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Observation of Stark many-body 
localization without disorder

W. Morong1 ✉, F. Liu1 ✉, P. Becker1, K. S. Collins1, L. Feng1, A. Kyprianidis1, G. Pagano2, T. You1, 
A. V. Gorshkov1 & C. Monroe1

Thermalization is a ubiquitous process of statistical physics, in which a physical 
system reaches an equilibrium state that is defined by a few global properties such as 
temperature. Even in isolated quantum many-body systems, limited to reversible 
dynamics, thermalization typically prevails1. However, in these systems, there is 
another possibility: many-body localization (MBL) can result in preservation of a 
non-thermal state2,3. While disorder has long been considered an essential ingredient 
for this phenomenon, recent theoretical work has suggested that a quantum 
many-body system with a spatially increasing field—but no disorder—can also exhibit 
MBL4, resulting in ‘Stark MBL’5. Here we realize Stark MBL in a trapped-ion quantum 
simulator and demonstrate its key properties: halting of thermalization and slow 
propagation of correlations. Tailoring the interactions between ionic spins in an 
effective field gradient, we directly observe their microscopic equilibration for a 
variety of initial states, and we apply single-site control to measure correlations 
between separate regions of the spin chain. Furthermore, by engineering a varying 
gradient, we create a disorder-free system with coexisting long-lived thermalized and 
non-thermal regions. The results demonstrate the unexpected generality of MBL, 
with implications about the fundamental requirements for thermalization and with 
potential uses in engineering long-lived non-equilibrium quantum matter.

MBL was first formulated as a generalization of the Anderson transi-
tion6–9. In disorder, non-interacting quantum particles can experience 
destructive interference through multiple scattering, causing a tran-
sition to exponentially localized wavepackets. Over time, a cohesive 
picture of MBL in interacting systems has also developed10,11. In this 
description, the MBL regime has extensive local conserved quanti-
ties that generalize the particle occupancies in Anderson localization. 
However, interactions result in additional slow spreading of correla-
tions via entanglement. Strikingly, MBL creates a phase of matter that 
is non-ergodic: for a range of parameters, local features of the initial 
state are preserved for all times, preventing thermalization2.

In considering MBL, it is natural to ask whether random disorder is 
a requirement. A partial answer has long been known: MBL is possible 
with incommensurate periodic potentials12. However, the question 
of whether an MBL phase might exist which preserves translational 
symmetry, for instance in a system with gauge invariance13 or multi-
ple particle species14,15, has continued to generate extensive discus-
sion16. Recently, this problem has been approached from a different 
starting point: the Bloch oscillations and Wannier–Stark localization 
of non-interacting particles in a uniformly tilted lattice17. From this, 
it has been predicted that interacting systems with a large linear tilt 
can also display MBL-like behaviour4,5. This effect, sometimes called 
Stark MBL, has attracted considerable theoretical and experimental 
interest18–28. However, clear experimental realization of Stark MBL has 
been complicated by approximate Hilbert space fragmentation that 

occurs in the limit of short-range interactions24,27,29. The setting of a 
trapped-ion quantum simulator with long-range spin–spin couplings 
naturally overcomes this complication.

Experimental setup
Investigation of MBL has been driven in part by the development of 
isolated quantum simulator platforms capable of single-site manipula-
tion and readout30–33. Our experimental apparatus (Fig. 1a) consists of 
a chain (N = 15–25) of 171Yb+ ions, with pseudospin states |↑z⟩ and |↓z⟩ 
encoded in hyperfine levels. The Hamiltonian has two ingredients. 
The first is an overall spin–spin interaction, mediated by global laser 
beams coupling spin and motion using the Mølmer–Sørensen scheme34. 
The second is a programmable effective Bz magnetic field at each ion, 
generated using a tightly focused beam35. Together these result in a 
versatile tool to study many-body physics. In addition to turning on 
or off either Hamiltonian term, we use the tightly focused beam to 
initialize spins in arbitrary product states, and we measure arbitrary 
local observables with state-dependent fluorescence collected onto 
a charge-coupled device (CCD) camera.

Combining these terms and choosing the local field to be a linear 
gradient results in a tilted long-range Ising Hamiltonian ħ( = 1):
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Here we have the long-range spin–spin couplings Jjj′, approximately 
following a power-law: J J j j≈ /| − ′ |jj

α
′ 0 , with J0 the nearest-neighbour 

coupling and α = 1.3. Bz0 is an overall bias field, and g the gradient 
strength, with {J0, Bz0, g} > 0. In practice, we generate this Hamiltonian 
stroboscopically, using a Trotterization scheme to reduce decoherence 
(see Methods and Extended Data Fig. 2). The bias field Bz0 is set to be 
large (Bz0/J0 > 5), so that the total magnetization σ∑j j

z  is approximately 
conserved. With this constraint, and neglecting edge effects, Jjj′ = J|j−j′| 
and the Hamiltonian is translationally invariant: the operation j → j + n 
for integer n is equivalent to a shift in Bz0, which has no effect in the 
bulk.

With a disordered Bz field, this system has been used to study MBL30. 
For an initial state of definite total magnetization, the spin model can 
be mapped to a chain of hard-core bosons with long-range hopping in 
a potential (see Methods), indicating that it has similar ingredients to 
models previously used to study Stark MBL4,5.

A useful numeric diagnostic of whether a model exhibits an MBL 
regime can be found in the level statistics, which feature similar behav-
iour in regular (disordered) MBL36 and Stark MBL4,5. The energy levels 
of a generic thermalizing ergodic system follow the Wigner–Dyson dis-
tribution characterizing random matrices, while a generic many-body 
localized system has a Poissonian level distribution36. This difference 
can be quantified by the average ratio of adjacent energy level gaps, 
defined as
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The quantity ⟨r⟩ is 0.53 for a Wigner–Dyson distribution and 0.39 
in the Poissonian case. Diagonalizing the Hamiltonian (equation (1)) 
for N = 15, we find that ⟨r⟩ moves from 0.50 to 0.39 as the gradient g/J0 
is increased, suggesting increasing localization (Fig. 1b). While Fig. 1b 
shows the exact experimental Hamiltonian, including deviations from 
uniform couplings near the edges of the chain, this behaviour persists 
in a uniform Hamiltonian (see Methods and Extended Data Figs. 4, 
5). Unlike previous studies of Stark MBL, in which a small amount of 
disorder or curvature was required for Poissonian level statistics4,5, 
equation (1) exhibits them without any terms perturbing the transla-
tional symmetry.

We probe the degree of localization using a quench procedure, 
shown schematically in Fig. 1c. The initial state, such as a Néel state of 
staggered up and down spins, is typically highly excited and far from 
equilibrium. If it thermalizes, the dynamics following the quench will 
lead to a state in which each spin has a uniform probability of being 

up or down. MBL will instead result in persisting memory of the initial 
configuration, breaking ergodicity.

Non-thermalization from Stark MBL
Performing the quench experiment, we see the expected signature 
of localization: a small gradient results in quick equilibration of the 
spins (Fig. 2a), while in a large gradient they remain near their initial 
values over the experimental timeframe (Fig. 2b). The experimental 
data correspond closely to exact numerical simulations.

To quantify the amount of initial state memory, we define a general-
ized imbalance, t( )I . This observable is similar to other previously used 
measures of initial state memory, such as the imbalance37 or the Ham-
ming distance30, but is advantageous for comparing different initial 
states (see Methods). For an initial state with M spins that are up, and 
N − M down, I  is equal to the subsequent difference between the aver-
age magnetizations of the two groups:
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where j (j′) only sums over the spins that were initialized up (down). In 
general, I t( )  varies from two, for perfect memory of an initial state 
composed of up and down spins, to zero, for a uniform state as at ther-
mal equilibrium.

The imbalance shows a clear trend as we increase the gradient 
(Fig. 2c). At smaller gradients, it relaxes to a decaying oscillation about 
zero, indicating quick thermalization. However, as the gradient is 
increased, the imbalance instead settles to a progressively higher value. 
Compared to exact numerics, decoherence causes a slow decay of I  
over time, attributed primarily to residual excitation of ion-chain 
motion. However, the separation between this decoherence time and 
the fast relaxation dynamics allows us to characterize the late-time 
imbalance.

To study initial-state memory for different gradients, we average I t( ) 
over a time window tJ0 from 5 to 7. This window is chosen to be late 
enough that transient oscillations have largely decayed, while early 
enough that decoherence is limited. This late-time imbalance, I , cap-
tures the amount of initial-state memory remaining after any initial 
relaxation, and thus the approximate degree of localization (Fig. 2d). 
At the smallest gradient I  is consistent with zero: averaging over the 
initial states shown in Fig. 2d we have I = 0.017± 0.027 (1σ s.e.m.). With 
a larger gradient, I  becomes clearly distinct from zero and progressively 
increases, reflecting increasing memory of the initial state. Crucially, 
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Fig. 1 | Experimental setup. a, Each trapped ion in a chain of length N encodes a 
pseudospin. Global lasers controllably mediate a long-range spin–spin 
coupling (red), which is parameterized by the nearest-neighbour rate J0.  
A tightly focused beam provides a site-resolved effective Bz magnetic field 
(blue) that is used to engineer a field gradient with slope g. For clarity, we show 
N = 7. b, The parameter ⟨r⟩, a measure of the level statistics of the experimental 
Hamiltonian (N = 15), shows a progression from statistics near the Wigner–
Dyson limit (⟨r⟩WD, red dotted line) at small g/J0, characteristic of a generic 
ergodic system, to Poisson statistics (⟨r⟩P, blue dotted line) at large g/J0, 

characteristic of a localized system (see Extended Data Fig. 3 for full 
histograms of r). c, We probe the system using a quench from a non-equilibrium 
initial state, such as the Néel state shown here. At small g/J0, an initial spin 
pattern will quickly relax to a uniform average magnetization, while at large g/J0 
the initial pattern persists. The former is consistent with a thermal state, in 
which uniformity is combined with entanglement (red links) reaching across 
the entire chain, while the latter is consistent with MBL, in which the 
magnetization remains non-uniform and entanglement spreads slowly.
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this memory does not show strong dependence on the specific initial 
state: for states with different numbers of initial spin flips and different 
symmetry properties, similar behaviour is observed. This initial state 
insensitivity is consistent with MBL, which can have some energy 
dependence20 but is a robust mechanism for breaking ergodicity that 
can span the entire spectrum. This can be contrasted with other effects 
that do cause thermalization to be strongly state-dependent, such as 
quantum many-body scars38 and domain wall confinement39. However, 
compared to disordered MBL, a key difference is also evident: a small 
non-zero value of I , and thus imperfect thermalization, persists at small 
values of g/J0. This is consistent with the expectation that even in this 
regime thermalization is anomalously slow or incomplete23,40, which 
progresses towards complete localization as the gradient increases.

A key further test of Stark MBL is to characterize its dependence on 
increasing system size. This is especially relevant to systems with 
long-range terms, where finite-size effects may be particularly impor-
tant30,41. Increasing the length to N = 25, we see a rise in the imbalance 
at small g/J0 that is similar to the N = 15 case (Fig. 2e). While we are 
unable to reach the deeply localized regime for N = 25 due to the scal-
ing of the experimentally achievable maximum gradient with N 
(see Methods), the small non-zero value of I  that we observe indicates 
the persistence of a Stark MBL regime.

Revealing the correlated Stark MBL state
Probes of the local magnetization, as in Fig.  2, can establish 
non-thermalization over experimental timeframes, but they do not 

reveal the correlations that characterize a localized phase. The struc-
ture of the regular MBL phase is understood to be defined by emergent 
local conserved quantities10,11. However, the resulting localized regions 
still interact with one another, leading to spreading of correlations 
via entanglement after a quench from a product state (typically loga-
rithmic spreading in time, but potentially faster for long-range sys-
tems42,43). While the existence of these conserved quantities in Stark 
MBL is debated23,24, there are indications that it can display similar 
entanglement dynamics5,18.

Some observables have been established to directly probe this corre-
lation spreading, such as quantum Fisher information28,30 (see Methods 
and Extended Data Fig. 8) or techniques to measure subsystem entan-
glement entropy33,44. We instead adopt a local interferometric scheme, 
the double electron–electron resonance (DEER) protocol, to reveal the 
spread of correlations18,32,45. This protocol, shown in Fig. 3a, compares 
two experimental sequences: one that is a standard spin-echo sequence 
on a probe spin within a system of interest, and one that combines this 
with a set of π/2-pulse perturbations on a separate subregion, the ‘DEER 
region’. The spin-echo sequence cancels out static influences on the 
probe spin, either from global external fields or from fixed configura-
tions of the surrounding spins. If this cancellation is perfect, the probe 
spin will return to its initial magnetization. The DEER sequence, by con-
trast, removes this cancellation for any effect of the spins in the DEER 
region on the probe. As a result, a difference in the final probe magneti-
zation between the two sequences reflects correlations between the 
probe and DEER region generated by the dynamics. At sufficiently long 
times, a difference between these signals will develop in an MBL phase, 
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Fig. 2 | Non-thermalization from Stark MBL. a, b, Ion-resolved dynamics for 
an initial Néel state (N = 15) at g/J0 = 0.24 (a) and g/J0 = 2.4 (b), corresponding to 
the red and blue points on Fig. 1b. While the state quickly relaxes to a uniform 
magnetization in the small gradient, the large gradient results in a persisting 
memory of the initial state. The top row is experimental data, averaged over 200 
repetitions, and the bottom row is exact numerics. c, Memory of the initial 
state, here a Néel state (N = 15), can be quantified by the generalized imbalance I . 
For a state of frozen up and down spins, I = 2, and for complete relaxation to a 
uniform state, I = 0. As the gradient is increased (light to dark), the imbalance 
crosses from quick relaxation towards zero to a persistent finite value. Points 
are experimental data at g/J0 = {0.24, 1.2, 1.8}, with statistical error bars smaller 
than the symbol size, and lines are exact numerics using the experimental 

Hamiltonian. Numerics in a–c incorporate experimental noise (see Methods 
and Extended Data Fig. 1). d, For various initial states, shown at top, we see a 
similar value of the late-time imbalance at large gradient, suggesting uniform 
localization. From top to bottom, the three initial states correspond to the 
{triangle, square, round} points. e, Dependence of the late-time imbalance on 
system size is shown, using an initial Néel state with N = 15 (a subset of the data 
in panel d) and N = 25. The overall increase of late-time imbalance with gradient 
is robust to the system size increase. The pronounced dip in I  near g/J0 = 1.0 
may be partly due to a finite-time feature that appears near this value 
(see Methods and Extended Data Fig. 6). Error bars throughout represent 
statistical uncertainty of the mean value (1σ s.e.m.). Data are averaged over 200 
repetitions.
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but not in a thermal or non-interacting localized phase. This differential 
measurement setup is also naturally robust against common-mode 
non-idealities, including experimental noise. As this protocol requires 
control of the Hamiltonian and single-site manipulation and readout, 
it demonstrates how the capabilities of our experimental platform 
can enable methods of characterizing many-body systems beyond 
typical observables.

In Fig. 3b–d, we demonstrate the DEER protocol and apply it to char-
acterize the Stark MBL regime. Over time, a difference accumulates in 
the probe magnetization following the two procedures, reflecting the 
spread of correlations (Fig. 3b). These correlations continue to move 
through the system after the imbalance has stabilized (see Methods 
and Extended Data Fig. 9), indicating that they are not solely due to 
transient dynamics. Picking a time range after this initial evolution, 
tJ0 = 2–4, we characterize the correlations by taking the average differ-
ence between the signals, σΔ z

1 . This time window is slightly earlier 
than the window used for the steady-state imbalance, as the DEER sig-
nal is more sensitive to fluctuations in the local effective Bz fields, which 
are the dominant source of experimental noise (see Methods). Varying 
the DEER spin distance, R, we see that this difference signal decreases 
for a DEER region farther from the probe, reflecting the local nature of 
correlation propagation (Fig. 3c). Similarly, at a fixed separation and 
time window, we observe the reduction of the difference signal with 
increasing gradient, confirming that the correlation spread is 

controlled by the degree of localization (Fig. 3d). The dependence of 
the difference signal on both R and g/J0 track exact numerics, with an 
overall scaling difference due to decoherence reducing the experimen-
tal signal. Taken together, these probes identify the Stark MBL regime 
as one in which correlations spread slowly through the system despite 
persisting memory of the initial state, distinguishing it from 
non-interacting localization.

Disorder-free MBL beyond a linear field
If many-body localized effects appear in a linearly increasing field, 
might they also be seen in a more general class of smoothly varying 
fields? Utilizing the tunability of this simulator, we investigate a natural 
generalization: a quadratic, rather than linear, potential. We parameter-
ize the Hamiltonian as:
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Equation (4) describes a quadratic effective Bz field with a minimum 
in the centre of the system and a maximum slope of g/J0 = ±γ at the ends 
of the chain. Similar models have been predicted to feature a spatial 
separation into an ergodic core and many-body localized edges21.

We summarize the results in Fig. 4. Taking an initial Néel state (N = 15), 
we observe a separation of the spins into thermalizing and localized 
regions, which appear to evolve independently. We determine an 
approximate dividing line between these regions as the innermost 
spins that are clearly distinct from the thermalizing region. For a range 
of curvatures γ < 3.6, this occurs at a local slope of g/J0 ≈ 0.5 (see Meth-
ods and Extended Data Fig. 10), comparable to observations in Fig. 2.

The comparison between Stark MBL in a linear gradient and 
disorder-free MBL in a quadratic field suggests similar localizing 
mechanisms. While a large gradient results in a model with approxi-
mate centre-of-mass (or dipole) conservation, a quadratic field instead 
results in a quadrupole constraint. Fractonic models in these limits 
display dynamics determined by the type of conservation, such as char-
acteristic subdiffusion26,40. However, our realizations of disorder-free 
MBL are far from these limits of exactly conserved moments, and over 
experimentally relevant times appear to exhibit dynamics that are 
determined by the local potential landscape, rather than overall con-
straints21,25.

The quadratic field is also an intriguing venue to explore the stability 
of disorder-free MBL in proximity to a thermalizing region. In regular 
MBL, it is believed that a thermal inclusion can induce many-body ava-
lanches that slowly destabilize the MBL region46,47. Disorder-free MBL, 
which does not feature any resonances between sites, may evade this 
instability. The observation of a localized region in a quadratic field is 
also directly relevant to longstanding questions about the state of corre-
lated ultracold atoms in an optical lattice with harmonic confinement48.

Discussion
We have seen the signatures of MBL in a system without disorder, sug-
gesting that the concept of MBL may be relevant in settings beyond 
the original considerations8,9. For all types of MBL, questions remain 
about the conditions for asymptotic stability, particularly in systems 
with long-range terms or more than one dimension4,46,49. To this end, 
future work could study the dependence of Stark MBL on the coupling 
range α, or explore connections between our observations and the 
approximate Hilbert space fragmentation (or shattering) arising in 
certain short-range tilted models18,23,24,29,50 (see Methods).

Extension of Stark MBL to the thermodynamic limit poses several 
challenges. Infinite energy differences appear between different 
ends of the system, although this can be partially addressed through 
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Fig. 3 | DEER protocol. a, In the spin-echo procedure (dark green), a single 
probe spin undergoes a spin-echo sequence, while the rest of the spins 
experience normal evolution under H for total time t. In the DEER procedure 
(dark and light green) there are additional perturbing π/2 pulses on a region, 
here fixed at a size of three spins, that is R spins away (with the case of R = 2 
shown). The difference in the probe magnetization following these procedures 
reflects the ability of the DEER region to influence the dynamics at the probe 
spin. We study this protocol using an initial Néel state (N = 15). b, At 
intermediate times, before the spin-echo signal approaches zero due to 
decoherence, a difference develops between the spin-echo (dark green) and 
DEER (light green) signals. We quantify this by taking the average difference 
(DEER-spin echo) between tJ0 = 2 and 4 (shaded region) after imbalance 
dynamics have stabilized. These data are for R = 1 and g/J0 = 0.71, and are 
averaged over 2,000 repetitions. c, As R is increased (at g/J0 = 0.71), the 
difference signal drops to zero, reflecting the incomplete spread of 
correlations through the system at finite time. d, As g is increased (at R = 2), the 
difference signal also decreases with increasing gradient, consistent with the 
expectation that within the Stark MBL phase, increasing localization leads to 
progressively slower development of correlations. Points in c, d are the 
experimental data, and solid lines are exact numerics incorporating 
experimental noise (see Methods and Extended Data Fig. 1). Error bars 
throughout represent statistical uncertainty of the mean value (1σ s.e.m.).
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a gauge transformation recasting the gradient as a time-dependent 
drive (see Methods). Furthermore, slow state-dependent processes 
can result in increasing delocalization with system size (see Methods 
and Extended Data Fig. 7). However, localization can be extended to 
arbitrarily long times by increasing the field gradient, adding gradient 
curvature, or restriction to finite sizes.

Finally, from the perspective of near-term quantum devices our 
results suggest that Stark MBL retains key aspects of the disordered 
MBL phase while offering certain advantages, such as not requiring 
a fine-grained field or disorder averaging of observables. Stark MBL 
may be a useful resource for such devices, serving as a tool to stabilize 
driven non-equilibrium phases19,51, or as a means of making a quantum 
memory3 with each site spectroscopically resolved.
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γ. For clarity, we show N = 7. b, Dynamics are split into a thermalizing region 
near the centre of the system and localized regions near the edges, with the 
approximate boundaries indicated by the dashed lines. As the maximum 
gradient is increased, the fraction of the system in the thermalizing regime 

shrinks. c, Ion-resolved traces of the dynamics for γ = 1.8, showing separation  
of the spins into localizing regions (bright hues with round points) and 
thermalizing regions (faded hues with square points). Colours reflect the  
local field strength at each ion. Data are averaged over 200 repetitions, and 
error bars throughout represent statistical uncertainty of the mean value  
(1σ s.e.m.).
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Methods

Experimental apparatus
State preparation and readout. Our apparatus has been described in 
previous work52–55. We employ a three-layer Paul trap to confine 171Yb+ 
ions in a harmonic pseudopotential with trapping frequencies 
fx,y = 4.64 MHz and either fz = 0.51 MHz (N = 15) or 0.35 MHz (N = 25). 
There is a 1% to 2% day-to-day variation in these frequencies. Pseu-
dospins are encoded in the two-clock ground hyperfine states, with 
|F = 0, mF = 0⟩ = |↓z⟩ and |F = 1, mF = 0⟩ = |↑z⟩, where F and mF are the quan-
tum numbers for the total angular momentum and the component 
along z, respectively. We drive coherent global rotations between these 
spin states using stimulated Raman transitions. Long-range spin–spin 
interactions are generated via a bichromatic beatnote that couples 
these states via motional modes along the x direction. This is gener-
ated by three Raman beams from a pulsed 355 nm laser driving a sym-
metric pair of transitions, with average detunings of μ/2π = 200 kHz 
from the red and blue sideband transitions of the highest frequency 
(centre of mass) transverse motional mode along x. The resulting dis-
tribution of Jjj′ couplings has a best-fit power law of α = 1.28 for N = 15 
and α = 1.31 for N = 25, and a best-fit J0/2π between 0.25 kHz and 
0.33 kHz, depending on day-to-day variations in laser power. This 
value of J0, calibrated for a given day, is used to scale energies and times 
in the main text.

Each experimental cycle begins with state initialization via optical 
pumping and Doppler and resolved-sideband cooling, which prepares 
the spin state |↓z⟩ with fidelity >0.99 and the ground motional state 
with fidelity >0.9. Arbitrary product states are initialized using the 
site-dependent a.c. Stark shift from the individual addressing beam (from 
the same 355 nm light generating the Ising interactions), combined with 
overall rotations, with typical preparation fidelities of >0.9 per spin. Read-
out is performed via state-dependent fluorescence using the 369.5 nm 
|↑z⟩ → 2P1/2 transition collected on a CCD camera, with typical detection 
errors of 3%. All measurements presented in the main text, except for 
the DEER measurements, are repeated at each setting 200 times for 
statistics. For the DEER measurements, we instead average over 2,000 
repetitions, which are taken alternating between DEER and spin-echo 
sequences every 100 measurements so that to a very good approxima-
tion both sample any noise profile equally. The data presented have not 
been corrected for state preparation and measurement (SPAM) errors.

Calibration of Hamiltonian parameters
The experimental Jjj′ matrix is determined by measurements of motional 
sideband Rabi frequencies and trap parameters. Past work has validated 
this model against direct measurements of the matrix elements30.

We directly measure and calibrate the linear field for each spin indi-
vidually. As this calibration process is imperfect, each spin has a finite 
amount of deviation from the ideal linear gradient and thus there is a 
finite amount of effective site-by-site disorder in the experimental 
realization, with δ B gj( /( )) ≈ 0.02j

z . While a small amount of disorder 
can be crucial in simulations of Stark MBL with short-range terms, 
because it breaks the exact degeneracies of that problem4, in the con-
text of long-range couplings the level statistics are already generic, 
and this disorder does not have a substantial effect on the system in 
numerics over experimental timeframes. As such, we call our system 
‘disorder-free’ in the sense that we only have small, technical and 
well-understood imperfections limiting our realization of the ideal 
disorder-free Hamiltonian. Any real quantum simulator can only hope 
to asymptotically approach a perfectly uniform environment, just as 
any quantum simulator can only hope to approximately realize MBL 
because there will always be some residual coupling to the environment 
that restores ergodicity at sufficiently long times.

Generalized imbalance
The generalized imbalance used in the main text is defined as:
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For an initial state that is a product of up and down spins along z, 
this reduces to a simple form: the average magnetization of the spins 
initialized up minus the average magnetization of the spins initial-
ized down. For an initial state that is fully polarized this imbalance is 
undefined, which may be considered as a drawback to this measure, 
but such a state is already near equilibrium and thus is not useful for 
quantifying equilibration.

This definition is similar to many other variations of the imbalance. 
For an initial Néel state with an even number of spins it is identical up 
to scaling factors to both the imbalance and the Hamming distance, 
while for a general initial state of up and down spins it reduces to 
an alternate ‘generalized imbalance’ that has been used in previous  
studies28,56,57. However, in general this definition offers a few advantages:
•	Unlike the imbalance, it is exactly zero for a thermalized system with 

an odd number of spins.
•	 It does not require any knowledge of the initial state to be added in 

by hand, unlike alternative observables in which the initially flipped 
spins are tracked.

•	Unlike the Hamming distance, this generalized imbalance is zero 
for a thermalized system, and has units of magnetization difference 
(therefore ranging from −2 to 2).

•	Finally, this generalized imbalance is less sensitive to some noise terms 
than the Hamming distance, such as spurious processes that do not 
conserve the overall magnetization. An example is useful: consider 
an initial state of one flipped spin (⟨σz⟩ = 1), with N = 10, and a back-
ground of spin-down (⟨σz⟩ = −1). Then, suppose that after some time 
this system has either evolved to a completely uniform system with 
an average magnetization of −1, or a state where each spin relaxes by 
0.2 towards zero magnetization, leaving the initially flipped spin at a 
magnetization of +0.8 and the remaining spins at −0.8. Both of these 
final states have the same Hamming distance from the initial state of 
0.1, because they both represent a system that is an average of one spin 
flip from the initial state. However, the first final state is completely 
equilibrated, while the second has a strong memory of the initial 
state. The Hamming distance, therefore, is not an optimal measure of 
initial state memory in a situation where a few flipped spins give you 
more information about the initial state than the background spins.
While the Hamming distance is always zero at time zero, this general-

ized imbalance only starts at 2 for an initial state in which each spin is 
in a definite state of σz. In Fig. 2c the experimental imbalances do not 
start exactly at 2, reflecting SPAM errors.

Numerics
Studies of Hamiltonian level statistics with ⟨r⟩ use exact diagonaliza-
tion of the Hamiltonian. For simulations of dynamics when the chain 
length does not exceed L = 23 we solve the Schrödinger equation using 
the Krylov space technique58,59. For simulation of dynamics with L = 25, 
we use the fourth-order Suzuki–Trotter expansion to decompose the 
Hamiltonian into two pieces, and use a global Hadamard transformation 
to rotate the basis of operators60. This reduces the memory required 
in the simulation since the Hamiltonian is diagonal (with the rotation) 
and does not need to be stored as a matrix form.

For all numerics, except those shown in the subsequent Methods 
section ‘Numerical studies of the ideal power-law Hamiltonian’, we 
use the experimentally determined Jjj′ matrix. These couplings show 
some inhomogeneity across the chain, with the nearest-neighbour 
hopping varying 7% for N = 15. At large ion-ion separation they also 
show deviations from power-law behaviour, with the couplings falling 
off faster than the best-fit power law55. The comparison to power-law 
numerics shows that each of these effects does not strongly alter the  
dynamics.
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Experimental noise model
For numerics that are compared directly to experimental data in Figs. 2 
and 3 of the main text, we take the effects of experimental noise into 
account. We incorporate noise of the following types:
•	An error in the initial state, roughly accounting for the combined 

SPAM errors, consisting of a uniform rotation of the Néel state by 
0.075π radians in the Z–X plane.

•	A shot-to-shot random variation of the overall field offset Bz0, with 
Gaussian variance of 2π × 0.6 kHz.

•	A shot-to-shot random variation of the gradient slope g, with a stand-
ard deviation of 6.25%.

•	A shot-to-shot random variation of the individual local field terms, devi-
ating from the ideal linear gradient, with a standard deviation of 3.125%.
Each numerics line in Figs. 2 and 3 show the result of averaging over 

50 random instances, drawn from Gaussian distributions of each param-
eter. In general, these error sources and magnitudes are consistent 
with independent estimations of our SPAM errors and laser intensity 
fluctuations. Notably, as the gradient is generated from a fourth-order 
Stark shift, the associated fractional noise is double that of the laser 
intensity fluctuations35. However, the precise values of the four error 
terms are chosen to match experiment. Owing to the large amount of 
data available, and the subtle differences in the effects of each term, 
these terms can be optimized fairly independently. For example, the 
noise in g and the noise in the variation about g for individual spins each 
give slightly different effects in the damping of the imbalance and the 
degree of asymmetry between small and large gradient.

Extended Data Figure 1 shows a side-by-side comparison of the noise-
less and noisy numerics for the imbalances shown in Fig. 2, examples 
of the individual realizations that are averaged, and an example of the 
DEER signal.

Two error sources that are not included in the model are coupling to 
phonons and fluctuations of the local Bz fields that occur during a single 
experimental run rather than from shot to shot. These are believed to 
dominate the remaining differences between experiment and theory, 
such as the slow decay of the experimental imbalance and the decay of 
the experimental DEER signal after tJ0 ≈ 2. However, the broad agree-
ment observed in Figs. 2 and 3 indicates that we have captured the 
main noise effects.

Trotterization scheme
We generate two types of Hamiltonian terms in this work. The first is the 
Mølmer–Sørensen Hamiltonian in the resolved sideband and Lamb–
Dicke limits55, created with a pair of detuned bichromatic beatnotes:
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Here j is the ion index and ν is the normal mode index, aν is the destruc-
tion operator of a phonon of motion for a given normal mode of the 
ion chain, Ω is the carrier Rabi rate, ην is the Lamb–Dicke parameter, 
bj

ν is the mode amplitude for ion j, ων is the mode frequency, and δB(R) 
is the blue(red) detuning. This term generates spin–motion entangle-
ment, and in the limit ηνΩ ≪ |δR,B − ων| the motion can be adiabatically 
eliminated for an effective spin–spin interaction.

The second Hamiltonian term is the local field generated by the indi-
vidual addressing beam. This beam only addresses one ion at a time, 
and is rastered across the chain to create an overall field landscape.  
A single cycle of this term can be written as:

∑H t B σ Θ t j t Θ jt t( ) = ( − ( − 1) ) ( − ), (7)
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with Θ(t) as the Heaviside theta and tpulse the time for a pulse of the beam 
on one ion, which we experimentally fix at tpulse = 0.5 μs.

When these terms are applied simultaneously, in the limit 
≫ ≫δ ω η Ω B| − | ,ν ν j

z
R,B  the transverse Ising Hamiltonian is approximately 

realized:
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However, the validity of this Hamiltonian is limited to small B j
z. There-

fore, when realizing a linear field gradient, B j
z = gNj, this results in the 

constraint gN2 ≪ ηνΩ, which prevents the simultaneous attainment of 
long chains and large linear field gradients. For example, for typical 
experimental parameters of N = 15, ηΩ = 2π × 30 kHz, and J0 = 2π × 250 Hz, 
this would require that g/J0 ≪ 0.5. When this is not satisfied, additional 
phonon terms are present in the Hamiltonian that result in undesired 
spin–motion entanglement, or effective decoherence of the dynamics 
when measuring only spin.

We can reduce these constraints by applying a Trotterized Ham-
iltonian61,62. The evolution under this time-varying Hamiltonian can 
be analysed using the Magnus expansion, to find the dominant con-
tributions to time-averaged dynamics55. Within this framework, the 
undesired effects arise from the commutator [H1(t), H2(t)]. Intuitively, 
when these terms are no longer applied simultaneously the effect of 
this commutator is reduced.

Consider unitary evolution of a single Trotter cycle, using the 
lowest-order symmetrized sequence:
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The Hamiltonians governing each part of the unitary evolution may 
be approximately replaced by their time-averaged values, simplifying 
both. For H2 we have
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an exact identity since each of the terms in H2(t) commute with one 
another. For H1(t) we have
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However, this is just the usual Mølmer–Sørensen Hamiltonian, and 
in the limit that |δR,B − ων|t ≫ 1 the dominant contributing terms are 
the stationary ones. When δR = −δB this results in the pure σxσx interac-
tion. When instead a small rotating frame transformation is applied we 
generate the Ising Hamiltonian with a small overall transverse field55:
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The combined evolution of the full Trotter cycle is then, to lowest 
order, described by the Hamiltonian
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We program B j
z to the desired functional form and absorb the factors 

with Δt1 and Δt2 into redefinitions of J0 and g or γ, leading to equations 
(1) and (4) of the main text. The constant term Bz0 does not depend on 
these times, because it is created by moving into a rotating frame that 
is applied to the entire time evolution. This approximation requires 
that |δR,B − ων|Δt1 ≫ 1 (for equation (12)), which is satisfied in the 



experiment: |δR,B − ων|min = μ = 2π × 200 kHz and Δt1 ≥ 18 μs, whose prod-
uct is 22.6. Additionally, Δt1 and Δt2 must not be so long that the Trotter 
approximation (equation (13)) breaks down. However, the low energy 
scale of J0 and the use of the symmetrized Trotter form make this limit 
less constraining than the limit for continuous evolution, allowing us 
to reach g/J0 = 2.5 (1.5) for 15 (25) spins. Because the Trotter error con-
sists of undesired spin terms, rather than spin–phonon terms, it can 
also be easily simulated numerically. Extended Data Figure 2 shows 
comparisons of the Trotterized and ideal evolution in the case of the 
strongest gradient, showing that the Trotter error is negligible over 
the experimental timescale and that the Trotterization results in a 
substantial improvement in the simulation fidelity.

In addition to reducing phonon errors, this scheme has the advantage 
of allowing us to tune the average Hamiltonian (equation (13)) simply 
by varying Δt1 and Δt2, because [g/J0]avg = (Δt2/Δt1)g/J0. This capability 
allows us to scan over a range of gradient values with a single calibration, 
and it makes any errors on the gradient calibration common to all these 
scans. In the data presented here, we fix the instantaneous values of g 
and J0 and vary Δt1 (see subsequent section, ‘Trotterized Hamiltonian 
parameters’). In addition, we ramp the spin–spin interactions up and 
down over 9 μs with a shaped Tukey profile to reduce adiabatic crea-
tion of phonons53.

This implementation of Trotterized Stark MBL dynamics would 
be difficult to extend to more than tens of spins, as the maximum 
instantaneous shift required on the edge ion scales as N2, leading 
to the requirement of an increasingly fast drive. However, given the 
unbounded nature of a linear gradient, any large-scale simulation of 
Stark MBL is likely to be challenged by the required field difference 
between the two ends.

Throughout this discussion, we have taken the perspective of a 
Trotterized quantum simulation of a desired Hamiltonian. We could 
also understand this experiment in terms of Floquet theory. From 
this perspective, this driven system is described stroboscopically 
by a Floquet Hamiltonian, which to lowest order is the Hamiltonian 
(equation (13)), and the steady-state equilibration that we see repre-
sents prethermal evolution under this effective Hamiltonian that is 
expected to be altered at long times by Floquet heating arising from 
the higher-order terms. While this picture offers a complementary way 
to understand these results, and interesting connections to studies 
of driven localization63, for simplicity we focus on the Trotterized 
perspective.

Trotterized Hamiltonian parameters
For imbalance measurements at N = 15, we calibrate to g/J0 of 2.5 for 
Δt1 = Δt2. To scan the gradient strength, Δt2 is fixed at 18 μs and Δt1 is 
varied from 18 μs to 180 μs. In addition, there is an extra 9 μs of effective 
dead time per Trotter step associated with the Tukey pulse shaping.  
We fix Bz0 at 2π × 1.25 kHz. For data in a quadratic field, we set γ = 2.0 
for Δt1 = Δt2, and vary Δt2 from 10 μs to 180 μs, with all other settings 
kept the same as in the linear gradient.

For N = 25, we instead set g/J0 to 1.25 for Δt1 = Δt2. Δt1 is fixed at 30 μs, 
and Δt2 is varied between 25 μs and 190 μs, again with an extra 9 μs of 
effective dead time per cycle due to pulse shaping. Bz0 is again fixed 
at 2π × 1.25 kHz.

For DEER measurements, we calibrate to g/J0 of 2.0. Δt2 is fixed at 
18 μs and Δt1 is varied from 18 μs to 180 μs, plus an extra 9 μs of dead 
time associated with Tukey pulse shaping. We fix Bz0 at values varying 
for different datasets between 2π × 0.9 kHz and 2π × 1.25 kHz.

Analysis of the Hamiltonian
Mapping to boson model. Our experimental Hamiltonian, from equa-
tion (1) of the main text, is:

∑ ∑H J σ σ B j g σ= + ( + ( − 1) ) . (14)′
j j

jj j
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j
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j

N
z

j
z

< ′
′
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In the limit of Bz0 ≫ J0, and assuming that Bz0 and g have the same sign, 
the total magnetization σ∑ ⟨ ⟩j j

z  is conserved. For an initial state of 
definite total magnetization, the system then reduces to the long-range 
tilted XY Hamiltonian64:

∑ ∑H
J

σ σ σ σ B j g σ=
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( + ) + ( + ( − 1) ) . (15)′ ′XY
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This can be mapped to a system of hard-core bosons taking σ a→j j
−(+) (†) 

and n a a σ= = ( + 1)/2j j j j
z† , resulting in the Hamiltonian:

∑ ∑

∑

H
J
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with μN = 2Bz0, taking the limit U → ∞, and dropping a constant energy 
contribution.

This model clarifies the connection between our system and work 
studying Stark MBL in the context of hopping particles with interac-
tions4,5. It also illustrates the translational symmetry in our system.  
If j is shifted by an integer, this is equivalent to changing the chemical 
potential term μ n∑j jN , which has no effect in a closed system with  
particle conservation.

Gauge transformation of the Hamiltonian
The linear potential in this model can be removed using a gauge trans-
formation U(refs. 4,27):

e= . (17)∑it μ j g n( +2( −1) )
j

jN
U

After this transformation, which is equivalent to moving into the 
interaction picture with respect to the local field term, the transformed 
Hamiltonian is:

∑ ∑H t
J

a a e a a e U n n′ ( ) =
2

( + ) + ( − 1). (18)′
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−2 ( − ′ ) † 2 ( − ′ )

=1

In the limit of short-range terms, the time dependence of this trans-
formed Hamiltonian has a bounded set of frequencies, and going to the 
thermodynamic limit is straightforward. However, long-range terms result 
in time dependence that becomes arbitrarily fast for terms with arbitrarily 
large |j − j′|. This points to a fundamental difference between short- and 
long-range Hamiltonians in the presence of superextensive potential terms.

Hamiltonian in large-gradient limit
To understand the mechanism of Stark MBL, it is useful to derive the 
effective Hamiltonian in the limit of a large tilt. To do this, we apply 
degenerate perturbation theory in the small parameter J0/g to equa-
tion (15), in a variation of the Schrieffer–Wolff transformation65,66.  
The goal is to construct a unitary transformation:

∑

H H

H S H S S H S S S H

H

= e e

= + [ , ] +
1
2!

[ , [ , ]] +
1
3!

[ , [ , [ , ]]] + …

= .

(19)

S S

n

n

eff
−

=0

∞

eff
( )

Here we have the Schrieffer–Wolff generator, S, which is 
anti-Hermitian, and H n

eff
( ) of order (J0/g)n. The form for S is determined 

by separating the Hamiltonian into diagonal and off-diagonal contribu-
tions in the σ j

z basis:

H H V= + , (20)0
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∑H B j g σ= ( + ( − 1) ) , (21)
j
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σ σ σ σ=
2
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j j

jj
j j j j

< ′
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Then, S is chosen to eliminate block-off-diagonal contributions to 
Heff at each order, leading to the condition that H H[ , ] = 0n

eff
( )

0  for each n. 
This enforces centre-of-mass (or dipole moment) conservation at each 
order. As a result, S has the following form:

∑S S= , (23)
n

n

=1

∞
( )

with S(n) of order (J0/g)n. Applying this form to equation (19) and organ-
izing the terms by powers of J0/g results in:
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With this form, S(n) must then be chosen to make [S(n), H0] cancel all 
block-off-diagonal (that is, non-dipole-conserving) terms at order n. 
While the resulting expression is inconvenient to write out explicitly, 
this approach can be applied algorithmically to find arbitrarily high 
orders.

Alternatively, one may set S(n) = 0 for all n ≥ 2 and manually project 
out non-dipole-conserving terms order by order. S(1) must still obey 
the constraint [S(1), H0] + V = 0, which can be achieved by taking the  
form

σ S σ
σ V σ

σ H σ σ H σ
⟨ | | ′⟩ =

⟨ | | ′⟩
⟨ | | ⟩ − ⟨ ′| | ′⟩

. (25)(1)

0 0

The resulting leading-order effective Hamiltonian is

∑H
σ σ σ σ

j i k i g

J J J J J J J J J J J J
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(where we have omitted lower-order energy correction terms that 
are diagonal in the H0 basis). Starting from an initial state that is an 
eigenstate of H0, the effective Hamiltonian couples this state to other 
eigenstates of H0 with the same energy. This directly translates to the 
dipole conservation constraint i + k = j + l in equation (26). Although 
the above process comes from the third-order contribution to Heff, the 
effective Hamiltonian contains only four-body terms that conserve 
the dipole moment. Note that the above effective Hamiltonian does 
not vanish even for translationally invariant long-range couplings. For 
the case of long-range couplings that can approximated by power-law 
decay Ji−j = J0/|i − j|α, the above equation can be written as

∑H
J σ σ σ σ

g j i k i k j l i
=

6 ( + H.c.)

( − ) ( − )
×

1
( − )

−
1

( − )
(27)
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This is in contrast with a short-range XY Hamiltonian with 
nearest-neighbour interactions, where the above term vanishes in 
the limit of α = ∞.

The effective Hamiltonian in equation (27) shows that dipole- 
conserving terms with arbitrarily long range exist in this system even 
in the lowest nontrivial order of the perturbative expansion. The 
strengths of these long-range coupling terms decrease monotonically 
with the power-law exponent α. This result can be contrasted with 
two other cases. A short-range Hamiltonian with dipole and spin-flip 
conservation can result in Hilbert space fragmentation (or shatter-
ing)4,5,18,24,29,50, while in this long-range model fragmentation is not 
present in the thermodynamic limit29. On the other hand, a similar 
perturbative expansion beginning with a short-range tilted model 
will also give long-range dipole-conserving terms, but only at higher 
powers of the tilt27,50.

Despite the lack of fragmentation, this Hamiltonian does result in 
state-dependent relaxation. One reason for this is that the dipole con-
servation term in equation (26) depends on the distances between the 
four operators. Specifically, Jij decays as a function of distance between 
the pair of ions. Additionally, the denominator in the above expres-
sion contains the factors (j − i) and (k − i). The distance dependence 
comes from the energy differences between intermediate states of the 
perturbation theory. This combination of distance-dependent factors 
can result in different slow delocalization dynamics for the different 
initial states shown in Fig. 2 (see Methods section ‘Long-term stability 
of Stark MBL’).

Histograms of r
A typical ergodic system has a reduced single-particle density matrix 
with support throughout the bulk, and thus has a high degree of over-
lap between particles. This results in level repulsion in the many-body 
spectrum, leading to a Wigner–Dyson energy level distribution charac-
teristic of random matrices36. A typical localized system, on the other 
hand, has single particles that are spatially confined, and thus have 
little overlap, resulting in a Poissonian distribution of the many-body 
spectrum. In Extended Data Fig. 3 we show the full distribution of 
r, the ratio of adjacent energy level spacings, for the experimental 
Hamiltonian at selected values of g/J0. We compare it to the probabil-
ity density distributions resulting from Poisson and Wigner–Dyson  
statistics5:

P r
r

( ) =
2

(1 + )
(Poisson), (28)p 2

P r
r r
r r

( ) =
27( + )

4(1 + + )
(Wigner–Dyson), (29)WD

2

2 5/2

where equation (29) is an analytic approximation to the Gaussian 
orthogonal ensemble based on the Wigner surmise67.

While a small field gradient is needed to break the approximate inte-
grability of the Hamiltonian68 in the limits of g = 0 and Bz0 ≫ J0, over the 
range of tilts studied experimentally the level statistics cross from being 
close to the Wigner–Dyson limit, with an evident dip at low r due to the 
proliferation of avoided crossings, to very close to the Poisson limit at 
large gradients. This should be contrasted with the case of short-range 
hopping, in which the level statistics may be highly non-generic due 
to exact degeneracies associated with dipole conservation, making 
concepts of Hilbert space fragmentation (or shattering) especially 
relevant4,5,18,24,27,29,50,66,69. Although the level statistics shown here are 
for an experimentally measured Hamiltonian, featuring small devia-
tions from a perfectly linear gradient, these deviations do not substan-
tially affect the level statistics, as the long-range terms already lift the 
degeneracies. In the next section we show this explicitly, using the ideal 
power-law Hamiltonian to study more general features of Stark MBL 
with long-range couplings such as the scaling behaviour.



Numerics for ideal power-law Hamiltonian
The experimental system is approximately described by a Hamiltonian 
with a power-law hopping:

∑ ∑H
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However, as the exact experimental couplings feature inhomogeneity 
across the chain and deviations from power-law scaling for large ion 
separations, all numerics shown in the main text (as well as the previ-
ous sections) use the exact Hamiltonian as determined by experimen-
tal measurements of mode structure and detuning. Nonetheless, to 
study the general behaviour of the system it is useful to also look at the 
power-law Hamiltonian, which captures the dominant behaviour while 
being translation-invariant and therefore having a more natural scaling 
with size. We study this numerically to characterize the behaviour of 
⟨r⟩ with respect to α and g/J0, and to study the finite-size dependence.

Dependence of ⟨r⟩ on α and g/J0

Extended Data Figure 4 shows the dependence of the level statistics ⟨r⟩ 
on the Hamiltonian parameters α and g/J0. The primary features of the 
experimental Hamiltonian statistics are retained, such as non-generic 
statistics for very small gradient values and a crossover from ⟨r⟩ ≈ 0.5 to 
0.39 for g/J0 between 0.1 and 2.0. For α < 1, the concept of Stark MBL may 
break down entirely, as the spin–spin coupling energy is superexten-
sive. While we see some signature of this in Extended Data Fig. 4, such 
as the increase in the gradient needed to reach Poissonian statistics as α 
is decreased, near α = 1 the divergence of the spin–spin energy with sys-
tem size is logarithmically slow, making finite-size effects substantial.

For large α, ⟨r⟩ generally decreases, which reflects the approach to 
the limit of Wannier–Stark localization because the short-range model 
maps to a chain of free fermions with a tilt under a Jordan–Wigner trans-
formation. The general features observed are consistent with a recent 
study of long-range hopping in a tilt22 that also found persistence of a 
crossover in ⟨r⟩ up to N = 18 and for α > 1.

Dependence of ⟨r⟩ on system size
Using the power-law Hamiltonian, we can study the dependence of the 
level statistics on system size. Extended Data Figure 5 shows this for 
N ranging from 9 to 15. In general, the curves do not exhibit a simple 
finite-size scaling. This may be due to the long-range couplings, which 
are known to cause a system size-dependent shift in the transition in 
numerics for the disordered MBL case41. The progressive shift away 
from the Wigner–Dyson limit at small gradient may indicate that this 
regime is ‘quasi-ergodic’ due to finite-size effects23, or reflect anoma-
lous thermalization40, or may instead reflect an increasing effect of 
the non-generic statistics observed near zero gradient in the previous 
section (‘Dependence of ⟨r⟩ on α and g/J0’). Crucially, we see that the 
trend of gradient-driven localization persists up to the largest systems 
we can diagonalize, coinciding with the size used for most of the data 
presented in the main text, with a full study of the scaling left as an 
interesting subject for future work.

Dependence of I  on system size and time
Extended Data Figure 6 shows a comparison of our data for I  varying 
system size (Fig. 2e) with numerics. We present data for N = 9, N = 15 
and N = 25, corresponding to size increases by a factor of 5/3.

For the most part, I  only shows a slight shift with increasing N. How-
ever, there is a sharp feature near g/J0 = 1.0 that grows more prominent 
with increasing size, and appears similar to the experimental dip 
observed for N = 25. This feature is a finite-time effect, as seen in 
Extended Data Fig. 6, and also depends on the initial state. It reflects 
the complex dynamical possibilities for g/J0 < 1, in which various tun-
nelling processes are energetically permitted. However, interpretation 

of this feature in experimental data is complicated by decoherence 
that increases both with g/J0 and with N.

In general, these initial-state dependent dynamics for g/J0 < 1 may 
display rich possibilities such as subdiffusion26,40, complicating any 
determination of a critical transition value from quench dynamics23. 
However, for g/J0 > 1 the transient dynamics are simpler, and the imbal-
ance comes close to its long-lived steady-state value within the experi-
mental window.

Long-time stability of Stark MBL
A subject of much debate in the study of localization is the stabil-
ity of the localized state to various slow delocalization processes. 
In the context of Stark MBL, these might include coupling between 
many-body states with the same spin and dipole quantum numbers, 
or slow dipole-moment changing processes23,24,50. These questions 
are most relevant for the ideal power-law Hamiltonian, as such slow 
processes could conceivably be halted by even the small amount of 
residual disorder or inhomogeneity in our experimental realization. 
To study this possibility, Extended Data Fig. 7 shows the dynamics for 
very long times of the quenched initial states studied in Fig. 2, using 
the ideal disorder-free power-law Hamiltonian.

We find several noteworthy results. First, in a finite system such as 
those realized in our experiment, some Stark MBL localization appears 
to persist indefinitely. This is striking, as relaxation is not forbidden by 
energetics, nor by any other conservation law.

Second, in a finite-size numerical analysis, we see increasing 
amounts of slow, state-dependent relaxation, which may make Stark 
MBL unstable in the thermodynamic limit. This relaxation can be 
understood via the effective Hamiltonian (equation (26)) in the 
large-gradient limit. For the two-block state with the configuration 
01100110011 (where 0 and 1 represent down and up spins, respectively), 
the largest contribution from this effective Hamiltonian is the process 
1001 ↔ 0110. This is also the largest term in the effective Hamiltonian, 
making the stability of this state the most restrictive condition for 
localization. However, for the Néel state with the configuration 
0101010101, the largest contribution is 01010 ↔ 10001. Both processes 
appear at the same order of the Hamiltonian, but with different 
strengths. When α = 1.3, the process 1001 ↔ 0110 has an amplitude of 
0.96 J g/0

3 2, while the process 01010 ↔ 10001 has an amplitude of 
0.22 J g/0

3 2. This explains in part why we see faster relaxation for the 
two-block state, although, as we are not deep in the g ≫ J0 limit, higher 
terms are expected to contribute as well. These observations are also 
consistent with previous work showing that for cases in which the 
effective Hamiltonian has multiple dipole-conserving terms with dif-
ferent ranges and strengths, thermalization can be very slow or absent 
entirely for finite-sized systems18. We emphasize that although 
state-dependent relaxation has been proposed as an experimental 
signature of (exact or approximate) Hilbert space fragmentation24,27, 
we realize a similar phenomenon here, with less separation between 
the timescales of the different decay processes, without true fragmen-
tation due to our long-range couplings.

This state-dependent relaxation is evident experimentally as a small 
but robust state-dependent difference in the rate of decay of the imbal-
ance. As a simple test, an exponential fit to the Néel state decay shown 
in Extended Data Fig. 7d, excluding points before tJ0 = 2, gives a time 
constant of τNéelJ0 = 8.6 ± 0.46, while the fit decay for the two-block state 
is τ2BJ0 = 7.1 ± 0.24. These datasets were taken consecutively to avoid any 
experimental drift, and the differential decay shown is representative 
of other datasets at similar parameters.

Because this delocalization is highly dependent on the linear form 
of the Stark MBL gradient, which enforces approximate dipole con-
servation, we may expect very different behaviour in a quadratic field. 
This is confirmed in the right panel of Fig. 7. After the initial dynam-
ics of order t ≈ 1/J0, no additional relaxation is observed for either 
state. While higher-order processes may still lead to relaxation in the 
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thermodynamic limit, for relatively small systems this localization 
appears quite robust.

Summarizing, Stark MBL appears to be a relevant concept under any 
of several conditions: first, for finite-sized systems, in which thermal-
ization can be postponed seemingly indefinitely. Second, in arbitrarily 
large systems over timescales that are short compared to g J( / )2

0
3   

(or possibly longer in systems without native long-range terms).  
And finally, in systems that have more constraints than a linear field, 
such as a linear field with non-zero curvature5,21,25 or disorder4 (a small 
amount of which is present in our experimental realization).

Quantum Fisher information
Quantum Fisher information (QFI) has gained attention as a scalable 
entanglement witness30,70. For a pure state, it is nothing more than the 
variance of the witness operator A: f N= 4(⟨ ⟩ − ⟨ ⟩ )/Q

2 2A A . For fQ > 1, 
entanglement is guaranteed to be present within the system70. As a 
correlator that carries some information about entanglement, QFI is 
similar in spirit to measures such as the quantum mutual information18 
and the configurational correlator44.

In the context of the Néel state we measure the QFI for a staggered 
magnetization operator, which reduces to:
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The results are shown in Extended Data Fig. 8. We see a difference 
between fQ with weak and strong field gradients. In a weak gradi-
ent, entanglement builds up rapidly before slowly tapering off. In a 
strong gradient fQ instead grows slowly, exhibiting similar behaviour 
as expected for entanglement in an MBL phase and in Stark MBL5.

A few shortcomings limit the value of the QFI. First, it is only easily 
calculated when assuming a pure state. Second, it can only be inter-
preted as an entanglement witness when it exceeds one, challenging 
in a strongly localized phase. Third, unlike the DEER protocol it does 
not give spatially resolved information. Finally, in a long-range system 
it can exhibit different scaling than the entanglement entropy43. Still, 
within these limits the QFI behaviour is consistent with the expectations 
for an MBL phase. The QFI dynamics also closely resemble previous 
observations for disordered MBL30, consistent with expectations that 
disorder or strong gradients result in similar entanglement spreading.

Additional DEER data
Additional data for the DEER protocol difference signal σ(Δ⟨ ⟩)z

1   is shown 
in Extended Data Fig. 9. Looking at the DEER difference signal, we see 
that correlations develop more slowly as the DEER region R is moved 
progressively away from the source. For R = 2, these correlations are 
only visible after the imbalance dynamics have reached a steady state. 
This rules out attribution of the correlations to the transient population 
dynamics, and instead resembles the slow correlation dynamics that 
occur in a disordered MBL system after populations have reached a 
steady state10,11,44.

Critical slope in quadratic field
Extended Data Figure 10 presents the dependence of the critical value 
of g/J0 for a quadratic field with different values of the curvature γ. 
The critical value is determined by the innermost pair of spins that are 
both separated from the centre spin by more than their mutual error 
bars, judged by taking the mean and standard deviation of the average 
magnetizations for the last five time points.

The data are largely consistent in suggesting a critical gradient value 
on the order of g/J0 = 0.5. However, the strongest curvature is notably 
different, possibly reflecting a breakdown of the local gradient approxi-
mation for this case. For curvatures less than this, we conclude that the 

system seems roughly consistent with a picture of localization that is 
determined by the local Stark MBL field slope at any given spin.

Data availability
The data that support the findings of this study are available from the 
corresponding author upon request. Source data are provided with 
this paper.

Code availability
The code used for analyses is available from the corresponding author 
upon request.
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Extended Data Fig. 1 | Experimental noise model. a, b, Noiseless (a) and noisy 
(b) numerics for an initial Néel state with g/J0 = {0.24, 1.2, 1.8} (light to dark), 
corresponding to the data in Fig. 2c. Compared to the ideal numerics, the noisy 
numerics show overall lower imbalances, primarily due to the SPAM errors, and 
damped oscillations, primarily due to variations in the individual local effective 

Bz fields. However, these noise sources do not strongly affect the stability of the 
imbalance. c, Individual noisy realizations corresponding to the highest 
gradient shown above. d, Noise-averaged DEER simulations corresponding to 
Fig. 3b.
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Extended Data Fig. 2 | Trotterization scheme. a, Numerics comparison of the 
imbalance dynamics for the averaged Hamiltonian of equation (13) (solid blue 
line) with the full Trotter evolution (dashed orange), for the case of an initial 
Néel state (N = 15) and parameters corresponding to the strongest 
experimental field gradient. b, Difference (averaged - Trotter) between the 
plots in a, showing that the Trotter error over experimental timescales is on the 
order of one percent. c, Experimental examples (top row) of continuous and 
Trotterized evolution, both at g/J0 = 1.5, compared to simulations (bottom row) 

using the (slightly different) parameters of the individual experimental 
realizations. Although the Trotterized evolution lasts nearly twice as much 
time in absolute units, since the averaged J0 is roughly half as large,  
it nonetheless shows a substantial reduction in decoherence and improvement 
in fidelity to the desired Hamiltonian. An initial state with one spin flip is 
chosen for this comparison, as it makes the effect of decoherence due to 
phonons more pronounced compared with a state near zero net 
magnetization.
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Extended Data Fig. 3 | Histograms of r. Probability density distributions of r, 
the ratio of adjacent energy level spacings, for the experimental Hamiltonian 
(equation (1) of the main text) at various values of g/J0 and N = 15. Numerics are 
compared with the distribution expected for either a Poisson level distribution 
(blue lines in a and d) or a Wigner–Dyson distribution (red lines in b, c).  
The level statistics in the absence of a field gradient are near the Poissonian 
limit, which may reflect the proximity to an integrable limit for the low-energy 
sector68. A small gradient results in statistics near the Wigner–Dyson limit, 
followed by an approach to Poisson statistics as the gradient is increased.
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Extended Data Fig. 4 | Dependence of ⟨r⟩ on α and g/J0. Dependence of ⟨r⟩ on 
α and g/J0 (N = 13, Bz0/J0 = 5), for the power-law Hamiltonian (equation (30)).  
In the experiments presented in the main text α ≈ 1.3.
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Extended Data Fig. 5 | Dependence of ⟨r⟩ on system size. Level statistics for 
N = {9, 11, 13, 15} (light to dark), for α = 1.3 and Bz0/J0 = 5 and for the power-law 
Hamiltonian (equation (30)).
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Extended Data Fig. 6 | Dependence of I  on system size and time. a, Numerics 
showing I  for the Néel state with N = {9, 15, 25} (light to dark). As the system 
increases from N = 9 to N = 25, the largest change is in a sharpening feature near 
g/J0 = 1. These numerics do not include experimental noise. b, Experimental 
data for N = 15 and N = 25, reproduced from Fig. 2, shows a similar dip for the 
larger size. c, Expanded view of numerics from a. Especially for gradient values 
above g/J0 = 1, the imbalance shows little finite-size dependence. d, Numerical 
comparison of I  (N = 15) for the experimental time and for an extended time of 
100tJ0 (dashed). While at small gradients the finite-time effects on the 
imbalance are substantial, including the dip feature in the left plots, a steady 
state is largely achieved in the experimental window for gradients g/J0 > 1. For 
all numerics shown, Bz0/J0 = 4.4(1 + 3g/(5J0)) (the experimental scaling resulting 
from equation (13) with Δt1 varied) and α = 1.3.
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Extended Data Fig. 7 | Long-term stability of Stark MBL. a, b, Numerical 
study of the long-time dynamics of the initial states realized in Fig. 2, using 
exact diagonalization. For this finite-size realization, in a strong gradient 
(g/J0 = 2, solid lines), the imbalance and bipartite entanglement entropy show 
some slow dynamics but apparently never approach the thermal value, in 
contrast with a weak gradient (g/J0 = 0.25, dashed line). c, Numerical study of 
the finite-size and initial-state dependence of Stark MBL imbalance dynamics. 
States with one-block (Néel) and two-block domain walls are shown for g/J0 = 2 
and N = 12, N = 16, and N = 20 (light to dark solid lines, N = 20 for the two-block 
state only). The two-block initial state shows faster decay and greater 
finite-size effects, as is expected from the effective Hamiltonian in a large tilt 
(equation (26)). With a stronger gradient (dashed line, g/J0 = 5 and N = 12), this 
instability can be arbitrarily postponed. To show the long-term trend clearly,  
a moving average with a window of 5J0 has been applied to these numerics.  

d, Experimental data for the one and two-block domains. Consistent with 
numerics, state-dependent instability is manifested as a slow differential 
increase in the decay of the two-block state compared to the Néel state. These 
data were taken consecutively to ensure identical experimental parameters 
and decoherence rates. Each point is an average over 200 experimental 
repetitions, with error bars smaller than the symbol size. e, Numerical studies 
of stability in a quadratic field (N = 16, γ = 2) do not show this state-dependent 
instability over the same timescale. To show the long-term trend clearly,  
a moving average with a window of 5J0 has been applied to these numerics.  
f, Cartoon of the setup for numerics in e (shown with N = 8 for clarity).  
The quadratic potential is chosen to have a minimum shifted away from the 
system centre by one-quarter site to avoid a fine-tuned reflection symmetry. 
For all numerics shown, Bz0/J0 = 4.5 and α = 1.3.
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Extended Data Fig. 8 | QFI. Normalized QFI for a Néel state (N = 15) with 
g/J0 = 0.24 (white) and g/J0 = 2.4 (blue), corresponding to the lowest- and 
highest-gradient data in Fig. 2d. Points are experimental 
observations, averaged over 200 repetitions, with lines as guides to the eye.  
A value greater than one (dashed line) is an entanglement witness. After the 
initial fast dynamics up to tJ0 ≈ 1, the QFI is consistent with saturation for the 
small gradient, and with slow entanglement growth for the large gradient, with 
behaviour very similar to that previously observed in disordered MBL30.
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Extended Data Fig. 9 | Additional DEER data. DEER Difference signal for  
R = {1, 2, 3} (light to dark), compared with the imbalance I t( ) for the same 
parameters. Data are offset for clarity but otherwise share the same axes. I  is 
taken from the same dataset as the R = 1 spin-echo data, with the probe spin 
excluded from the imbalance calculation. After tJ0 ≈ 2, the imbalance is 
essentially constant at the low but finite steady-state value corresponding to 
this gradient strength. However, correlation dynamics are still progressing—in 
particular, correlations as measured by the difference signal only begin to 
develop for R = 2 after this point. This is similar to the disordered MBL state,  
in which slow entanglement dynamics continue after the locally conserved 
populations have reached a steady state10,11,44. Points are averaged over 2,000 
repetitions, with error bars representing statistical uncertainty of the mean  
(1σ s.e.m.).



Article

0 1 2 3 4

1.5

1.0

0.5

0

critical

Extended Data Fig. 10 | Critical slope in quadratic field. As the quadratic 
curvature is varied, the division between thermalizing and nonthermal regions 
is largely consistent with a critical slope near g/J0 = 0.5. However, the strongest 
curvature of γ = 3.6 deviates from this rule. For the lowest two values of γ the 
system was completely delocalized, and thus only the lower bound is 
meaningful. Points are averaged over 200 experimental repetitions. Error bars 
(aside from the first two points) denote a variation of ±1 spin location.
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