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We study variants of Shor’s code that are adept at handling single-axis correlated idling errors, which are
commonly observed in many quantum systems. By using the repetition code structure of the Shor’s code
basis states, we calculate the logical channel applied to the encoded information when subjected to coherent
and correlated single qubit idling errors, followed by stabilizer measurement. Changing the signs of the
stabilizer generators allows us to change how the coherent errors interfere, leading to a quantum error-
correcting code which performs as well as a classical repetition code of equivalent distance against these
errors. We demonstrate a factor of 3.78� 1.20 improvement of the logical T2� in a distance-3 logical qubit
implemented on a trapped-ion quantum computer. Even-distance versions of our Shor-code variants are
decoherence-free subspaces and fully robust to identical and independent coherent idling noise.
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In quantum error correction, coherent errors are
unwanted unitary operations applied to the physical qubits.
Unlike stochastic errors, which scale linearly, coherent
errors build up quadratically [1–3]. Coherent errors of
various types can be mitigated through composite pulse
sequences [4–6], random compiling [7,8], and circuit
compilation [9,10].

We consider errors resulting from spatially or temporally
correlated phase noise. Such noise can arise from magnetic
field fluctuations or instabilities in timing systems, which
are a concern in most architectures, including trapped ions,
superconductors, neutral atoms, and nitrogen-vacancy dia-
monds [11]. For optically addressed qubits, this type of
noise can also appear due to beam path length fluctuations
or finite laser linewidth [12]. Although error correction
suppresses these errors [13,14], they can increase logical
qubit error relative to stochastic errors.
Previous work on temporally correlated idling error, also

called coherent idling error, has focused on finding thresh-
olds below which the coherence of the resulting logical
channel is reduced [3,15]. In Ref. [3], the authors present an
exact solution for the logical channel experienced by a
repetition code under coherent idling error. We use this
model to solve for the exact logical channels for a set of
variants of Shor’s 9-qubit code [16]. Standard stabilizer
codes stabilize even parity states. By changing the parity
that a stabilizer preserves, we can directly control how the
coherent errors interfere. In this way, we can create codes
where significant fractions of the coherent errors cancel
out, similar to nonstabilizer code constructions [17].

Even-distanced versions of our coherent error resilient
code are members of the code family described in
Ref. [18], and fully cancel homogenous coherent idling
error. The code spaces of these Shor codes exist inside of a
decoherence-free subspace [19–23].
Our calculations follow the example presented in

Ref. [3]. Consider an error model where all qubits are
rotated along the Z axis by an angle θ, represented by the
channel N θðρÞ on an n qubit density matrix ρ:

N θðρÞ ¼ ZðθÞ⊗nρðZðθÞ†Þ⊗n;

ZðθÞ ¼ e−iθZ=2: ð1Þ

Now assume that the qubits are being used to encode one
classical bit of information in a rotated n-bit repetition
code:

jþiL ¼ jþi⊗n ¼ 2n=2ðj0i þ j1iÞ⊗n;

j−iL ¼ j−i⊗n ¼ 2n=2ðj0i − j1iÞ⊗n: ð2Þ

Once the error in Eq. (1) has been applied, a round of
stabilizer measurements are taken, where the stabilizer
generators of the repetition code are

Srep ¼ hX0X1; X1X2;…Xn−2Xn−1i:

Every syndrome corresponds to two Z-type errors, related
by E1 ¼ E2ZL, where ZL ¼ Z⊗n and fE1; E2g are Z-type
errors. The correction applied is chosen to be the
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lower-weight error, which is optimal if sin2ðθ=2Þ < 1=2.
If we define αsðβsÞ as the prefactor to the corrected
(uncorrected) Pauli error corresponding to a syndrome s in
an expansion of Eq. (1), the logical channel after correction
is [3]

N LðρÞ ¼
X

s

ðαsIL þ βsZLÞρðα�sIL þ β�sZLÞ;

¼
X

s

PsZ̄ðθsÞρZ̄ðθsÞ†: ð3Þ

ZLðθÞ≡ e−iθZL=2;

Ps ≡ jαsj2 þ jβsj2;

θs ≡ 2 arctan

�
iβs
αs

�
: ð4Þ

As an example in a three-bit repetition code, the syndrome
outcome of 01 could be caused by an error IIZ or an error
ZZI. The weight-1 error IIZ is corrected, leading to

α01 ¼ cos ðθ=2Þ2½−i sin ðθ=2Þ�;
β01 ¼ cosðθ=2Þ½−i sinðθ=2Þ�2: ð5Þ

These amplitudes imply a rotation angle of

θ01 ¼ 2 arctan

�
sinðθ=2Þ
cosðθ=2Þ

�
¼ θ; ð6Þ

meaning that the logical rotation angle for this syndrome is
the physical rotation angle.
This is not always true, and as shown in Eq. (3), the

logical Z rotation is conditional on the syndrome outcome
measured. In the case of an n-bit repetition code, the values
of αs and βs only depend on n and the weights of the
corresponding errors, and are completely independent of
the error arrangement. Consequently, one can define the
quantities

Pn;wðθÞ ¼
�
n

w

�
½cosðθ=2Þðn−wÞ sinðθ=2Þw�2

þ ½cosðθ=2Þw sinðθ=2Þðn−wÞÞ2�;
θn;w ¼ ð−1Þðn−2w−1Þ=22 arctan½tann−2wðθ=2Þ�; ð7Þ

where n is the distance, and w is the weight of the
correctable (lower weight) error. The logical channel in
Eq. (3) can then be rewritten as

N LðθÞ ¼
Xðn−1Þ=2

w¼0

Pn;wðθÞZLðθn;wÞρZLðθn;wÞ†: ð8Þ

This compact description of the logical channel relies on
the simple construction of the repetition code. For most

quantum error-correcting codes, syndromes do not translate
as directly into easily understood errors. We study the case
of Shor’s codes, which follow this structure. The 9-qubit
code presented in Ref. [16] can be written as three three-bit
repetition codes with Z-type stabilizers, concatenated into a
repetition code with X-type stabilizers. The resulting code,
with six weight-2Z-type stabilizers and two weight-6X-
type stabilizers, has logical states which are products of
Greenberger-Horne-Zeilinger (GHZ) states:

j0iL ≡ 1

2
ffiffiffi
2

p ðj000i þ j111iÞ⊗3;

j1iL ≡ 1

2
ffiffiffi
2

p ðj000i − j111iÞ⊗3: ð9Þ

We consider this code, as well as a variant with Z-type
stabilizer generators of opposite parity. In Supplemental
Material, Sec. A [24], we discuss the pair of codes created
by taking these two codes and swapping the stabilizer
bases.
On the left of Fig. 1 is the standard 9-qubit Shor’s code.

The logical state preparation and measurement of this code
has been demonstrated with trapped ions [25,26] and
photons [27]. The phase errors on a given GHZ state
combine constructively, as can be seen for the states shown
in Eq. (9). This is a consequence of the ZZ stabilizers along
each row, which lead to ZðθÞ errors being indistinguishable
for qubits on the same row. We can imagine pushing all the
errors to the leftmost column of qubits, which will each
experience a rotation of angle nθ. The outer repetition code
will have the same logical channel as Eq. (8), with θ → nθ:

N LðθÞ ¼
Xðn−1Þ=2

w¼0

Pn;wðnθÞZLðnθn;wÞρZLðnθn;wÞ†: ð10Þ

This represents a worst-case situation where the logical
qubit experiences an error that increases quadratically with
distance n.
We now consider the code on the right of Fig. 1, which

wewill refer to as the antiferromagnetic case since the GHZ
states composing its logical states resembles the ground
states of an antiferromagnetic Ising spin chain. This code
has the same stabilizer structure as that on the left of Fig. 1,
but with the ZZ stabilizers negated. This does not impact on
the code’s ability to correct stochastic errors, but causes the
interference of the coherent idling errors to go from
constructive to destructive. In the even-distance case, all
the errors cancel out. These codes are immune to errors
described by Eq. (1), and are an example of the codes
described in Ref. [18]. For the odd-distanced cases, a single
error does not cancel on each row. The resulting effective
error channel seen by the outer repetition code is identical
to that seen in the classical repetition code case, so the
logical error channel is identical to that seen in Eq. (8).
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This represents a significant improvement in the logical
error channel, as the repetition code has the maximum
possible threshold of pth ¼ 1=2 [28].
Our discussion above assumes temporal and spatial

correlation, but these modified codes also improve pro-
tection for errors that are only spatially correlated. This
follows from previous work on correlated dephasing noise
in the context of weak decoherence-free subspaces [29].
Here, we do not seek perfect cancellation of correlated
errors, but a linear reduction in the error rate.
We confirm these results on a trapped-ion quantum

computer that has previously demonstrated fault-tolerant
error-correction protocols [25]. A chain of 15 ions is
trapped above a microfabricated chip trap [30], with opti-
cal individual site addressing controlled by a multichan-
nel acousto-optic modulator. Measurement, single-qubit
gate, and 2-qubit gate fidelities are > 99.5%, 99.98%,
and 98.5%, respectively [25]. The qubit in this system
is defined on the electronic ground state hyperfine
“clock” states of 171Ybþ ions with angular momentum F
and projection mf: j0i≡ jF ¼ 0;mF ¼ 0i, j1i≡ jF1;
mF ¼ 0i. The qubit frequency is ω0¼2π×ð12;642;812;
118.5Hzþδ2Þ, where δ2 ¼ ð310.8ÞB2 Hz is the second-
order Zeeman shift for a magnetic field B in Gauss [31].

In our system, residual second-order sensitivity to
magnetic fluctuations and/or local oscillator noise limits
the T2 decoherence time to≈2.75 s, whereas the qubit itself
is capable of T2 > 1 h [32]. The relevant quantity for this
Letter is the unechoed T�

2 ¼ 0.6 s decoherence time using
optical control of the qubits, likely dominated by mechani-
cal vibrations that shift the phase of the optical standing
wave relative to the ion. In contrast to phase noise, there is
also a well-characterized static linear magnetic field gra-
dient across the length of ion chain that results in a qubit
frequency shift of �4 Hz shift relative to the center ion. In
Ref. [25] the chip was rotated so that the magnetic field was
constant throughout the chip, as opposed to the linearly
varying magnetic field in this geometry. If this shift is not

accounted for in software then it will create relative phase
shifts between the ions that also appear as a coherent
idling error.
We first study the individual ferromagnetic and anti-

ferromagnetic GHZ states which compose the logical
states. These states are

jψFM;ni ¼
1ffiffiffi
2

p ðj000…i þ j111…iÞ;

jψAFM;ni ¼
1ffiffiffi
2

p ðj010…i þ j101…iÞ: ð11Þ

A code with n × n qubits has a logical state which is a
tensor product of n of these states. The logical states and
ion-to-qubit mappings for the ½½9; 1; 3�� ferromagnetic and
antiferromagnetic Shor’s codes are shown in Fig. 1.

After these states are prepared, we perform a Ramsey
experiment with variable wait time to measure the coher-
ence of the state as a function of time, as in Ref. [25]. The
result of this experiment for different GHZ sizes is shown in
Fig. 2, where the contrast corresponds to hX⊗ni. For the
ferromagnetic states in Fig. 2(a), we observe an initial fast

FIG. 1. Diagrams for the ferromagnetic (left) and antiferromagnetic (right) ½½9; 1; 3�� Shor’s codes, as well as an ion chain with labeled
ion indices. The qubit state representing j0iL is shown for each variant, with each Greenberger-Horne-Zeilinger (GHZ) state color coded
to match the ions in the chain as well as their location in the code diagrams. The qubits in each GHZ state are ordered from left to right.

(a) (b)

FIG. 2. Fringe contrast after a Ramsey experiment on the
(a) ferromagnetic and (b) antiferromagnetic GHZ states for
different distances. The dashed lines are present to serve as
guides to the eye.
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decay of the contrast on a timescale that corresponds to
the correlation time of phase noise in our system, followed
by a longer slow decay. The antiferromagnetic states in
Fig. 2(b), exhibit only a slow decay, indicating that these
states are more resistant to the correlated phase errors
present in the system. Using these states allows the code to
inherit their robustness. While the 4-qubit AFM GHZ state
is predicted to be completely insensitive to our dominant
idling error, we do observe a small decay over 10 ms,
indicating small contributions from a other error sources.
The additional entangling gates penalize the larger GHZ
states, and as shown the increased robustness to coherent
idling error is not quite enough to outweigh this cost for the
4-qubit AFM state.
We now directly compare the performance of ½½9; 1; 3��

FM and AFM Shor’s codes in Fig. 3, using a logical qubit
Ramsey experiment identical to the one performed in
Ref. [25]. In this experiment, three separate 3-qubit
GHZ states are constructed, as shown in Fig. 1. Using
the structure of the code states, we apply one round of error
correction based off the measurement outcomes of the data
qubits [25], leading to the three curves in Fig. 3. Raw
curves are constructed by the total parity of the 9 data
qubits after a measurement in the X basis, error-corrected
curves reconstruct the stabilizer outcomes from these
measurements and apply one correction, while error
detected curves reconstruct these stabilizer outcomes and
then discard any run in which the stabilizers are violated. In
this manner, error correction corresponds to “postprocess-
ing” of the data, whereas error detection corresponds to
“postselection” of the data. A single error on the data qubits
flips the outcome of the raw data, two errors are required to
flip the outcome of the corrected data, and three errors are
needed to flip the outcome of the detected data. The
ferromagnetic code performs worse than the antiferromag-
netic code in all three cases. We can calculate logical T2�
times of 115(10) ms in the ferromagnetic case and
450(150) ms in the antiferromagnetic case.

The logical states presented in Eq. (9) are composed of
three separate GHZ states, allowing us to study their
performance separately in Fig. 4. The reduction in contrast
for the central AFM GHZ state is due to lower gate
fidelities in its preparation circuit, not coherent error. By
considering the spatial arrangement of the GHZ states, as
shown in Fig. 1, we can study the impact of the static
magnetic field gradient on the code. Any state which
balances the number of excitations in each GHZ state is
resilient to dynamic noise of the form described in Eq. (1)
and shown in Fig. 2. Our particular mapping, however, is
also robust to magnetic fields which slowly vary in space
because our states have errors cancel with their nearest
neighbors. In Fig. 4, we see that the magnetic field appears
to vary linearly across the axis of the trap, leading to
GHZ states experiencing different phase shifts depending
on their position in the chain. While this error does not
decrease the coherence of individual GHZ states, the
performance of the code depends on the three GHZ states
remaining in phase with each other. The physical states
shown in Fig. 4(a), which correspond to the FM code
in Fig. 1, experience higher relative phase shifts than their
AFM counterparts in Fig. 4(b). If we assume that the
magnetic field is linearly increasing along the chain, we can
define the angle of a qubit at integer position x as

θx ¼ θ0 þ xδ; ð12Þ

where δ is the difference in phase between a qubit in
position x and the one in xþ 1, and θ0 is the phase
accumulated by the central ion. Under these conditions,
the phase accumulated for the FM GHZ states in Fig. 1
would be

θleft ¼ θ−6 þ θ−5 þ θ−4 ¼ 3θ0 − 15δ;

θcenter ¼ θ−2 þ θ0 þ θ2 ¼ 3θ0;

θright ¼ θ4 þ θ5 þ θ6 ¼ 3θ0 þ 15δ: ð13Þ

(a) (b)

FIG. 3. Experimental dephasing performance of (a) ferromag-
netic and (b) antiferromagnetic ½½9; 1; 3�� Shor’s code logical
states. The Ramsey fringe amplitude gives the coherence of the
states. The data are fit to A expð−ΓtÞ, where Γ is 1=τ, the lifetime
of the state. Fitting parameters are presented in Supplemental
Material, Sec. B [24].

(a) (b)

FIG. 4. Individual GHZ state Ramsey fringes after a 20 ms wait
time for the (a) ferromagnetic and (b) antiferromagnetic ½½9; 1; 3��
Shor’s code j0iL logical states. Colors are selected to match the
GHZ state coloring from Fig. 1. The data are fit to
A cosð3ϕþ ϕ0Þ. Fitting parameters are presented in Supplemen-
tal Material, Sec. B [24].
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In comparison, the phase accumulated for the AFM GHZ
states would be

θleft ¼ θ−6 − θ−5 þ θ−4 ¼ θ0 − 5δ;

θcenter ¼ θ−2 − θ0 þ θ2 ¼ θ0;

θright ¼ θ4 − θ5 þ θ6 ¼ θ0 þ 5δ; ð14Þ

corresponding to a threefold reduction in accumulated
phase for the individual GHZ states. These accumulated
phases take the place of θ in Eq. (3)when error correction is
applied using a distance-3 code. A threefold reduction in
accumulated phase would correspond to an approximately
81-fold reduction in logical error rate, assuming no other
error sources existed in the system.
In Supplemental Material, Sec. C [24] we discuss a

variation on this experiment which allowed us to exper-
imentally confirm our understanding of the magnetic fields
present in our system. Of course, if the magnetic fields are
static and well known, a preferable option would be to
adjust the qubit frequencies in classical control. However
this option is not possible for unknown drifts which may
occur during a computation. Additionally, in trapped-ion
architectures that involve extensive shuttling operations
[33], qubits will acquire a path dependant phase that needs
to be calibrated and precalculated. Codes robust to this
error may reduce calibration overheads and circuit compi-
lation complexity.
Our primary conclusion is that changing stabilizer parity

allow us to control the interference between correlated
idling errors. We present a family of codes, which we refer
to as antiferromagnetic Shor’s codes, which inherit the one
sided threshold of standard Shor’s codes while also
possessing a threshold against correlated idling noise in
the other basis. The even-distanced versions of our code
family are an example of the codes described in Ref. [18].
The particular choice of qubit mapping we use also
suppresses idling errors which are slowly varying in space.
Such idling-resistant codes could be used in a concatenated
scheme much like the one discussed in Ref. [17]. We
present experimental data from a trapped-ion quantum
computer which demonstrates our codes showing marked
improvements in performance relative to the standard
Shor’s code. We can also change parities preserved by
higher weight stabilizers, as considered in Supplemental
Material, Sec. A [24], leading to less drastic cancellations.
These modifications still leave error-correcting perfor-
mance against uncorrelated stochastic errors unchanged,
while improving the resilience to correlated idling error,
and could be implemented for any CSS code.
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