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We propose a tomographic protocol for estimating any k-body reduced density matrix (k-RDM) of an
n-mode fermionic state, a ubiquitous step in near-term quantum algorithms for simulating many-body
physics, chemistry, and materials. Our approach extends the framework of classical shadows, a randomized
approach to learning a collection of quantum-state properties, to the fermionic setting. Our sampling
protocol uses randomized measurement settings generated by a discrete group of fermionic Gaussian
unitaries, implementable with linear-depth circuits. We prove that estimating all k-RDM elements to
additive precision ε requires on the order of ðnkÞk3=2 logðnÞ=ε2 repeated state preparations, which is optimal
up to the logarithmic factor. Furthermore, numerical calculations show that our protocol offers a substantial
improvement in constant overheads for k ≥ 2, as compared to prior deterministic strategies. We also adapt
our method to particle-number symmetry, wherein the additional circuit depth may be halved at the cost of
roughly 2–5 times more repetitions.
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Introduction.—One of the most promising applications
of quantum computation is the study of strongly correlated
systems such as interacting fermions. While quantum
algorithms such as phase estimation [1,2] allow for directly
computing important quantities such as ground-state ener-
gies with quantum speedup [3–5], current hardware lim-
itations [6] have directed much attention toward variational
methods. Of note is the variational quantum eigensolver
(VQE) [7,8], where short-depth quantum circuits are
repeatedly executed in order to estimate observable expect-
ation values.
Initial bounds on the number of these circuit repetitions

associated with fermionic two-body Hamiltonians were
prohibitively high [9], spurring on much recent work
addressing this problem.We roughly classify these strategies
into two categories: those that specifically target energy
estimates [8,10–29], referred to as Hamiltonian averaging,
and more general techniques that can learn the k-body
reduced density matrices (k-RDMs) of a quantum state
[30–44]. (Not all works fit neatly into this dichotomy,
e.g., Refs. [45–50].) Hamiltonian averaging is ultimately
interested in a single observable, allowing for heavy exploi-
tation in its structure. In contrast, reconstructing an RDM
requires estimating all the observables that parametrize it.
Though generally more expensive than Hamiltonian

averaging, calculating the k-RDM allows one to determine
the expectation value of any k-body observable [51]. For
example, the electronic energy of chemical systems is a
linear functional of the 2-RDM, while in condensed-matter
systems, effective models for electrons can require knowl-
edge of the 3-RDM [52,53]. Beyond the energy, other

important physical properties include pair-correlation func-
tions and various order parameters [54,55]. The 2-RDM
is also required for a host of error-mitigation techniques
for near-term quantum algorithms [13,56,57], which
have been experimentally demonstrated to be crucial in
obtaining accurate results [58–61]. Additionally, promising
extensions to VQE such as adaptive ansatz construction
[62–65] and multireference- and excited-state calculations
[56,57,66–69] can require up to the 4-RDM.
Motivated by these considerations, in this work we

focus on partial tomography for fermionic RDMs. While
numerous works have demonstrated essentially optimal
sample complexity for estimating qubit RDMs [36,37,
40–42], such approaches necessarily underperform in
the fermionic setting. Recognizing this fundamental dis-
tinction, Bonet-Monroig et al. [37] and Jiang et al. [40]
developed measurement schemes that achieve optimal
scaling for fermions. However, the former construction
is not readily generalizable for k > 2, while the latter
requires a doubling in the number of qubits and a specific
choice of fermion-to-qubit mapping.
In this Letter, we propose a randomized scheme that

is free from these obstacles. It is based on the theory
of classical shadows [42]: a protocol of randomly distrib-
uted measurements from which one acquires a partial
classical representation of an unknown quantum state (its
“shadow”). Classical shadows are sufficient for learning a
limited collection of observables, making this framework
ideal for partial state tomography. Our key results identify
efficient choices for the ensemble of random measure-
ments, suitable for the structure of fermionic RDMs.
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Fermionic RDMs.—Consider a fixed-particle state ρ
represented in second quantization on n fermion modes.
The k-RDM of ρ, obtained by tracing out all but k particles,
is typically represented as a 2k-index tensor,

kDp1���pk
q1���qk ≔ trða†p1

� � � a†pkaqk � � � aq1ρÞ; ð1Þ

where a†p, ap are fermionic creation and annihilation
operators, p ∈ f0;…; n − 1g. By linearity, these matrix
elements may be equivalently expressed using Majorana
operators, starting with the definitions

γ2p ≔ ap þ a†p; γ2pþ1 ≔ −iðap − a†pÞ: ð2Þ

Then for each 2k-combination μ≡ ðμ1;…; μ2kÞ, where
0 ≤ μ1 < � � � < μ2k ≤ 2n − 1, we define a 2k-degree
Majorana operator

Γμ ≔ ð−iÞkγμ1 � � � γμ2k : ð3Þ

All unique 2k-degree Majorana operators are indexed by
the set of all 2k combinations of f0;…; 2n − 1g, which
we shall denote by C2n;2k. Because Majorana operators
possess the same algebraic properties as Pauli operators
(Hermitian, self-inverse, and Hilbert-Schmidt orthogonal),
any fermion-to-qubit encoding maps between the two in a
one-to-one correspondence.
The commutativity structure inherited onto C2n;2k con-

strains the maximum number of mutually commuting
(hence simultaneously measurable) operators to be OðnkÞ
[37]. As there areOðn2kÞ independent k-RDMelements, this
implies an optimal scaling ofOðnkÞmeasurement settings to
account for all matrix elements.
Classical shadows and randomized measurements.—We

briefly review the framework of classical shadows intro-
duced by Huang et al. [42], upon which we build our
fermionic extension and prove sampling bounds. Let ρ
be an n-qubit state and fO1;…; OLg a set of L traceless
observables for which we wish to learn trðO1ρÞ;…;
trðOLρÞ. Classical shadows require a simple measurement
primitive: for each preparation of ρ, apply the unitary map
ρ ↦ UρU†, where U is randomly drawn from some
ensemble U; then perform a projective measurement in
the computational basis, fjzijz ∈ f0; 1gng.
Suppose we have an efficient classical representation

for inverting the unitary map on postmeasurement states,
yieldingU†jzihzjU. Then the process of repeatedly applying
the measurement primitive and classically inverting the uni-
tary may be viewed, in expectation, as the quantum channel

MUðρÞ ≔ EU∼U;jzi∼UρU† ½U†jzihzjU�; ð4Þ

where jzi ∼UρU† is defined by the usual probability
distribution from Born’s rule, Pr½jzijUρU†� ¼ hzjUρU†jzi.
Informational completeness of U ensures that this channel

is invertible, which allows us to define the classical
shadow

ρ̂U;z ≔ M−1
U ðU†jzihzjUÞ ð5Þ

associated with the particular copy of ρ for which U was
applied and jzi was obtained. Classical shadows form an
unbiased estimator for ρ, and so they can be used to estimate
the expectation value of any observable O:

EU∼U;jzi∼UρU† ½trðOρ̂U;zÞ� ¼ trðOρÞ: ð6Þ

The number of repetitions M required to obtain an
accurate estimate for each trðOjρÞ is controlled by the
estimator’s variance, which may be upper bounded by

max
states σ

E U∼U
jzi∼UσU†

½hzjUM−1
U ðOjÞU†jzi2�≕ kOjk2U : ð7Þ

This quantity is referred to as the (squared) shadow norm.
Then by median-of-means estimation, one may show that

M ¼ O
�
logL
ε2

max
1≤j≤L

kOjk2U
�

ð8Þ

samples suffice to estimate all expectation values to within
additive error ε. To minimize Eq. (8) for a fixed collection
of observables, the only available freedom is in U. One
must therefore properly choose the ensemble of unitaries,
with respect to the target observables.
Naive application to fermionic observables.—A natural

ensemble for near-term considerations is the group of
single-qubit Clifford gates, Clð1Þ⊗n (i.e., Pauli measure-
ments). For an l-local Pauli observable P, Huang et al. [42]
showed that kPk2Clð1Þ⊗n ¼ 3l, similar to the results of prior

approaches also based on Pauli measurements [36,37,
40,41]. Although optimal for qubit l-RDMs, such strate-
gies cannot achieve the desired OðnkÞ scaling in the
fermionic setting due to the inherent nonlocality of
fermion-to-qubit mappings. Indeed, assuming that the
n fermion modes are encoded into n qubits, the 1-degree
Majorana operators necessarily possess an average qubit
locality of at least log3ð2nÞ [40]. This implies that, under
random Pauli measurements, the squared shadow norm
maximized over all 2k-degree Majorana operators cannot
do better than 32klog3ð2nÞ ¼ 4kn2k. In fact, for commonly
used mappings such as the Jordan-Wigner [70] or Bravyi-
Kitaev [71–74] transformations, the scalings are poorer
(3n and ∼9kn3.2k, respectively).
Randomized measurements with fermionic Gaussian

unitaries.—To obtain optimal scaling in the shadow norm
for fermionic observables, we propose randomizing over a
different ensemble: the group of fermionic Gaussian
Clifford unitaries. First, the group of fermionic Gaussian
unitaries FGUðnÞ comprises all unitaries of the form
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UðeAÞ ≔ exp

�
−
1

4

X2n−1
μ;ν¼0

Aμνγμγν

�
; ð9Þ

where A ¼ −AT ∈ R2n×2n. This condition implies that
FGUðnÞ is fully characterized by the Lie group SOð2nÞ
[75]. In particular, the adjoint action

UðQÞ†γμUðQÞ ¼
X2n−1
ν¼0

Qμνγν ∀ Q ∈ SOð2nÞ ð10Þ

allows for efficient classical simulation of this group
[76–80]. Second, the Clifford group ClðnÞ is the set of
all unitary transformations that permute n-qubit Pauli
operators among themselves. It also admits an efficient
classical representation [81,82].
Because Majorana operators are equivalent to Pauli

operators, we may deduce from Eq. (10) that a unitary
that is both Gaussian and Clifford corresponds toQ being a
signed permutation matrix. Note that this defines the full
group of Majorana swap circuits [37]. As the signs are
irrelevant for our purpose, we simply consider the group of
2n × 2n permutation matrices with determinant 1, known
as (the faithful matrix representation of) the alternating
group, Altð2nÞ.
Concretely, we set

UFGU ≔ fUðQÞ ∈ FGUðnÞjQ ∈ Altð2nÞg: ð11Þ

Given the context of fermionic tomography, the motivation
for studying FGUðnÞ is clear, as it preserves the degree of
Majorana operators. On the other hand, the restriction to
the discrete Clifford elements is valuable for practical con-
siderations. As we show in Sec. II of the Supplemental
Material [83], the permutational property of Clifford trans-
formations necessarily implies that MFGU, as a linear map
on the algebra of fermionic observables, is diagonal in the
Majorana-operator basis,

MFGUðΓμÞ ¼ λμΓμ ∀ μ ∈ C2n;2k; ð12Þ

with eigenvalues

λμ ¼
�
n

k

���
2n

2k

�
≡ λn;k: ð13Þ

In this diagonal form, the channel is readily invertible. Thus
one may obtain closed-form expressions for the classical
shadows ρ̂Q;z, and, importantly, their corresponding estima-
tors for trðΓμρÞ:

trðΓμρ̂Q;zÞ ¼ λ−1n;k
X

ν∈C2n;2k

hzjΓνjzi det½Qν;μ�: ð14Þ

Here,Qν;μ denotes the submatrix ofQ formed from its rows
and columns indexed by ν and μ, respectively [98]. Because

Q is a permutation matrix, for each μ there is exactly one ν0
such that det½Qν0;μ� ≠ 0. Thus Eq. (14) is nonzero if and
only if that Γν0 is diagonal (i.e., maps to a Pauli-Z operator
under a fermion-to-qubit transformation). In other words,
the Clifford operationUðQÞ sends Γμ to�Γν0 , which can be
estimated only if it is diagonal in the computational basis.
From Eq. (7), the eigenvalues λ−1n;k of the inverse channel

M−1
FGU determine the shadow norm. The sample complexity

of our approach then follows from Eq. (8). We summarize
this first key result with the following theorem.
Theorem 1.—Consider all 2k-degree Majorana operators

Γμ on n fermionic modes, labeled by μ ∈ C2n;2k. Under the
ensemble UFGU defined in Eq. (11), the shadow norm
satisfies

kΓμk2FGU ¼
�
2n

2k

���
n

k

�
≈
�
n

k

� ffiffiffiffiffi
πk

p
ð15Þ

for all μ ∈ C2n;2k. Thus the method of classical shadows
estimates the fermionic k-RDM of any state ρ, i.e.,
trðΓμρÞ ∀ μ ∈∪k

j¼1 C2n;2j, to additive error ε, given

M ¼ O
��

n

k

�
k3=2 log n

ε2

�
ð16Þ

copies of ρ. Additionally, there is no subgroup G ⊂
FGUðnÞ ∩ ClðnÞ for which kΓμkG < kΓμkFGU.
The proof is presented in the Supplemental Material

[83], Sec. II. Furthermore, noting from Eq. (14) that
jtrðΓμρ̂Q;zÞj ≤ λ−1n;k, we also show in the Supplemental
Material that Bernstein’s inequality [99] guarantees the
above sample complexity via standard sample-mean
estimation, rather than requiring the median-of-means
technique proposed in the original work on classical
shadows [42].
This result has an intuitive conceptual interpretation. In

the computational basis, there are precisely ðnkÞ diagonal
Majorana operators within C2n;2k, corresponding to the
unique k-fold products of occupation-number operators
(e.g.,

Q
k
j¼1 a

†
pjapj

) on nmodes. As a permutation on C2n;2k,
each element of UFGU defines a different basis in which
some other subset of ðnkÞ operators are diagonal. Then, one
may expect to account for all jC2n;2kj ¼ ð2n

2kÞ Majorana
operators by randomly selecting on the order of ð2n

2kÞ=ðnkÞ
such bases; Theorem 1 makes this claim rigorous.
Fermionic Gaussian circuits have a well-studied compi-

lation scheme based on a Givens-rotation decomposition
[100–102]. For a general element of UFGU, we require a
circuit depth of at most 2n with respect to this decom-
position [102]. Additionally, as pointed out in Ref. [37],
Gaussian unitaries commute with the global parity operator
Γð0;…;2n−1Þ, allowing for error mitigation via symmetry
verification [103,104].

PHYSICAL REVIEW LETTERS 127, 110504 (2021)

110504-3



Such compilation schemes make use of a group homo-
morphism property, UðQ1ÞUðQ2Þ ¼ UðQ1Q2Þ. Therefore,
if the circuit preparing ρ itself features fermionic Gaussian
operations at the end, then we may further compile the
measurement unitary into the state-preparation circuit [57].
In the case of indefinite particle number, this concatenation
is essentially free. However, rotations with particle-number
symmetry have depth at most n [101,102], so they must be
embedded into the larger Gaussian unitary of depth 2n.
This observation motivates us to explore classical shadows
over the number-conserving (NC) subgroup of FGUðnÞ.
Modification based on particle-number symmetry.—

Fermionic Gaussian unitaries that preserve particle number
are naturally parametrized by UðnÞ. We express an element
of this NC subgroup as

UðeκÞ ≔ exp

�Xn−1
p;q¼0

κpqa
†
paq

�
; ð17Þ

where κ ¼ −κ† ∈ Cn×n, hence eκ ∈ UðnÞ. Because the
particle-number symmetry manifests as a global phase
factor etr κ=2 ∈ Uð1Þ, without loss of generality we may
consider tr κ ¼ 0, or equivalently, eκ ∈ SUðnÞ. Such uni-
taries are also called orbital-basis rotations, owing to their
adjoint action,

UðuÞ†apUðuÞ ¼
Xn−1
q¼0

upqaq ∀ u ∈ SUðnÞ: ð18Þ

This action on Majorana operators follows by linear
extension.
Taking the intersection with the Clifford group requires

that u be an n × n generalized permutation matrix, with
nonzero elements taking values in f�1;�ig. This corre-
sponds to the group of fermionic swap circuits [71,101].
Again, the phase factors on the matrix elements are
irrelevant, so we shall restrict to u ∈ AltðnÞ. By itself,
this ensemble is insufficient to perform tomography. To
see this, consider an arbitrary reduced density operator
A†
pAq ≔ a†p1

� � � a†pkaqk � � � aq1 , where p; q ∈ Cn;k. Such
operators are diagonal in the computational basis only if
p ¼ q. Informational completeness thus requires that there
exists some UðuÞ that maps A†

pAq to A†
rAr, for some

r ∈ Cn;k. Because u ∈ AltðnÞ, conjugation by UðuÞ simply
permutes p and q independently. However, as permutations
are bijective, it is not possible to permute both p and q to the
same r if p ≠ q.

Therefore, this ensemble will necessarily require oper-
ations beyond either the NC or Gaussian constraints. The
simplest option for maintaining the low-depth structure of
the basis rotations is to append Pauli measurements at the
end of the circuit. Although the resulting circuit no longer
preserves particle number, this addition incurs only a single

layer of single-qubit gates. Specifically, we define the
ensemble

UNC ≔ fV∘UðuÞjV ∈ Clð1Þ⊗n; u ∈ AltðnÞg: ð19Þ

By virtue of introducing the notion of “single-qubit” gates,
this method is dependent on the choice of fermion-to-qubit
mapping. Let locðΓμÞ denote the qubit locality of Γμ under
some chosen mapping. While Pauli measurements incur
a factor of 3locðΓμÞ in the variance, the randomization
over fermionic swap circuits effectively averages this
quantity over all same-degree Majorana operators (rather
than depending solely on the most nonlocal operator).
Formally, we find that the shadow norm here is

kΓμk2NC ¼ Eu∼AltðnÞ½3−loc½UðuÞ†ΓμUðuÞ��−1: ð20Þ

Although this expression does not possess a closed form,
the following theorem provides a universal upper bound.
Theorem 2.—Under the ensemble UNC defined in

Eq. (19), the shadow norm obeys

max
μ∈C2n;2k

kΓμk2NC ≤ 9k
�

n

2k

���
n − k

k

�
¼ OðnkÞ ð21Þ

for a fixed integer k and for all fermion-to-qubit mappings.
Thus the method of classical shadows with UNC estimates
the k-RDM to additive error ε with sample complexity

M ¼ O
�
nk log n

ε2

�
: ð22Þ

We provide derivations for the above results in the
Supplemental Material [83], Sec. III. Note that we have
fixed k as a constant here, so the asymptotic notation may
hide potentially large prefactors depending on k. To under-
stand such details, we turn to numerical studies.
Numerical calculations.—Instead of drawing a new

circuit for each repetition, here we employ a simplification
more amenable to practical implementation. Fixing some
integer r ≥ 1, we generate a random collection fUðjÞ ∼
UgKr

j¼1 of Kr unitaries such that all target observables are
covered at least r times. We say a Majorana operator Γμ is
covered by the measurement unitary U if UΓμU† is
diagonal in the computational basis. Because the ensembles
considered here consist of Gaussian and Clifford unitaries,
we can determine all covered operators efficiently.
Additionally, for the UNC calculations, the qubit mappings
were automated through OpenFermion [105].
To achieve precision corresponding to S ¼ Oð1=ε2Þ

samples per observable, one repeats each circuit ⌈S=r⌉
times. The total number of circuit repetitions for our
randomized protocols is then ⌈S=r⌉Kr. For practical
purposes, we fix r ¼ 50 in this work (see Sec. V of the
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Supplemental Material [83] for further details). To compare
against prior deterministic strategies, we compute S × C for
each such strategy, where C is the number of sets of
commuting observables constructed by a given strategy.
For the comparisons presented in Fig. 1, we focus on the

most competitive prior strategies applicable to fermionic
RDM tomography. Because the 1-RDM has a relatively
simple structure, optimal strategies are known [37,61], and
so randomization underperforms for k ¼ 1. However, the
advantage of our UFGU-based method becomes clear for
k ≥ 2. When comparing against the Majorana clique cover,
which features asymptotically optimal Oðn2Þ scaling for
the 2-RDM [37], we find a roughly twofold factor improve-
ment by our approach.
For the UNC case, we observe a trade-off between circuit

size and measurement efficiency. As expected, the choice of
fermion-to-qubit mapping matters here; the Jordan-Wigner
(JW) mapping performs worse than Bravyi-Kitaev (BK), as
the former possesses more qubit nonlocality. Although more
measurement settings are required compared to the UFGU
ensemble (e.g., a factor of ∼2 − 5 under BK, depending on
k), each circuit itself requires only half the depth of general
fermionicGaussian circuits. Notably, however,UNC classical
shadows for the 2-RDM under the BK mapping is closely
comparable to the Majorana clique cover.
Conclusions.—We have adapted the framework of

classical shadows to the efficient tomography of fermionic
k-RDMs, applicable for all k. Numerical calculations

demonstrate that our approach consistently outperforms
prior strategies using measurement circuits of comparable
sizes when k ≥ 2, despite the logarithmic factor in the
sample complexity (a consequence of rigorously bounding
the worst-case probabilistic instances). The power of
randomization here lies in avoiding the NP-hard pro-
blem of partitioning observables into commuting cliques
[32–35]. Instead, we show that a highly overlapping cover
of the observables suffices to perform partial tomography
efficiently, as a factor of Oð1=ε2Þ repetitions is already
required for this task.
An outlook for further applications is to adapt these

ensembles, e.g., for Hamiltonian averaging. As expected,
our method is less efficient in this context than those
tailored for the task (see Sec. V C of the Supplemental
Material [83] for preliminary numerical calculations).
Possible modifications may include biasing the dis-
tribution of unitaries [22,27–29], or derandomization
techniques [25].
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tractable alternative. The Majorana clique cover [37], which employs the same class of fermionic Gaussian Clifford circuits as our
classical shadows (FGU) unitaries, possesses optimal asymptotic scaling; however, it exhibits jumps at powers of 2 due to a divide-and-
conquer approach. Furthermore, the construction exists only for k ≤ 2. The measurement strategy using fermionic swap networks is a
generalization of the optimal 1-RDM strategy introduced in Ref. [61], which we describe in Sec. IVof the Supplemental Material [83].
(Right) Numerical performances (log-log scale). Note that SORTED INSERTION and the Majorana clique cover are equivalent for k ¼ 1.
Because our scheme uses randomization, we include error bars of 1 standard deviation, averaged over 10 instances. However, they are
not visible at the scale of the plots, indicating the consistency of our method.
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