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ABSTRACT

In this paper, we develop structure assisted nonnegative matrix factorization
(NMF) methods for blind source separation of degenerate data. The motivation
originates from nuclear magnetic resonance (NMR) spectroscopy, where a multi-
ple mixture NMR spectra are recorded to identify chemical compounds with similar
structures. Consider the linear mixing model (LMM), we aim to identify the chem-
ical compounds involved when the mixing process is known to be nearly singu-
lar. We first consider a class of data with dominant interval(s) (DI) where each of
source signals has dominant peaks over others. Besides, a nearly singular mix-
ing process produces degenerate mixtures. The DI condition implies clustering
structures in the data points. Hence, the estimation of the mixing matrix could be
achieved by data clustering. Due to the presence of the noise and the degeneracy
of the data, a small deviation in the estimation may introduce errors in the output.
To resolve this problem and improve robustness of the separation, methods are
developed in two aspects. One is to find better estimation of the mixing matrix by
allowing a constrained perturbation to the clustering output, and it can be achieved
by a quadratic programming. The other is to seek sparse source signals by exploit-
ing the DI condition, and it solves an �1 optimization. If no source information is
available, we propose to adopt the nonnegative matrix factorization approach by
incorporating the matrix structure (parallel columns of the mixing matrix) into the
cost function and develop multiplicative iteration rules for the numerical solutions.
We present experimental results of NMR data to show the performance and relia-
bility of the method in the applications arising in NMR spectroscopy.
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1 Introduction

Blind source separation (BSS) is a vibrant area of research in signal and image pro-
cessing. It attempts to separate source signals from their mixtures without the knowl-
edge of the mixing process. BSS has been playing a central role in a wide range
of signal and image processing problems such as speech recognition, sound unmix-
ing, image separations, and text mining, to name a few (Choi, Cichocki, Park and
Lee, 2005), (Cichocki and Amari, 2005), (Comon and Jutten, 2010). The goal of
this paper is to study BSS methods for nearly degenerate mixtures arising from nu-
clear magnetic resonance spectroscopy (NMR). Being one of the preeminent imaging
techniques in chemistry, NMR spectroscopy is frequently used by scientists to de-
termine the molecular structures of organic compounds. We shall consider multiple
NMR spectra acquired from a mixture of chemical compounds. Each compound has
a unique spectral fingerprint defined by the number, intensity and locations of its NMR
peaks. However, when the compounds (component molecules) have similar functional
groups, the peaks overlap in the composite NMR spectra making it difficult to identify
the compounds involved. This makes the data analysis hopeless unless we can unmix
or separate the mixed data into a list of source components (source spectra). The
simplest model is the linear mixing model (LMM)

X = AS ,withAij ≥ 0 , Sij ≥ 0 , (1.1)

where X ∈ R
m×p, A ∈ R

m×n, S ∈ R
n×p. Rows of X represents the measured mixed

signals, rows of S are the source signals. The matrices X,S are functions of an ac-
quisition variable such as time, frequency, position, etc. depending on the underlying
physical process. The objective of BSS is to solve for A and S given X. If P is a per-
mutation matrix and D an invertible diagonal matrix, one can immediately notice that
AS = (APD)(D−1P−1S), hence (A, S) and (APD,D−1P−1S) are considered equiva-
lent solutions in BSS.
There have been mainly two classes of BSS methods for solving (1.1). The first class
of methods belong to statistical regime. Among others, independent component analy-
sis (ICA (Cichocki and Amari, 2005)) is the most well studied statistical BSS approach,
it decomposes a mixed signal into additive source components based on the mutual
independence of the non-Gaussian source signals. The working condition of ICA re-
quires independent source signals, and it however is not always satisfied by realistic
data. For instance, the statistical independence does not hold in the NMR spectra
of chemical compounds where molecules responsible for each source share common
structural features. The second class of methods are deterministic approaches which
include nonnegative matrix factorization (NMF) and geometrical methods. Firstly in-
troduced by (Paatero and Tapper, 1994), later popularized by (Lee and Seung, 1999),
NMF has become the prevalent method for solving nonnegative BSS problems. NMF
seeks a factorization of X into product of two nonnegative matrices by minimizing
the cost function of a certain distance or divergence metric (Choi et al., 2005). NMF
does not impose source independence, however, some additional constraints such as
sparsity and/or smoothness of the sources and/or the mixing matrix, are often incor-
porated into NMF to control the non-uniqueness and improve the physical meaning of
the solutions.
Geometrical BSS methods are based on convex geometry of the data matrix X. The
columns of X are non-negative linear combinations of those of A. In the hyperspectral
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unmixing (HSI) setting, a condition called pure pixel assumption (PPA) was proposed in
(Chang, 2007) which requires that at least one pure pixel of each endmember (source
signal) needs to be present in the data. Under this assumption, several approaches
such as vertex component analysis (VCA) (Nascimento and Bioucas-Diasm, 2005),
pixel purity index (PPI) (Boardman, 1993), and N-findr (Winter, 1999) exploited certain
geometric features of hyperspectral images to determine the smallest convex cone
enclosing the data. In NMR spectroscopy, PPA was reformulated by (Naanaa and
Nuzillard, 2005). The source signals are only required to be non-overlapping at some
locations of acquisition variable (NNA). This condition was applied to NMR data un-
mixing and led to a major success of a convex cone method. Such a local sparseness
condition has greatly reduce this problem to a convex one which is solvable by linear
programming. Another geometric method is to find a simplex (convex cone) of min-
imum volume enclosing the data set (Craig, 1994; Li and Bioucas-Dias, 2008). This
method amounts to solving a non-convex minimization problem by finding a matrix with
minimum volume under a constraint.
The different spectra come from Fourier transform of NMR measurement of absorbance
of radio frequency radiation by receptive nuclear spins of the same mixture sample at
different time segments when exposed to high magnetic fields. The NMR spectra
are nonnegative. Besides, NMR spectra of different chemical compounds are usually
not independent, especially as compounds (component molecules) have similar func-
tional groups, the peaks overlap in the composite NMR spectra making it difficult to
identify the compounds involved. The geometric BSS method proposed in (Naanaa
and Nuzillard, 2005) requires that NMR spectral signals to be non-overlapping at cer-
tain acquisition locations while allowed to overlap with each other elsewhere. The NN
assumption (NNA) requires the source signals to be strictly non-overlapping at some
locations of acquisition variable (e.g., frequency). In other words, each source signal
must have a stand-alone peak where other sources are strictly zero there. Such a strict
sparseness condition leads to a dramatic mathematical simplification of a general non-
negative matrix factorization problem (1.1) which is non-convex. Geometrically speak-
ing, the problem of finding the mixing matrix A reduces to the identification of a minimal
cone containing the columns of mixture matrix X. The latter can be achieved by linear
programming. In this paper, we consider how to separate the data if NN condition is
not satisfied, and the mixing process is known to be degenerate. We are concerned
with the regime where source signals do not have stand-alone peaks yet one source
signal dominates others over certain intervals of acquisition variable. In other words,
a dominant interval(s) condition (DI) is required for source signals. This is a reason-
able condition for many NMR spectra. For example, the DI condition holds well in the
NMR data which motivated us. The data is produced by the so-called DOSY (diffusion
ordered spectroscopy) experiment where a physical sample of mixed chemical com-
pounds in solvent (water) is prepared. DOSY tries to distinguish the chemicals based
on variation in their diffusion rates. However, DOSY fails to separate them if the com-
pounds have similar chemical functional groups (i.e., they have similar diffusion rates).
In this application, the diffusion rates of the chemicals serve as the mixing coefficients.
This presents an additional mathematical challenge due to the near singularity of the
mixing matrix. Separating these degenerate data is intractable to NN method. New
methods need to be invented. Examination the DI condition reveals a great deal about
the geometry of the mixtures. Actually, the scattered plot of columns of X must contain
several clusters of points, and these clusters are centered at columns of A. Hence, the
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problem of finding A boils down to the identification of the clusters and their centroids,
and it can be accomplished by data clustering methods such as K-means. K-means
clustering is computationally fast and easy to implement. Although the data clustering
in general produces a fairly good estimate of the mixing matrix, its output deviates
from the true solution due to the presence of the noise, initial guess of the clustering
algorithm, and so on. In the case of nearly singular mixing matrix, a small perturbation
can lead to considerable errors in the source recovery (e.g., negative spurious peaks).
To overcome this difficulty and improve robustness of the separation, we propose two
remedies. One is to find better estimation of mixing matrix by allowing a constrained
perturbation to the clustering outputs, and it is achieved by a quadratic programming.
The intention is to drive the estimates closer to the true solution. The other is to seek
sparse source signals by exploiting the DI condition. An �1 optimization problem is
formulated for recovering the source signals.
As a non-convex optimization method, NMF suffers mainly from being sensitive to
the initial guess and non-unique solutions. These drawbacks however do not prevent
NMF from gaining its popularity in application such as spectroscopy, chemometrics,
remote sensing, image processing, and environmental science due to its capability
of reduced representation of the original data and its easy implementation. With the
limited information (other than the nonnegativity) of the data, NMF remains as the
first choice among the separation methods. The past several decades have seen
considerable efforts in the development of variants of NMF, for example, sparse NMF,
orthogonal NMF, local NMF, etc., (Choi et al., 2005) to steer the NMF towards the
desired solutions. One major disadvantage with NMF is the loss of the data geometric
structure in the recovery. For instance, the closeness of the columns of X should
be preserved or revealed in the factorization which a general NMF usually fails to
achieve. Some remedy has been proposed for the preservation of such geometric
relationship. In (Cai, He, Han and Huang, 2011) an affinity graph is introduced to steer
the NMF towards the implicit geometrical information and seek a matrix factorization
which respects the graph structure. In many NMR data cases, it is very likely that only
the degeneracy of the mixing matrix is known, but no knowledge of the source signals
is available. Then the NMF type methods should be used to seek a solution. In the
case of degenerate mixing matrices, we will introduce additional constraints to NMF
cost function to steer the solution towards the ground truth. This case scenario that
the mixing matrix A is known to be nearly degenerate (similar columns) can also be
found in in computer vision where the two adjacent frames of a moving scene should
not vary much (hence similar).
The paper is outlined as follows; In section 2, we shall review the essentials of NN
approach, then we state the new dominant interval condition on the source signals
motivated by NMR data, we also discuss two cases of degenerate mixing matrix. In
section 3, we present the methods, the first method is based on the convex geometry
and cluster structure the data; while the second approach belongs to NMF method
where additional constraints are incorporated into the cost function to control the de-
generacy of the mixing matrix. In section 4, we illustrate our method with numerical
examples including the processing of an experimental DOSY NMR data set. Con-
cluding remarks are in section 5. We shall use the following notations throughout the
paper. The notation Aj stands for the j-th column of matrix A, Sj for the j-th column of
matrix S, Xj the j-th column of matrix X. While Sj and Xj are the j-th rows of matrix
S and X, or the j-th source and mixture, respectively.
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2 The Convex Cone Method

2.1 NN Approach

In (Naanaa and Nuzillard, 2005), Naanaa and Nuzillard (NN) presented an efficient
sparse BSS method and its mathematical analysis for nonnegative and partially or-
thogonal signals such as NMR spectra. Consider the determined regime where there
are same number of mixtures is no less than that of sources (m ≥ n), and the mixing
matrix A is full rank. In simple terms, NN’s key sparseness assumption (referred to as
NNA below) on source signals is that each source has a stand-alone peak at some
location of the acquisition variable where the other sources are identically zero. More
precisely, the source matrix S ≥ 0 is assumed to satisfy the following condition

Assumption (NNA). : For each i ∈ {1, 2, . . . , n} there exists an ji ∈ {1, 2, . . . , p} such
that si,ji > 0 and sk,ji = 0 (k = 1, . . . , i− 1, i+ 1, . . . , n) .

Eq. (1.1) can be rewritten in terms of columns as

Xj =
n∑

k=1

sk,jA
k, j = 1, . . . , p , (2.1)

where Xj denote the jth column of X, and Ak the kth column of A. Assumption NNA
implies that Xji = si,jiA

i i = 1, . . . , n or Ai = 1
si,ji

Xji . Hence Eq. (2.1) is rewritten as

Xj =
n∑

i=1

si,j
si,ji

Xji , (2.2)

which says that every column of X is a nonnegative linear combination of the columns
of Â. Here Â = [Xj1 , . . . , Xjn ] is the submatrix of X consisting of n columns each of
which is collinear to a particular column of A. It should be noted that ji (i = 1, . . . , n)
are not known a priori and need to be identified. Once all the jis are found, an esti-
mation of the mixing matrix is obtained. The identification of Â′s columns is equivalent
to identifying a convex cone of a finite collection of vectors. The cone encloses the
data columns in matrix X, and is the smallest of such cones. Such a minimal enclos-
ing convex cone can be found by linear programming methods. Mathematically, the
following constrained equations are formulated for the identification of Â,

p∑
j=1,j �=k

Xjλj = Xk , λj ≥ 0 k = 1, . . . , p . (2.3)

Then any column Xk will be a column of Â if and only if the constrained equation (2.3)
is inconsistent. However, if noises are present, the following optimization problems are
suggested to estimate the mixing matrix

minimize score = ‖
p∑

j=1,j �=k

Xjλj −Xk‖2 , k = 1, . . . , p

subject to λj ≥ 0 .

A score is associated with each column. A column with a low score is unlikely to be
a column of Â because this column is roughly a nonnegative linear combination of the
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Figure 1: Left : simulated NMR spectra of three SAP sources. Each signal has a stand
alone peak indicated by K1, K2, and K3. Right: the scattered plot of X (columns of X)
scaling to be on plane x+ y + z = 1.

other columns of X. On the other hand, a high score means that the corresponding
column is far from being a nonnegative linear combination of other columns. Practi-
cally, the n columns from X with highest scores are selected to form Â, the mixing
matrix. The Moore-Penrose inverse Â+ of Â is then computed and an estimate to S
is obtained: Ŝ = Â+X. NN method proves to be both accurate and efficient if NNA
condition holds. However, if the condition is not satisfied, errors and artifacts may be
introduced because the true mixing matrix is no longer the smallest enclosing convex
cone of columns of the data matrix. As it applies to signals with peak structures such
NMR spectra, NNA can be restated as the stand alone peak (SAP) condition: each
source signal possesses a stand alone peak over certain acquisition interval, where
other sources are identically zero. SAP condition is illustrated by NMR spectra of three
sources in the left plot of Fig. 1, it can be seen that each source signal has a stand
alone peak denoted by P1, P2, and P3, respectively.
Recently, the authors have developed postprocessing techniques on how to improve
NN results with abundance of mixture data, and how to improve mixing matrix estima-
tion with major peak based corrections (Sun, Ridge, del Rio, Shaka and Xin, 2011).
The work actually considered a relaxed NNA (rNNA) condition

Assumption (rNNA). : For each i ∈ {1, 2, . . . , n} there exists an ji ∈ {1, 2, . . . , p} such
that si,ji > 0 and sk,ji ≈ εk (k = 1, . . . , i− 1, i+ 1, . . . , n) , where si,ji � εk.

Simply said, each source signal has a dominant peak at acquisition position where the
other sources are allowed to be nonzero. NNA condition recovers if all εk = 0. The
rNNA is more realistic and robust than the ideal NNA for real-world NMR data (Naanaa
and Nuzillard, 2005).

2.2 Dominant Intervals and Degenerate Matrix

Motivated by the DOSY NMR spectra, we propose here a different relaxed NN condi-
tion on the source signals. Note that the rows S1, S2, . . . , Sn of S are the source signals,
and they are required to satisfy the following condition: For i = 1, 2, 3, . . . , n, source sig-
nal Si is required to have dominant interval(s) over Sn, . . . , Si+1, Si−1, . . . , S2, S1, while
Si is allowed to overlap with other signals at the rest of the acquisition region. More
formally, this condition implies that source matrix S satisfies the following condition
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Figure 2: three source signals with dominant intervals (left panel); the geometry of the
mixture matrix (right panel). The centers (red diamond) of three clusters are detected
by k-means.

Assumption. For each k ∈ {1, 2, 3, . . . , n}, there is a set Ik ⊂ {1, 2, . . . , p} such that for
each l ∈ Ik skl � sjl, j = 1, 2, . . . , k − 1, k + 1, . . . , n.

We shall call this dominant interval condition, or DI condition. Fig. 2 is an idealized
example of three DI source signals. The motivation lies in the similar diffusion rates of
the chemicals with similar structure. This poses a mathematical challenge to invert a
nearly singular matrix, since a small error in the recovered mixing matrix might lead to a
considerable deviation in the source recovery. Among the singularly mixed signals (or
degenerate data), in this paper we shall consider the following two types: 1) columns
of the mixing matrix are parallel; 2) one column of the mixing matrix is a nonnegative
linear combination of others. Case 1 is motivated by NMR of the chemicals with similar
diffusion rates. We shall call this condition parallel column condition, or PCC. Case 2
can also be encountered in NMR spectroscopy of chemicals, and we shall call it one
column degenerate condition, or OCDC. Throughout the paper, we shall refer to a
mixing matrix of PCC or OCDC as degenerate mixing matrix. Please note that both
PCC and OCDC should be considered to hold approximately in real-world data.

3 Our Methods

3.1 Data Clustering

Now suppose we have a set of nearly degenerate signals from DI sources. We require
that compared to the size of dominant interval(s) in the acquisition region, the source
signals overlapping region is much smaller. In fact, this is a reasonable assumption
for the NMR data which motivates us. More importantly, this requirement facilitates
the successful implementation of the clustering method. Next, we shall estimate the
columns of mixing matrix A by clustering. The dominant interval(s) from each of the
source signals implies that there is a region where the source Si dominates others.
More precisely, there are columns of X such that

Xk = si,kA
i +

n−1∑
j=1

oj,kA
j , (3.1)
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Figure 3: Real data example: three columns of A are identified as the three center
points (in red diamond) attracting most points in scatter plots of the columns of X (left),
and the three rows of X (right). NN method identifies two columns of A as the points
in the blue circle.

where si,k dominate oi,k(i = 1, . . . , n − 1), i.e., si,k � oi,k. The identification of Ai (i =
1, . . . , n) is equivalent to finding a cluster formed by these Xk’s in R

m. As illustrated in
the geometry plot of X in Fig. 2, three clusters are formed. Many clustering techniques
are available for locating these clusters, for example, k-means is one of the simplest
clustering analysis methods. We shall use k-means for the data in this paper to locate
centers(centroids) of the clusters. Those centers are the estimates of columns of A.
Consider an example of three DI source signals with OCDC mixing matrix condition,
the three centers shown in Fig. 2. For real-world data, we show an example of NMR
spectra of quinine, geraniol, and camphor mixture in Fig. 3. The clusters in the middle
implies that OCDC condition hold well for this data. Apparently, NN method (and other
convex cone methods) would fail to separate the source signals due to the degeneracy
of the mixing matrix. It might be able to identify two columns of A as the two edges, it by
no means can locate A’s degenerate column. For the PCC degenerate case, clustering
is also able to deliver a good estimation, even when the data is contaminated by noise.
We show the results in Fig. 4 where the three clusters are very close due to the
PCC degeneracy. NN solution would deviate considerably from the true solution. For
the data we tested, clustering techniques like k-means works well when the condition
number of the mixing matrix is up to 108. Though the solutions of mixing matrix by
clustering methods are rather good estimation to the true solution, small deviations
from the true ones will introduce large errors in the source recovery (S = inverse(A)X).
Next we propose two approaches to overcome this difficulty. Both approaches need
to solve optimization problems. The first one intends to improve the source recovery
by seeking a better mixing matrix, while the second approach reduces the spurious
peaks by imposing sparsity constraint on the sources.

3.2 Better Inverse of the Mixing Matrix

Suppose the estimation of the mixing matrix by clustering is Â. As discussed above,
errors in Ŝ could be introduced even by a small deviation in Â from the ground truth.
Negative spurious peaks are produced in most cases, see the Fig. 6 where the neg-
ative peaks on the left plot actually can be viewed as bleed through from another
source. Clearly, a better estimation of mixing matrix is required to reduce these spu-
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Figure 4: Example of PCC case: left: three columns of A are identified as the centroids
(red diamond) of three clusters in the scatter plot of the columns of X (left); Right: three
spectral mixtures (rows of X).

rious peaks. Instead of looking for a better mixing matrix, we propose to solve the
following optimization problem for a better inverse of the matrix in the determined case
(m = n, same number of mixtures of sources),

min
B

1

2
‖I − BÂ‖22 subject to BX ≥ 0 , (3.2)

where I ∈ R
n×n is the identity matrix. The constraint BX ≥ 0 is used to reduce

the negative values introduced in the source recovery. (3.2) is a linearly constrained
quadratic program and it can be solved by a variety of methods including interior point,
gradient projection, active sets, etc. In this paper, interior point algorithm is used.
Once the minimizer B∗ is obtained, we solve for the sources by S = B∗ X. For over-
determined mixture (m > n, A being a tall matrix), the source recovery is usually
obtained by Ŝ = (ÂT Â)−1ÂTX, to achieve a better inverse of Â in the sense of least
squares, the following optimization problem is proposed,

min
B

1

2
‖I − BÂT Â‖22 subject to B ÂTX ≥ 0 , (3.3)

which can be solved via an interior point algorithm as well.

3.3 Sparser Source Signals

The method proposed above works well for mixing matrix whose condition number is
up to 108. If the mixing matrix is much more ill-conditioned, the problem (1.1) becomes
under-determined. Obtaining an exact solution is impossible even an accurate A is
provided. However, a meaningful solution is possible if the actual source signals are
sparse. It appears tat the columns of S possess sparseness due to the dominant
intervals condition. Hence, we seek the sparsest solution for each column Si of S as

min ‖Si‖0 subject to ÂSi = X i, Si ≥ 0. (3.4)

Here ‖·‖0 ( 0-norm ) represents the number of nonzeros. Because of the non-convexity
of the 0-norm, we minimize the relaxed �1-norm:

min ‖Si‖1 subject to ASi = X i, Si ≥ 0, (3.5)
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which is a linear program (Donoho and Tanner, 2005) because Si is non-negative.
The fact that data may contain noise suggests solving the following unconstrained
optimization problem,

min
Si≥0

μ‖Si‖1 + 1

2
‖X i − ASi‖22 , (3.6)

for which Bregman iterative method (Guo and Osher, 2009) combined with a nonneg-
ative projection on convex subset (data nonnegativity) can be applied to retrieve a
solution.

3.4 Structure Assisted Nonnegative Matrix Factorization

In the case where the source signals are known to possess dominant intervals and
clusters in the data points, convex BSS methods proposed above are suitable choices.
While if no knowledge of the source signals is available other than the nonnegativity,
we shall opt to use nonnegative matrix factorization approach. Nonnegative matrix
factorization (NMF) (Paatero and Tapper, 1994; Lee and Seung, 1999) is the prevalent
method for solving nonnegative BSS problems with limited information on the nonneg-
ative source signals and mixing matrices. As a parts-based data compression method,
NMF attempts to find two nonnegative matrices whose product approximates the data
matrix. Given the mixture matrix X ∈ R

m×p, NMF seeks the approximate factorization
X ≈ AS, A ∈ R

m×n, S ∈ R
n×p by minimizing the following objective function,

J(A, S) = ‖ X − AS‖2F ,

Where ‖ · ‖F is the Frobenius matrix norm. J(A, S) is also called Eucleadian distance
function which is non-convex in A, S. (Lee and Seung, 1999) proposed a multiplicative
iteration rule:

aij ← aij

[
XST

]
ij

[ASST ]ij
, (3.7)

sjk ← sjk

[
ATX

]
jk

[ATAS]jk
; , (3.8)

and they proved that these iterates converge to a local minimum of J(A, S).
Given the fact that the columns of the mixing are similar (PCC columns). i.e., the
sources signals are accounts for approximately same amounts. We should incorporate
this constraint into the J(A, S) to steer the solution towards the desired one. The linear
mixture model X = AS can be rewritten as follows:

[X1, X2, · · · , Xp] = [A1, A2, · · · , An]

⎛
⎜⎜⎜⎜⎜⎝

S11 S12 · · · S1p

S21 S22 · · · S2p
...

...
...

...
Sn−1,1 Sn−1,2 · · · Sn−1,p

Sn1 Sn2 · · · Sn,p

⎞
⎟⎟⎟⎟⎟⎠

, (3.9)

We assume that matrix A is nearly singular as we assume that its columns A1, A2, . . . , An

are similar. This situation holds approximately well in mixtures where the source sig-
nals have nearly the same amounts of concentration; or in image processing such as
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computer vision, the adjacent frames should vary very little, or look similar. With lim-
ited knowledge on the source signals, we shall opt for nonnegative matrix factorization
approach (Lee and Seung, 1999), we need to build the mixing matrix structure into the
model. The similarity between the columns of A implies that the differences of them
(given that the columns are all normalized to unit vectors) are approximately zeros, or

A2 − A1 ≈ 0, A3 − A2 ≈ 0, · · · , Ai − Ai−1 ≈ 0, · · ·An − An−1 ≈ 0, A1 − An ≈ 0.

To account for these similar (parallel) columns, we shall put these conditions into matrix
form

[
A1 A2 A3 · · · An−1 An

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 . . . 0 1
1 −1 0 . . . 0 0
0 1 −1 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . −1 0
0 0 0 . . . 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
≈ O

Where denote W ∈ R
n×n as the sparse matrix containing ±1′s. O ∈ R

m×n is the zero
matrix. Now let us consider the following cost function

Jα(A, S) = ‖ X − AS‖2F + α‖AW‖2F , s.t.A 	 0, S 	 0. (3.10)

Following (Choi et al., 2005) by the gradient descent, we are able to get the update
rules for entries of A and S

al+1
ij − alij = −δij

∂J

∂aij

= δij
(
[XST ]ij − [ASST ]ij − α[AWW T ]ij

)
sl+1
jk − sljk = −ηjk

∂J

∂sjk

= ηjk
(
[AXT ]jk − [ATAS]ij

)

To ensure the nonnegativity, we shall choose the specific learning rates proposed in
(Lee and Seung, 1999)

δij =
aij

[ASST ]ij
, ηjk =

sjk
[ATAS]jk

and the resulting multiplicative update formulas are

aij ← aij∑
i aij

, (3.11)

aij ← aij

[
(XST − αAWW T )ij, 0

]
+

[ASST ]ij
, (3.12)

sjk ← sjk

[
ATX

]
jk

[ATAS]jk
; , (3.13)

where the operator [x]+ = max 0, x is to ensure nonnegativity in the updates. The pro-
posed NMF cost function addresses the degeneracy of the mixing matrix by imposing
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a penalty on the differences of its columns, and shall be termed by column difference
NMF, or CD-NMF.
Below we propose an alternative cost function for NMF. Noticing that to measure the
similarity between vectors, we can use the inner product as a simple yet accurate
measure for similarity. For two parallel unit vectors a, b, their inner product a · b = 1.
Based on this idea, we propose to adopt the following criterion to impose the similarity
between the columns of the mixing matrix A. Then we shall have ATA = Jn, here Jn
is a square matrix of size n of ones, that is,

ATA =

⎡
⎢⎢⎢⎣
A1 · A1 A1 · A2 A1 · A3 . . . A1 · An

A2 · A1 A2 · A2 A2 · A3 . . . A2 · An

...
...

...
...

...
An · A1 An · A2 An · A3 . . . An · An

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
1 1 1 . . . 1
1 1 1 . . . 1
...

...
...

...
...

1 1 1 . . . 1

⎤
⎥⎥⎥⎦ = Jn

where we can see that the normalization of columns of A, or A1, A2, · · · , An are all
enforced as the diagonals show. We consider the following cost function

Jβ(A, S) = ‖ X − AS‖2F + β‖ATA− Jn‖2F , s.t.A 	 0, S 	 0. (3.14)

By a likewise derivation presented in the previous section, we have

al+1
ij − alij = −δij

∂J

∂aij

= δij
(
[XST ]ij − [ASST ]ij − 2β[AATA− AJT

n ]ij
)

sl+1
jk − sljk = −ηjk

∂J

∂sjk

= ηjk
(
[AXT ]jk − [ATAS]jk

)
.

We again take the previous learning rates

δij =
aij

[ASST ]ij
, ηjk =

sjk
[ATAS]jk

which lead us to the following update rules:

aij ← aij

[
[XST ]ij − 2β[AATA− AJT

n ]ij, 0
]
+

[ASST ]ij
, (3.15)

sjk ← sjk

[
ATX

]
jk

[ATAS]ij
; (3.16)

(3.17)

This proposed NMF cost function addresses the degeneracy of the mixing matrix by
adding a penalty on the inner products of all its columns, and shall be termed by
column product NMF, or CP-NMF.
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4 Numerical experiments

4.1 Singular Mixing Matrix and Dominant Peak Sources

In this section, we present the numerical results solved by the methods. In the first
example, two sources signals are to be recovered from two mixtures. The mixtures
are constructed from two real NMR source signal by simulating the linear model (1.1).
The two columns of mixing matrix are nearly parallel, and its condition number is about
1.25 × 108. The true mixing matrix ATR, its estimation AC via clustering, and the
improved estimate AP by solving (3.2) are (for ease of comparison, the first rows of
Â, Ap are scaled to be same as that of A)

ATR =

(
0.894427190999916 0.894427182055644
0.447213595499958 0.447213613388501

)
,

AC =

(
0.894427190999916 0.894427182055644
0.447213596792237 0.447213596447341

)
,

AP =

(
0.894427190999916 0.894427182055644
0.447213595582167 0.447213613388502

)
.

It can be seen that AP is a better estimate as it recovered more digits of the ground
truth. The mixtures are plotted in Fig. 5, and the results are presented in Fig. 6.
In the second example, three sources are to be separated from three mixtures. The
mixing matrix satisfies the OCDC condition, i.e., one of its columns is a nonnegative
linear combination of the other two. To test the robustness of the method, we added
Gaussian noise (SNR = 60 dB) to the data. The mixtures and their geometric structure
are plotted in Fig. 7. First the data clustering was used to obtain an estimation of the
mixing matrix, then an �1 optimization problem is solved to retrieve the sources. The
results are shown in Fig. 8. It can be seen that the recovered sources agree well with
the ground truth.
For the third example, we provide a set of real data to test our method. The data is pro-
duced by diffusion ordered spectroscopy (DOSY) which is an NMR spectroscopy tech-
nique used by chemists for mixture separation (Morris, 2001). However, the three com-
pounds used in the experiment (quinine, geraniol, and camphor) have similar chemical
functional groups (i.e. there is overlapping in their NMR spectra) (Nilsson, Connel,
Davies and Morris, 2006), for which DOSY fails to separate them. The fact that each
of the three sources has dominant interval(s) over others in its NMR spectrum can
be verified from the three isolated clusters formed in their mixed NMR spectra (point
clouds of their mixtures shown in Fig. 9). Here we unmix three sources from three
spectral mixtures. Fig. 9 plots the mixtures (rows of X) and their geometry (columns
of X) where three clusters of points can be spotted. Then the columns of A are iden-
tified as the centriods of the three clusters. The solutions depicted in Fig. 10 are
satisfactory comparing with the real source signals side by side. The source signals
recovery by NN (Naanaa and Nuzillard, 2005) are also computed and shown in Fig.
11 (some negative (erroneous) peaks in S can be spotted).

4.2 Structure Assisted NMF examples

We proposed nonnegative matrix factorization with two different cost functions to ad-
dress the nearly degeneracy in the mixing matrix. The first one imposed a penalty
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Figure 5: recovered sources by clustering (left panel) and the ground truth (right panel).
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Figure 6: recovered sources by clustering (left column), the ground truth (middle col-
umn), and the improved results by a better estimate of mixing matrix (right column).
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Figure 8: three sources (left column) and their recovery by clustering and �1 minimiza-
tion (right column).
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Figure 10: the computed source signals by nonnegative �1 (left) and the ground truth
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Figure 11: the retrieved source signals via NN method (left) comparing with the ground
truth (right).

term on the differences of its columns (termed CD-NMF); while the second cost func-
tion addresses the degeneracy of the mixing matrix by adding a penalty on the inner
products of all its columns (termed CP-NMF). The comparison of the recovered mixing
matrix by CD-NMF method, CP-NMF method, and the ground truth are shown here

ACD−NMF =

⎛
⎝ 0.230364553564128 0.222325645752675 0.197973272413603

0.428178141700514 0.426117653427851 0.447928422731077
0.709793002863661 0.677723684276001 0.563864889947392

⎞
⎠ ,

ACP−NMF =

⎛
⎝ 0.242865565572616 0.180098969354018 0.285524082512094

0.516635045464442 0.309883686246381 0.582543757260167
0.729813101379756 0.538325711121780 0.857017001731787

⎞
⎠ ,

ATR =

⎛
⎝ 1.000013203688969 1.099999061455011 3.999999720965063

2.000007131698644 2.200024874750488 8.000009370903321
3.000004644386780 3.299985225130326 12.000000027664264

⎞
⎠

The condition number of the ground truth matrix ATR is about 5.56 × 106, we actually

started with a singular matrix

⎛
⎝ 1 1.1 4

2 2.2 8
3 3.3 12

⎞
⎠ , then added Gaussian noise of SNR =

100. It is possible to compare the NMF results with the ground truth by scaling the rows
of the matrices as in the first example. Here we shall propose a metric to measure the
distance of the matrices. The following distance between column degenerate matrices
is proposed 1

Definition 1. Consider two nearly degenerate matrices (parallel columns) A and Ā
of size (m,n) with normalized columns. The distance between A and Â denoted by
Δ(A, Ā) is

Δ(A, Ā) = ‖ATĀ− Jn‖F ,

where Jn is a square matrix of size n of ones.
1The Comon’s index (Comon, 1994) used for measure the distance of nonsingular matrices in BSS

problems is not suitable metric for nearly degenerate matrices.

 International Journal of Mathematics and Computation

16



Apparently the smaller distance is, the more similar of the matrices. We computed the
following matrix distances.

Δ(ATR, ACD−NMF) = 0.005850257335153 , Δ(ATR, ACP−NMF) = 0.003635218995144.

and the regularization parameters α = β = 0.001.

5 Conclusion

This paper presented novel methods to retrieve source signals from the nearly de-
generate mixtures. The motivation comes from NMR spectroscopy of chemical com-
pounds with similar diffusion rates. Inspired by the NMR spectral structure of these
chemicals, we propose a viable source condition which requires dominant interval(s)
from each source signal over the others. This condition is well suited for many real-life
signals. Besides, the nearly degenerate mixtures are assumed to be generated from
the following mixing process: either all the columns of the mixing matrix are parallel or
one column is a nonnegative linear combinations of others. We first use data cluster-
ing to identify the mixing matrix, then we develop two approaches to improve source
signals’ recovery. The first approach minimizes a constrained quadratic program for
a better mixing matrix, while the second method seeks the sparsest solution for each
column of the source matrix by solving an �1 optimization. If no (or very limited) infor-
mation on the source signals are available, two NMF variants are proposed by adding
regularization terms to enforce the degeneracy of the columns, hence a desired solu-
tion can be obtained. Numerical results on NMR spectra data show good performance
of our methods. Though the methods are motivated by the NMR spectroscopy, the
methods developed may be extended to different data sets in other applications. For
future work, we plan to investigate a mixture data separation problem where the mixing
matrix has the following form

⎡
⎢⎢⎢⎣
exp(−λD1g

2
1) exp(−λD2g

2
1) . . . exp(−λDng

2
1)

exp(−λD1g
2
2) exp(−λD2g

2
2) . . . exp(−λDng

2
2)

...
...

...
...

exp(−λD1g
2
m) exp(−λD2g

2
m) . . . exp(−λDng

2
m)

⎤
⎥⎥⎥⎦

Here g is a controllable parameter, and g′is are linearly dependent. Hence the entries
of each column have nonlinear relations. We plan to study how to impose constraints
to guide the NMF solution revealing the nonlinearity among the entries.
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