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Fault-tolerant control of an error-corrected 
qubit

Laird Egan1,2,10 ✉, Dripto M. Debroy4,11, Crystal Noel1,2, Andrew Risinger1,2,3, Daiwei Zhu1,2,3, 
Debopriyo Biswas1,2, Michael Newman5,11, Muyuan Li6,7, Kenneth R. Brown4,5,6,7,8, 
Marko Cetina1,2 & Christopher Monroe1,2,3,4,5,9

Quantum error correction protects fragile quantum information by encoding it into a 
larger quantum system1,2. These extra degrees of freedom enable the detection and 
correction of errors, but also increase the control complexity of the encoded logical 
qubit. Fault-tolerant circuits contain the spread of errors while controlling the logical 
qubit, and are essential for realizing error suppression in practice3–6. Although 
fault-tolerant design works in principle, it has not previously been demonstrated in an 
error-corrected physical system with native noise characteristics. Here we experimen-
tally demonstrate fault-tolerant circuits for the preparation, measurement, rotation 
and stabilizer measurement of a Bacon–Shor logical qubit using 13 trapped ion qubits. 
When we compare these fault-tolerant protocols to non-fault-tolerant protocols, we 
see significant reductions in the error rates of the logical primitives in the presence of 
noise. The result of fault-tolerant design is an average state preparation and measure-
ment error of 0.6 per cent and a Clifford gate error of 0.3 per cent after offline error 
correction. In addition, we prepare magic states with fidelities that exceed the 
distillation threshold7, demonstrating all of the key single-qubit ingredients required 
for universal fault-tolerant control. These results demonstrate that fault-tolerant 
circuits enable highly accurate logical primitives in current quantum systems. With 
improved two-qubit gates and the use of intermediate measurements, a stabilized 
logical qubit can be achieved.

Quantum computers are promising for solving models of important 
physical processes, optimizing complex cost functions and challeng-
ing cryptography in ways that are intractable using current comput-
ers8–12. However, realistic quantum component failure rates are typically 
too high to achieve these goals13,14. These applications will therefore 
almost certainly require quantum error-correction schemes to greatly 
suppress errors4,6.

Quantum error-correcting codes combine multiple physical qubits 
into logical qubits that robustly store information within an entan-
gled state1,2,15. However, these codes are not enough on their own. 
Fault-tolerant (FT) operations, which limit the ways in which errors can 
spread throughout the system, must also be used. Without them, the 
logical error rate may be limited by faults at critical circuit locations that 
cascade into logical failures, negating the advantage of error correction.

FT state preparation, detection and operations have been demon-
strated using quantum error-detecting codes with four data qubits16–20. 
These codes can identify when errors have occurred, but do not extract 
enough information to correct them. There have also been quantum 
demonstrations of classical repetition codes to correct quantum 
errors restricted along one axis21–26. In other work, qubits have been 
encoded into quantum error-correcting codes that can correct all 

single qubit errors, but the encoding procedure was not fault tolerant27 
and the system was not large enough to measure the error syndromes 
non-destructively using ancilla28,29. Parallel work on bosonic codes has 
demonstrated encoded operations30,31, FT detection, and one-axis32 
and two-axis33,34 error correction on encoded qubits. For both qubit 
codes and bosonic codes, FT state preparation of a code capable of 
correcting all single-qubit errors has not been achieved.

Here we demonstrate a quantum error-correcting code with FT control 
over all of the required operations: state preparation, measurement, logi-
cal gates and stabilizer measurement. Unlike previous studies, the code 
demonstrated here protects against any single circuit fault (along any 
axis and without postselection), realizing quadratic error suppression 
in principle. In practice, this error suppression requires high-fidelity 
components and localized errors to take effect. We observe a logical 
operation, state preparation and measurement in the Z basis that exceeds 
the performance of its physical counterpart. More generally, we realize 
logical primitives that outperform the limiting physical operation used 
in their construction, namely our native two-qubit entangling gate.

To experimentally verify the properties of fault tolerance, we 
compare non-fault-tolerant (nFT) preparation, nFT logical gates and 
nFT stabilizer measurement to their FT counterparts and observe the 
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reduced suppression of errors. In the process, we generate high-fidelity 
encoded magic states above the distillation threshold, which are a critical 
resource for certain universal FT quantum computing architectures7.

The quantum computer used in this study consists of laser-cooled 
171Yb+ ions trapped above a microfabricated chip35 in a room-temperature 
vacuum chamber. Quantum gates are driven by individually optically 
addressing up to 32 equispaced ions in a single chain via a multichan-
nel acousto-optic modulator (AOM)36. We implement high-fidelity 
native single-qubit and two-qubit gates with fidelities of 99.98% and 
98.5–99.3%, respectively. All-to-all two-qubit gate connectivity is 
achieved through coupling of ions via a shared motional bus37. Details 
of the system, characterization and benchmarking are available in 
Methods and Supplementary Information.

As shown in Fig. 1, we implement a [[9,1,3]] Bacon–Shor code38,39. 
As it has distance of three, the code is able to correct any single-qubit 
error. This code is well suited to near-term ion-trap quantum computing 
architectures for two reasons. First, Bacon–Shor codes can be prepared 
fault tolerantly without intermediate measurement. Compared with the 
typical projective preparation of topological codes, unitary preparation 
requires fewer gates and fewer ancillary qubits. This allows us to demon-
strate FT primitives with fewer resources and without intermediate meas-
urements, with the understanding that intermediate measurements will 
ultimately be required for algorithmic error suppression. Second, this 
code choice is a reasonable midpoint between the qubit efficiency of the 
seven-qubit Steane code and the robustness of the Surface-17 code40. 
Although the Bacon–Shor stabilizers are weight six and non-local, they 
can be fault tolerantly measured using only one ancilla per stabilizer41 
and leverage the all-to-all connectivity in the device.

As a subsystem code, the Bacon–Shor code is a generalization of 
Shor’s code1 that has four additional degrees of freedom known as 
gauge qubits. For particular choices of gauge, its logical states are 
products of Greenberger–Horne–Zeilinger (GHZ) states:

X

Z

|0/1⟩ ⊗| ⟩ =
1

2 2
(| + + + ⟩ ± | − − − ⟩) ,

| + / − ⟩ ⊗| ⟩ =
1

2 2
(|000⟩ ± |111⟩) ,

(1)
L G

⊗3

L G
⊗3

where  |± ⟩ = (|0⟩ ± |1⟩)/ 2   and  X Z| / ⟩G  refer to different states of the gauge  
qubits (Supplementary Information).

Bacon–Shor codes support a wide range of FT operations, including 
state preparation, state measurement, gates and stabilizer measure-
ment. Fault tolerance, as a design principle, ensures faults on physical 
operations do not propagate to uncorrectable multiqubit failures in the 

circuit. As seen in equation (1), not all Bacon–Shor logical states require 
global entanglement; it is precisely this construction of decoupled GHZ 
states that allows Bacon–Shor logical states to be prepared unitarily and 
fault-tolerantly. In the ZL/XL basis, the logical information is encoded 
redundantly into the relative phase of each state. Although a single 
circuit fault may corrupt one of the three GHZ states, the information 
can be recovered from the other two.

FT measurement (in the X/Z basis) is performed by individually meas-
uring the data qubits (in the X/Z basis). From this information, one can 
recover relevant stabilizer outcomes as correlations among the single 
data-qubit outcomes. This information is then combined with any previ-
ously extracted syndromes, and then collectively decoded to produce 
an offline correction. It is worth emphasizing that although our system 
does not currently support intermediate measurements, this offline 
correction does not differ from the final step of a logical qubit memory 
experiment with multiple rounds of intermediate measurements.

Fault tolerance in logical gates is often achieved via transversal gates, 
which are physical operations that act independently on each qubit in 
a code block. Bacon–Shor codes have transversal constructions, when 
allowing permutations, for {CNOTL, HL, YL(π/2), XL}3,42,43. Here HL is 
the logical Hadamard gate and Y(θ) indicates exponentiation of the 
Pauli-Y  matrix, e θY−i /2, parameterized by the angle θ. FT non-Clifford 
logical gates, which are required for universality, can be achieved 
through magic-state distillation7.

Finally, measuring error syndromes requires interacting ancillae with 
multiple data qubits, which could cause damaging correlated errors. 
However, fault tolerance is achieved by carefully ordering the interac-
tions, so that correlated errors can be reduced to low-weight errors up 
to a benign transformation of the gauge subsystem41,44.

Encoding the logical qubit
We embed the nine data qubits and four ancilla qubits of the 
Bacon–Shor-13 code in a single chain of fifteen ions (Fig. 1), with the 
two end ions left idle to obtain uniform spacing of the central thirteen 
ions. The mapping of the code onto the chain is chosen to minimize 
two-qubit gate crosstalk (Supplementary Fig. 5).

The encoding circuit used to create logical states is shown in Fig. 2a. 
The right subcircuit (blue) is FT because there are no entangling oper-
ations between independent GHZ states that would allow errors to 
propagate; however, it is limited to preparation of only Z- and X-basis 
states. One may prepend an optional subcircuit (red, dashed) that 
enables the encoding of arbitrary ψ| ⟩L states, controlled by a single 
physical qubit state ψ| ⟩. This circuit can produce global entanglement, 
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10, 11, 12 and 13, for measuring errors in the X and Z basis. We demonstrate 
encoding of the logical qubit, with subsequent logical gate operations or  
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and allows the possibility of early errors spreading between the sepa-
rate GHZ states. As a consequence, this circuit loses the FT properties 
of the X- and Z-basis preparation circuits. To directly investigate the 
properties of FT, we compare the encoding performance of the right 
FT subcircuit to the full nFT circuit with ψ| ⟩ ∈ {|0⟩, |1⟩, | + ⟩, | − ⟩}.

After measuring the data qubits, the logical measurement outcome 
is determined by calculating the total parity of all the data qubits in the 
Z basis, Z Z Z Z Z= ...L 1 2 8 9. From equation (1), the |0⟩L state has even parity 
( Z⟨ ⟩ = 1L ) whereas |1⟩L has odd parity ( Z⟨ ⟩ = − 1L ). Similarly, the | + / − ⟩L 
states have even/odd parity in the XL basis; a Y (− π/2)L  operation follow-
ing the encoding circuit, maps X Z⟨ ⟩ → ⟨ ⟩L L . The measured raw parity 
compared with the ideal parity of each logical Z, X-basis state is pre-
sented in Fig. 2b. In addition to the total raw parity, ZL, the data qubit 
measurements also provide the eigenvalues of the two stabilizers in 
the measurement basis. With this information, offline error correction 
can be applied, which yields an expected quadratic suppression of 
uncorrelated errors (that is, corrects any single error). Alternatively, 
error detection is performed by post-selecting experimental shots 
conditioned on the +1 eigenvalues of the stabilizers. This will yield an 
expected cubic suppression of uncorrelated errors (that is, detects any 
pair of errors). Further details of these protocols are given in Methods.

As shown in Fig. 2b, using the FT circuit (blue) and performing offline 
error correction, we prepare |0⟩ , |1⟩ , | + ⟩L L L and | − ⟩L states with errors of 
0.27(4)%, 0.40(5)%, 0.76(7)% and 1.11(9)%, respectively. We note that the 
average state preparation and measurement error for a single physical 
qubit in the Z basis is 0.46(2)% (Supplementary Table 1) compared with 

0.33(5)% in the logical qubit. This is one context in which the logical qubit 
clearly outperforms our physical qubit. For the nFT circuit (red), the errors 
are 0.95(4)%, 1.08(4)%, 3.9(1)% and 3.8(1)%, respectively. The 
error-detection experiment presents particularly strong evidence for 
fault tolerance. We observe a remarkable gap in the failures between the 
nFT and FT protocols: over all the basis states, we see a total of 6 failures 
of FT error detection over 54,473 post-selected shots, compared with 
430 failures over 50,372 post-selected shots when using nFT error detec-
tion. This agrees with a local error model where we expect cubic suppres-
sion of FT error detection, in stark contrast with nFT error detection, 
which can fail due to a single circuit fault. The observed two 
orders-of-magnitude difference lends further evidence that these circuits, 
which are fault tolerant in principle, are also fault tolerant in practice.

The nFT preparation circuit can also be used to create  H| ⟨ = e |0⟩x
Y

L
−iπ /8

L 
and  H| ⟩ = e |0⟩y

X
L

−iπ /8
L   magic states, which can be distilled to implement 

FT non-Clifford gates7,45. Figure 2c depicts these states on the logical 
Bloch sphere, and the results are shown in Fig. 2d. After offline error 
correction, the calculated H| x L encoding fidelity is 97(1)% (Supplemen-
tary Table 2), which is above the distillation threshold of 92.4% (ref. 45).

The performance of the logical qubit as a quantum memory can be 
characterized by measuring the coherence of | + ⟩L versus time. The 
results of this logical T2

* experiment are presented in Fig. 2e. For the 
raw, error-correction and error-detection decoding schemes, we meas-
ure a T2

* of 26(2) ms, 78(9) ms and 370(160) ms. The measured T2
* of 

each independent GHZ state in the logical qubit is almost entirely 
explained by the measured T2

* = 0.6(1) s of the individual physical qubits 
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Fig. 2 | Fault-tolerant logical qubit-state preparation. a, Encoding circuit for 
creating logical qubit states. The right subcircuit (blue) is used for FT prepara-
tion of Z-logical basis states. X-logical basis states can be created by omitting 
the final Hadamard gates. The left subcircuit (red, dashed) can be optionally 
prepended for nFT preparation of arbitrary logical states. b, Errors for the key 
basis states of the encoded logical qubit. The measured expectation value of 
the parity ( Z X⟨ / ⟩L

meas) is compared against the ideal parity of the logical state 
( Z X⟨ / ⟩ = ± 1L

ideal ). Error bars indicate the 95% binomial proportion confidence 
interval. c, Magic states H| ⟩x L (magenta) and H| ⟩y L (cyan) are directly encoded 
using the full nFT circuit from a (red arrows). Subsequent YL(π/2) rotations 

(blue arrows) are used to bound the fidelity. d, Experimental Z⟨ ⟩L values for the 
states depicted in c after offline error correction. The 95% binomial proportion 
confidence intervals are smaller than the data points. e, Logical qubit coher-
ence measured for the | + ⟩L state. After each wait time, a varying Z(ϕ) gate is 
applied to every data qubit, followed by YL(−π/2). A fit of X⟨ ⟩L depending on ϕ to 
a Ramsey fringe yields the Ramsey amplitude (A). Error bars are the 95% confi-
dence intervals from maximum likelihood estimation fits. The resulting 
contrast as a function of time is fit to a decaying exponential Ae t T− / 2

⁎

   for the 
raw, corrected and detected data. The fit parameters A and T2* correspond to 
the Ramsey amplitude at t = 0 and the 1/e coherence time, respectively.
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(Supplementary Figs. 7, 9). Future work that utilizes the gauge degrees 
of freedom to embed decoherence-free subspaces could dramatically 
improve performance46–48. In this case, three-qubit antiferromagnetic 
GHZ states should readily extend the logical T2

* to the physical T2
*. Ulti-

mately, repeated stabilization of the logical qubit over intermediate 
timescales will be required to achieve a robust quantum memory.

Logical gates
We implement a YL(θ) rotation on the encoded qubit, which can only be 
performed transversally for a discrete set of angles49. For the Bacon–Shor 
code, the smallest transversal YL(θ) rotation available is YL(π/2), which is 
generated by applying a physical Y(π/2) to each data qubit, followed by 
relabelling the data qubit indices in post-processing (blue, Fig. 3a, b). We 
compare the performance of this FT rotation with a nFT circuit, which 
implements YL(θ) = Y1Z2Z3X4X7(θ) (red, Fig. 3a, c). In a perfect system, these 
rotations are equivalent for θ = Nπ/2, N ∈ Z on the logical qubit, but differ 
in their operation on the gauge qubits. The nFT gate (Fig. 3) generates 
entanglement among the separate GHZ states, and so the failure of a 
single operation in the circuit can lead to the failure of the logical qubit.

The results of these different gate operations on the logical qubit 
are shown in Fig. 3d, e. The gate error per π/2 angle, corresponding to 
fit parameter Γ, is 0.3(1)% for the FT gate after offline error correction. 
This error rate explains the additional error present for the | + / − ⟩L  
states in Fig. 2b, which require two additional YL(π/2) gates for state 
preparation and measurement. The remaining fit values are tabulated 
in Supplementary, Tables 3, 4. The error at θ = π, the maximum gate 
angle required with optimized circuit compilation, is shown in Fig. 3e. 
The error for the FT gates and nFT continuous rotations is 0.4(2)% and 
6.8(1.6)%, respectively, after offline error correction. Compared with 
the FT circuit, offline error correction on the nFT rotation provides 
minimal gains, indicative of a high proportion of weight-two errors 
relative to weight-one errors. In contrast, Z⟨ ⟩L recovers quite substan-
tially after error detection, indicating that there are still few weight-
three or higher errors in the system. This is a striking example of the 
value of fault tolerance, which minimizes the impact of correlated 
weight-two errors on the logical qubit.

Stabilizer measurements
In stabilizer measurements, fault tolerance is achieved by a specific 
ordering of the interactions between the ancilla and the stabilizer block41. 
We insert a variable Z(θ) error on the ancilla during the measurement of 
a single stabilizer (X1X2X4X5X7X8) and compare the impact of this error in 
a FT ordering and an nFT ordering. Without correction, a Z error on the 
ancilla qubit will propagate to an X error on the data qubit and flip Z⟨ ⟩L.

The results of this experiment are shown in Fig. 4a. At the extreme 
case of θ = π, the raw parity is nearly identical in the two cases, but after 
offline error correction, the FT stabilizer measurement recovers the 
correct logical parity whereas the nFT stabilizer measurement induces 
a logical fault. This is because the FT gate ordering propagates a cor-
related error that decomposes as the product of (at worst) a single 
qubit fault and a benign transformation of the gauge subsystem41. By 
comparison, the nFT gate ordering propagates a correlated error that 
directly corrupts the logical subsystem.

At θ = 0, (that is, when no error is added) the error rates with offline 
error correction for |0⟩L after the nFT and FT stabilizer measurement 
are 0.85(23)% and 0.25(14)%, respectively, compared with a baseline 
|0⟩L encoding error of 0.23(13)%. To within statistical error, there is 
no distinction between performing the FT stabilizer measurement 
or not, providing strong evidence that this procedure does not corrupt 
the logical qubit state beyond the error-handling capabilities of the 
code. However, there is a statistical separation (P < 0.01) between the 
nFT and FT ordering, with an average four-times reduction in error 
for this particular comparison. Although the nFT ordering is always 

expected to perform worse, the error rate is still less than 1%, implying 
that the native Z-type errors on the ancilla qubit are quite small in this 
system (about 50 mrad per XX gate). Although this experiment is 
specific to X errors propagated from the X-stabilizer ancilla qubit, we 
also characterize Z errors with a similar experiment on the | + ⟩L state 
(Supplementary, Table 5).

In Fig. 4b, we show the results of directly measuring the full set of 
stabilizers with four additional ancilla qubits. First, the state is 
fault-tolerantly encoded into the |0⟩L state. Then, an artificial error is 
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applied to a data qubit. Finally, the full set of stabilizers, in sequential 
order X and then Z, are mapped to the ancilla qubits in a single shot. If 
no error has occurred, all four stabilizers commute with the logical 
qubit state and the ancilla qubits should remain in the |0⟩ state. 
Conversely, if an error did occur on a data qubit, the stabilizers that 
do not commute with that error flip the state of the ancilla to |1⟩. For 
example, a Pauli-Y error on data qubit 1 anticommutes with both the  
X and Z stabilizers that measure it, resulting in a flip of ancilla qubits 10  
and 12, as we observe in the data. This confirms our ability to, on aver-
age, simultaneously identify arbitrary single-qubit errors along both 
X and Z axes using the stabilizer outcomes.

The data presented in Fig. 4b represent a sample of selected errors; 
the full dataset is available in Supplementary Fig. 10). Averaged over 
all the injected errors, the measured ancilla qubits 12, 13, 10 and 11 
(in order of measurement) differ from the expected value by 17.9(3)%, 
24.8(3)%, 24.4(3)% and 29.8(6)%, respectively. Most of this non-artificial 
error is induced by the syndrome extraction circuit itself. In particular, 
these results are well explained by the 3.8(2)% raw |0⟩L encoding error, 
6.9(5)% error per X stabilizer, 6.4(7)% error per Z stabilizer and a fixed 
7.2(5)% Z-type error on the logical qubit that is consistent with the 
expected raw T2

* decay over the 3-ms time required to measure X 
stabilizers, as shown in Fig. 2c.

Outlook
We have demonstrated fault-tolerant control of a logical qubit capable 
of correcting all single-qubit errors. There are two clear and immediate 
milestones ahead. One is to demonstrate a transversal CNOT logical 
gate between two logical qubits. This experiment should be possible 
in the current system given that two-qubit gates on 23 data qubits have 
recently been demonstrated50. The other is to stabilize the state over 
multiple rounds of error correction, which can be achieved by break-
ing the ion chain to perform mid-circuit detection51. This shuttling will 
almost certainly require sympathetic cooling schemes, which have been 
previously demonstrated52,53 and can also be readily implemented in this 
system50. In the longer-term, further improvements to the two-qubit 
gate fidelity will be required to achieve the pseudo-threshold where 
the logical qubit outperforms the physical qubit40.
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Methods

Experimental implementation
Each physical qubit is encoded in the 2S1/2 electronic ground-state hyper-
fine ‘clock’ states of a single 171Yb+ ion, F m|0⟩ ≡ | = 0 ; = 0⟩F  and F|1⟩ ≡ | = 1;  
m = 0⟩F , with a qubit frequency splitting of ω0 = 2π × 12.642820424(4) GHz. 
The qubits have a measured T2 decoherence time in excess of 2.75 s 
(limited by the stability of external magnetic fields) and average 
single-shot detection fidelity of more than 99.5%. At the start of each 
experiment, the qubits are initialized to the |0⟩ state. A given circuit is 
executed by sending appropriate signals to the AOM that implement 
single and two-qubit gates on the ion chain with all-to-all connectiv-
ity36,37. At the end of a circuit, we perform global-state readout by simul-
taneously collecting state-dependent fluorescence from each ion using 
high-resolution optics and 32 individual photo-multiplier tubes.

We trap 171Yb+ ions in a microfabricated-chip ion trap (High Optical 
Access 2.1.1 from Sandia National Labs) driven by a radiofrequency 
voltage at a frequency of 36.06 MHz. We define the x axis along the trap 
axis, with the z axis perpendicular to the chip surface. A magnetic field 
of 5.183 G along the z axis defines the atomic quantization axis. 
The individually addressing (global) Raman beam is oriented along 
the z(y) axis of the trap, so that the Raman process transfers momentum 
to the ions along the y zˆ −  ̂direction. We selectively couple light to the 
lower-frequency set of radial modes by tilting the trap principal axes 
using a static electric y–z quadrupole. We use quadratic and quartic 
axial potentials to minimize the spacing inhomogeneity for the middle 
thirteen ions. In the 15-ion chain, the longest wavelength (in-phase) 
mode along each trap axis is (νx νy−z, νy+z) = (0.193, 3.077, 3.234) MHz.

An imaging objective with numerical aperture of 0.63 (Photon Gear) 
is used to focus each of the 32 individual beams to a waist of 0.85 μm, 
spaced by 4.43 μm at the ions. The mode-locked 355-nm laser (Coherent 
Paladin 355-4000) used to drive Raman transitions has been modified to 
tune the repetition rate of the laser to null the four-photon cross-beam 
Stark shift. Typical spin-flip Rabi frequencies achieved in our system 
are 500 kHz. The maximum crosstalk on nearby ions is 2.5% of the Rabi 
frequency of the addressed ion.

Before each experiment, the ions are cooled to near the motional 
ground state through a combination of Doppler cooling and Raman side-
band cooling and then initialized into |0⟩ via optical pumping. After the 
circuit, resonant 369-nm light on the 2S1/2 → 2P1/2 cycling transition is used 
to perform state detection. Scattered light is collected through the 
0.63-numerical-aperature objective and imaged with magnification of 
28 onto a multimode (100-μm core) fibre array that is broken out into 
individual photo-multiplier tubes (Hamamatsu H10682). About 1% of the 
total light is detected as counts. Dark/bright states are mapped to |0⟩/|1⟩ 
states by setting a threshold at more than one photon detected within a 
detection window (typically 100 μs). State preparation and detection 
errors are 0.22(2)% and 0.71(4)% for |0⟩ and |1⟩, respectively. Detection 
crosstalk onto neighbouring channels is 0.3(2)%; see Supplementary 
Table 1 for detailed error budget.

The entire experiment is controlled by an field-programmable gate 
array (Xilinx) programmed via the ARTIQ software. Radiofrequency gate 
waveforms are generated by a four-channel arbitrary waveform generator 
(Keysight M3202A), one of which drives the global beam, and two of which 
are routed through a custom switch network onto any of the 15 middle 
channels of the individual beam AOM at each timestep in the circuit.

Native ion-trap single-qubit gates
The native physical single-qubit gate available to our system is a 
single-qubit rotation about a vector in the x–y plane, R(θ, ϕ) where 
θ is the angle of rotation and ϕ is the angle between the rotation axis 
and the x axis. In this notation, RX(θ) = R(θ, 0) and RY(θ) = R(θ, π/2). In 
addition, we use compound SK1 pulses to suppress angle and cross-talk 
errors54. The SK1 pulses are shaped with a smooth Gaussian amplitude 
envelope to avoid frequency content that may excite axial motion due 

to light-induced prompt charge effects from partially exposed semi-
conductor in the chip trap. Owing to hardware limitations, single-qubit 
gates are run sequentially. We implement virtual RZ(θ) gates via a 
software advance of the local oscillator phase, tracked for each indi-
vidual ion. Before each circuit is run, we calibrate the amplitude of an 
RX(θ) on each qubit in the chain. We achieve single-qubit native gate 
error rates of 1.8(3) × 10−4 on a 15-ion chain as measured by randomized 
benchmarking (Supplementary Fig. 1).

Native ion-trap two-qubit gates
The native two-qubit operation is the XX(θ) Ising gate, implemented 
via a Mølmer–Sørensen interaction55. CNOT gates can be constructed 
from an XX(π/4) gate and additional single-qubit gates56. Offline, we 
calculate laser-pulse solutions for XX gates to disentangle the motional 
modes using amplitude-modulated waveforms36 discretized into  
16 segments with linear interpolation between segments to avoid unde-
sirable excitation of the axial motion. In an equispaced chain of 15 ions, 
we observe that the middle 11 radial motional modes are also roughly 
equispaced. The laser detuning from motional modes is constant across 
the waveform and is chosen to sit approximately halfway between two 
adjacent modes, which leads to particularly simple laser waveforms 
to eliminate qubit-motion entanglement at the end of the gate. The 
gate frequency for a particular gate pair is optimized to minimize the 
required laser power, minimize sensitivity to mode-frequency errors 
of less than 1 kHz, and to avoid coupling to modes with low spatial 
frequencies that are subject to heating. Gate durations are 225 μs. To 
avoid unwanted couplings, we run two-qubit gates sequentially. Before 
a batch of circuits is run, we calibrate the amplitude, common phase 
and differential phase of each gate in the circuit. We achieve between 
98.5% and 99.3% fidelity on a typical gate, measured by parity fringes 
after a varying odd number of successive non-echoed or echoed XX 
gates (Supplementary Fig. 2).

Error-correction protocol
Global measurement at the end of each circuit provides the state 
of all nine data qubits. From this data, we can calculate the raw total 
parity, ZL = Z1Z2 ... Z8Z9, and the eigenvalue of the two Z stabilizers, S1 = Z1 
Z4Z2Z5Z3Z6 and S2 = Z4Z7Z5Z8Z6Z9. The stabilizer eigenvalues can be used 
to produce an offline correction, or as flags to discard datasets in the 
case of error detection. The processed total parity, Z ′L, from the different 
protocols is then given by the following logic: Raw, Z ′L = ZL; 
Error Correction, if S1 = −1∥S2 = −1, then Z ′L = −ZL, else Z ′L = ZL; 
Error Detection, if S1 = −1∥S2 = −1, then Discard Data, else Z ′L = ZL.

Data availability
The data that support the findings of this study are available from the 
corresponding author upon request. Source data are provided with 
this paper.

Code availability
The code used for the analyses is available from the corresponding 
author upon request.
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Extended Data Fig. 1 | Stabilizer measurement circuits. a, b, Non-fault- 
tolerant (a, red, right) and fault-tolerant (b, blue, right) stabilizer measurement 
orderings, performed on a FT-encoded |0⟩L state (a, b, blue, left). In both cases, 
a variable error Z(θ) is introduced on the ancilla qubit in the middle of the 
stabilizer measurement operation. These circuits were used to generate  

the data in Fig. 2a. c, Direct measurement of the full error syndrome. Various 
single-qubit ‘errors’ are introduced on any one of the data qubits to generate 
different ancilla measurement outcomes. This circuit was used to generate the 
data in Fig. 2b.
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