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The Lieb-Robinson theorem states that information propagates with a finite velocity in quantum systems
on a lattice with nearest-neighbor interactions. What are the speed limits on information propagation in
quantum systems with power-law interactions, which decay as 1/7* at distance r? Here, we present a
definitive answer to this question for all exponents a > 2d and all spatial dimensions d. Schematically,
information takes time at least r™t1.«=2d} to propagate a distance r. As recent state transfer protocols
saturate this bound, our work closes a decades-long hunt for optimal Lieb-Robinson bounds on quantum

information dynamics with power-law interactions.
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Over a century ago, Einstein realized that there is a speed
limit to information propagation. If no physical object or
signal can travel faster than light, then the speed of light
itself must constrain the dynamics of quantum information
and entanglement. In ordinary quantum systems, however,
emergent speed limits can arise that place more stringent
restrictions on information propagation than does the
speed of light. For example, in quantum spin systems with
nearest-neighbor interactions on a lattice, Lieb and
Robinson proved in 1972 that there is a finite velocity of
information propagation [1].

Of course, most nonrelativistic physical systems realized
in experiments include long-range interactions such as the
Coulomb interaction, the dipole-dipole interaction, or the
van der Waals interaction. Each of these decays with
distance as a power law 1/r* for some exponent a.
What is the fundamental speed limit on the propagation
of quantum information in these systems?

Despite the importance of this question in designing and
constraining the operation of future quantum technologies
[2-6], bounding information propagation in systems with
power-law interactions has been a notoriously challenging
mathematical physics problem. In 2005, Hastings and
Koma [7] showed that it takes a time ¢ = logr to send
information a distance r, for all ¢ > d, where d is the
dimension of the lattice. By analogy to Einstein’s relativity,
we say that there is at least a “logarithmic light cone” for
such power-law interactions. However, it was suspected
that this bound was far from tight, and ten years later it was
shown that ¢ 2 r7, for an exponent 0 < y < 1 when a > 2d
[8-10]. In 2019, Chen and Lucas [11] proved the existence
of a linear light cone (2 r) for all @ >3 in d=1;
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Kuwahara and Saito [12] later generalized this result to
higher dimensions, finding a linear light cone for all
a > 2d + 1. These recent results prove that power-law
interactions are, for all practical purposes, entirely local for
sufficiently large a.

A natural question is then how small @ must be in order
to break a linear light cone. Fast state-transfer and
entanglement-generation protocols developed in the past
year [12—15] have ultimately demonstrated that the time ¢
required to send information a distance r obeys <
pmin(@=24.1) for any a > 2d and t < r°(V) for a < d, where
o(1) is an arbitrarily small constant. Combining all best-
known results in the literature leads to the diagram shown
in Fig. 1, which compares known information-transfer
protocols to corresponding Lieb-Robinson bounds.

In this Letter, we complete this extensive literature on
Lieb-Robinson bounds for power-law interactions [7-22],
by proving that quantum information is contained within
the Lieb-Robinson light cone f > pmin(e-2d—el) " for any
&€ > 0. This result closes the remaining gap, up to sub-
algebraic corrections, between bounds and protocols in
Fig. 1, and concludes the fifteen-year quest to understand
the fundamental speed limit on quantum information in the
presence of power-law interactions. We sketch the proof of
the result in the main text and refer readers to the
Supplemental Material [23] for a rigorous treatment.

Main result—We consider a d-dimensional regular
lattice A, a finite-level system at every site of the lattice,
and a two-body power-law Hamiltonian H(7) with an
exponent « supported on the lattice. Specifically, we
assume H(t) = ), icp h;j(t) is a sum of two-body terms

© 2021 American Physical Society
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FIG. 1. The gap in the Lieb-Robinson literature in d > 1
dimensions. The red solid lines represent the exponent y of
the Lieb-Robinson light cone ¢ = #” in literature. The green solid
lines correspond to the light cone exponents of best-known
information-propagating protocols. Accordingly, the green region
corresponds to attainable light cone exponents, whereas the red
region is forbidden by the known bounds. Our result (red dashed
line) closes the gap in our understanding of the Lieb-Robinson
light cone.

h;; supported on sites i, j such that || ;;(7)|| < 1/dist(i, j)*
for all i # j, where || - || is the operator norm and dist(i, ;)
is the distance between i, j. In the following discussion, we
assume A is a hypercubic lattice of qubits for simplicity.

We use L to denote the Liouvillian corresponding to the
Heisenberg evolution under Hamiltonian H, i.e., £|0) =
li[H, O]) for any operator O, and use ¢*'|0) = |0(t)) to
denote the time-evolved version of the operator O. We also
use P£'>|O) to denote an operator constructed from O by

decomposing O into a sum of Pauli strings and removing
strings that are supported entirely within a ball of radius r

from i. Colloquially speaking, pt) |0) is the component of
O that has nontrivial support on sites a distance at least r
from site i. If i is the origin of the lattice, we drop the
superscript i and simply write P, for brevity.

Given a unit-norm operator O initially supported at the
origin, our main result is a bound on how much O spreads
to a distance r and beyond under the evolution e*:

Theorem 1.—For any a € (2d,2d + 1) and an arbitrarily
small ¢ > 0, there exist constants ¢, C > 0 such that

t [(a—d)/(a=2d)|~(&/2)
IPe10)] < (5ot )

holds for all 1 <t < cre2d-=,

Because ||P,e’|0)|| can be both upper- and lower-
bounded by linear functions of sup,||[A,e“0]||, where
A is a unit-norm operator supported at least a distance r
from O, Eq. (1) is equivalent to a bound on the unequal-
time commutators commonly used in the Lieb-Robinson
literature.

For a € (2d,2d + 1), by setting the left-hand side of
Eq. (1) to a constant, Theorem 1 implies the light cone

t 2 r*24=¢ for some ¢ that can be made arbitrarily small.
Note that our definition does not require ||4;;]| to decay
exactly as 1/dist(i, j)%; it may actually decay faster than
1/dist(i, j)* and still satisfy the condition of a power-law
interaction with an exponent a. Therefore, for a > 2d + 1
and power-law Hamiltonians H = Zij h;; satisfying
||| < 1/dist(i, j)* < 1/dist(i, j)***'~¢, Theorem 1 implies
a linear light cone ¢ > r'=%.

Sketch of proof—We sketch the proof of Theorem 1,
denoting time and distance in the theorem by 7 and R to
distinguish with time ¢ and distance r in the intermediate
steps of the proof. For simplicity, we assume here that the
lattice diameter is O(R). Similar to recent works [8,11,12],
we group the interactions of the Hamiltonian by their ranges,
prove a bound for short-range interactions, and recursively
add longer-range interactions to the Hamiltonian. The key
difference is in how we group the interactions.

Specifically, motivated by the recent optimal protocol
[15] and the expected bound in Theorem 1 (see the
Supplemental Material [23] for more details), we choose
¢y =LFfork=1,...,n, where L, n are to-be-determined
functions of 7, R, and a. We use H; to denote those terms
of H with range at most £; and use £, = i[H, -] to denote
the corresponding Liouvillian. We start with the standard
Lieb-Robinson bound for H, [1],

IP,e“]0)| < e/, (2)

where v; &« ¢; = L is the rescaled Lieb-Robinson velocity,
and prove a bound for H, by adding V,=H, — Hy,
i.e., interactions of range between 7; and 7,, to the
Hamiltonian H.

For that, we employ a technique introduced in Ref. [8]
and move into the interaction picture of H; so that we can
decompose the evolution e’ = e“21'e1! into two con-
secutive evolutions, where %2/’ is the evolution under
Vo= e“1'V,. Loosely speaking, the light cone induced by
H, will be a “sum” of the light cones induced by H; and
V,; individually (see the Supplemental Material [23] for a
proof.) With the light cone of H; given by Eq. (2), our task
is to find the light cone of V, .

For this purpose, we consider the structure of V,;
and show that, with a suitable rescaling of the lattice,
the interactions in V,; decay exponentially with distance.
We then obtain the light cone of V,; using the standard
Lieb-Robinson bound on the rescaled lattice. Specifically,
we divide the lattice into nonoverlapping hypercubes of
length #, (see Fig. 2). Given x, y as the centers of two
hypercubes, we define dist(x,y)/#, to be the rescaled
distance between the hypercubes. We shall estimate the
strength of the interaction between hypercubes under the
Hamiltonian V, ;.

We first consider the case t =0 so that V,; =V,.
Because each interaction in V, has range at most ¢, no
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FIG.2. We study the structure of V, ; by dividing the lattice into
hypercubes of length #, (labeled by x, y, and z for example). In
the interaction picture, how much each e“1h; ; contributes to the
pairwise “effective interaction” between two hypercubes depends
on how strongly the support of e*1'h; ; (represented by the shaded
area) overlaps with the hypercubes. Because of the bound in
Eq. (2), the evolved operator eﬂlthij is largely confined to the
light cones induced by £, around i and j (the smallest disks
around i and j). The component of e%1'h; ; supported outside this
light cone is exponentially suppressed with distance (represented
by lighter shade). Consequently, the effective interaction between
the hypercubes x and z is exponentially smaller than the one
between x and y.

interaction /;; is supported on two distinct hypercubes
unless they are nearest neighbors. Therefore, only nearest-
neighboring hypercubes may interact under V,; = V..

The case ¢ > 0 is slightly more complicated. The support
of an interaction A;; in V, may expand under €X', and,
hence, non-nearest-neighboring hypercubes may interact
with each other. However, due to Eq. (2), the support of
e“1th, ; would largely remain inside the balls of radius v, 7
around i, j. The interactions between hypercubes are
exponentially suppressed with distance by Eq. (2).
Therefore, the system of hypercubes would interact via a
nearly finite-range interaction (see Fig. 2).

To apply the standard Lieb-Robinson bound for this
system of hypercubes, we estimate the maximum effective
interaction between any pair of nearest-neighboring hyper-
cubes centered on x, y. In particular, assuming vt < £, the
primary contributions to such an interaction come from
24 x ¢§ = £3¢ interaction terms ¢“1'h;; whose light cones
under H; may overlap with the hypercubes. Because each
interaction /;; has norm at most 1/Z{ by our assumption,
the total contribution to the interactions between the cubes
x, yis O(£39/¢9). Applying the standard finite-range Lieb-
Robinson bound on the system of hypercubes, where the
maximum energy per interaction is O(£3?/£¢) and the
distance is rescaled by a factor #,, we obtain the bound for
the evolution under V, ,

IP,ect|0)|| < exp (O 3 PR P

where Av = O(£371 /£9).

(Am—r)/fz’ (3)

After getting the light cone for the evolution under V4,
we now combine it with the evolution under H; to obtain
the light cone of H,. Intuitively, the evolutions under H,
and V,; for time  may each grow the support radius of an
operator by v, ¢ and Awt, respectively. Therefore, one would
expect an operator evolved under H; and V,; consecu-
tively, each for time 7, may have the support radius at most
(v + Av)t. In the Supplemental Material [23], we show
that

IPe=|0)|| = [P ettt |O)|| < et=/%, (4)

where

I/p2d+l

2

v, o log(r)v, + Av = log(r)v, +

The additional factor of log(r) (compared to our intuition)
comes from the enhancement to the operator spreading due
to the increased support size after the first evolution 1",

Up to this point, we have used the bound Eq. (2) for H,
to prove a bound for H, [Eq. (4)], which has the same form.
Repeating this process, we arrive at similar bounds for H,,
(k=3,4,....,n),

IP,e]0)| < el=r)/ %, (6)

where the velocity v, is defined iteratively,

(7)

v &« log(r) vy +——.

7i
Increasing k makes the bound in Eq. (6) applicable for
longer and longer interactions. However, doing so also
increases ¢, resulting in weaker and weaker bounds. In
particular, if Z;, > R, Eq. (6) becomes trivial at the final
time 7 and distance R, even when T < R/v;. Therefore,
we stop the iteration at k = n such that 7, is slightly
smaller than R. Specifically, we choose n such that
¢,=L"=R/y(T,R), where y(T,R) > 1 is a function
of T, R. For v,T < R/2 and at the final time T and distance
R, the right-hand side of Eq. (6) becomes

e TR/, < o=R/26, < ,~3(T.R) < é, (8)
SO SRy

where we upper bound an exponentially decaying function

of (T, R) by a power-law decaying function of y(T, R)

with an exponent @ > 0. Choosing y (7, R) = (R*2¢/T)¢,

where ¢ >0 is an arbitrarily small constant, and

o= {(a—=d)/[{(a—2d)]}, we obtain the desired bound
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Note that Eq. (9) only holds for T < R/2wv,. To maximize
the range of validity of Eq. (9), we aim to choose L such
that v,, is as small as possible. Without the second term in
Eq. (7), we would expect v, to increase by a factor of log R
between iterations. Meanwhile, given £, = L*, the second
term in Eq. (7) also increases by a factor L>¢*1-% in every
iteration. Choosing L?¥*1=% « log R so that the two terms
in Eq. (7) have roughly equal contributions to v;, we expect

R\ 2d+1-a
v, (logR)n o Ln(2d+l—a) — <)/(T7 R)) (]O)

up to a small logarithmic correction in R. Substituting the
earlier choice of y(7, R), we have

T 1+o(1)
U,ITOCR<W) SR, (11)

where o(1) represents an arbitrarily small constant, for all
T < R*??_ Therefore, the bound in Eq. (9) holds as long
as T < R*24,

The bound in Eq. (9) applies to the Hamiltonian H,
constructed from H by taking interactions of range at most
¢,, which is slightly smaller than R for all T < R*2?, To
add interactions of range larger than £, to the bound, we
use the identity [27]

el)t _ eﬁ,,t +
i,j:dist(i,j)>2,

t
/ ds eﬁ(t_s)ﬁh”eﬁﬂs, (12)
0

where £, = i[h;;. ] is the Liouvillian corresponding to the
interaction h;;. We will argue that the contribution from the
second term of the right-hand side to the bound on
[PeT0)]| is small.

Note that [,hl_jeﬁﬂs|0) vanishes if ¢“*|0) has no support
on the sites i, j. Suppose site i is closer to the origin than
site j. Then, most contributions to the right-hand side of
Eq. (12) come from terms 4;; where i lies within the light
cone of e“+*|0). Let V be the volume inside this light cone
at time 7. Using the triangle inequality on Eq. (12)
specifying to the final time 7 and distance R, we would
arrive at

oN+2L 3

PRecTO)] S IPre T |O)]| + g
n

where V is the result of the sum over i inside the light cone,
summing over j where dist(i, j) > ¢, gives a factor
proportional to 1/£%%, and the integral over time in
Eq. (12) gives the factor 7.

Suppose we can apply the desired light cone ¢ > r*=24,
Then we can estimate the volume inside the light cone
V < 7%/(@=2d) Substituting it into the above bound together
with the value of 7, we would arrive at

T\ (=) (a2d)
IPee10)1 5 (o) S

which gives about the same light cone as in Theorem 1.

However, we are proving Theorem 1 and so cannot yet
apply the light cone 7 > r*24_ Instead, we use the light
cone from Ref. [8], which is weaker than Theorem 1, to
estimate V. Substituting this value of V into Eq. (13), we
obtain a tighter light cone than that of Ref. [8]. Iteratively
using the resulting light cone to estimate )V (see the
Supplemental Material [23] for a more detailed derivation),
we obtain tighter and tighter bounds. These bounds con-
verge to a stable point that is exactly Eq. (14). Therefore,
we obtain Theorem 1.

We note the above iterative procedures actually result in
a bound that depends on logr,, where r, is the lattice
diameter. We show in the Supplemental Material [23] how
to remove this mild dependence on the lattice diameter and
again obtain Theorem 1 without any r, dependence.

Discussion.—Theorem 1 implies a light cone that can be
made arbitrarily close to ¢ > r*2? for all a € (2d,2d + 1).
In addition, as discussed earlier, Theorem 1 also implies
t = r'=°0) for & > 2d + 1, providing an alternative proof of
the linear light cone in Refs. [11,12] for two-body
Hamiltonians. Together with Refs. [7,11,12], we have
the final Lieb-Robinson light cone for power-law inter-
actions,

logr ifd<a<?2d
t2{ re2=o) if 2d < a<2d+ 1, (15)
r if a>2d+1

which we can saturate, up to subalgebraic corrections,
using the protocol for state transfer and entanglement
generation in Ref. [15]. While it is unlikely that these
subalgebraic corrections have significant physical implica-
tions, removing them might be an interesting open problem
mathematically. In the Supplemental Material [23], we
provide a table that briefly summarizes the Lieb-Robinson
bounds and the saturating protocols for all a > 0.

Additionally, at any fixed time, our bound decays with
distance as 1/r*4°(1) Because the total strength of the
interactions between the origin and all sites that are at
distance at least r from the origin already scales as 1/r* ¢,
this so-called “tail” of our bound is also optimal.

Our result tightens the constraints on various quantum
information tasks in power-law systems, including the
growth of connected correlation functions, the generation
of topological order, and the digital simulation of local
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observables. Intuitively, as a local operator evolves, it is
mostly constrained to lie within a light cone defined by a
Lieb-Robinson bound, with total leakage outside this light
cone constrained by the tail of this bound. To simulate the
dynamics of such observables, it is sufficient to simulate
only the dynamics inside the light cone [10,14,28], result-
ing in a more efficient simulation than simulating the entire
lattice. Similarly, the connected correlator between initially
local observables remains small during the dynamics if
their corresponding light cones have little overlap
[14,18,29]. Topologically ordered states—those that cannot
be distinguished by local observables—would also remain
topologically ordered until local observables have enough
time to substantially grow their supports [14,29]. Crucially,
then, Theorem 1, which has a provably optimal light cone
and tail, provides the best-known asymptotic constraints for
the dynamics of these quantities. The mathematical details
of precisely how they are bounded and the improvements
that our new bound provides are detailed in the
Supplemental Material. Additionally, our result may also
provide a tighter constraint on the capacity of quantum
communication channels based on power-law interacting
spins [30].

While we assume a two-body Hamiltonian throughout
the Letter, we expect the result extends to general many-
body interactions. Specifically, we conjecture that
Theorem 1 holds for all Hamiltonians H = )y, hx,
where the sum is over all subsets of the lattice and
> xsij x|l < 1/dist(i, j)* for all i # j.

Additionally, while the Lieb-Robinson bounds assume
arbitrarily time-dependent Hamiltonians, physical systems
typically come with additional constraints, such as time
independence and more general conservation laws. It is
conceivable that these constraints may result in tighter light
cones for the dynamics of such systems. In fact, no
superlinear protocols based on static Hamiltonians are
known to saturate the Lieb-Robinson bounds, supporting
the existence of tighter Lieb-Robinson—like bounds for
time-independent systems.

Lastly, while Theorem 1 demonstrates the optimality of
the single-particle state transfer protocol of [15], other
information-theoretic tasks are constrained by tighter light
cones. Our techniques may help extend recent progress
[14,31-33] in constraining the remaining light cone
hierarchy that has been demonstrated with power-law
interactions.
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