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High-Resolution Spatio-Temporal Model for County-Level
COVID-19 Activity in the U.S.

SHIXIANG ZHU, ALEXANDER BUKHARIN, LIYAN XIE, MAURICIO SANTILLANA,
SHIHAO YANG, and YAO XIE

We present an interpretable high-resolution spatio-temporal model to estimate COVID-19 deaths together
with con!rmed cases 1 week ahead of the current time, at the county level and weekly aggregated, in the
United States. A notable feature of our spatio-temporal model is that it considers the (1) temporal auto- and
pairwise correlation of the two local time series (con!rmed cases and deaths from the COVID-19), (2) corre-
lation between locations (propagation between counties), and (3) covariates such as local within-community
mobility and social demographic factors. The within-community mobility and demographic factors, such as
total population and the proportion of the elderly, are included as important predictors since they are hypoth-
esized to be important in determining the dynamics of COVID-19. To reduce the model’s high dimensionality,
we impose sparsity structures as constraints and emphasize the impact of the top 10 metropolitan areas in the
nation, which we refer to (and treat within our models) as hubs in spreading the disease. Our retrospective
out-of-sample county-level predictions were able to forecast the subsequently observed COVID-19 activity
accurately. The proposed multivariate predictive models were designed to be highly interpretable, with clear
identi!cation and quanti!cation of the most important factors that determine the dynamics of COVID-19.
Ongoing work involves incorporating more covariates, such as education and income, to improve prediction
accuracy and model interpretability.
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1 INTRODUCTION
The global spread of COVID-19, the disease caused by the novel coronavirus SARS-CoV-2, has
a"ected nearly everyone’s lives on the planet. Even the largest economies’ resources have been
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Fig. 1. An example of spatio-temporal covariates in our model for Coconino County, Arizona. Based on the
counties in the United States as fundamental units, we assume the number of confirmed cases and deaths
of COVID-19 reported in a given county are jointly related to the numbers reported in its adjacent counties
(they are Kane, San Juan, Navajo, Gila, Yavapai, and Mohave for Coconino in this example) and 10 selected
nationwide hubs (including San Francisco, Los Angeles, Sea!le, Chicago, Atlanta, Miami, Washington, D.C.,
Boston, and New York). The numbers of cases and deaths also depend on some local covariates, such as
community mobility level and some counties’ demographic factors.

strained due to the large infectivity and transmissibility of COVID-19. As the number of cases
of COVID-19 continues increasing, understanding the !ner-grained spatio-temporal dynamics of
this disease and some of the leading factors a"ecting disease transmissions is critical to helping
o#cials make policy decisions and curb further spread of the disease.
Most of the previous research aimed at studying the spread of COVID-19 has focused on two

key measurements: the number of con!rmed cases and the number of deaths. Cases going up or
down over time shed light on the rate of spread of COVID-19 at a given point in time—but it is only
valid if enough people get tested. The limited testing ability resulted in a severe underestimation
of COVID-19 cases in the pandemic’s early stages [35]. For example, when there was not enough
testing capacity, as was the case in New York City in March 2020, the number of cases reported
was an undercount of actual cases, estimated to be much larger (up by a factor of 10) [23, 40].
Some studies have circumvented underestimation by considering the case positivity rate, which
measures the percentage of total COVID-19 tests conducted that are positive. However, most of
the widely used COVID-19 datasets, such as the COVID Tracking Project [48], only collect the
total number of people with a completed polymerase chain reaction (PCR) test that returns
positive as reported by the state or territory, which has a much lower spatial resolution (state level)
in comparison with the case and death data (county level). Such coarse-grained testing numbers
would introduce extra noise to our model and would most likely be incapable of improving the
con!rmed case prediction accuracy at the county level. Deaths are also an important metric that
most people care about regarding the virus’s ultimate epidemiological impact. In contrast to the
number of con!rmed cases, the number of deaths is a good and accurate indicator for evaluating
how serious a burden this pandemic is causing, not only on health care systems but also on the
general public’s mental health and well-being. Some epidemiological studies, such as [33], also
recommend tracking deaths, even though deaths lag behind new cases, typically by 2 weeks to a
month.
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A large amount of !ne-grained data o"ers a unique opportunity to study the disease’s spread
dynamics from a micro-level view. For the United States, several teams have been working on
collecting comprehensive COVID-19 tracking data, including daily counts of cases and deaths at
the county level. Such data gives us a general picture of how the virus is spreading across metro-
politan and micropolitan counties and how such dynamics are evolving. Besides considering the
cases and the deaths, we also aim to study other critical local factors in transmitting COVID-19.
Recent studies [38] on the spread of COVID-19 show that besides the distance to the epicenter,
other factors, such as subway and airport, are positively connected with the virus transmission.
Moreover, both urban areas and population density are positively associated with the spread of
COVID-19 after the outbreak. The proportion of the elderly population has also been identi!ed as
a key factor in the death rate. Therefore, we consider the within-community mobility and two crit-
ical demographic factors by taking advantage of the COVID-19 Community Mobility Reports [21]
and theAmerican Community Survey (ACS) [8]. These two datasets are publicly available and
include detailed county-level statistics that provide insights into what has changed in response to
policies aimed at combating COVID-19 and what factors may a"ect the disease’s transmission. As
illustrated in Figure 1, in our model, we assume the numbers of cases and deaths in each county
depend on the neighboring counties and major metropolitan areas in the United States, which
we refer to as hubs in spreading the disease. Local community mobility and demographic factors,
including population and elderly population, are considered local covariates in the model, which
also play a crucial role in the !nal number of deaths.
In this article, we use a data-driven method incorporating a large-scale dataset from multiple

sources to predict the deaths and the con!rmed cases of COVID-19 at the county level in the United
States. Since death is a more accurate indicator for assessing the spread of the virus, we empha-
size predicting county-level deaths’ trajectories instead of the con!rmed cases. Our method’s most
notable contribution is considering the spatial structure among hubs and neighboring counties in
modeling the cross-correlation between cases and deaths. We also present the e"ect of a wide vari-
ety of geographic community mobility and social demographic factors on the spread of COVID-19.
Our approach drastically di"ers from previous studies [1, 6, 14], in which the number of cases and
deaths, and other covariates, including the community mobility and social demographic factors,
are interlinked through a vector autoregressive process. Our model shows that these hubs play
a pivotal role in spreading the disease. We also !nd that both cases and deaths are signi!cantly
related to the local level’s total population and that deaths are also positively associated with the
proportion of the elderly population. Additionally, we found that con!rmed cases are not signi!-
cantly related to the proportion of the elderly population, which may prove that the disease was
mostly circulating among young people in its later stage. In particular, while we identify a spike
in cases since the beginning of the summer, we do not observe a clear spike in deaths. This may
be explained by the fact that a more signi!cant proportion of young people, who are generally at
lower risk of death, were infected in the more recent pandemic stages.
The remainder of the article is organized as follows. We !rst review related works in the rest of

this section, followed by describing the datasets we have used in Section 2. Section 3 presents our
proposed vector autoregressive model with spatial structure incorporated. We demonstrate the
e"ectiveness of our model and discuss its interpretation in Section 4. Lastly, the article concludes
with discussions and future research directions in Section 5.

Related Work. Compartmental models have been widely used in infectious disease epidemio-
logical studies. In the SIR model [22], one of the simplest compartmental models, the population
is assigned to three components: S (susceptible), I (infectious), and R (recovered). These variables
(S, I, and R) represent the number of people in each compartment. The transition between
di"erent compartments is modeled using a set of coupled di"erential equations. Based on the SIR
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model, many variants have been proposed in the last decades, including the SIRD (Susceptible-
Infectious-Recovered-Deceased) model [9, 18] that considers deceased individuals, and the
SEIR (Susceptible-Exposed-Infectious-Recovered) model [25–27, 44, 59] that considers the
exposed period during which individuals have been infected but are not yet infectious themselves,
to name a few. The total population is usually assumed to be !xed in the compartmental models;
therefore, it works well when modeling nationwide data. However, in our high-resolution
modeling, each county’s population is of high variability due to dynamics across the county.
Therefore, we use a spatio-temporal model instead to capture the in$uence of major big cities and
neighboring counties without !xing each county’s population.
Besides compartmental models, much work has been done on predicting the total number of

COVID-19 cases and deaths without considering the spatial correlation across regions [39, 56, 58].
For example, recent work [7] introduces a regional model based on a self-exciting point process
to forecast the total number of infections for multiple countries. Another work [20] provides a
state-wise analysis and infections prediction for India’s states by considering three growth models,
namely, the logistic, the exponential, and the susceptible-infectious-susceptible models. Machine-
learning-based approaches have also been considered in modeling COVID-19 outbreak [3]. Some
work [55] attempts to use a neural network to model accumulative case counts for multiple coun-
tries. Recurrent-neural-network-based methods [24, 60] have been applied to model the temporal
dynamics of the COVID-19 outbreak. Our approach di"ers from these studies in two ways: (1) our
model provides !ner-grained predictions for the cases and deaths; (2) we model the multivariate
time series by considering the spatial correlation across regions as well as the correlation with the
demographic factors, which is more interpretable than the machine-learning-based methods.
Understanding the COVID-19 outbreak’s spatial spread is critical to predicting local outbreaks

and developing public health policies during the early stages of COVID-19. However, studies eval-
uating the spatial spread of the COVID-19 pandemic are scarce or limited [46]. Previous studies
have described the spatial spread of severe acute respiratory syndrome (SARS) in Beijing and
mainland China [15, 17, 29, 30, 42] using limited or localized data. One study also considered the
various connections between a few cities to calculate the spatial association [42]. There is also prior
work using the multivariate Hawkes process to model the conditional intensity of new COVID-19
cases and deaths in the United States at the county level [12], without considering the in$uence
of the big cities and other important demographic factors. The work of [4] develops two types
of county-level predictive models based on the exponential and the linear model, respectively. It
focuses on modeling the dynamics of cumulative death counts. In [31], the graph neural networks
are adopted to capture the spatio-temporal dynamics between various features; however, the lack
of interpretability hinders further understanding of the mechanism of the COVID-19 outbreak.
There is also a wide array of previous research based on autoregressive models that relate to our

work. In [2, 5, 16, 34, 50, 53], the autoregressive integratedmoving average (ARIMA) is used to
predict future data for di"erent countries. [41] uses an autoregressive-based time series model to
predict the total number of the world’s con!rmed cases. [11, 51] adopt the autoregressive arti!cial
neural networks to predict the number of accumulative cases in Egypt. Amore recent similar article
[32] studies the state-wise cases in Pakistan using the vector autoregressive model. However, two
signi!cant di"erences are (1) the spatial resolution of their predictions is much lower than our
results, and (2) these models do not consider the spatial correlation between places in the vicinity
and cities served as major transportation hubs.
There are also various e"orts studying impacts from other aspects, such as temperature, humid-

ity [47, 52], age, gender [15], and travel restrictions [13, 36]. Here, in our case, N = I ×T = 157, 200.
Most of these studies are constrained on a relatively small scale because of limited data at the pan-
demic’s early stage.

ACM Transactions on Management Information Systems, Vol. 12, No. 4, Article 33. Publication date: September 2021.



High-Resolution Spatio-Temporal Model for County-Level COVID-19 Activity in the U.S. 33:5

Fig. 2. Overview of Google mobility data in three selected categories: grocery, workplace, and transit on
three di"erent days. Counties in red and blue indicate their mobility is lower and higher than the normal
level, respectively. The mobility level varies over time and space due to local government policy change in
response to COVID-19.

2 DATA
We have used three comprehensive datasets in this study, including con!rmed cases and deaths
of COVID-19, community mobility data, and demographic census data. These datasets play an
important role in understanding the spatio-temporal correlation of COVID-19 transmission.
Con!rmed Cases and Deaths of COVID-19. We used the dataset from The New York Times [57],

based on state and local health agencies’ reports. The data is the product of dozens of journalists
working across several time zones to monitor news conferences, analyze data releases, and seek
public o#cials’ clari!cation on how they categorize cases. The data includes two parts: (1) Con-
!rmed cases are counts of individuals whose coronavirus infections were con!rmed by a laboratory
test and reported by a federal, state, territorial, or local government agency. Only tests that detect
viral RNA in a sample are considered con!rmatory. These are often called molecular or reverse
transcription-polymerase chain reaction (RT-PCR) tests. (2) Con!rmed deaths are individuals
who have died and meet the de!nition for a con!rmed COVID-19 case. Some states reconcile these
records with death certi!cates to remove deaths from their count, where COVID-19 is not listed
as the cause of death. These data have removed non-COVID-19 deaths among con!rmed cases ac-
cording to the information released by health departments, i.e., in homicides, suicides, car crashes,
or drug overdoses. All cases and deaths are counted on the date they are !rst announced. In prac-
tice, we have observed periodic weekly oscillations in daily reported cases and deaths, which could
have been caused by testing bias (higher testing rates on certain days of the week). To reduce such
bias, we aggregate the number of cases and deaths of each county by week.
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Fig. 3. Overview of the social demographic factors. The color depth represents the value of the demographic
variables of interest in certain counties.

Community Mobility. As global communities respond to COVID-19, we have heard from public
health o#cials that the same type of aggregated, anonymized insights we use in products such as
Google Maps could be helpful as they make critical decisions to combat COVID-19. The COVID-19
Community Mobility Reports [21] aim to provide insights into what has changed in response to
policies aimed at combating COVID-19. The reports record people’s movement by county daily,
across various categories such as retail and recreation, groceries and pharmacies, parks, transit
stations, workplaces, and residential. The data shows how visitors to (or time spent in) categorized
places change compared to the baseline days (in percentage). The negative percentage represents
that the level of mobility is lower than the baseline, and the positive percentage represents the
opposite. A baseline day represents a normal value for that day of the week. The baseline day is
the median value from the 5 weeks from January 3 to February 6, 2020. To match the temporal
resolution with the COVID-19 data and detrend the weekly pattern, we aggregate each county’s
mobility data by week. Examples of three categories have been shown in Figure 2. Figure 3 shows
two leading factors that a"ect the spread and infection of the disease, i.e., total population and the
proportion of the elderly aged 65 or older [45].

Demographic Census. Data from the ACS [8], provided by the U.S. Census Bureau, is a com-
prehensive source for demographic information about the population, age, and economic status
in each zip code region in the United States. Unlike the census data, which takes place every 10
years, the ACS is conducted every year. The latest ACS data are available in the year 2018. Some
demographic factors help us understand how population distribution a"ects the spread of disease
(by correlating the local socio-economic pro!le with its con!rmed cases and deaths). These fac-
tors contain essential information about the development and economic growth of di"erent areas.
To match the spatial resolution with the COVID-19 data, we aggregate the zip code regions’ de-
mographic data in the same county. We selected two leading factors that a"ect the spread and the
infection of the disease, i.e., total population and the proportion of the elderly aged 65 or older [45].

3 METHODOLOGY
This section presents our statistical model that captures the spatio-temporal correlation of the
spread of COVID-19. We begin with a brief description of the problem setup and notations, then
jointly model con!rmed cases and deaths as a vector autoregressive process in Section 3.2. The
essential notations de!ned in this section are also summarized in Table 1.
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Table 1. Summary of Essential Notations

Section Notation Description
3.1 T = {t = 1, . . . , T } Set of all weeks.

I = {i = 1, . . . , N } Set of all counties.
K = {k = 1, . . . , K } Set of mobility categories.
L = {k = 1, . . . , L } Set of demographic factors.
ci,t ∈ Z+ Number of con!rmed cases for county i ∈ I in week t ∈ T .
di,t ∈ Z+ Number of deaths for county i ∈ I in week t ∈ T .
zi,l ∈ R+ Data of demographic factor l ∈ L for county i ∈ I.
mi,k,t ∈ R Data of mobility category k ∈ K for county i ∈ I in week t ∈ T .

3.2 A = {(i, j ) : i, j ∈ I} Set of all county pairs in the U.S. that i, j are adjacent to each other or one of i, j is a hub.
Bτ = (βi, j ) ∈ RN×N Case’s coe#cients depended on past con!rmed cases between county i, j ∈ I for τ weeks ago.
Aτ = (αi, j ) ∈ RN×N Death’s coe#cients depended on past deaths between county i, j ∈ I for τ weeks ago.
H τ = (hi, j ) ∈ RN×N Death’s coe#cients depended on past con!rmed cases between county i, j ∈ I for τ weeks ago.
µk,τ ∈ R Coe#cient for mobility category k ∈ K in the past τ -th week w.r.t. the number of cases.
νk,τ ∈ R Coe#cient for mobility category k ∈ K in the past τ -th week w.r.t. the number of deaths.
υl ∈ R Coe#cient for demographic factor l ∈ L w.r.t. the number of cases.
ζl ∈ R Coe#cient for demographic factor l ∈ L w.r.t. the number of deaths.

3.1 Problem Setup and Notations
Consider con!rmed cases and deaths of COVID-19 in N counties and T weeks (recall that we ag-
gregated these numbers by week to reduce bias). Let I = {i = 1, . . . ,N } be the set of counties and
T = {t = 1, . . . ,T } be the set of weeks starting from March 15, 2020 until January 17, 2021. We
assume there is a set of counties I ′ = {i = 1, . . . ,N ′} ⊂ I playing a signi!cant role in spread-
ing the disease due to their high population density and well-developed transportation network
connecting to other major cities in the United States. We refer to these counties as hubs, and the
selected hubs are marked in Figure 1. Denote the number of con!rmed cases and deaths in county
i ∈ I and week t ∈ T as ci,t ∈ Z+ and di,t ∈ Z+, respectively. In our setting, T = 49, N = 3,144,
and N ′ = 10.
We also consider K mobility categories and L demographic factors as covariates of the model,

where K = 6 and L = 2. Let K = {k = 1, . . . ,K } be the set of community mobility categories
and L = {l = 1, . . . ,L} be the set of demographic factors. Denote the mobility score in category
k ∈ K for county i ∈ I in week t ∈ T asmi,k,t ∈ R, and denote the data of demographic factor
l ∈ L for county i ∈ I as zi,l ∈ R+. Let ct ! [c1,t , . . . , cN ,t ]ᵀ and dt ! [d1,t , . . . ,dN ,t ]ᵀ denote
the con!rmed cases and deaths in week t ∈ T , respectively. Let mk,t ! [m1,k,t , . . . ,mN ,k,t ]ᵀ
denote the score of community mobility category k ∈ K for all counties i ∈ I in week t ∈ T . Let
zl ! [z1,l , . . . , zN ,l ]ᵀ denote the data of demographic factor l ∈ L for all counties i ∈ I.

3.2 Spatio-Temporal Vector Autoregressive Model
We consider a linear spatio-temporal autoregressive model where the number of con!rmed cases
(ct ) and deaths (dt ) is a time series regressed on their previous values and the mobility covariate
mk,t and demographic covariate zl . Denote the time window’s length that we consider in the past
(the memory depth) as p. Based on previous studies [54], it is known that the COVID-19 virus has
an incubation period of around 2 weeks. Therefore, we choose p = 2 throughout this article.

De!ne the augmented observation vector as (which contains both con!rmed case and death
counts):

x t !
[
ct
dt

]
∈ R2N .

Then our spatio-temporal model can be written as a vector autoregressive (VAR) process:

x t =
p∑

τ=1
Λτx t−τ +

K∑

k=1

p∑

τ=1
γk,τ ⊗mk,t−τ +

L∑

l=1
ωl ⊗ zl + ϵ t , ϵ t ∼ N

(
0,
[
Ση 0
0 Ση

])
, (1)
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Fig. 4. A small illustrative example of spatial factor matrices with three counties. The adjacency of these
counties is shown on the right. In this example, the observation xt is six-dimensional and the matrices Aτ ,
Hτ , and Bτ are all three-by-three matrices. The white boxes represent zero entries; the gray boxes represent
data entries (cases and deaths); the red, the blue, and the green boxes represent the learnable (non-zero)
entries in matrix Bτ ,Hτ ,Aτ , respectively.

where ⊗ is the Kronecker product and

Λτ =

[
Bτ 0
Hτ Aτ

]
∈ R2N×2N , γk,τ =

[
µk,τ
νk,τ

]
∈ R2, ωl =

[
υl
ζl

]
∈ R2, ϵ t =

[
ϵ t,c
ϵ t,d

]
∈ R2N , 1 ≤ τ ≤ p.

In our model in Equation (1), the !rst term captures the dependence on past con!rmed cases
and deaths; the second term captures the in$uence of past local community mobility; the third
term captures the in$uence of local demography, which is held constant over time. Speci!cally,
Bτ and Aτ contain the autoregressive coe#cients for the number of con!rmed cases and deaths,
respectively; Hτ describes the dependence of the current number of deaths on the number of
con!rmed cases τ weeks ago. As an illustrative example shown in Figure 4, these three matrices
share the same sparse structure, where the entry at (i, j ) is zero if county i and county j are not
adjacent and none of them is the hub. Formally, the set of adjacency pairs is de!ned by A =
{(i, j ) ∈ I : (i, j ) is an edge of the graph G}; each node of G denotes a county, and there is an
edge between two nodes whenever the corresponding counties are geographically adjacent or one
of them is a hub. The µk,τ , νk,τ , υl , and ζl are four scalar coe#cients. To be speci!c, µk,τ , νk,τ
represent the coe#cients for the local community mobility score in category k τ weeks ago with
respect to the corresponding number of con!rmed cases and deaths, respectively. Similarly, υl , ζl
represent the coe#cients for local demographic factor l with respect to the corresponding number
of con!rmed cases and deaths, respectively. The spatial covariance matrix between the noise at
counties i and j is denoted as the (i, j )-th entry of Ση ; it is a function of their Euclidean distance si j
and is parameterized by η. Some commonly used spatial models include the Gaussian model [37],
Exponential model [19], and Matérn model [19]. Here we adopt the exponential spatial covariance
model Ση (i, j ) = η exp{−ηsi j }, where η is a pre-speci!ed parameter, which controls the rate of
spatial decay. In this article, we specify a reasonable value of the parameter η = 103.

We aim to !t the model in Equation (1) for con!rmed cases and deaths jointly by minimizing
the prediction error. De!ne the set of parameters θ = {Λ,ω,γ } ∈ Θ, where Θ is the set containing
all feasible values. For a pre-speci!ed hyper-parameter δ ∈ [0, 1], the loss function is de!ned as a
weighted combination of quadratic loss functions for death and con!rmed case residuals:

!(θ ) ! δ
T∑

t=1
εᵀt,dΣ

−1
η εt,d + (1 − δ )

T∑

t=1
εᵀt,cΣ

−1
η εt,c, (2)
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where εt,c denotes the con!rmed case prediction residual

εt,c =
[
I 0

] %
&x t −

p∑

τ=1
Λτx t−τ −

K∑

k=1

p∑

τ=1
γk,τ ⊗mk,t−τ −

L∑

l=1
ωl ⊗ zl'( ,

and εt,d denotes the death prediction residual

εt,d =
[
0 I

] %
&x t −

p∑

τ=1
Λτx t−τ −

K∑

k=1

p∑

τ=1
γk,τ ⊗mk,t−τ −

L∑

l=1
ωl ⊗ zl'( .

The hyper-parameter δ controls the proportion of death prediction loss. In practical terms, we
emphasize the importance of death, and hence we choose δ = 0.9 empirically. The reason is that
it is known that the con!rmed cases are quite noisy and can depend on the capacity of testings.
The parameters θ can be estimated by solving the following optimization with a regularization

function:
min
θ ∈Θ
!(θ ) + λ1R (θ ), (3)

where λ1 ≥ 0 is a parameter that controls the importance of the regularization term, and R (θ ) is
the elastic net type regularization function (with hyper-parameter λ2 ∈ [0, 1]) given by

R (θ ) :=
p∑

τ=1

N∑

i=1

N∑

j=1
1A {(i, j )}

[
λ2

(
|αi, j,τ | + |βi, j,τ | + |hi, j,τ |

)

+ (1 − λ2)
(
|αi, j,τ |2 + |βi, j,τ |2 + |hi, j,τ |2

)]
,

where 1A{x } is the indicator function, i.e., taking the value 1 if x ∈ A, otherwise 0; λ2 is the !1
penalty ratio in the regularization function;αi, j,τ , βi, j,τ ,hi, j,τ are the entries ofmatricesAτ ,Bτ ,Hτ ,
respectively.

3.3 Exploit Sparsity and Structure to Solve Large-Scale Optimization Problems
Our model’s most salient feature is that we consider the underlying spatio-temporal structure be-
tween the number of con!rmed cases and deaths. If there is no speci!c structure in coe#cient
matrices, our methods look on the surface to be a naive linear model but require to solve a large-
scale high-dimensional optimization problem, which contains 79,077,916 parameters (variables in
the optimization problem) with only 84,888 data points. Instead of solving such complex prob-
lems directly, we tackle this challenge by exploiting the sparse spatial structure and only consider
the correlation between adjacent counties and hubs, which leads to a signi!cant reduction in the
number of parameters (less than 80,000). Besides, the lower triangular structure of the Λτ matrix
(including Bτ , Hτ , and Aτ ) captures the causal relationship we believe exists in the con!rmed
case to the death count, but not the other way around. To be exact, we assume the number of
con!rmed cases in the past will result in the change of both the con!rmed cases and deaths in the
future, while the number of deaths only relates to the future’s deaths.
The regularization term we devised in Section 3.2 also plays a big part in achieving the ideal

results. This elastic net-basedmethod linearly combines the lasso and ridge regression penalties on
Bτ ,Hτ , andAτ to encourage sparse spatial correlation and stabilize the solution at the same time.
The hyper-parameters λ1 and λ2 in the regularization term are chosen by !vefold cross-validation,
where the optimal choices are λ1 ≈ 102 and λ2 ≈ 10−1 for the !tted model.

Here we solve the optimization problem by gradient descent. To !t the model, we !rst standard-
ize the data of covariates and feed all the data as a single batch in one iteration, then descend the
gradients of the parameters with respect to the loss de!ned in Equation (2) until the model con-
verges. To perform a 1-week-ahead prediction, we feed all the data before that week as a single
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Fig. 5. In-sample estimated deaths (red do!ed lines) for the United States and other eight major states with
the highest number of COVID-19 deaths in the United States. Figures are sorted in descending order of
the total number of deaths since March 15, 2020. The results show that our model can capture the general
dynamics of the death numbers.

batch in one iteration and follow the same gradient descent procedure described above. The model
normally takes about 500 iterations to reach the convergence with !(θ ) ≈ 1.41 × 103.

4 RESULTS
Nowwe report the results of our study. We evaluate the explanatory power of the proposed model-
ing method by performing the in-sample estimation. We also compare our approach regarding the
1-week-ahead predictive performance against four other external benchmark methods, which are
the current state-of-the-art methods adopted by the Centers for Disease Control and Preven-
tion (CDC) in its national ensemble forecast [10, 49]. We generate the death (and case) prediction
for each county in a week by taking the past county-level case and death records, community mo-
bility, and demographic census information as input. The format of the input data is described in
Section 2. In addition, we demonstrate the interpretable components of our model by showing the
spatio-temporal correlation between the number of COVID-19 cases and other covariates discov-
ered from our !tted model. For the ease of presentation, we only focus on the mainland and do not
consider Hawaii, Alaska, and other unincorporated territories of the United States in this article.
Hereinafter, we refer to the proposed spatio-temporal vector autoregressive model as STVA.

4.1 Model Evaluation
4.1.1 In-Sample Estimation. To evaluate the e"ectiveness of our method, we compare the

county-level in-sample estimation on the number of deaths. The in-sample estimation is a process
of evaluating the model’s explanatory capabilities using observed data to see how e"ective the
model is in reproducing the data. The process can be carried out as follows: We !rst !t the model
using the entire dataset from March 15, 2020, to January 17, 2021, which contains 3,144 counties
and 49 weeks in total. The in-sample estimation can then be obtained by feeding the same data
into the !tted model and recovering the estimation for deaths according to Equation (1). We also
carry out three ablation studies to further investigate the e"ectiveness of each model component.
To be speci!c, we consider three variant models: (1) STVA−mobility removes the component of
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Table 2. #antitative Comparison of MAE between our STVA and Other Ablation Models

MAE Pct. MAE
Increase1

MAE for
COVID-19 1st Peaks2

Pct. MAE
Increase

MAE for
COVID-19 2nd Peaks3

Pct. MAE
Increase

MAE for
Most A"ected Region4

Pct. MAE
Increase

STVA 1.63 N/A 0.31 N/A 2.96 N/A 10.35 N/A
STVA-spatial 1.99 18.09% 0.94 67.02% 3.24 8.64% 14.19 27.06%
STVA-census 2.45 33.47% 0.66 53.03% 4.43 33.18% 15.65 33.87%
STVA-mobility 5.73 71.55% 2.10 85.23% 7.97 62.86% 12.91 19.83%

1Pct. MAE Increase is the percentage of increased MAE that results by removing one of the components in STVA.
2COVID-19 1st Peaks refers to a certain time period (4 weeks from April 5, 2020, to May 3, 2020) in which the number of
deaths in the United States reaches its !rst peak.
3COVID-19 2nd Peaks refers to a certain time period (4 weeks from December 13, 2020, to January 3, 2021) in which the
number of deaths in the United States reaches its second peak.
4Most A"ected Region refers to the region of eight states with the highest number of deaths due to COVID-19, including
New York, New Jersey, California, Texas, Florida, Massachusetts, Illinois, and Pennsylvania.

mobility (the second term in Equation (1)); (2) STVA−census removes the component of demo-
graphic census (the third term in Equation (1)); and (iii) STVA−spatial simply removes the spatial
correlation (the !rst term in Equation (1)) by a diagonal matrix. We note that each county can
also be regarded as an independent auto-regressive (AR) model without spatial correlation. We
report the in-sample estimation of the proposed approach and the ablation models by aggregating
the county-level estimated numbers in the same state. As shown in Figure 5, we select eight major
states with the highest total number of deaths in the United States. The shaded area indicates the
actual number of deaths reported in the COVID-19 dataset, and the solid red line indicates the
in-sample estimated deaths by our model. We observe that the STVA (solid red lines) can capture
the dynamics of true death trajectories better than the other three ablation models (dashed lines).
We also provide quantitative results for county-level mean absolute error (MAE) in Table 2. As
we can see, the result indicates that our model STVA generally attains the lowest MAE for all sce-
narios. There are also signi!cant performance gains if we only focus on predicting the peak week
and the most a"ected region in the United States. The result suggests that these components are
conducive to improving the model’s performance. In Appendix A, we also present the in-sample
estimation of the con!rmed cases for the same eight states.

4.1.2 Out-of-Sample Prediction. In addition to the in-sample estimation, we assess the model’s
predictive power by performing the 1-week-ahead (out-of-sample) prediction. The prediction pro-
cedure withholds the future data from the model estimation, then uses the !tted model to make
predictions for the (hold-out) data in the next week.
Here, we compare ourmodel against four benchmarkmethods adopted by the CDC,which repre-

sent the current state-of-the-art for COVID-19 prediction: (1) COVID-19 Mortality Projections for
the U.S. States by the University of Texas, Austin (UT) [56, 58]: they introduce a negative-binomial
mixed-e"ects generalized linear model (GLM)—i.e., the predictor is a GLM with a logarithm
link function; (2) COVID-19 Cases and Deaths Forecasts by the Los Alamos National Laboratory
(LANL) [39]: the model assumes that a fraction of the newly generated cases will die and proposes
a statistical model to capture this e"ect; (3) COVID-19 Modeling by the Northeastern University,
Laboratory for the Modeling of Biological and Socio-technical Systems (MOBS) [44]: their team
adopts a classic SLIR-like compartmentalization scheme for disease progression; (4) COVID-19
Projections for the United States by the Institute for Health Metrics and Evaluation (IHME) [27, 28]:
this project considers a deterministic SEIR compartmental framework. In particular, all four ap-
proaches mainly use the state-level records of the number of cases and deaths as the input of their
models. At the same time, IHME also takes advantage of several critical driving covariates (pneu-
monia seasonality, mobility, testing rates, and mask use per capita). The prediction results of these
benchmark methods are directly quoted from the CDC’s o#cial reports [10].
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Fig. 6. One-week-ahead death prediction for the United States and other eight major states with the highest
number of COVID-19 deaths in the United States. The STVA’s statewise predictions are obtained by aggre-
gating the county-level predictions in the same states. Figures are sorted in descending order of the total
number of confirmed cases since October 11, 2020. The results show that our model can achieve promis-
ing predictive performance with the other four benchmarks. Note that these four benchmarks only provide
state-level predictions.

We only present the results from October 11, 2020, for 1-week-ahead death prediction. The
statistics before October are inaccurate due to the low testing rate, and the data are insu#cient to
!t the model. Similar to the in-sample estimation, we report the prediction results for the entire
United States and eight top states with the highest number of deaths in Figure 6. It shows that the
aggregated county-level predictions suggested by the STVA (solid green lines) achieve competitive
performance against other mainstream approaches (dash lines). It is worth noting that these four
methods only provide state-level forecasting for the number of deaths, which is less challenging
than the county-level prediction.
More quantitative results are summarized in Figure 7. The heatmaps show the MAE of the

county-level estimation/prediction within a particular state and at certain weeks. The average
MAEs over states and weeks are presented in the vertical line chart on the right and the horizontal
line chart on the top. The states are sorted in ascending order of their MAE from top to bottom. As
shown in Figure 7, our model signi!cantly outperforms the other ablation models while achieving
competitive predictive performances compared to the other widely adopted state-level approaches.
We can also observe that our model tends to achieve better performance for the states with larger
populations, such as Florida, New York, Texas, and so forth; for the deaths, our model has a bal-
anced performance in each state, and theMAE is getting better (smaller) and becomingmore stable
after the summer surge of COVID-19 (from June to July).

4.2 Model Interpretation
Our study focuses on exploring the in-sample explanatory content of predetermined factors in our
model. We !t the model using the entire dataset collected from three data sources mentioned in
Section 2 and interpret the model by examining its !tted coe#cients.

Spatio-Temporal Dependencies between Cases and Deaths. The experimental results demonstrate
a distinctive underlying spatio-temporal pattern between con!rmed cases and deaths of COVID-19.
ACM Transactions on Management Information Systems, Vol. 12, No. 4, Article 33. Publication date: September 2021.
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Fig. 7. Mean absolute error (MAE) of (a) the in-sample death estimation and (b) the 1-week-ahead out-of-
sample death prediction by our model. The color depth of the heatmaps indicates the MAE of county-level
prediction for certain states and weeks. The horizontal and vertical line charts show the average MAE over
weeks and states comparing to other benchmark methods. The states have been sorted in ascending order
of their MAE from top to bo!om. Note that four benchmarks in (b) only provide state-level predictions; we
compare our method against these benchmarks by summing up the death numbers in the same state.

We !rst report the coe#cients of !ve representative hubs in Λ1 in Figure 8. The hubs’ coe#cients
in B1, H 1, A1 reveal their spatial dependencies between each pair of past cases and current cases,
past cases and current deaths, and past deaths and current deaths, respectively. As we can see, hubs
have a strong “radiating” power on most of the U.S. regions and contribute a great deal to promote
or curb the spread of COVID-19. However, the rural area with lower population density in the
central United States is not signi!cantly in$uenced by the hubs. The hubs situated in the northern
United States (e.g., Chicago, New York) are negatively related to spreading diseases to the other
regions (in blue), which appear to have better controls on the expansion of the virus. In contrast,
the hubs in the southern United States (e.g., Dallas, Houston, Miami) usually are positively related
to the increases of both cases and deaths in other regions (in red). The result also presents some
other interesting !ndings: some hubs show two opposite in$uences on the cases and deaths in the
same region. For example, we see that on the one hand, Figure 8(m) shows that the number of
deaths in Miami is negatively related to the deaths in the New England area of the United States.
On the other hand, Figure 8(n) shows that the number of cases in Miami is positively related to
the cases in the same area. Some hubs contribute to the increase of cases or deaths in one region,
reducing the cases or deaths in other regions. For example, Figures 8(g) and (j) show that Dallas and
Houston have a positive impact on the New England area in the United States and have a negative
impact on Florida and California. Apart from analyzing the spatial structure across regions learned
by the model, we also study the temporal dependencies in the past 2 weeks for the same hub. In
Figure 9, we present three typical pairs of comparisons for coe#cients between 1-week lag and
2-week lag: coe#cients of Atlanta inA1 andA2, coe#cients of Seattle in B1 and B2, and coe#cients
of Los Angeles in H 1 and H 2. All three comparisons share one thing in common: coe#cients of
di"erent time lags have a similar spatial pattern, but the overall coe#cients of 2-week lag are
relatively smaller than corresponding ones of 1-week lag. This indicates that the last week has
a stronger in$uence. We also observe that the spatial patterns in A, B, and H are signi!cantly
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Fig. 8. Examples of coe"icients for hubs in matrix Λ1. For instance, the color depth of any county i in (a)
represents the value of coe"icient αi, j,1 in A1, where county j is Chicago. Counties in blue indicate their
current number of deaths is positively related to its number of deaths in the last week; counties in red are
the opposite; counties in white represent no discernable correlation between the two numbers. Coe"icients
of di"erent hubs show the various spatial pa!ern in “spreading” or “controlling” the disease.

di"erent from each other according to Figure 8 and Figure 9. This observation con!rms that each
spatial component described by matricesA, B, andH plays a di"erent role in capturing the spatial
correlation. For example, we can observe that the visualization of the matrixH always shows large
positive coe#cients in the New England area, while the coe#cients in matrix B in the same area
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Fig. 9. Examples of coe"icients with di"erent time lags.

Fig. 10. Examples of p-values for hubs’ coe"icients in A1.

are typically more negligible or even negative. This may be related to the high death rate in the
New England area [43] sinceH captures the spatial correlation between previous cases and future
deaths, and B only concerns the similar correlation between cases. Last but not least, we further
investigate thep-values of these spatial coe#cients, as !nding statistically signi!cant relationships
between the prediction and the observation is of great importance to the model evaluation. Since
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Table 3. Summary of Fi!ed Coe"icients for Mobility and Demographic Factors

Lag One-Week Two-Week N/A N/A
Category Workplaces Recreation Grocery Park Transit Residential Workplaces Recreation Grocery Park Transit Residential Population Over 65
Term w.r.t. case µ1,1 µ2,1 µ3,1 µ4,1 µ5,1 µ6,1 µ1,2 µ2,2 µ3,2 µ4,2 µ5,2 µ6,2 υ1 υ2
Coe#cient +9.67e+2 +1.67e+3 -1.21e+3 -7.83e+2 +3.54e+2 -5.08e+3 +1.28+e3 +2.16e+3 -8.52e+2 -7.25e+2 +3.12e+3 -5.05e+3 +2.91e+4 -1.58e+01
p-value +5.01e-5 +3.21e-5 +1.03e-7 +7.46e-5 +2.01e-5 +2.56e-5 +2.19e-5 +2.30e-5 +3.77e-7 +3.91e-7 +1.42e-7 +6.64e-7 +9.10e-9 +1.81e-1
t -value +5.78e+1 +7.63e+1 +1.00e+2 +1.29e+1 -7.26e+1 -5.09e+1 -4.68e+1 -4.33e+1 +2.11e+2 +1.86e+2 -3.03e+2 -3.02e+2 +1.73e+3 -9.42e-1
Term w.r.t. death ν1,1 ν2,1 ν3,1 ν4,1 ν5,1 ν6,1 ν1,2 ν2,2 ν3,2 ν4,2 ν5,2 ν6,2 ζ1 ζ2
Coe#cient -1.92e+3 -1.09e+3 +3.61e+2 +1.17e+3 -3.12e+3 +4.77e+3 -1.55e+3 -9.95e+2 +2.54e+2 +1.15e+3 -3.19e+3 +4.64e+3 -1.68e+4 -1.17e+3
p-value +2.81e-6 +4.01e-6 +1.97e-5 +7.78e-5 +4.50e-5 +9.21e-5 +1.03e-5 +3.21e-5 +8.09e-7 +3.14e-6 +9.03e-7 +9.67e-7 +1.56e-7 +6.85e-5
t -value -1.11e+2 -9.00e+1 -6.31e+1 -5.76e+1 +2.09e+1 +1.47e+1 +6.80e+1 +6.66e+1 -1.80e+2 -1.84e+2 +2.76e+2 +2.68e+2 -9.71e+2 -6.70e+1

A1 plays a key role in predicting future deaths by being connected to the death observations in
the past, we take the hubs’ coe#cients in A1 as an example. As shown in Figure 10, the number
of deaths in these hubs is statistically signi!cant to the death counts in other populated regions in
the United States (New England, the southeastern United States, and the western United States).
In particular, we !nd the hubs in the West and the North (Los Angeles, Washington, D.C., New
York, Seattle, and San Francisco) are statistically signi!cant to a broader area than the hubs in the
South (Houston, Dallas, and Miami).
Dependence on Local Covariates. Table 3 summarizes the !tted coe#cients of local covariates

in the model. The !rst and second rows indicate the corresponding time lag and the category
of coe#cients, respectively. The !rst 12 columns correspond to the community mobility, and the
last two columns correspond to the demographic factors. Positive coe#cients have been put in
bold to highlight the positive correlation with cases or deaths. The coe#cients can be compared
across factors as the covariates are standardized !rst. As we can see, most of the covariates are
statistically signi!cant, with small p-values (<.05), except for the proportion of the elderly popula-
tion aged 65 and older. The positive coe#cients are in bold, which indicates a positive correlation
between the covariates and the cases or deaths. In particular, we observe that, for the cases, the
coe#cients of mobility in workplaces, retail, recreation, and transit stations have large positive val-
ues (>9 × 102), which indicates that the increase of mobility in these areas led to the rapid spread
of COVID-19. However, things are the opposite for the deaths, where the coe#cients of mobility
in grocery and pharmacies, parks, and residential have large positive values (>2 × 102). Moreover,
the population’s coe#cient for the cases is signi!cantly larger than the other covariates, and it
con!rms that population density is the dominant factor in spreading the disease. Last, we have
found that the proportion of the elderly population is signi!cantly related to the deaths and has
no clear connection to the cases.

5 DISCUSSION
While still in the development stages, the proposed spatio-temporal model has shown immense
promise in modeling and predicting the deaths and con!rmed cases of COVID-19 in the United
States. Nevertheless, there remain numerous open questions and room for improvements. For ex-
ample, the uncertainty in the count data commonly exists and can a"ect accuracy. It would be
interesting to incorporate the serology data as an additional data source to calibrate our model.
To avoid negative output, we may adapt the current problem into a Poisson regression with the
log-linear model or apply a Recti!ed Linear Unit (ReLU) to the output to disallow the negative
values. It assumes the response variable x t has a Poisson distribution and assumes the logarithm
of its expected value can be modeled by the linear model de!ned in Equation (1). In particular,
this adaption plays a vital role in predicting states with fewer con!rmed cases and deaths, such as
Hawaii and Delaware.
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APPENDIX
A OTHER NUMERICAL RESULTS

Fig. 11. In-sample estimated cases (green do!ed lines) for the United States and other eight major states
with the highest number of COVID-19 deaths in the United States. Figures are sorted in descending order
of the total number of deaths since March 15, 2020.
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