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Abstract—The emergence of quantum computers as a new
computational paradigm has been accompanied by specula-
tion concerning the scope and timeline of their anticipated
revolutionary changes. While quantum computing is still in
its infancy, the variety of different architectures used to
implement quantum computations make it difficult to reliably
measure and compare performance. This problem motivates
our introduction of SupermarQ, a scalable, hardware-agnostic
quantum benchmark suite which uses application-level metrics
to measure performance. SupermarQ is the first attempt to
systematically apply techniques from classical benchmarking
methodology to the quantum domain. We define a set of
feature vectors to quantify coverage, select applications from a
variety of domains to ensure the suite is representative of real
workloads, and collect benchmark results from the IBM, IonQ,
and AQT@LBNL platforms. Looking forward, we envision
that quantum benchmarking will encompass a large cross-
community effort built on open source, constantly evolving
benchmark suites. We introduce SupermarQ as an important
step in this direction.

Keywords-Quantum Computing; Benchmarking; Program
Characterization

I. INTRODUCTION

The creation, validation, and implementation of bench-
marks is a foundational aspect of computer architecture. The
pursuit of increasingly powerful computers has resulted in
a zoo of computational architectures which requires the use
of application benchmarks to enable sensible, cross-platform
performance measurements.

The emergence of new computational paradigms moti-
vates the development and deployment of new benchmark
suites to measure and define performance. The upsurge of
computing in the 1970s and 80s led to the creation of
LINPACK and SPEC for benchmarking supercomputers and
workstations [1], [2]. The PARSEC benchmark suite was
introduced in response to the proliferation of chip multi-
processors [3], and the explosion of interest in machine
learning applications led to the creation of MLPerf to
benchmark performance between different models [4]. Simi-
larly, the emergence of new quantum computer architectures
must be matched by the development of a new suite of
benchmarks tailored to these systems.

Prior attempts to benchmark quantum processors have
focused on single-number metrics to quantify performance.
For example, the quantum volume [5] and Q-score [6]

metrics target a specific class of circuits or a single appli-
cation, respectively, to determine the overall performance
of a quantum processing unit (QPU). However, capturing
the general performance of a computational system within
a single number can be very challenging as well as mis-
leading. Throughout the history of classical benchmarking
there have been examples of compilers and microarchitec-
tures optimized for specific benchmarks while neglecting
the application domains that fall outside the scope of the
benchmark suite [7]. Therefore, it is advantageous to use an
entire suite of benchmarks to obtain a better sense of system
performance across a range of potential applications.

Application-level benchmarks provide more accurate mea-
surements of system-level performance than circuit- and
gate-level strategies which are better suited to characterizing
specific properties of the hardware. Applications also differ
in the amount and kind of resources they require. Therefore,
a benchmark suite must maintain good coverage of the
application space to accurately represent realistic workloads.
We introduce a set of feature vectors to describe and measure
the coverage of quantum applications. Each benchmark
application is described by a single vector, and the individual
features that make up this vector are based on hardware-
agnostic quantities that are related to the application’s re-
source requirements.

Existing quantum processors are described as Noisy
Intermediate-Scale Quantum (NISQ) devices due to their
prohibitive gate error rates and limited number of qubits [8].
NISQ computers lack the computational resources to run
the originally-envisioned quantum applications such as fac-
toring [9], database search [10], and solving linear sys-
tems [11]; which require devices that are fault-tolerant (FT).
A quantum benchmark suite must take into account the gap
between the machines of today and those of tomorrow by
incorporating applications that scale down to the NISQ and
up to the FT regime in order to remain relevant.

The state-of-the-art in quantum computing is rapidly pro-
gressing. As qubit counts increase and gate errors decrease,
new use cases may be discovered. The set of benchmark
applications should change to reflect those developments.
In addition, quantum software techniques are continuously
improving and adapting to changes in hardware. This aspect
of quantum computing should be reflected in the benchmark



suite by evaluating the performance of the system, composed
of the hardware and the software, as a whole. Some compiler
optimizations, such as noise-aware qubit placement [12]—
[15], have already become standard practice within some
quantum compilation toolflows and can make the difference
between program success and failure.

Recent works within the quantum computer architecture
community have taken the first steps towards quantum
benchmarking. The PPL+2020 [16] suite was evaluated on
seven superconducting QPUs, focused on characterizing the
error rates of different operations, and demonstrated the
time dependence of their performance. The TriQ [17] suite
was used to perform a cross-platform comparison between
superconducting and trapped-ion systems and revealed the
importance of software visibility into the hardware’s native
gates. However, the scalability of these suites is limited by
their reliance on circuit simulation to estimate how well the
QPUs are performing. SupermarQ extends these works by
introducing a systematic and principled approach to building
a scalable quantum benchmark suite. We introduce a set
of principles: (1) scalability, (2) meaningful and diverse
applications, (3) full-system evaluation, and (4) adaptivity, to
address the constraints presented above and provide a basis
for developing a robust suite of benchmarks.

Resources such as coherence time, the number of qubits,
and number of two-qubit gates required by a quantum pro-
gram significantly impact that program’s success rate [16],
[17]. We introduce multiple features including the connec-
tivity of the logical circuit, the degree of parallelism, and
the proportion of two-qubit entangling operations within
the circuit to reflect an application’s resource requirements.
We use these features to examine the coverage of existing
quantum benchmark suites, and given a quantum device and
benchmark application, we study the correlation between the
application’s features and the performance of the QPU.

We seek to define the challenges that surround the con-
struction of a scalable quantum benchmark suite and meet
these challenges by drawing on techniques from classical
benchmarking. To this end, our contributions include:

o A set of guiding principles that define the desirable

qualities of a scalable quantum benchmark suite.

o A set of feature vectors to characterize the applications
and coverage of quantum benchmark suites.

o The discovery that realistic benchmark suites give better
coverage than existing single-application benchmarks
and synthetic suites that focus on individual features.

o Eight benchmark applications; specified at the level
of OpenQASM [18] that consist of an open-source
circuit generator and performance metric that are both
scalable.

o Cross-platform evaluation on superconducting and
trapped ion architectures.

o Correlation of the application features with the ob-
served system performance.

The remainder of the paper is organized as follows: we
begin with an overview of prior quantum benchmarks in
Sec. II. In Sec. III we describe the design choices behind
the benchmark principles and feature vectors. The bench-
mark applications and the coverage of different benchmark
suites are discussed in Sec. IV. We then step through our
methodology in Sec. V and evaluate our results in Sec. VL.
Finally, we provide a discussion of these results in Sec VII
and close with final remarks and future work in Sec. VIIL

II. PRIOR WORK
A. Classical Benchmarks

As processing power grew exponentially with Moore’s
Law it was necessary for the development of classical bench-
mark suites to keep pace so that the performance of newly
emerging architectures could be accurately measured. Ad-
vancements in areas such as high-performance computing,
workstations, chip multi-processors, and machine learning
were accompanied by new suites of benchmarks designed
to quantify performance within each respective domain [1]—
[4].

In particular, the PARSEC benchmark suite was designed
around a set of principles that helped define its scope and
purpose. The five requirements that PARSEC aimed to meet
were: the inclusion of multithreaded applications, repre-
senting emerging workloads, targeting diverse workloads,
utilizing state-of-art techniques, and supporting on-going
research efforts [3]. SupermarQ is inspired by the principled
approach taken by PARSEC because of the similarities
between the emergence of chip multi-processors and the
emergence of quantum computers.

B. Quantum Benchmarks

The current state of quantum benchmarks consist of (a)
low-level approaches to measuring individual gate errors,
qubit coherence times, or other hardware-level properties, (b)
synthetic benchmarks that utilize random circuits to measure
hardware performance, (c) single application benchmarks
that focus on a particular use-case, and (d) a few exam-
ples of initial quantum benchmark suites. Each of these
approaches have advanced the state-of-the-art in quantum
benchmarking. In the following sections we discuss the
tradeoffs associated with each approach.

1) Gate-Level Characterization: The original motivation
behind the development of quantum benchmarks was the
desire to understand exactly what process the quantum
hardware was implementing in the presence of imperfect
controls and noise. Quantum process tomography is a well-
known technique which can be used to fully characterize any
quantum process [19]. Unfortunately, this technique scales
exponentially with the number of qubits and is therefore only
applicable to systems of only a few qubits. In response to the
intractability of quantum process tomography, randomized



approaches to quantum benchmarking were introduced [20]-
[22]. These methods scale polynomially with the number of
qubits and can be used to characterize the average error
rates for the different operations within a QPU’s native
gate set. While understanding the error rates of individual
gate operations is a critical component of designing a QC
system, especially for constructing noise models, it does not
directly capture how the system will perform on real-world
applications.

2) Synthetic Benchmarks: Synthetic benchmarks such as
the quantum volume protocol [5] and quantum LINPACK
benchmark [23] have also been introduced to measure the
performance of QC systems. Both benchmarks rely on some
aspect of randomness within their protocol. The quantum
volume metric is computed by finding the largest random
circuit of equal width and depth that a QPU is able to execute
while generating the correct outputs with probability greater
than 2/3 (i.e., heavy-output generation) [5]. The quantum
LINPACK benchmark is inspired by the classical LINPACK
benchmark which measures performance by a computer’s
ability to solve random systems of linear equations.

The main drawbacks to these synthetic benchmarks is that
they are neither meaningful nor scalable. Typical quantum
applications do not generally take the form of random
quantum circuits and therefore the quantum volume and
LINPACK benchmarks are not necessarily representative of
useful workloads [8]. In addition, the computation required
to verify the output of these benchmarks becomes intractable
as the number of qubits increases. The quantum volume
metric requires that the heavy-outputs of the random circuit
be computed beforehand, using a classical technique which
scales exponentially with the number of qubits [5]. Veri-
fication of the quantum LINPACK benchmark also scales
unfavorably. In fact, the hardness of this benchmark is based
on the same type of chaotic quantum evolution that underlies
prior supremacy experiments [23], [24]. Although quantum
LINPACK may be a suitable candidate for testing quantum
supremacy, this characteristic is not desirable as a scalable
quantum benchmark.

3) Application Benchmarks: The Variational Quantum
Eigensolver (VQE) [25] is a hybrid quantum-classical al-
gorithm used to compute molecular ground state energies
and has been proposed as a potential quantum bench-
mark [26]. The effective fermionic length is another bench-
mark which uses VQE to compute the ground state energies
of one-dimensional Fermi Hubbard models of increasing
length [27].

The Quantum Approximate Optimization Algorithm
(QAOA) [28] has also been proposed as an effective ap-
plication benchmark. The performance of QAOA on su-
perconducting QPUs was compared against the D-Wave
2000Q quantum annealer for instances of weighted MaxCut
and 2-SAT problems [29]. Another example, the “Q-score”
performance metric, is computed by finding the largest

MaxCut instance which a QPU can effectively solve [6].

All of these application based benchmarks possess a
level of scalability that is not present in the low-level and
synthetic benchmarks. This is due to their use of application-
level metrics, like ground state energy or approximation
ratio to measure performance. Simultaneously, reliance on
application-level metrics makes cross-platform comparisons
between different quantum architectures and classical ap-
proaches straightforward. This is important because the
crossover point between the best classical and quantum
approaches is a constantly moving target that shifts with
every advance in algorithms, software, and hardware.

Despite the scalability offered by these application bench-
marks, a single application is inadequate for measuring
overall system performance. Many different applications are
required to reflect the diversity of possible workloads.

4) Benchmark Suites: Some prior works have begun to
explore the creation of quantum benchmark suites to enable
more accurate characterizations of system performance and
cross-platform comparisons. QASMBench [30] is a low-
level benchmark suite based on the OpenQASM assembly
language [18]. PPL+2020 evaluated nine benchmarks on
seven different IBM superconducting QPUs, characterizing
their error rates and performance over time [16]. While
both are examples of early quantum benchmark suites, their
performance metrics are based on comparisons between
the experimental and ideal circuit outputs. This limits the
scalability of these suites due to the exponential scaling of
quantum circuit simulation.

The current QC landscape is filled with a variety of archi-
tectures such as photonic, trapped ion, and superconducting
implementations. Initial architectural comparisons between
these implementations have revealed the impact that qubit
connectivity, native gate operations, and error rates can have
on program execution [17], [31]. Thus far, however, these
cross-platform comparisons have been limited to a handful
of applications that do not always represent the workloads
we expect to run on QPUs in the near future.

III. BENCHMARK DESIGN

The SupermarQ quantum benchmark suite is built around
four guiding principles that shape the selection and evalua-
tion of the applications. We start by motivating the design
principles and then define the hardware-agnostic features
used to characterize the quantum programs.

A. Design Principles

(1) Scalability — The current trajectory of QC development
begins with the small-scale NISQ devices being built today
and is aimed at the large-scale FT quantum computers of
tomorrow. Because of this large variation in system size
the applications included in a quantum benchmark suite
should be gracefully scalable from just a few qubits to
hundreds, thousands, and beyond — while maintaining their



meaning. For example, combinatorial optimization problems
like MaxCut are scalable in this context because they can
be defined on graphs of arbitrary size. It is also important
that the performance metrics scale efficiently. Classical
simulations of quantum circuits scale exponentially with the
number of qubits so simply simulating the benchmarks and
comparing with the experimental results is not a scalable
solution. Therefore, a scalable suite must be composed of
applications whose size is parameterizable and performance
is easily verifiable.

(2) Meaningful and Diverse — Benchmark applications
should reflect the workloads that will appear in practice.
Potential use-cases for QPUs have been identified in chem-
istry [25], [32], machine learning [11], [33], cryptogra-
phy [9], [34], finance [35], [36], physics [37], [38], and
database search [10]. Incorporating applications from a
range of domains will provide relevant performance points to
the widest range of people. Quantum programs pulled from
different use-cases present wildly varying program structures
and require different amounts of resources from the quantum
computer. A benchmark suite should provide good coverage
over these potential use-cases to better understand system
performance under a variety of circumstances. The feature
vectors introduced in Sec. III-B are a step in quantifying the
stress an application places on a QPU.

(3) Full-system evaluation — The overall performance
of a quantum computer relies on the proper functioning
and interplay between the hardware and software stacks.
Within the current stage of QC, the role played by the
compiler: effectively cancelling gates, mapping between
program and physical qubits, and so on, can make or break
the execution of a quantum program [14], [39]. In addition,
many of the unique properties offered by different quantum
implementations (native multi-qubit or parameterizable gates
for example) are exploited at the compiler level when the
program is transpiled to a hardware supported gateset.

Mandating a single compilation toolflow is inefficient, re-
quiring that each benchmark be represented as an executable
for every hardware backend, and ineffective, since certain
capabilities available only to a certain class of quantum
hardware may be overlooked. An application-based quantum
benchmark suite should therefore specify benchmarks at a
shared level of abstraction, such as OpenQASM, and allow
the compiler to play a role in overall system performance.

(4) Adaptivity — The entirety of quantum computing,
encompassing both the hardware and software, is undergoing
a period of rapid advancement. This poses a challenge for
benchmarking since any suite which aims to accurately
measure performance must keep pace with the development
of algorithms, compilation optimizations, and hardware. The
applications making up the benchmark suite should reflect
this by adapting to the current state-of-the-art.

B. Feature Vectors

We use a set of feature vectors to quantify the coverage of
the selected benchmark applications. The features indicate
how each of the benchmarks will stress the processor and
to what degree.

1) Program Communication: Quantum algorithms vary
in the amount of communication needed between qubits.
Some algorithms only require single qubit operations and
nearest-neighbor interactions. These algorithms are easily
mapped to processors with limited connectivity between
qubits. Other algorithms require communication between
every pair of qubits. Within a quantum circuit, a qubit’s
“degree” is the number of other qubits it interacts with via
multi-qubit operations. Node degree is commonly used for
physical architecture analysis in classical [40] and quantum
networking [41]. It is often the case that physical qubit
degree is much more uniform and limited than what is
required for logical algorithm qubits. For hardware with
less than all-to-all connectivity, the compiler may need to
insert swap operations into the program to successfully map
between the algorithmic and physical qubits [42]. We use
the normalized average degree of the program’s interac-
tion graph to quantify the communication requirements of
quantum circuits. The interaction graph is formed by taking
the qubits to be the vertices and inserting an edge between
every pair qubits that interact with one another. The program
communication feature is computed by taking the average
degree of the interaction graph divided by the average degree
of a complete graph with an equivalent number of qubits.
The program communication feature is computed as

o 2i dla) 0
N(N -1)
for an N-qubit circuit, where d(g;) is the degree of qubit g;.
The communication requirements of sparsely connected ap-
plications will have values near zero while denser programs
will be close to one.

2) Critical-Depth: The lifetime of the information stored
across a QPU’s qubits, the coherence time, is limited. This
limitation combined with accumulated gate error causes
lower fidelity circuit executions. Thus, it is essential that
quantum circuits are of the shortest duration possible. The
minimum duration for a quantum circuit is determined
by the critical path: the longest span of dependent oper-
ations from circuit input to output. The critical path is a
valuable benchmarking metric because quantum hardware
performance must reach specific thresholds to accommodate
continuously compounding gate errors. Operations of par-
ticular interest are two-qubit interactions because two-qubit
operations dominate single-qubit operations in terms of gate
error and execution time on NISQ hardware [43] [44]. The
critical-depth feature gives context about how many two-
qubit interactions in a program lie along the critical path



and contribute to the overall circuit depth. It is calculated as

D =neg,/ne 2)

where n., is the number of two-qubit interactions on the
longest path that sets the circuit depth and n. is the total
number of two-qubit interactions in the circuit. Circuits that
are heavily serialized will have a critical-depth that’s close
to 1.

3) Entanglement-Ratio: Entanglement is a critical prop-
erty which gives quantum computing much of its strength.
It makes for a useful benchmark for quantum machine
performance as it can be applied to computing tasks that
demonstrate quantum advantage such as in Shor’s factor-
ing [9], teleportation [45], superdense coding [46], and quan-
tum cryptographic protocols [47]. Prior work indicates that
algorithms without entanglement can be efficiently simulated
by classical computers [48], [49]; further demonstrating the
importance of entanglement as a benchmark for quantum
processing power. While it is in general quite difficult to
measure the precise amount of entanglement at every point
within a circuit (usually requiring access to the full statevec-
tor) we can roughly capture this feature by computing the
proportion of all gate operations (n4) which are two-qubit
interactions (n.):

E =n¢/ng,. (3)

4) Parallelism: The structure of different quantum algo-
rithms allow for varying degrees of parallelization. Parallel
operations can also stress the quantum hardware because
of correlated noise events known as ‘“cross-talk” that de-
grade program performance [50]. Cross-talk, often caused
by simultaneous gate execution, is a common source of
error in NISQ systems, and its negative impact on program
execution has been well studied [51], [52]. This motivates
the development of a feature that captures how susceptible a
benchmark is to degradation via cross-talk. The parallelism
feature represents this aspect by comparing the ratios of the
number of qubits (n), gates (ny), and the circuit depth, d:

) e

Highly parallel applications fit a large number of operations
into a relatively small circuit depth and will therefore have
a parallelism feature close to 1.

5) Liveness: During program execution, a qubit will
either be involved in computation or it will be idle; waiting
for its next instruction. In an ideal environment, the qubit’s
state would stay coherent while idling. In reality, unwanted
environmental interactions such as amplitude damping, de-
phasing, and correlated noise cause decoherence [53]. The
liveness feature captures aspects of an application’s qubit
status during its lifetime. It can be defined as

_ Zij Ay
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where A is the liveness matrix defined by taking a quantum
circuit and forming a matrix with n rows equal to the number
of qubits and a number of columns equal to the circuit
depth d. At every time-step of circuit execution (i.e., each
column), a qubit may either be involved in an operation or
idle, corresponding to entries of 1 or 0 in the liveness matrix,
respectively. In this way, the liveness feature gives a sense
of how often the qubits are being acted upon. The frequency
of idling as 1 — L provides insight to qubit inactivity over
its application lifetime.

6) Measurement: Qubit-specific measurement is a critical
part of quantum computing [54]. It is required to extract
information during and after a program’s execution. In
fault-tolerant quantum computing, error correcting codes
use measurement to extract entropy from a noisy quantum
system [55]. Unfortunately, NISQ devices suffer from non-
trivial amounts of measurement error. The measurement
feature,

M = liem/d (6)

focuses specifically on the mid-circuit measurement and
reset operations within a quantum program. For a circuit
composed of d sequential layers of gate operations (i.e., the
circuit depth), l,,,cp, is the number of layers which contain
these measurement and reset operations.

IV. BENCHMARK APPLICATIONS
A. GHZ

The generation of entanglement between qubits is one of
the most important tasks in quantum computing, sensing,
and networking. We benchmark the ability of a quantum
processor to generate entanglement by measuring the state
preparation fidelity of GHZ states [56]. The GHZ benchmark
consists of a Hadamard gate followed by a ladder of CNOTs
to produce the entangled state: (|00...0) + [11...1))/v/2
(see Fig. la). The performance metric is the Hellinger
fidelity [57], [58] between the experimentally observed prob-
ability distribution and the ideal distribution ( 50% |00 . . .0)
and 50% [11...1)).

There are other methods for preparing GHZ states, notably
those utilizing mid-circuit measurements or parallel two-
qubit gates. These methods can have different resource
requirements in terms of gate counts and circuit depth [59],
[60]. However, we choose to include the CNOT-ladder
method because not all platforms currently support mid-
circuit measurements.

B. Mermin-Bell

One of the primary uses for quantum computers thus far
has been for small scale demonstrations of the quantum-
ness of nature [61], [62]. These experiments are known
as Bell inequality tests [63] whose introduction resolved
the Einstein-Podolsky-Rosen (EPR) paradox that questioned
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Figure 1: Feature maps and sample circuits for each of the benchmarks evaluated in this study. The definitions of the Program
Communication (PC), Critical Depth (CD), Entanglement-Ratio (Ent), Measurement (Mea), Parallelism (Par), and Liveness

(Liv) features are given in Sec. III.

the completeness of quantum mechanics [64]. The Mermin-
Bell benchmark (Fig. 1b) included in SupermarQ is an
example of a Bell inequality test. In this benchmark, a
GHZ state, |¢) = (1/v/2)(]00...0) +i|11...1)), is first
prepared before measuring the expectation value of the
Mermin operator

1 (& . . rooo
M= [1(ei +io)) - [ (o} —ic)) 7
j=1 j=1

where o7 and ¢ are the Pauli-X and -Y operators acting
on the j-th qubit. If nature is quantum, the expectation of

this operator for an n qubit system is

(p|M|p) =21 8)

If nature is classical and obeys a theory of local-hidden
variables, then the expectation value of the Mermin operator

is bounded by
(@|M|g) < 2(n—(rmod2)/2 ©)

We measure performance by computing ((¢|M|¢) +
27=1) /2™ as the benchmark score.

After preparing the GHZ state, the remaining gates within
the Mermin-Bell circuits rotate the quantum state into the
shared basis of the Mermin operator such that the expecta-
tion of each term can be measured simultaneously. Unlike
the GHZ benchmark, the basis-change portion of the circuit
begins to dominate the state preparation as the size of the
benchmark increases.

C. Error Correction Subroutines

Error correcting codes (ECCs) are the means by which
fault-tolerant quantum computers are able to execute arbi-
trarily long programs. Many ECCs have been developed
that trade off between the number of detectable errors,



correctable errors, qubits required, and required error thresh-
olds to reach fault-tolerance [65]-[67]. Although full-scale
fault-tolerance has not yet been observed, small experiments
have demonstrated the feasibility of different error correction
schemes on both superconducting and trapped ion architec-
tures [68]-[70].

Since the error levels of current NISQ devices do not
allow for the implementation of full-scale error correction,
we use two proxy-applications to benchmark QPU perfor-
mance within this domain. While these proxy-applications
do not correct any errors, they do reflect the circuit structure
that is common to many ECCs [55], [71]. Unlike the other
benchmarks within the SupermarQ suite, the error correction
proxy-applications make use of RESET operations (needed
to reinitialize a qubit to the |0) state after measurement).
The data qubits which do not participate in the RESET will
need to idle. This idleness will add to the circuit execution
time; increasing the chances of decoherence.

1) Phase Code Proxy-application: The phase code
benchmark is a phase flip repetition code parameterized by
the number of data qubits and rounds of error correction.
The feature maps for different parameterizations are shown
in Fig. lc as well as a sample circuit which has three
data qubits and a single round of error correction. To
measure performance, we first prepare the data qubits in
initial |+) = (10) + [1))/V2 or [=) = (|0) — |1))/v2
states followed by r rounds of error correction and finally a
measurement of the final state. In a noiseless setting, the final
state of the system is known a priori: it should be identical to
the chosen initial state. We therefore compute the Hellinger
fidelity between the experimental and ideal distributions as
a measure of performance. For example, the data qubits in
Fig. 1c¢’s sample circuit are initialized in the |+ — +) state
and the ideal output distribution is an equal distribution over
all the possible values of the three data qubits and the error-
syndrome qubits in the |00) state.

2) Bit Code Proxy-application: Like the phase code, the
bit code benchmark is also a bit flip repetition code that
is parameterized by the number of data qubits and error
correction rounds. Instead of checking for phase flips, the
bit code detects bit flips on the data qubits. Fig. 1d shows
the feature map for this benchmark and a sample circuit
with three data qubits initialized in the |010) state and a
single round of error correction. Since the ideal final state
is known a priori, we also use the Hellinger fidelity as the
score function for this benchmark.

D. QAOA

The Quantum Approximate Optimization Algorithm
(QAOA) is a variational quantum-classical algorithm that
can be trained to output bitstrings to solve combinatorial op-
timization problems [28]. We benchmark QAOA for MaxCut
on complete graphs with edge weights randomly drawn from
{—1,+1}. This is known as the Sherrington-Kirkpatrick

(SK) model; and it is a particularly promising target for
near-term quantum computers [72], [73]. We implement two
variants of QAOA that use different parameterized circuits
(ansatzes).

The Vanilla QAOA benchmark, Fig. 1f, uses an ansatz
that matches the SK model exactly. This is the typical for-
mulation of QAOA [28]. Since the SK model is completely
connected, the constructed ansatz also requires all-to-all
connectivity. The ZZ-SWAP QAOA benchmark implements
a variational ansatz known as a SWAP network [74], [75].
This ansatz is a natural choice for solving MaxCut on the
SK model which requires an interaction between every pair
of qubits (i.e., n(n — 1)/2 edges). The SWAP network (a
sample circuit is shown in Fig. le) is able to perform all
O(n?) required interactions using a quantum circuit whose
depth scales as O(n).

We use a proxy-application in place of the full variational
algorithm due to current limitations associated with cloud-
based access to QC systems. The full QAOA benchmark
would require thousands of iterations to reach convergence.
Evaluating the full benchmark becomes infeasible because
of the wait times incurred while the jobs are in the queue.
We measure a QPU’s ability to evaluate a single iteration of
QAOA instead.

To ensure scalable classical verification, we choose the
level-one (p = 1) variant of QAOA; which is efficiently sim-
ulable classically due to recent work [76]. We found optimal
parameters via classical simulation and then executed these
QAOA circuits on the real QC systems. We compared the
experimental and ideal results by measuring the expectation
value, (H), and computing 1 — W as the
benchmark score. For the SK model, this can be written
as H =3, icpotol; where E is the set of edges within
the graph. In contrast, the performance measure for the
full QAOA benchmark would be the final MaxCut value
achieved after optimization. This would allow for straightfor-
ward comparisons with other quantum or classical MaxCut
algorithms.

E. VOE

The Variational Quantum Eigensolver (VQE) [25] is
another hybrid algorithm like QAOA. The goal of this
algorithm is to find the lowest eigenvalue of a given problem
matrix by computing a difficult cost function on the QPU
and feeding this value into an optimization routine running
on a CPU. Typically, the problem matrix is the Hamilto-
nian governing a target system and the lowest eigenvalue
corresponds to the system’s ground state energy [77].

We target the one dimensional transverse field Ising model
(TFIM, also called the transverse Ising chain) and use VQE
to find its ground state energy. The 1D TFIM is a useful
model for understanding phase transitions in magnetic mate-
rials [38]. The 1D TFIM is desirable as a scalable benchmark
because it is exactly solvable via classical methods [78].



Like the proxy-application employed for the QAOA
benchmark, we replace the full VQE benchmark with a
proxy-application that measures performance for a single
iteration of the VQE algorithm. Instead of running the
full VQE algorithm and reporting the final ground state
energy, we classically simulate the variational optimization
to convergence. We take the final parameters output by said
classical optimization and measure the energy of the 1D
TFIM using the quantum computer. We compare this energy
with the value obtained classically and compute the same
score function as the QAOA benchmark. The hardware-
efficient ansatz used in this benchmark is shown in Fig. 1g
along with its corresponding feature map.

F. Hamiltonian Simulation

Simulating the time evolution of quantum systems is one
of the most promising applications of quantum comput-
ing [79]. There are many quantum algorithms for Hamil-
tonian simulation which are known to possess exponential
speedups over classical methods [37], [80]. Closing the
gap between the algorithmic resource requirements and the
capabilities of QC systems may lead to breakthroughs in the
development of new batteries and catalysts [81].

We target the 1D TFIM as the system we wish to simulate.
The Hamiltonian for this system, consisting of N spins, may
be written as

N
H=- Z(Jzaioiﬂ + €pn €08 (wpnt)al)  (10)
i=1
where J, is a coupling constant that determines the strength
of the nearest-neighbor interactions and €y, coswppt de-
scribes the time-varying magnetic field. We set these pa-
rameters to match recent work on quantum algorithms for
simulating the time evolution of quantum systems [82].

The Hamiltonian simulation benchmark (Fig. 1h) is spec-
ified by taking the Hamiltonian in Eq. 10 for a specific
value of NN, generating a quantum circuit via Trotteriza-
tion [83] for a specific number of time steps, and finally
measuring the average magnetization of the final state. The
average magnetization of the final quantum state can be
found by computing the expectation value of the operator
m, = % > ol [82]. The experimentally obtained average
magnetization is then compared to the exact value obtained

| <mz>ideal - <n"z > exper |
2

classically. We compute 1 — as the

benchmark score.

G. Coverage

To analyze suite coverage we consider the volume of
feature space spanned by the benchmarks. We treat the six
application features as separate axes within a six dimensional
space. Each benchmark within a suite can be associated with
a single, six dimensional feature vector. To find the coverage
of a given set of applications, we compute the volume of
the convex hull defined by their feature vectors: each shape

Suite | Volume | Circuits

SupermarQ (this work) | 9.0e-03 52
QASMBench [30] 4.0e-03 62
Synthetic 1.4e-03 6
CBG2021 [84] 1.6e-08 10476
TriQ [17] 4.1e-14 12
PPL+2020 [16] 1.0e-15 9

Table I: Coverage comparison of different benchmark suites.
For each suite we report the volume and the number of
circuits used to compute the volume.

in the feature maps (Fig. 1) shown above corresponds to a
single vector within the higher dimensional feature space.

We compute the coverage of six different quantum bench-
mark suites and report their volumes and the number of
circuits used to compute the coverage in Table I. QASM-
Bench is a collection of benchmark circuits that range in
size from two to a thousand qubits [30]. CBG2021 is a
recent suite that includes six different benchmark appli-
cations that range from Mermin-Bell tests to calculations
of the Mandelbrot set [84]. The TriQ suite was used in
recent cross-platform comparisons between superconducting
and trapped ion processors, and consists of small-scale
applications with no more than eight qubits [17]. PPL+2020
introduced the “quality of operation” metric to capture the
fidelity and variance of quantum gate operations, and is
composed of nine small benchmark applications with three
to five qubits [16]. For the SupermarQ suite, we generated
instances of the applications covered in Sec. IV ranging in
size from three to a thousand qubits. Finally, the synthetic
suite consists of a set of hypothetical proxy-benchmarks that
each maximize a single application feature (e.g., unit vectors
along each axis of the six dimensional space).

Only SupermarQ and QASMBench attain coverage su-
perior to the synthetic benchmark suite. These are also the
only suites that include larger applications relevant to late
NISQ and early FT devices. For comparison, the Super-
marQ applications used in this coverage computation were
selected to match the range of benchmark sizes found in the
QASMBench suite, however, SupermarQ has the additional
capability of generating arbitrarily sized benchmarks.

Periodically collecting new benchmark data is a practical
concern for any quantum benchmark suite. We utilize a
write-once-target-all toolflow, SuperstaQ, which was de-
signed explicitly with this purpose in mind [87]. With
SuperstaQ we are able to specify the OpenQASM for a
single circuit and execute it on multiple backends. The need
to efficiently collect new benchmark results also introduces
a tradeoff between the number of circuits in the suite (more
circuits covering more applications and boosting coverage)
and the ability to evaluate them in a cost-efficient man-
ner. SupermarQ tries to find a balance between the two;
providing competitive coverage that is superior to a purely
synthetic suite while using a relatively modest number of



Machine  Qubits COMerenceTime (w9 Gate Times ()
IBM-Casablanca 7 91.21, 125.23 0.035, 0.443, 5.9
IBM-Montreal 27 104.14, 86.88 0.035, 0.423,5.2
IBM-Guadalupe 16 99.52, 104.99 0.035, 0.416, 5.4
IonQ 11 >1e7, 2e5 10, 210, 100
AQT 4 62,37 0.03,0.152, 1.02

Gate Errors (%)
(1Q, 2Q, Meas)
0.028, 0.83, 2.09

0.052, 1.76, 1.96

0.043, 1.03, 2.79

0.28, 3.04, 0.39

0.083,2.1,1.25

Topology
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Table II: Characteristics of the QC systems used to evaluate the benchmarks. The IBM and IonQ data was taken from the
public documentation available through their respective cloud providers (IBM Qiskit and AWS Braket) on July 30, 2021.
The device statistics for the IBM QPUs not pictured here are available online through IBM Quantum [85]. The AQT system
properties were obtained via randomized benchmarking on Sept 21, 2021 and [86].

circuits.

V. METHODOLOGY

In this work we present results obtained for eight bench-
mark applications evaluated on nine QPUs. We accessed
the quantum computers through the IBM Qiskit [85] and
AWS Braket [88] cloud services, and the Lawrence Berkeley
National Lab’s Advanced Quantum Testbed (AQT) [86]. The
specifics of each benchmark’s evaluation and score function
are given in Sec. IV, and the architectural characteristics
of the quantum computers used to evaluate the suite of
benchmarks are summarized in Table II.

For each benchmark we first fix the application-specific
parameters (e.g., problem size, number of layers, initial
state). Then the OpenQASM for the benchmark circuits is
generated. Some benchmarks may be composed of multiple
circuits. For example, the VQE benchmark requires two
separate circuits in order to measure the energy operator
in two orthogonal bases.

To easily evaluate the benchmarks across QPUs we uti-
lize SuperstaQ [87]: a write-once-target-all toolflow which
presents a unified interface for simultaneously submitting
OpenQASM-defined quantum circuit instances to the de-
vices available on the IBM Qiskit and AWS Braket cloud
services. Behind the scenes, SuperstaQ converts OpenQASM
to AWS Braket’s jagcd (JsonAwsQuantumCircuitDescrip-
tion) intermediate representation [89]. In addition to thor-
ough unit tests and unitary-verification integration tests,
we experimentally validated the correctness of SuperstaQ
by running our error correction benchmarks for a com-
prehensive set of input-output bitstring pairs. IBM’s Qiskit

supports OpenQASM out-of-the-box, so it does not require
any conversion.

Part of the challenge associated with evaluating the bench-
marks in this suite stems from the fact that the level of
control over which compiler optimizations are applied to the
circuits varies across the different cloud services. SupermarQ
enables cross-platform comparisons of performance by spec-
ifying its benchmarks at a shared level of abstraction. To do
this, we evaluate all the applications within the context of
a Closed Division, that specifies how the benchmarks are
expressed and the optimizations that are allowed.

The Closed Division allows for a restricted set of op-
timizations to obtain a lower bound for the performance
of a quantum computer. The benchmarks in this suite are
specified at the level of OpenQASM [18], the most pop-
ular [90] intermediate representation for quantum circuits.
Optimizations which are publicly available to quantum pro-
grammers are considered fair-game. These include the tran-
spilation of OpenQASM to native gates, noise-aware qubit
mapping, SWAP insertions, reordering of commuting gates,
and cancellation of adjacent gates. Low-level optimizations
below the level of native gates, such as pulse optimizations,
as well as post-processing techniques like error-mitigation
are not allowed. The optimizations included within the
Closed Division were chosen to match the optimizations
that are automatically applied when using the cloud-based
platforms. This matches the level of optimization that would
be available to the average user.

The specification of the Closed Division and the bench-
mark results presented in this work aim to demonstrate a
lower bound on the performance which would be achievable
by a typical quantum programmer. We leave the specification



1.0 1.0
0.81 [DREN IS N I * FUN N S—— S FEN  E—
g 0.6 0.6
@ 0.4 0.4
0.21 W 3.qubits B S-qubits WM 7-qubits NN 11-qubits 027 = Classical Limit N 3-qubits N 4-qubits
0.0 0.0
(a) GHZ (b) Mermin-Bell
1.0 [ 3-data qubits, 2-rounds WM 5-data qubits, 2-rounds 10 N 3-data qubits, 2-rounds BN 5-data qubits, 2-rounds
0.8 I 3-data qubits, 3-rounds MEEE 5-data qubits, 3-rounds 0.8 = 3-data qubits, 3-rounds  MEEE 5-data qubits, 3-rounds
£0.6
S
204
0.2
0.0
(c) Bit Code (d) Phase Code
1.0 1.0
0.8 0.8
°
g 0.6 0.6
304 0.4 : I |
B 4-qubits, 1-step N 7-qubits, 1-step I | 1-qubits, 1-step
0.2 B 4-qubits, I-layer B 4-qubits, 2-layers BN 7-qubits, 1-layer I 7-qubits, 2-layers 0.2 W 4-qubits, 3-steps NN 7-qubits, 3-steps NN 11-qubits, 3-steps
0.0 X X 0.0

(e) VQE (f) Hamiltonian Simulation

ll

B 4-qubits W S-qubits N 7-qubits NN 11-qubits
x

B 4-qubits W S-qubits M 7-qubits M |1-qubits 0.2

0.0 X 0.0
4Q - - Q- M- M- M- M- M- 1-4Q - - nQ M- M- M- M- M-
AQY M- M- on e eV e eV AQ BRSNS O L |- |- U - \ - L
Pane® ape Q08 rea) bl ago onto Janc® WS 1\Q {08 wredd” | moat 11280 onto
CN’I A G““\ZQ £ N\Og,l Q M“’L'IQ San! Q To‘ﬂo Casa\ng Guaixz Q £ MO%l Q M“y_‘l Q5 Q TO‘l "Q
(g) ZZ-SWAP QAOA (h) Vanilla QAOA

Figure 2: Benchmark results evaluated across superconducting and trapped ion devices (the black X’s indicate benchmarks
that exceed the number of qubits available on the device). The results for each benchmark appear in the same order given
along the x-axis of (g) and (h). Each bar denotes the average performance over multiple benchmark runs while the error-bars
indicate a single standard deviation from the mean score. The specific score functions for each benchmark are given in
Sec. IV. In every benchmark run, we executed 2000 shots on the IBM devices, 1024 on the AQT device, and 35 on the
IonQ processor. The shot counts were selected to maintain a reasonable cost budget for collecting the benchmark results.

and evaluation of an Open benchmarking division, allowing the classical limit denoted by the red line. However, this

for a wider range of optimizations, for future work. The is still a difficult benchmark — few processors are able
goals of these two benchmarking divisions parallel the to meet the classical limit for the 4-qubit instance. The
design of the MLPerf benchmark suite [4]. high communication feature of the Mermin-Bell benchmark
(Fig. 1b) reflects the all-to-all circuit structure necessary to

VI. RESULTS measure the Mermin operator (Eq. 7). Indeed, we see that

the TonQ trapped ion device, which natively supports all-
to-all connectivity, achieves the best performance despite
having a higher two-qubit gate error rate than many of the
superconducting devices.

The results of the benchmark executions are shown in
Fig. 2. Benchmarks labeled with black X’s were too large
to fit on a device. As the width and depth of the benchmarks
increases, the scores obtained by the hardware tends to de-
crease. This is expected as it is harder to maintain a coherent The importance of compatibility between circuit structure
quantum state as the number of qubits and gate operations and qubit topology is seen throughout the benchmark suite.
grows. There are also cases where adding additional qubits is Although many of the superconducting devices have two-
less detrimental to performance than adding more gates. We  qubit error rates lower than that of the trapped ion device,
see this behavior in the results of the bit code (IonQ), VQE the additional swap operations that must be inserted to match
(IonQ, Montreal, and Mumbai), and Hamiltonian simulation ~ the program connectivity quickly deteriorate performance
(IonQ, Mumbai, and Toronto) benchmarks. (Mermin-Bell, vanilla QAOA). When the connectivity of the

The Mermin-Bell results shown in Fig. 2b indicate that program matches that of the hardware, then the high quality
the QPUs are able to exploit quantum effects and surpass gates of the superconducting QPUs results in competitive
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Figure 3: Heatmaps showing the correlation between application features and system performance. The correlations in (a)
were computed using all of the benchmark data, whereas in (b) the data from the phase and bit code benchmarks was

excluded.
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Figure 4: Example of the impact the error correction (EC)
benchmarks have on the correlation between the application
features and system performance.

performance with the all-to-all connectivity of the trapped
ion QPU (VQE, Hamiltonian simulation, ZZ-SWAP QAOA).

In Fig. 3a we show the correlations between the appli-
cation features introduced in Sec. III and the benchmark
scores. For comparison, we also include typical features such
as circuit depth and the number of qubits and two-qubit gates
which have been used to characterize quantum applications
in prior work [14], [17]. The coefficient of determination
(R?) for each feature-QPU pair can be interpreted as the
proportion of the variance in that QPU’s performance that is
attributable to that feature. The R? values were obtained by

11

performing a linear regression over all benchmark scores for
that feature-QPU pair (see Fig. 4 for an example). For each
benchmark, the feature is treated as the independent variable
and the system performance as the dependent variable.

The two error correction benchmarks (Fig. 2c-d) have
especially low scores across the majority of the QPUs.
This is likely due to the costly RESET instructions used
in the bit and phase code benchmarks. Indeed, in Fig. 3a
the measurement feature has the strongest correlation with
performance for most of the superconducting QPUs (IBM-
Lagos-7Q is the exception). For superconducting devices
the measurement and reset operations are relatively long
compared to the coherence time of the qubits, and so the
information stored within the data qubits quickly begins to
decay as the number of error correction rounds increases.
In contrast, the readout times for trapped ion devices (de-
spite being many times longer than superconducting readout
times) are short compared to their long coherence times.
This allows the data qubits to sit idly within the ion trap,
waiting for the ancilla qubits to be measured and reset,
without decohering — resulting in little correlation between
the measurement feature and performance.

The overwhelming impact of mid-circuit measurements
on current system performance is revealed in Fig. 3b where
again the R? correlation values are plotted, but in this case
the results of the bit and phase code benchmarks have
been excluded from the linear regression. When ignoring
the results of the error correction (EC) benchmarks, we note
improved correlation for many of the feature-QPU pairs. No-
tably, the correlation of the entanglement-ratio and number



of 2-qubit gates features is greatly improved. This suggests
that, after RESET instructions, entangling operations have
the largest impact on system performance. Fig. 4 provides
an example of the linear regression performed over the
benchmark scores with and without the EC benchmarks. The
difficulty of successfully executing the RESET instructions
can be seen as the EC benchmarks have significantly lower
scores than expected given the value of their entanglement-
ratio features.

VII. DISCUSSION

The benchmark results presented in Sec. VI reveal the va-
riety of tradeoffs that are available to QC system designers,
and indicate that competitive advantages can be found by
focusing on applications which play to a system’s strengths
(e.g., faster gate speeds, higher fidelities, denser connectiv-
ity). For example, the IonQ device is able to make up for
lower two-qubit gate fidelities with better connectivity while
the superconducting systems with sparser connectivities are
still competitive due to their higher fidelity entangling gates.

The correlation results in Fig. 3 are a step towards
quantitative profiling of quantum programs. In particular,
the measurement feature highlights the outsized impact of
error correction routines on current system performance. The
design of future NISQ systems must focus on improving
these operations as mid-circuit measurements are a critical
component of quantum error-correcting codes.

Each benchmark was evaluated multiple times to discern
the mean system performance. This is partly due to (1)
time-variations in the calibrations and fidelities of individual
gate operations and (2) the ability of the compiler to find
good qubit mappings. The qubit mapping selected by the
compiler and the subsequent number of swap insertions has
a significant impact on performance since two-qubit gates
are so costly. This is evident in the increased variability
seen across the superconducting QPUs between the Vanilla
QAOA (Fig. 2h) and ZZ-SWAP QAOA (Fig. 2g) bench-
marks. Both benchmarks target the same task, but the all-to-
all connectivity of the Vanilla ansatz does not readily match
the nearest neighbor connectivity of the superconducting
systems. This mismatch is resolved by the compiler which
determines a routing schedule among the qubits; a step
which introduces extra variability in the performance. Even
systems with superior gate fidelities can be severely ham-
pered by sub-optimal compilation. This is especially relevant
today when the most popular mode of access is based on
a cloud-compute model and the programmer generally does
not have total control over the compilation process. A closer
investigation of the relationship between compilation and
benchmark performance is an important area of future work.

Cloud-based access models also impact our ability to
evaluate full variational applications. If the classical and
quantum processors are not tightly coupled, then the latency
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incurred by queue wait times makes the evaluation of vari-
ational algorithms with more than 10s of iterations imprac-
tical. Systems which support this hybrid quantum-classical
programming model are only just starting to appear [91]. The
adoption and availability of this programming model will be
crucial for the benchmarking of full variational algorithms.

The cost of collecting the benchmark results presented
in this paper influenced our decision to restrict the number
of shots per benchmark for the IonQ device. Any quantum
benchmark suite will need to be repeatedly evaluated to track
the performance of quantum computers over time. The cost
of running these benchmarks incentivizes the construction
of benchmark suites that provide maximum coverage with
as few applications as possible.

VIII. CONCLUSION & OUTLOOK

SupermarQ is a constantly evolving benchmark suite that
adjusts to the fluctuating QC landscape, and it is built with
scalability in mind to match the qubit counts of future
devices. The included benchmarks are based on real-world
applications which makes the suite meaningful to a broad
range of use cases, and it provides superior coverage of the
application space compared to prior suites and those built
entirely from synthetic applications. We plan to open source
SupermarQ, which will enable community contributions of
additional benchmarks to keep pace with emerging applica-
tions.

Computer architects have always been on the forefront
of benchmark development for emerging technologies. The
SupermarQ suite was inspired by previous work aimed
at benchmarking newly emerging computational paradigms
like high-performance computers, chip multi-processors, and
machine learning systems. Quantum computing’s pace of
development is currently on an exponential trajectory which
has led to varying degrees of skepticism, excitement, and
hype. The only way to cut through the hype and accurately
ascertain the capabilities of this emerging technology is
by returning to the principled, systems-based approach to
benchmarking that is at the foundation of computer archi-
tecture.
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APPENDIX
A. Abstract

The artifact contains the source code used to generate,
evaluate, and compute the score of the benchmarks presented
in this paper. Since the benchmarks in this work utilized pro-
prietary quantum hardware that require valid access tokens,
this artifact uses circuit simulation in place of real hardware
evaluations. Users which have access to different quantum
hardware platforms can take the circuits generated within the
artifact and manually execute them. The artifact provides a
Jupyter notebook, python files, and benchmark data sets to
recreate the plots shown in Figures 1, 2, 3, and 4.

B. Artifact check-list (meta-information)

Program: Cirq.

Run-time environment: Jupyter kernel.

Hardware: 6-Core Intel Core i7.

Execution: Quantum circuit simulation.

Output: Benchmark performance scores.

Experiments: SupermarQ benchmark applications.

How much disk space required (approximately)?: 1 GB

to store the artifact directory and python virtual environment.

+ How much time is needed to prepare workflow (approxi-
mately)?: 10 minutes.

+ How much time is needed to complete experiments (ap-

proximately)?: 30 minutes.

Publicly available?: Yes.

Code licenses (if publicly available)?: Apache 2.0.

Workflow framework used?: Jupyter notebook.

Archived (provide DOI)?:

https://doi.org/10.5281/zenodo.5786391.
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C. Description

1) How to access: The artifact 1is available
on Zenodo (10.5281/zenodo.5786391). The
source code and artifact notebook are zipped within
supermarq_hpca_ae.tgz.

2) Hardware dependencies: The results shown in the
paper require access to various quantum computers available
over the cloud. Since not all users will have the same access,
the artifact relies on quantum circuit simulation available
through the Cirq SDK. Any system which can run python
programs should be able to evaluate the artifact.

3) Software dependencies: The artifact requires the in-
stallation of the SupermarQ python package. The dependen-
cies are listed within requirements.txt.

D. Installation

The README . md contains detailed instructions to install
the SupermarQ python package. After downloading the
artifact zipfile, and extracting the contents, the SupermarQ
package can be installed via:

# cd SupermarQ HPCA_Artifact

# pip install

# pip install

-r requirements.txt

—-e

The user can then open the jupyter lab with the command:
# jupyter lab

The file HPCA_Artifact.ipynb contains an overview

of the benchmarks and figures used in this paper.

E. Evaluation and expected results

The notebook HPCA_Artifact.ipynb contains ex-
amples showing how the SupermarQQ benchmarks are gen-
erated and how the scores are computed using the results
of the circuit executions (in this case obtained via circuit
simulation). The simulations within the notebook utilize a
noise model with increasing amounts of noise. This is meant
to reflect the real-world execution of these benchmarks
on NISQ devices, and as the noise increases we expect
that the benchmark score will decrease. The notebook is
divided into three parts. The first section, Benchmarks,
shows how the benchmark circuits are generated and how
the scores are evaluated to create Fig. 2. The Features
section provides examples of the application feature plots
shown in Fig. 1. Finally, Correlations walks through
the process of creating Fig. 3 and 4. The Python code used
to generate the plots in this last section are contained in
plotting_functions.py and the raw data is stored
within the data directory.

F. Methodology

Submission, reviewing and badging methodology:

« https://www.acm.org/publications/policies/artifact-
review-badging

o http://cTuning.org/ae/submission-20201122.html

« http://cTuning.org/ae/reviewing-20201122.html


https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
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