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ABSTRACT: Updating a calibration model formed in original (primary)
sample and spectral measurement conditions to predict analyte values in
novel (secondary) conditions is an essential activity in analytical chemistry in
order to avoid a complete recalibration. Established model updating methods
require sample analyte reference values for a small set of secondary domain
samples (labeled data) to be used in updating processes. Because obtaining
reference values is time consuming and is the costly part of any calibration,
methods are needed that do not require labeled secondary samples, thereby allowing on demand model updating. This paper
compares model updating methods with and without labeled secondary samples. A hybrid model updating approach is also
developed and evaluated. Unfortunately, a major impediment to adapting a model without secondary analyte reference values has
been model selection. Because multiple tuning parameters are commonly involved in model updating methods, thousands of models
are formed, making model selection complex. A recently developed framework is evaluated for automatic model selection of several
two to three tuning parameter-based model updating methods without secondary analyte reference values (labels). The model
selection method is based on model diversity and prediction similarity (MDPS) of the unlabeled samples to be predicted. The new
secondary samples to be predicted can be used to form the updated models and again to select the final predicting models. Because
models are formed and selected on demand to directly predict target samples, complicated cross-validation processes are not needed.
Four near-infrared data sets covering 40 model updating situations are evaluated showing that MDPS can select reliable updated
models outperforming or rivaling prediction errors from total recalibrations with secondary reference values.

A prominent concern in analytical chemistry is to decrease
the time and cost required to provide accurate analyses of

sample compositions. Multivariate calibration is a partial
solution where a calibration model is formed relative to a
large number of reference samples spanning expected
measurement and sample variances (matrix effects), including
both analyte and interferent amounts such as concentrations.
However, regardless of how prudently the expected variances
are spanned, circumstances arise that invalidate new sample
analyte predictions obtained from the original calibration
model. For example, measurement conditions change, such as
temperature or instrument components, or new samples are
measured on different instruments. Sample conditions can also
deviate such as new chemical processing batches, agriculture
varieties, or growing seasons affecting spectra and analyte
concentration ranges. The original and new sample and
measurement matrix effects are respectively termed primary
and secondary conditions. Other terminology sometimes used
are a source for primary and a target for secondary.
Mathematically, the primary calibration situation is ex-

pressed by y = Xb + e, where y denotes an m × 1 column
vector of analyte values for m samples, X symbolizes the m × n
matrix of measured sample responses at n sensors, e.g., spectral
wavelengths as used in this paper, b designates the model
vector characterizing the current matrix effects spanned by the
primary samples making up the y and X arrays, and e

represents random normally distributed noise with mean zero.
An estimated model regression vector (b̂) can be obtained in
multiple ways, such as using partial least-squares (PLS), ridge
regression (RR), or principal component regression (PCR).
With a model regression vector estimated, it is then used to
predict new sample analyte values. The primary calibration
maintains prediction accuracy as long as the new secondary
conditions are similar to the original primary calibration
samples (matrix matched by the span of both X and y). When
the secondary conditions change enough, the original b̂ is no
longer effective.
Various approaches exist to adapt a model to new current

secondary conditions and maintain accurate predictions.1 In
machine learning terminology, these methods would be
categorized as transfer learning.2−4 Transfer learning is a
broad-based term used for dealing with situations where the
primary and secondary conditions differ. The difference can be
any combination of dissimilarities between spectral shape and
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location changes5−8 for X differences and the analyte and
interferent distributions (concentration ranges) for Y dispar-
ities. Transfer learning by domain adaptation is restricted to
cases where the only difference between primary and
secondary conditions is due to X spectral changes. Said in
another way, only the domains of the primary and secondary X
distributions have shifted. A key point lacking from the
analytical chemistry literature is a measure to identify which
situation is occurring in order to guide the analyst to the
proper model updating method. While our laboratory is
currently working on such a measure (not reported on here),
the paper’s focus is domain adaptation for model updating.
Traditional methods of domain adaptation require a few

measured secondary samples with known analyte (labeled
samples) to reorient b̂ in its direction and magnitude, thereby
spanning the new secondary conditions. A common studied
approach for domain adaptation is local mean centering
(LMC)9,10 and is further described in the following Updating
Methods section. Because secondary samples with labels are
used, LMC may be useful in the transfer learning situations
where analyte amounts have also changed in addition to
spectral X shifts or when only the analyte amounts have
shifted, e.g., new secondary samples have lower or higher
analyte amounts than the primary samples.
While LMC only requires a few reference secondary

samples, model updating needs to become more practical by
not requiring any secondary reference values. Advancing model
updating without secondary analyte values is becoming
especially important as handheld devices improve and
consumer diagnostics with a smartphone becomes more
possible. The time-consuming and expensive part in any
calibration is obtaining analyte values (labels) for y. It is
relatively inexpensive to quickly amass a large set of unlabeled
new secondary spectra. Also, critical to advancing model
updating is the ability to select accurate prediction models
from the collection of models formed across the multiple
model-tuning parameters commonly involved in updating
processes.
An emphasis in recent works developing domain adaptation

methodologies for model updating using unlabeled secondary
samples has been to orthogonalize b̂ to representative spectral
differences between primary and secondary conditions.9−13

These model updating methods to-date have shown to be
viable approaches but model selection is still lacking.
Specifically, multiple tuning parameters are involved ranging
from two9−11 to four12 and wavelet optimizations are
required.13 Thus, thousands of models can be made by each
method. Model selection and optimization have relied on
prediction errors for primary and/or secondary analyte
reference samples, and hence, the methods are not yet fully
free of requiring new secondary analyte reference values.
Recently, a new approach to model selection with one or

more tuning parameters was developed and evaluated.14 It is
based on model diversity and prediction similarity (MDPS).
The MDPS approach selects models for only the specific
secondary samples being predicted.
Developed and evaluated in this paper are domain

adaptation model updating methods not requiring secondary
samples with reference values that may be useful for other
transfer learning situations. Model selection by MDPS is
shown to be effective with up to three tuning parameters.
Because the model updating methods presented involve

unlabeled secondary samples without analyte reference values

in conjunction with known primary analyte samples, some
comments are in order regarding the literature referring to this
situation as semisupervised learning. There are two basic
approaches to semisupervised domain adaptation and other
transfer learning methods. One process is termed inductive and
the other is transductive.3,4 In the primary/secondary context,
inductive involves using a secondary sample set without analyte
reference values to form models that are then used to predict
other new secondary samples. Transductive refers to also using
this unlabeled secondary sample set to form models, but the
models are now used to predict the same secondary samples
used to form the models. Thus, the transductive process
probably holds an advantage in prediction accuracy over
inductive approaches because the same samples used in
forming the updated models are the same samples being
predicted. This paper only involves the transductive use of new
secondary samples without analyte values. The MDPS model
selection further leverages these unlabeled secondary samples
to be predicted.
With the advent of handheld spectral devices, on demand

field analysis becomes more applicable with transductive
approaches. Inductive updating is also useful, but as noted
above, transductive maintains a small advantage. Applications
range across disciplines such as updating a primary source
model predicting tree pulp content for one species in a
geographical area to predict pulp content in a new region (and
perhaps a new related species too) out in the field negating the
need to obtain samples with follow-up laboratory reference
analysis. Similarly, a primary model could be updated online in
a manufacturing process to predict the analyte content in a
new batch.

■ UPDATING METHODS
Labeled Updating. The local mean centering (LMC)

approach to model updating requires labeled samples (samples
with analyte reference values) from the same secondary
conditions as the samples to be predicted. The augmented
regression equation for LMC is

τ τ
=

i
k
jjjjj

y
{
zzzzz

i

k
jjjjj

y
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y

y
X

X
b

P

S

P
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where respective primary (P) and secondary (S) calibration y
vectors contain reference analyte values, X matrices contain the
corresponding measured spectra, τ denotes a scalar tuning
parameter ranging from zero to infinity, which weights the
augmented secondary samples, and the vectors and matrices
are locally mean centered with respect to the corresponding
condition. The primary array sizes are as defined earlier and
the secondary yS and XS are l × 1 and l × n for l secondary
samples. The goal of LMC is to use as few secondary samples
as possible to avoid a full recalibration. Listed in Table S1 of
the Supporting Information (SI) is the penalty expression for
LMC. The augmented equation for LMC is solved using PLS
introducing latent variables (LVs) as a second tuning
parameter.

Unlabeled Updating. Being able to update a primary
model to new secondary conditions using unlabeled secondary
spectra can substantially reduce costs and shorten analysis
times. With LMC or a full recalibration, secondary samples
have to be obtained, transported, and ultimately analyzed by a
reference method in a laboratory setting. However, unlabeled
spectra can be measured in the field.
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A family of null augmented regression (NAR) equations can
be formed using the general augmented equation:

λ
=
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where R refers to spectral differences between primary and
secondary conditions.9 The λ value is used to weight the
samples as with LMC and penalize the degree of orthogonality
between b and spectral differences. The λ values vary across
the same range as τ in LMC, and models are generated by PLS
requiring optimization of two tuning parameters. As previously
noted, the transductive approach to unlabeled data is used, and
hence, the unlabeled secondary samples forming R are the
same samples to be predicted. The goal is to identify a model
vector that is properly nulled to the domain shift of the
particular prediction samples making up R. The new
predictiong sample spectra are centered to the primary samples
prior to prediction.
Recently, an approach to construct R was presented as an

NAR eigenvalue (NARE)9 that uses centroid differences
between primary and unlabeled secondary samples. Using
centroid differences makes R a row vector R = (μP − μSU)
where μ represents the corresponding subscripted mean
spectra and SU denotes secondary unlabeled spectra.
An approach related to a method termed domain invariant

PLS11 is one that uses for R the difference between locally
mean-centered covariance primary and unlabeled secondary
spectral matrices. The method adapted in this paper is referred
t o a s N A R - C o v 1 w i t h R c a l c u l a t e d b y

= −R X X X X( ) ( )
m P

T
P m SU

T
SU

1 1

P SU
, where mP and mSU indicate

the number of samples in primary and secondary locally mean-
centered arrays, respectively, and the superscript T symbolizes
the matrix algebra transpose operation.
While local centering is effective at removing spectral biases

in primary and secondary samples as with LMC, local
centering to form covariance matrices could remove key
spectroscopic information needed to improve the model
orthogonalization against spectral differences. In conjunction
with NAR-Cov1, no centering (NAR-Cov2) is also evaluated.
Because there is no centering, R is now a difference of outer
product matrices, but the Cov2 is used for consistency.
Discussed in the Supporting Information with Table S1 are

other NAR approaches. One method is related to a linear joint
trained framework for model updating that combines both
centroid and covariate shifts requiring four tuning parame-
ters.12 A similar mixed approach using three tuning parameters
is noted as NARE-Cov in Table S1.
Presented are results of MDPS selected models for the

unlabeled methods NARE and NAR-Cov1 and -Cov2 in
comparison to the LMC labeled method. Four NIR datasets
are studied. The result’s focus is relative to prediction errors.
Hybrid Updating by Adding Labeled to Unlabeled

Samples. Results are presented for a new hybrid version that
couples NARE with LMC. In addition to augmenting the
primary reference samples with the same unlabeled samples to
be predicted later with NARE, the hybrid approach also
includes a few labeled secondary samples. The method is
referred to as NARE-LMC. It is later shown that fewer labeled
samples are needed compared to LMC alone. The specific
NARE-LMC hybrid augmented equation becomes

λ μ μ
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Estimation of b is by PLS and three tuning parameters that
need to be optimized. In the hybrid appraoch, the new
predcition samples are centered to the labeled secondary
sample mean used in the eq. 4. Other NAR hybrid models can
be formed as noted in Table S1.

■ MODEL SELECTION
It was recently shown that the degree of difference between
primary and secondary X domains dictates whether primary or
secondary prediction errors can be used to select updated
models.15 If the differences are small, then primary prediction
errors can be used to select models. If the difference is greater,
selecting models relative to primary prediction errors produces
unsatisfactory results requiring some secondary reference
samples for proper model selection. However, for transductive
unlabeled model updating methods, model selection cannot
include secondary reference values.
Used here is a recently developed consensus model selection

approach that leverages model diversity with prediction
similarity (MDPS)14 to identify appropriate models. The
MDPS protocol does not use secondary analyte reference
values in selecting models, and hence, MDPS is compatible
with unlabeled secondary situations. Additionally, because
models are selected for unlabeled secondary spectra, massive
amounts of unlabeled data can be included to better span the
secondary domain that may improve prediction accuracy
depending on the degree of secondary matrix effects.
The consensus modeling concept behind MDPS is that if

two models are sufficiently different from one another but
generate similar predictions, then these two models may
contain robust predictions that can be extrapolated to imply
accurate predictions. The MDPS method includes a measure
to guard against selecting over- and under-fitted models with
similar predictions.
As shown in the following, the final MDPS selected models

for LMC and all NAR methods are those explicitly selected to
predict a specific set of new secondary samples. Additionally,
these new secondary samples are the same samples used to
form the NAR models. Thus, the NAR methods maintain an
advantage over LMC. However, LMC can leverage the
augmented secondary analyte reference values to presumably
form model vectors better characterizing the linear relationship
between analyte content and spectral responses. However,
LMC requires laboratory reference analysis of some
representative secondary samples. The hybrid approach in eq
3 has the NAR and LMC advantages and the LMC secondary
disadvantage. Regardless of the model updating method,
because models are specifically selected to predict a particular
new sample set, there is a small bias (overfit) toward the new
prediction samples. However, the models formed and selected
are only meant to predict these particular samples. If new
samples require prediction, then new models should be formed
and selected. Because models are formed and selected on
demand to directly predict target samples, a complex cross-
validation is not needed.

Model Diversity and Prediction Similarity (MDPS).
The MDPS method is briefly described and further details are
provided in ref 14. After the entire model set is generated over
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a range of tuning parameter values, all possible combinations of
two models are compared for diversity and prediction
similarities. The cosine of the angle between two models
(cos(θ)) is used to assess model diversity with values ranging
from 1, indicating total similarity, to 0, signifying complete
orthogonality (complete dissimilarity). The composite pre-
diction similarity for the ith and jth models is expressed by

ω= + + ̂C bSPD (RMSEC )i j i j i j i j, ,
RS

,
RS

,
RS

(4)

where SPDi, j = ∑k = 1
t |ŷk, i − ŷk, j| is the secondary prediction

differences (SPD) for all t unlabeled target samples to be
predicted (for the NAR methods, these would be the same
samples used to form R), ŷ is the respective model predictions,
RMSECi, j corresponds to the average of the two primary root-
mean-square error of predictions for the two models being

compared, ∥ ̂ ∥b i j, signifies the mean vector 2-norm, super-
script RS denotes range-scaled values between 0 and 1,
inclusive, and ω (≥0) weights the bias-variance trade-off
determined by the U-curve formed using the respective bias
and variance terms in the parenthesis. This trade-off is
captured by the 2-norm avoiding over-fitted models and the
primary prediction error shielding against under-fitting.
In a recent work, it was shown that using model diversity

thresholds of 0.3 < cos(θ) < 0.5 in combination with ω = 0.4
work well for MDPS to select accurately predicting models
with LMC.14 The weighted mean predictions from the lower
10% of the models in the model diversity range are then used
as the single prediction value for each secondary sample, i.e.,
each model prediction of a secondary sample in the modeling
updating method is weighted by the frequency in which the
model lies in the lower 10%.
The MDPS concept with two ω values is shown in Figure 1

for the Goat data using NARE where the red box highlights all

model pairs in the model diversity range 0.3 < cos(θ) < 0.5. A
zoomed view of the highlighted model diversity range is
provided in Figure S1 of the Supporting Information. The dark
blue box highlights those models selected in the lower 10%
range of the red box. Model pairs are color coded to the RMSE
validation (RMSEV) values for the secondary samples. From
Figure 1b with ω = 0.4, it is observed that by increasing ω from
0 in Figure 1a, the model selection region improves.
Specifically, poor predicting models corresponding to the
RMSEV color-coded points light blue and red are pushed out

of the selection region with ω = 0.4. Another characterization
of this effect is shown in ref 14.
While models with minimum RMSEV values occur in the

cos(θ) region around 0.75 in Figure 1, the diversity range 0.3 <
cos(θ) < 0.5 is better suited. This range was previously
determined suitable14 and it was again an effective compromise
functioning across the many datasets and modeling methods in
this study. Specifically, MDPS generally selects models in this
range with RMSEV values below or at the first quartile of all
potential models. In Figure 1b, there are 2100 Goat models
creating 2,203,950 model pair combinations with 285,374
model pairs in the red box and 28,537 model pairs selected in
the dark blue box for a total of 825 unique models selected by
MDPS with low RMSEV values. Heatmaps of the RMSEV and
selected model histogram are shown in the Supporting
Information demonstrating that the most frequently selected
models do maintain low RMSEV values.
Another point to consider when setting cos(θ) model

diversity value measures and ω in the prediction similarity
measure (balancing the amount of under- and over-fitting) is
the number of tuning parameters involved in the calibration
process. Generally, the more tuning parameters to be
determined, the larger the size of the model space spanning
all the generated models and the greater the model diversity
existing in this model space, e.g., a PLS set of models for a
primary calibration with one tuning parameter (number of
LVs) compared to the NAR family of models with two to three
tuning parameters. These points are further discussed in ref 14
in the framework of the Rashomon effect where there is not
one best accurate predicting model, but a collection of models
exists with similar accurate analyte predictions.16,17 Addition-
ally, the degree of domain difference between the primary and
secondary conditions and the density of acceptable models
across the tuning parameter values may affect the cos(θ) and ω
values.

■ EXPERIMENTAL SECTION
Software. All algorithms were developed by the authors

using MATLAB R2019b. An NAR suite of algorithms and the
MDPS model selection algorithm can be downloaded.18 The
code can be easily altered to form other NAR methods.

Data Descriptions. Four NIR datasets were studied:
Corn,19 Soy,20 Goat,21 and Tablet.22 Considering all possible
combinations of primary and secondary conditions, 40 model
updating situations are produced.

Corn. The same 80 cornmeal samples were measured across
three instruments, m5, mp5, and mp6, over 1100−2498 nm at
2 nm increments for 700 wavelengths. Analyte prediction
properties are moisture (9.377−10.993%), oil (3.088−
3.832%), protein (7.654−9.711%), and starch (62.826−
66.472%). All 24 possible updating conditions were analyzed
covering the four analytes across each of the six instrument
updating combinations. Spectra and a principal component
(PC) score plot are shown in Figure S2.

Soy. The same 60 soy seed samples with moisture (5.9−
18.4%), oil (29.0−43.4%), and protein (14.7−22.9%) analyte
reference values were measured on instruments R1 and R2
from 1100−2500 nm with 4 nm increments for a total of 300
wavelengths. All six updating scenarios were studied between
R1 and R2 for each of the three analytes. Spectra and a PC
score plot are presented in Figure S3.

Goat. Feces goat samples were analyzed for juniper berry
content in 1999 (61 samples) and 2002 (48 samples). Samples

Figure 1. Goat dataset scatter plot of composite prediction similarities
against model diversities for all possible NARE model combinations.
Points are color coded according to average RMSEV values between
models. Panel (a) shows ω = 0 and (b) has ω = 0.4. The red box
indicates the model diversity threshold of 0.3 < cos(θ) < 0.5, and the
dark blue box shows the lowest 10% of models selected in the
diversity region.
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were measured from 400−2500 nm at even wavelengths (1050
total wavelengths). For this study, 1999 and 2002 correspond
respectively to primary and secondary conditions for one
updating situation. Spectra, a PC score plot, and histograms of
the y juniper berry analyte content are displayed in Figure S4.
The histograms show similar distributions between 1999 and
2002.
Tablet. Pharmaceutical tablets were produced with an active

pharmaceutical ingredient (API) escitolopram in four nominal
tablet weight categories (types 1, 2, 3, and 4) with respective
total tablet weights of 90, 125, 188, and 250 mg. The different
total weights make unique sizes with respective tablet
thicknesses ranging from 2.9 to 4.3 mm. Tablets were
produced in two settings: laboratory for primary and full for
secondary batches. There are 30 tablets for each batch of tablet
type making 120 tablets for each batch. The spectra plotted in
Figure S5 were measured from 7400−10,500 cm−1 for a total
of 404 wavelengths. The corresponding PC score plots are also
in Figure S5. Histograms of the API analyte content for
primary and secondary batches presented in Figure S5
characterize small differences in the y distributions and the
full API content are essentially spanned by the lab samples.
Past studies have shown that updating is best when tablet type
1 samples are always involved. Including type 1 produces 9
possible updating situations with two tablet types in each of
the primary and secondary batches: 1&2−1&2, 1&2−1&3,
1&2−1&4, 1&3−1&2, 1&3−1&3, 1&3−1&4, 1&4−1&2,
1&4−1&3, and 1&4−1&4, with the first condition listed
being primary.
Parameter Values for Model Formation and Selec-

tion. The number of LVs for PLS ranged from 1 through the
mathematical rank of each primary spectral matrix XP. There
are 50 values each for the τ and λ tuning parameters except for
NARE-LMC with 30 values each to reduce computation time.
All values exponentially decrease from the highest to the lowest
singular values of each XP spectral matrix.
As previously noted, only models in the diversity range 0.3 <

cos(θ) < 0.5 at ω = 0.4 were evaluated for possible model
selection. This diversity range and the ω value were empirically
determined optimal in a previous work involving two tuning
parameters and small deviations from these values are
acceptable.14

Data Splitting for Validation. In order to evaluate model
updating prediction accuracies in conjunction with model
selection by MDPS, 100 random sample splits were used. The
sample division sizes for primary source calibration (PRI),
augmented secondary calibration (SCAL) for LMC and
NARE-LMC, and secondary validation (SVAL) are shown in
Table S2.
Mean RMSEV and R2 values (from plotting predicted

analyte validation values against reference values) across the
100 random splits are reported. Note that for the Corn and
Soy datasets, the same samples were measured in both primary
and secondary conditions. Thus, care is taken to ensure the
same samples do not appear in both primary and secondary
sets on each random split.
To expand the number of samples forming R for NARE and

NAR-Cov1 and -Cov2, the SCAL samples are appended to
SVAL (removing reference analyte labels). This expanded set
is also used in MDPS. However, the SCAL samples are not
predicted for a fair comparison of respective SVAL RMSEV
and R2 values across all updating methods. For hybrid NARE-
LMC, only SVAL was used to form R.

Benchmarks. Three baseline prediction errors are needed
to evaluate and compare model updating methods. For all
three baselines, PLS is used.
The first baseline is primary predicting secondary (PPS),

which assesses the situation of the primary calibration model
being used to predict the new secondary validation sample set
SVAL in Table S2. The PPS models are PLS calibrations of the
primary sample set PRI in Table S2. The PPS RMSEV and R2

values show the necessity for model updating. Generally, the
greater the matrix is affected by the differences between
primary and secondary domains, PPS is expected to perform
worse.
The next baseline is secondary predicting secondary (SPS)

to characterize the instance when the time and expense is taken
for a full recalibration. Thus, model updating methods should
ideally be competitive with SPS. To ensure representative SPS
models are used, each full secondary dataset is randomly split
100 times with 60% of the samples used for calibration and
40% for the validation.
The third baseline is the small secondary predicting

secondary (SSPS). The SSPS result needs to show that using
the small SCAL set is not practical for predicting the larger
SVAL sample set and some primary data is needed. This
baseline is only used with LMC.
Shown in figures are the boxplot trends of RMSEV and R2

values at the minima and first two quartiles for PPS, SPS, and
SSPS models.

■ RESULTS AND DISCUSSION

It was recently shown that if quartile boxplots of model quality
measures, such as RMSEV and R2 values, over a series of data
splits are used to evaluate and compare tuning parameter-
based methods, then it becomes critical to exclude from
consideration those tuning parameter values where models
have essentially converged.14 For example, depending on the
range of tuning parameter values, an excessive number of
under- and over-fitted models can be formed. These subsets of
respective models typically predict similarly, and hence,
quartile boxplots of compiled model quality measures
including these models misrepresent the methods being
evaluated.
To objectively compare labeled and unlabeled updating

methods using quartile boxplots over the 100 random splits,
the same approach used previously for LMC14 is used in this
paper to identify tuning parameter regions that span
nonconverged tuning parameter values. This region is referred
to as the active bias-variance trade-off zone and covers the
tuning parameter transition region where variation between
models is important. Tuning parameter values beyond the
active bias-variance zone are deemed over- or under-fitted and
need to be removed before making quartile boxplots of model
quality measures. The Supporting Information contains
information on how the tuning parameter active bias-variance
trade-off zones are identified with up to three tuning
parameters, as well as showing the misrepresentation.
All results shown and discussed are based on only those

models selected from the active bias-variance trade-off zones.
However, it is important to note that MDPS model selection
does not necessarily require a prior determination of tuning
parameter active bias-variance trade-off zones. Convergences
are determined for a fair comparison of method-specific
boxplots. Results presented in the Supporting Information
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demonstrate this fact and it was also shown in the previous
MDPS paper.14

Number of Unlabeled Samples. A crucial issue with
transductive model updating is model performance as the
number of unlabeled secondary samples increases (or
decreases). Such an analysis was undertaken with the Goat
results for the 100 random splits presented in Figure 2. Shown

are the mean minima, first quartiles, and medians (second
quartiles) for baseline SPS, NARE, NAR-Cov1, and NAR-
Cov2. Also, shown are the mean minima and quartiles
associated with the MDPS selected models. Plots in Figure 2
are typical and another data situation is plotted in Figure S13.
Regardless of the model updating method, Figure 2 shows

that a minimum number of samples is needed for XSU. For this
dataset and others, it is observed that after five unlabeled
secondary samples are augmented to the 61 labeled primary
samples, the RMSEV values substantially decrease compared to
augmenting with only one sample. The RMSEV values
gradually further decrease up to 10 samples. The R2 values
level off after five samples are used and predicted. From Figure
2, it is also observed that while the RMSEV first quartiles and
medians of the models evaluated tend to decrease and
converge to single values after a few unlabeled samples are
added, the minima decrease and then begin to rise after more
than three unlabeled samples. The lowest minimum occurs at
three unlabeled samples then rises again due to the over-fitted
nature of minima RMSEV values with few samples. As
additional samples are added, the minima RMSEV values
increase because it becomes difficult for a model to closely fit
the noise for all samples compared to when fewer samples are
used in XSU, and hence, these models can be considered more
robust. The MDPS selected models do not have this problem

indicating that MDPS is not selecting the over-fitted models.
The first quartiles and medians of evaluated models both
continue decreasing as more unlabeled secondary samples are
included due to the over-fitted models no longer being
considered as with the minima trends.
Intrinsically, changing the number of secondary samples

affects both the model updating and selection processes. Very
few secondary samples and R is overfitted to the primary and
secondary differences of the specific secondary samples and
cannot effectively encode these differences. The model
diversity requirement used in MDPS is set to only select
robust models. Therefore, models at minima RMSEV values
are too over-fitted and are not selected. In contrast, when many
secondary samples are used, R is no longer over-fitted to the
noise of the secondary samples, and therefore its models can be
labeled as more robust. These models are now accessible to the
MDPS diversity criterion since the robusticity requirement is
now satisfied.
Results in Figure 2 do not fully answer the question on how

many specific samples are needed for XSU in order to effectively
update a model. This number will most likely depend on
several factors. One is the degree of difference between the
primary and secondary domains in terms of the total matrix
matching relative to spectral effects and analyte values. Said
another way, the number of samples will depend on if the task
is domain adaptation or transfer learning. Another factor is the
degree of intrasimilarity between the samples used in XSU. Both
of these factors will also probably affect how well MDPS works.
Results presented in Figure 2 and Figure S12 indicate that
large numbers of samples are not needed for the data sets
studied. The number of samples listed in Table S1 are few and
provide acceptable results.

Method Comparisons. It is impossible to show results for
all 40 updating situations. Thus, a few characteristic results are
presented in Figure 3 for each of the four main datasets. There
is only one Goat dataset updating situation and numerous
cases for the other three datasets. Thus, Figure 3 covers the
Goat dataset and one model updating situation for the other
three datasets (see the Figure 3 caption). Results for other
updating cases are shown the Supporting Information.
Figure 3 has results for the baseline SPS, labeled LMC,

unlabeled NARE, NAR-Cov1 and NAR-Cov2, and hybrid
NARE-LMC. The boxplots in Figure S16 duplicate those in
Figure 3 but also include the baselines PPS and SSPS. As
expected, PPS and SSPS in Figure S16 perform poorly even at
the generally over-fitted minima models, demonstrating the
need to update the primary model. The small secondary
reference set SSPS is also not able to predict the secondary
samples and assistance from labeled primary samples is used
with LMC.
From Figure 3, it can also be observed that the unlabeled

model updating methods NARE, NAR-Cov1, and NAR-Cov2
essentially perform equivalently for three of the datasets
(Figure 3a,c,d). More importantly, the methods generally
perform as well as or better than LMC that requires secondary
reference values.
For the three datasets where the analyte distributions are

well matched, NAR-Cov1 and NAR-Cov2 provide acceptable
results. Conversely, for Tablet 1&4−1&3 in Figure 3b, the
primary and secondary datasets are not well matched in terms
of X in combination with small differences in analyte ranges
(see Figure S5). In this circumstance, the NAR-Cov methods
do not perform as well, where NAR-Cov1 with local centering

Figure 2. Goat mean minima, first quartiles, and medians of RMSEV
and R2 values for the following situations in the order: SPS (black
solid line), NARE for all generated models (red solid line),
NAREMDPS for selected models (red dash line), NAR-Cov1 (blue
solid line), NAR-Cov1MDPS (blue dash line), NAR-Cov2 (green solid
line), and NAR-Cov2MDPS (green dash).
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performs worse than NAR-Cov2 with no centering. Plots in
Figure S5 of spectra and PC scores show that within each
primary and secondary conditions there are unique spectral
differences. Having categorical situations expressed in outer
product arrays (multimodal) in combination with small
differences in analyte ranges makes it more difficult to form
accurate predicting models that are simultaneously nulled
(orthogonal) to the matrices of categorical differences. Thus,
too much predictive analyte information is probably lost with
the NAR-Cov null penalty in this situation. For NARE, models
only need to be orthogonal to differences between mean
vectors. These trends across the four datasets in Figure 3 are
similar to those observed with other dataset situations shown
in Figure S17.
The hybrid NARE-LMC approach provides small improve-

ments relative to LMC and NARE alone (Figure 3 and Figures
S14 and S15). However, the small improvement from NARE-
LMC over LMC indicates that by including unlabeled samples,
fewer labeled samples are needed with NARE-LMC.
Prediction errors can be further reduced by optimizing the

effective prediction region of XSU such that the only samples
predicted are those XSU samples spectrally bracketed
(spanned) by other XSU samples. Such potential prediction
samples can be detected by using a Kennard−Stone23 sample
split on XSU. A Kennard−Stone study based on the Euclidean
distance was performed (not shown) where all of XSU is used
to form models, but only the innermost spectrally bracketed
XSU samples are used in MDPS to select models and be
predicted. Prediction errors are always noticeably reduced for
the most centroid XSU samples. As additional samples are
included in MDPS and predicted moving out from the
centroid, prediction errors increase converging to values
reported using the full XSU in MDPS with corresponding
predictions. Thus, if experimental design constraints are
possible, results from the NAR family of model updating

methods can be improved compared to predicting all samples
in an XSU. It may be possible that if only one new sample
prediction is desired, e.g., one sampling site location, then a
collection of spectra could be measured in close proximity to
form R and only the Kennard−Stone most centroid spectrum
is predicted for the sample analyte value. This scheme assumes
that some secondary spectral variance exists across the
sampling sites.
It has been suggested to fully assess the success of a

calibration transfer method; the relationship of the new
samples to the updated model space should be evaluated
with prediction outlier diagnostic.24 However, these studies
were not performed.

Histograms of Selected Models. Instead of the usual
approach of selecting one model to predict new samples, the
MDPS approach selects a collection of models ideally located
around the minimum RMSEV value for a consensus
prediction. The mean RMSEV heatmap across the 100 data
splits is shown in Figure 4 in conjunction with the histogram

heatmap of MDPS selected models for NARE using the Soy
R1-R2 updating situation. From the heatmaps, it is observed
that the most frequently selected models are indeed the same
models with lower RMSEV values.
Displayed in Figure 5 are similar heatmaps for NAR-Cov2

using the same updating situation. It is again observed that

MDPS mostly selects models correlated to low RMSEV values.
Histogram and RMSEV heatmaps graphed for additional
datasets in the Supporting Information including NAR-Cov1
show that these observations are general. Even in the
distinctive Tablet situations where the NAR-Cov methods do
not perform as well, MDPS largely selects models associated
with lower RMSEV values.

Figure 3. Boxplots comparing model updating and a baseline method.
Shown are the RMSEV minima, first quartiles, and medians for
models evaluated and the MDPS models selected from the evaluated
models for datasets (a) Corn mp6−m5 starch, (b) Tablet 1&4−1&3,
(c) Goat 99−02, and (d) Soy R1 and R2 moisture.

Figure 4. NARE heatmaps of (a) mean Soy R1-R2 moisture RMSEV
values across the 100 outer data splits and (b) histogram of models
selected by MDPS. Areas with the lowest RMSEV values and matched
models on the histogram are circled.

Figure 5. NAR-Cov2 heatmaps of (a) mean Soy R1-R2 moisture
RMSEV values across the 100 data splits and (b) histogram of models
selected by MDPS. Areas with the lowest RMSEV values and matched
models on the histogram are circled.
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The MDPS approach is also able to select acceptable models
for NARE-LMC with three tuning parameters. For example,
shown in Figure 6 is a heatmap of the RMSEV values and

corresponding histogram of selected models for the Soy R1-R2
moisture case using NARE-LMC. The most frequently selected
models are the models with the lowest RMSEV values. Parallel
results are shown in the Supporting Information for other
datasets.

■ CONCLUSIONS
Results presented further confirm that model updating with
unlabeled secondary data is efficient and accurate. The
foundation of the unlabeled model updating methods
presented can be extended to a family of updating methods
with different penalty terms (some of which are noted in the
Supporting Information). However, model selection for such
methods has been missing, specifically selecting acceptable
models to predict secondary samples without corresponding
reference values. If secondary conditions are only moderately
different than the primary conditions, prediction errors for the
primary samples with reference values can possibly be used.
However, without a measure to indicate the degree of
difference, such an approach should only be used with caution.
The MDPS process selects models specifically targeted to the
new prediction samples. The efficacy of the MDPS approach is
shown to not only be robust across datasets but also robust
throughout each of the model updating methods. Predictions
from the MDPS selected models are consistently at or below
the first quartile of all models formed.
As noted, what is needed is a measure to characterize the

degree of respective X and y differences between primary with
reference values (labeled primary) and secondary samples
without references (unlabeled secondary) in order to ascertain
which situation is present to decide on an appropriate updating
scheme. Our laboratory is currently working on a measure in
conjunction with evaluating LMC, NARE, and NARE-LMC
for the different possible scenarios. It is expected that as the
degree of analyte content distributions differ, the more a
method using some reference values such as LMC or NARE-
LMC will be needed.
It was also discussed that if applicable, the unlabeled

secondary samples used in the model updating can be
Kennard−Stone sorted. Reduced predication errors are
obtained for the centermost samples.
Lastly, it is appealing to be able to interpret the final model

weight values on labeled or unlabeled secondary samples used
in forming models. However, there are several factors that go
into the magnitude of these tuning parameter values. The key
is the degree of difference between the spectral domains and

how similar the analyte amounts and other spectral responding
interferences are to the referenced primary calibration samples,
i.e., how well the secondary samples are matrix matched by
both X and y. Also important are the calibration sample density
and respective error structures,23 number of primary samples,
and the number of secondary samples used in the model
updating algorithm. The inability to interpret weight values is
much like the situation of the inability to interpret model
regression vectors due to the many model regression vectors
that can accurately predict the same samples.25−28
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