting factor [60]. TEM 
holders now allow precise control of local environments, 
including the temperature, stress state, and atmospheric con-
ditions, facilitating in situ material synthesis, processing, 
and testing at the nanoscale. However, it is often impossible 
to know a priori where the processes of interest will initiate, 
resulting in the salient phenomena occurring without observa-
tion, and understanding the transformation pathways is left 
to speculations based on post mortem observations.

The ability to rapidly detect state changes and accu-
rately identify regions of interest, both in real and diffraction 

0% 1% 2% 3% 4% 5% 6%

8 mrad

(a) (b)

(c)

(d)

7% 8%

Cross-Validation Error (σcv)

Hybrid Correlation

Cross Correlation

kσcvl = 3.6%kσcvl = 0.3%

kσcvl = 0.6%
kσcvl = 2.7%

FIGURE 9. A comparison of the correlation of NBED patterns (a) with and (b) without using a bullseye 
aperture. (c) and (d) Improvements of cross correlation and hybrid correlation values when using a 
bullseye aperture (the blue distribution) compared to a standard aperture (the red distribution) (modi-
fied from [54]).

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 09,2022 at 16:58:48 UTC from IEEE Xplore.  Restrictions apply. 



102 IEEE SIGNAL PROCESSING MAGAZINE   |   January 2022   |

space, raises the possibility of overcoming limitations associ-
ated with reliance on user input. The techniques described in 
this survey can be integrated directly into the microscope for 
in-line processing and adaptive imaging. Microscopes could be 
“taught” features of interest to search for in the case of “needle-
in-a-haystack” problems and to detect during in situ experiments 
and adjust imaging modes and resolutions to optimize the data 
extraction process.

Further, the methods described in this article are neces-
sary for extracting materials knowledge from large data sets of 
images. The ability of researchers to efficiently analyze these 
images will enable the building of PSP relationships for new 
materials with higher accuracy due to the large data sets. This 
will help build the knowledge needed for understanding how 
material structure can be manipulated to create materials with 
desired properties and performance.
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