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Computational simulations of nuclear magnetic resonance (NMR) experiments are essential for
extracting information about molecular structure and dynamics, but are often intractable on clas-
sical computers for large molecules such as proteins and protocols such as zero-field NMR. We
demonstrate the first quantum simulation of a NMR spectrum, computing the zero-field spectrum
of the methyl group of acetonitrile on a trapped-ion quantum computer. We reduce the sampling
cost of the quantum simulation by an order of magnitude using compressed sensing techniques. Our
work opens a new practical application for quantum computation, and we show how the inherent
decoherence of NMR systems may enable the simulation of classically hard molecules on near-term

quantum hardware.

Nuclear magnetic resonance (NMR) spectroscopy is
a widely used tool in materials chemistry and struc-
tural biology, providing insight into the structure, con-
formational dynamics, reaction state, and chemical en-
vironment of molecules [1]. For example, NMR is em-
ployed to probe the structure of promising photovoltaic
candidates [2] as well as medically-relevant biomolecules
such as the intrinsically disordered proteins that cause
Alzheimer’s and Parkinson’s [3, 4]. Despite their ver-
satility, NMR, experiments can be difficult to interpret,
often requiring numerical simulation of the molecule’s
nuclear spin dynamics [3, 5]. The spin correlations in
these quantum systems can spread in an exponentially
large state space, making simulation on classical comput-
ers intractable for large molecules as well as for emerg-
ing experimental protocols such as zero-field NMR [6, 7].
Quantum computers and simulators, however, are well-
positioned to simulate the dynamics of spin systems [8];
such simulations may be the first practical application of
quantum computers to achieve a speed-up compared to
classical computers [9].

Here, we simulate a zero-field NMR experiment on a
trapped-ion quantum computer [10]. The quantum com-
puter implements a sequence of unitary rotations and
entangling interactions on '"'Yb* ion qubits to imple-
ment the quantum circuit that emulates the NMR exper-
iment [11]. We specifically compute the spectrum of ace-
tonitrile, a solvent with four NMR-active nuclear spins,
and show that the resonance frequencies in the spectrum
quantitatively match the experimental NMR data from
Ref. [12]. We obtain high spectral resolution within the
resource limitations of the trapped-ion device by exploit-
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Figure 1: Zero-field spectrum of acetonitrile computed
on an ion-trap quantum computer compared with the
NMR experiment performed in Ref. [12]. The inset
shows the chemical structure of acetonitrile, highlighting
the methyl group that was probed in the experiment.

ing compressed sensing techniques [13] and a state-of-
the-art quantum circuit synthesis algorithm [14]. These
techniques can be used to reduce the resource cost of
simulating classically hard NMR systems, and are likely
to prove useful in quantum simulations of hard systems
that appear in quantum chemistry and condensed mat-
ter physics [15]. We give resource estimates for quantum
simulations of hard NMR systems, showing how the de-
phasing inherent in nuclear spin dynamics may enable
such simulations on near-term quantum hardware.



A NMR experiment involves polarizing the nuclear
spins of a molecular sample via an external magnetic
field or a chemical process, letting the spins evolve in
time, and then measuring the average magnetization of
the system. The measured time-dependent magnetiza-
tion is called the free induction decay (FID), and its
Fourier transform yields the NMR spectrum. Letting the
operators {S;} represent the nuclear spins, the initial po-
larized state of the system can be described as py o< Sfot,
where Sz, = 7,757 and ~; is the gyromagnetic ratio
of the nuclear isotope i relative to that of a proton. In
the case of a 1D NMR experiment, the measured FID
corresponds to the quantity

FID (1) = Tr [U () S50 (0 55|, ()

where U (t) = exp (—iHt/h) produces the time-evolution
of the system generated by a Hamiltonian H. The evo-
lution of liquid-state molecular samples is typically well
captured by

H:Z‘]’ijsi 'Sj +Zhisizy (2)
i,j i

where we have taken Planck’s constant 7 = 1. The
J-couplings {J;;} characterize the strength of bond-
mediated exchange interactions and the chemical shifts
{h;} represent local magnetic screening around nuclei in
different chemical environments in response to an exter-
nal magnetic field [1].

Zero-field NMR protocols avoid the external field,
opening the possibility of portable and cheaper experi-
ments as they obviate the need for cryogenically cooled
superconducting magnets. The resulting spectra can
have narrower resonance lines than conventional high-
field NMR due to high absolute field homogeneity and
stability [6, 7, 12], and may enable the study of nanoscale
samples [16-18]. Without a large background field, how-
ever, the interactions between spins become dominant.
Therefore, a significant limitation of zero-field protocols
is that their spectra are hard to interpret without access
to reliable computational simulations of the NMR exper-
iment, which can be rendered classically intractable for
even intermediate scale molecules [19].

We compute the zero-field spectrum of acetonitrile, a
compound which is commonly used as an industrial sol-
vent. The molecule has four NMR-active nuclear spins,
a '3C and three 'H, that make up a methyl group (see
inset in Fig. 1). There are three non-zero J-couplings,
corresponding to the three **C—"H bonds, all with value
J = 136.2 Hz. The FID signal of Eq. (1) can be com-
puted on a quantum computer by initializing the system
qubits in computational basis states with a positive av-
erage magnetization, enacting time-evolution under the
Hamiltonian via an appropriate quantum circuit, Eq. (2),
and then measuring the average magnetization of the sys-
tem. We write this measurable as

FID (1) = Z M (1, (t)lgfot‘mn(t» ) (3)

My >0

where {|m,,) ;m,} are the eigenstates and eigenvalues of
Sz, and |, (t)) = U(t) [fy). For a system of N spins,
the sum in Eq. (3) can have a number of terms that scales
exponentially with N, potentially negating any quantum
computational advantage. The sampling cost can, how-
ever, be reduced to N? via importance sampling and thus
the advantage is preserved [8].

Figure 1 shows the spectrum we compute on an ion
trap quantum computer in comparison with the semi-
nal zero-field NMR experiment of Ref. [12]. We see that
the quantum computation accurately reproduces the res-
onances at frequencies J and 2J. Specifically, the corre-
sponding resonance frequencies extracted from the quan-
tum simulation are 136.204+0.09 Hz and 272.414+0.09 Hz,
which are within 1o of the exact frequencies of 136.2 Hz
and 272.4 Hz. The extracted resonance frequency uncer-
tainty is Fourier limited; a Lorentzian fit to the recon-
structed peaks results in a width smaller than the fre-
quency grid spacing. We therefore take half the grid spac-
ing as the uncertainty. Given that the zero-field NMR
experiment can only resolve the spectral peaks within
0.1 Hz [12], we demonstrate that quantum computers can
simulate NMR, experiments within their resolution.

The spectrum computed on the quantum computer ex-
hibits an additional resonance at J/2 that is not present
in the NMR experiment. This additional spectral peak
arises from a combination of errors in the quantum com-
puter and the high-symmetry of the molecule, which in-
duces dynamical recurrences that are captured by the
specific method we use to synthesize the time-evolution
circuits. Such artifacts are unlikely to appear in classi-
cally intractable NMR simulations whose large, strongly
correlated molecules typically do not exhibit dynamical
recurrences. Furthermore, we provide a simple method
to remove artifact peaks in future experiments even for
the small, highly symmetric systems where they may oc-
cur [11].

In order to calculate the spectrum, we first compute
the FID, Eq. (3), at a non-uniform random sampling of
time points lower than the Nyquist rate. We synthesize
the time-evolution quantum circuits using the numerical
optimization algorithm in Ref. [14] after tailoring it to
the gate set and qubit topology of the trapped ion de-
vice [11]. This numerical synthesis procedure efficiently
produces low-depth circuits but is limited to a small num-
ber qubits. It can, however, be a useful tool when simu-
lating larger systems [11].

The undersampled FID measured in experiment is re-
constructed into a spectrum by a recovery algorithm
which assumes that the time domain signal is sparse in
the frequency domain. These two steps — non-uniform
sampling (NUS) and spectral reconstruction — form the
basis of compressed sensing. Compressed sensing tech-
niques have their root in information theory [21], but
have been further developed in the experimental NMR,
community where they can drastically reduce the data
collection burden [13]. While these techniques have re-
cently been used in quantum sensing [22], we demon-
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Figure 2: Compressed sensing reconstruction & Benchmarking. A Comparison of the FID of a noisy
quantum circuit emulation (blue line) and the non-uniform, and sparsely sampled, experimentally measured point
(green circles). The noise is modeled by two-qubit gates subject to both amplitude and phase damping with rates
0.005 and 0.035 respectively. B NMR spectrum extracted from the digital quantum simulation. Green dots show the
Fourier transform of the FID after replacing unsampled points with zeros. Dashed blue line shows the best (under
¢1-norm) Lorentzian fits to the zero-padded data. Solid yellow line shows the reconstructed spectrum after applying
the IST-S algorithm. The y-axis is rescaled (zoomed-in) compared to Fig. 1 to make the features more visible. C
Fidelity of quantum simulation. The yellow crosses show the squared Bhattacharyya coefficient and the green dots
show a fidelity estimator recently introduced by Choi et al. [20] as a function of the circuit depth measured in the

number of two-qubit gates.

strate their use in quantum simulation experiments to
similarly reduce the computational cost [15]. In Fig. 2A
we plot a noisy emulation of the ion trap experiment at
all values of the uniform dense time grid and compare to
the NUS points that were actually collected in the ex-
periment. Experimental data was collected up to times
t = 6 [11], but is only shown up to ¢ = 0.2 to allow
a clear comparison to the noisy emulation. We use a
sine-weighted Poisson gap NUS schedule that is dense at
short times as it has been shown to reduce reconstruction
artifacts [23]. Figure 2B shows the spectrum resulting
from Fourier transforming the experimental data before
running the reconstruction algorithm. We see that the
signal-to-noise ratio in this raw spectrum is poor due to
NUS artifacts, with a Lorentzian fit to the peaks resulting
in an uncertainty of approximately 1 Hz. The same spec-

trum is shown after we run the iterative soft threshold-
ing (IST-S) reconstruction algorithm; the signal-to-noise
is dramatically improved, with the uncertainty reducing
by an order of magnitude to approximately 0.1 Hz. The
reconstructed spectrum matches the spectrum resulting
from fully sampled noisy emulation [11]. Experimentally,
only 102 out of the 4096 time points were collected, in-
dicating that compressed sensing reduced the computa-
tional burden of the experiment by more than a factor of
40. This reduction is particularly crucial for experiments
with slow repetition rates.

In Fig. 2C, we asses the quality of the trapped-ion sim-
ulation by comparing the outputs of all 102 circuits (%
8 initial states) with the ideal outputs resulting from a
noiseless circuit emulation. The Bhattacharyya coeffi-
cient, which the provides an upper bound for the fidelity
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Figure 3: Scaling up to classically hard simulations. A Chemical structures of (i) anti-3,4-difluoroheptane (ii)
a system with two coupled tert-butyl groups and (iii) the BJACRg)5 phosphorous system. Light green atoms do not
contribute to the NMR signal and dashed boxes indicate strongly interacting clusters who’s circuit synthesis can
significantly speed up the quantum computation [11]. B Experimental design curves for (Me3Si)sP7 (panel A(iii)),
showing 1/v/D scaling, where D is the circuit depth, of the frequency resolution up to a minimally achievable width
set by the decoherence of the quantum computer. The circuit depth is measured by the number of fully-connected
two-qubit gates. C Optimal resolution for all three molecules. The circles indicate the resolution at optimal circuit
depth and the dashed black horizontal lines indicate the resolution accessible in NMR experiments.

of the prepared quantum state [11], indicates that a typi-
cal two-qubit gate operation was enacted with fidelity at
most 98.9%. We also examine the fidelity estimator of
Ref. [20], which yields an estimate of 97.7% fidelity per
operation.

While the present experiment is performed on state-of-
the-art quantum hardware, it is still easily tractable on
a classical computer. In order to elucidate the hardware
resources required to scale quantum simulations to clas-
sically hard NMR experiments, we examine three chal-
lenging systems that are at the border of what is clas-
sically simulable. The compounds are are depicted in
Fig. 3A. Each system can be classically simulated using
Spinach [24], an advanced classical simulation package,
in several hours, provided access to 32 CPU cores, 128
GB RAM, and a graphics card as powerful as the Titan
V. The interaction graphs characterizing the molecules’
nuclear spin Hamiltonians have a compact structure, and
are composed of strongly interacting clusters of four to
seven spins which are weakly connected to other clusters.
The compact nature of the interaction graphs—which
give rise to rapidly spreading strong correlations—makes
these systems hard to classically simulate, even though
these NMR experiments can be described without the
long-range dipolar interactions that are central to other
challenging NMR, protocols.

We estimate the resources required to simulate these
systems using a quantum computer by using product for-
mulas to prescribe circuits that implement time-evolution
under the Hamiltonian of Eq. (2). While there are many
quantum algorithms that implement quantum dynamics,
product formulas are considered to have the lowest re-
source overhead and be most suitable for early quantum
devices [9, 25]. We exploit both the cluster structure of

the nuclear interactions as well as inherent dephasing in
the NMR experiment to further reduce the cost [11].

In Fig. 3B, we plot the achievable linewidth, Af, of
the NMR spectrum as a function of the circuit depth
D for quantum computers with various levels of deco-
herence, using a clustered first order product formula.
We define the circuit depth as the number of fully con-
nected two-qubit gates, as available in ion trap quantum
computers [10]. We observe a 1/4/D scaling, reminiscent
of the standard quantum limit, up to a critical depth
where the decoherence of the quantum computer takes
over. At any given value of the gate fidelity F' there is
an optimal circuit depth ~ 1/log(1/F) arising from a
competition between algorithmic error and decoherence,
resulting in linewidth Af ~ /log(1/F). Fig. 3C depicts
the expected optimal linewidth for all the molecules con-
sidered in this work. While we clearly observe that the
larger molecules from Fig. 3A are considerably harder
to simulate than the four spin methyl group that was
computed here, it should be noted that these curves are
expected to saturate for Hamiltonians corresponding to
clustered molecules. To simulate the phosphorus cluster
(Fig. 3A(iii)) to the same level as the physical NMR ex-
periment, we expect to require circuits of O(10°) gates
with a typical gate infidelity of O(107%), an infidelity
that is two orders of magnitude better than the present
experiment. Such infidelities have been achieved in small
trapped-ion systems [26, 27], and future scaling strategies
hold great promise for reaching the above performance
metrics [28].

Our demonstration provides the first proof of princi-
ple that quantum computers can simulate NMR spectra
within experimental resolution. Simulations of NMR ex-
periments on quantum hardware would not only be in-



valuable to analyzing conventional NMR, experiments in
systems consisting of hundreds to thousands of spins [5]
but could also help realize the full potential of emerg-
ing modalities that explore strong spin-correlations such
as zero-field, low-field, and nanoscale NMR. These lat-
ter protocols generate spectra that are especially difficult
to interpret without computational simulations, which in
turn can prove classically intractable for systems of even
a few tens of spins [29].

While scaling quantum NMR simulations to classically
intractable systems will be challenging, it should be noted
that the resource projections in Fig. 3 are significantly
less demanding than most other near-term quantum com-
puting applications [9, 30, 31]. The physical reason be-
hind the reduced resource cost is that dephasing is inher-
ent in the dynamics of nuclear spin systems, with a rate
given by the finite line-width of spectral peaks in NMR
experiments. Quantum simulations can tolerate decoher-
ence in the quantum device as long as it is less than the
dephasing rate of the spin system [8]. NMR thus provides
a natural task where we can seek a practical quantum ad-
vantage from near-term quantum devices: simulation of
noisy spin systems using noisy quantum computers.
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SUPPLEMENTAL MATERIALS FOR
DIGITAL QUANTUM SIMULATION OF NMR EXPERIMENTS

S1. METHODS
A. Data collection

NMR simulation circuits are run on a trapped ion quantum computer that uses the 2S; /2 states of T1Yb* ions as
the qubit states. We trap 15 ions in a chain for the simulation, and the circuits use 4 of those ionic qubits. Before each
circuit iteration, ions are cooled using Doppler cooling and Raman sideband cooling, and then reset to the logical |0)
state via optical pumping. The qubit state is manipulated using 355-nm pulsed Raman beams. Single qubit gates are
implemented using SK1 pulses [32], and two-qubit gates are mediated by Mglmer-Sgrensen interactions [33] —these
gates are run sequentially. We measure the qubit states by shining 369-nm light resonant on the 2S; /2 —2pP, /2 cycling
transition that scatters photons.

The time series data used to construct the NMR spectrum of acetonitrile was collected over the course of 12 days,
during which the quantum computer’s hardware remained unchanged. The data consists of a 1000 shots of 102
different circuits, for which 8 different initial states were prepared. While running circuits on the quantum machine,
we perform system calibrations of trap voltages and gate amplitudes every hour to mitigate effects of system drift on
circuit performance. We do not correct for state preparation and measurement (SPAM) errors in this study, and a
table of our system’s SPAM characterization is presented in Ref. [10].

B. Time-evolution circuit synthesis

We use the numerical optimization algorithm in Ref. [14] to synthesize the circuits implementing the time-evolution
unitary U (t) = exp (—iHt/h), with the Hamiltonian given in Eq. (S.1). The algorithm implements a bottom-up
approach, building the single- and two-qubit gate decomposition of a n-qubit unitary by iteratively searching for
a m-qubit gate decomposition with m < n. Initially, m is set to n — 1. The algorithm is hardware topology and
gateset aware; to specialize for the trapped-ion system, we allow all-to-all connectivity of qubit interactions and choose
Mglmer-Sgrensen gates with variable angles as the interaction gate.

We choose a unitary error of e = 1072, with the synthesis algorithm producing a circuit in terms of Mglmer-Sgrensen
(MS) gates and generic single-qubit rotations that approximates the true time-evolution unitary within this error.
We then iteratively perform a X-Z-X decomposition of each single-qubit rotations, commuting the trailing X rotation
through each MS gate before decomposing the next single-qubit rotation. This optimization results in roughly two
Z rotations and two X rotations after each MS gate. As Z rotations are implemented virtually in the trapped-ion
system, the final circuit has only two physical single-qubit rotations for each MS gate, and thus the physical circuit
depth is reduced compared to the initial output of the synthesis algorithm. An example of the final optimized circuit
is shown in Fig. S1. Typically, the produced circuits were composed of up to 40 MS gates and 80 physical single-qubit
gates.

C. Compressed sensing

A general function in the frequency-domain that is nonzero in a specified frequency window can be reconstructed
by Fourier transforming a corresponding time-domain signal that is uniformly sampled at the Nyquist rate. If the
function is known to be sparse in the frequency domain, however, the time signal can be undersampled by choosing
a non-uniform subset of time points which still capture the relevant information in the frequency domain [21]. The
missing points on the original uniform time grid create artifacts in Fourier transform of the signal, however, which
must then be removed using a compressed sensing reconstruction algorithm that exploits the assumed sparsity of
the frequency signal. NMR spectra are often sparse as they are composed of a series of Lorentzian peaks, and
therefore compressed sensing techniques allow for a dramatic reduction in the sampling required during an NMR
experiment [13].

This sparsity can also be exploited in quantum simulations of NMR experiments by computing the FID at only the
undersampled time points and then reconstructing the spectrum. We compute the FID at 102 out of the Ny = 4096
time points on the uniform grid, choosing the points according to a sine-weighted Poisson gap schedule. Such schedules
have been shown to reduce undersampling artifacts [23]. The points are randomly chosen with the likelihood to pick a
point m+1 on the uniform grid, given we have picked a point m, set by a Poission distribution with mean proportional
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Figure S1: Time-evolution circuit. Example time-evolution circuit generated by numerical synthesis algorithm
corresponding to ¢ = 0.07 s. Circuit is split into five rows and read top to bottom, with the start of each row
indicated by a dashed box around the four qubits in the experiment.

to sin (amrm/Ny). Specifically, we choose o = 0.5, resulting in a schedule that is dense at short times before becoming
increasingly sparse at later times. We find that this choice allows for much larger compression compared to a schedule
with uniformly distributed gaps between points, or a schedule that is also dense at late times (corresponding to o = 1).
After computing the undersampled FID, we reconstruct the spectrum using the iterative soft thresholding (IST-S)
algorithm [13].

In Fig. S2(a), we plot the FID computed via noisy emulations for all 4096 time points, and compare with the 102
points that were experimentally computed. This plot corresponds to Fig. 2(a) of the Main Text, but with the quantities
depicted over the full time grid. In Fig. S2(b), we plot the spectrum computed after padding the experimental data
with zeros for all time points that were not computed. We see that there is some signal at the spectral peaks expected
from the noisy emulation, but the signal-to-noise is very large. The zero-padded spectrum in this plot corresponds
to the green dots in Fig. 2(b) of the Main Text. In Fig. S2(c¢), we plot the compressed sensing reconstruction of
the experimentally computed spectrum, and see that the signal-to-noise is dramatically improved. The reconstructed
spectrum in this plot corresponds to the yellow curve in Fig. 2(c) of the Main Text.
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Figure S2: Compressed sensing reconstruction. (a) Comparison of the FID for noisy quantum circuit
emulation on a fully sampled uniform time grid of 4096 points (blue circles) and the 99 data points experimentally
measured on the ion trap device (red diamonds). (b) Fourier transform of the FID after replacing unsampled points
with zeros. (c) Reconstructed spectrum after applying the iterative soft thresholding algorithm. The noise is
modeled by two-qubit gates subject to both amplitude and phase damping with rates 0.005 and 0.035 respectively.

D. Scaling to larger systems

The numerical optimization algorithm we use is likely to be limited to producing time-evolution circuits for systems
of up to ~ 7 spins [14]. This tool can still prove useful, however, when scaling to large, classically-intractable NMR
simulations by exploiting the cluster structure of these molecules (see Fig. 3A of the Main Text). The strongly-
interacting clusters are usually formed from 4-7 spins, and the optimization algorithm can be used to synthesize the
time-evolution circuit for each cluster. These circuits can then be combined with a Trotter formula to implement the
time-evolution of the entire systems [25]. Compared to a Trotter decomposition of the entire system, such a hybrid
approach can reduce the overall circuit depth, as discussed in Sec. S3 B. Furthermore, at the level of discretization
estimated in Fig. 3 of the Main Text, the simulation times are small enough that the optimization should converge
very quickly, potentially enabling real-time compilation of the overall time-evolution circuit.

We note that numerical circuit synthesis of small subsystems and compressed sensing techniques form a synergistic
combination of tools. For example, cluster-exploiting Trotter formulas allow for an overall reduction in resource cost
at all simulation times, while compressed sensing non-uniform sampling schedules may sample more densely from
short times where the resource cost is smallest. On the hardware side, the all-to-all connectivity of trapped ions
makes them well-suited to the interaction graphs within clusters, and may allow comparatively smaller gate counts
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for the cluster evolution circuits. The relatively slow cycle time of ion devices is ameliorated by compressed sensing
techniques, which reduce the number of time points that must be sampled. The combination of numerical circuit
synthesis, which exploits the clustered interaction structure of a system, and compressed sensing, which exploits
sparsity of the observable of interest in the transform domain, may similarly prove useful for quantum simulations in
quantum chemistry and condensed matter systems where both of these characteristics are often present [15].

S2. SPECTRAL PEAK AT J/2

The acetonitrile spectrum we compute on the trapped ion quantum computer, depicted in Fig. 1 of the main text,
exhibits a resonance at frequency J/2 which does not appear in the NMR experiment of Ref. [12]. Here, we explain
the origin of this additional peak and discuss how to prevent such artifacts from appearing in future experiments.
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Figure S3: Magnetization basis state revivals. A system initialized in state |1(0)) selected from magnetization
basis states A = {m1,mg3, ms} and B = {rmy, Mg, Mg} undergoes revivals with a period 2/.J.
The zero-field nuclear spin Hamiltonian of acetonitrile is
H= J(Sl+SQ+S3) 'S4, (Sl)

where {Sl, S,, Sg} represent the three 'H and Sy represents the ">C. The eight positive magnetization states used to
compute the FID, see Eq. (3) of the main text, and their magnetizations are

[y = 1.626) = [0000) iy = 1.626
iy = 1.626) = [0001) iy = 1.374
s = 1.626) = [0010) s = 0.626
Iy = 1.626) = [0011) iy = 0.374
/s = 1.626) = |0100) s = 0.626
g = 1.626) = [0101) g = 0.374
[y = 1.626) = [1000) iy = 0.626
s = 1.626) = [1001) g = 0.374

The small, four spin Hilbert space of the NMR active nuclear spins of the molecule along with the molecules highly
symmetric nature—as codified by the single interaction scale J in Eq. (S.1)—combine to yield perfect revivals when
the system is prepared in six of the above magnetization basis states. These states can be grouped into the triads
A = {my,m3,ms} and B = {my4,mg, Mg} and we depict their revivals in Fig. S3. When viewed in the energy
eigenstate basis, each of these six magnetization basis states only has weight on energy eigenstates whose eigenvalues
are integer multiples of J/2. Consequently, all energies relevant to the dynamics are commensurate with a smallest
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Figure S4: Synthesized circuit depth and entanglement. (a) Two-qubit gate count of synthesized
time-evolution circuits for each FID evolution time measured on the trapped-ion device. (b) Entanglement entropy
of the system at a particular evolution time compared to the two-qubit gate count of the circuit implementing that
evolution. We average the final entanglement entropy for systems initialized in each of the eight magnetization basis
states used to compute the FID.

splitting of J/2, which leads to the state reviving with perfect fidelity at this frequency. The revival of each state
is mirrored in its entanglement dynamics. Each magnetization state begins in an unentangled product state, non-
monotonically accrues entanglement over a period T' = %, and then dis-entangles as it returns to the original product
state. The high symmetry and small size of the molecule therefore causes the dynamics to defy usual expectations
of ergodicity, with the entanglement of a system initially prepared in one of the states in A or B oscillating at a
frequency J/2 instead of growing monotonically in time.

The numerical optimization algorithm, Ref. [14], we use to synthesize time-evolution circuits for each time point
reflects this oscillating entanglement in the gate depth of the synthesized circuits. Specifically, times at which the
system is more heavily entangled correspond to deeper circuits with a larger number of two-qubit gates, as can be
seen in Fig. S4.

Noise in the system affects deeper circuits more than shallower ones, and therefore imprints the J/2 entanglement
oscillation onto the experimentally measured observable by lowering the fidelity of the signal at this frequency. We
can gain visibility into this process by computing the average Bhattacharyya coefficient (BC) between the measured
basis state populations and noiseless emulations of the circuits for each time point. The BC is defined as

BC=1- 13 (Vi) - val) . (52)

J

where j runs over all computational basis states, and p(j) and ¢(j) are the corresponding occupation probabilities,
given by the diagonal elements of the density matrix, of the two states beings compared. The BC gives a measure
of the fidelity of the experimental runs and we plot it for every experimentally measured time point in Fig. S5(a).
We see that it varies as a function of time, and these oscillations correspond to time-evolution circuits that have
a larger two-qubit gate count as shown in Fig. 2C of the Main Text. In Fig. S5(b), we use the same compressed
sensing algorithm used to compute the NMR spectrum to reconstruct the Fourier transform of the the BC dynamics
depicted in Fig. S5(a). We observe a sharp peak at J/2, confirming that the fidelity of the experimental oscillates
at a frequency of J/2. These oscillations corresponding to oscillating depths of the synthesized circuits, which in
turn reflect the entanglement revivals of the molecule’s underlying dynamics. The above story confirms why noisy
circuit simulations, such as the one depicted in Fig. 2A of the main text, also exhibit this J/2 resonance peak in the
computed NMR spectrum regardless of the type of decoherence channel used to simulate noise.

artifact peaks such as the J/2 resonance can easily be removed in future experiments. By padding all time-evolution
circuits so that they have roughly the same depth as the deepest synthesized circuit, the noise in the system can no
longer imprint any frequency on the measured signal as the gate depths no longer oscillate. We show in Fig. S6 that
such padding dramatically decreases the height of the J/2 peak in noisy circuit simulations of the experiment. The
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Figure S5: Bhattacharyya coefficient between trapped ion measurements and noiseless emulation of
the experiment. (a) BC vs evolution time. (b) Compressed sensing reconstruction of the frequency spectrum of
the BC. We see that the BC, a measure of the fidelity of the system, only varies at the frequency J/2 with which the
system’s entanglement, and therefore circuit depth, oscillates.

padding will, however, slightly decrease the overall fidelity of the computed FID as every point will be subject to as
much noise as the deepest time-evolution circuit. If we desire to compute the maximum fidelity signal allowable by
hardware, we can compute FID twice - once with padded circuits and once without. Any feature that vanishes in the
padded experiment can be removed from the higher fidelity non-padded experiment.

Lastly, we note that artifact peaks are unlikely to appear during quantum simulations of the majority of NMR
experiments, and become increasingly unlikely when scaling to classically intractable systems. Small molecules which
do not exhibit the high degree of symmetry exhibited in Eq. (S.1) are unlikely to exhibit the dynamical revivals at the
heart of artifact peaks. Larger systems, including those with some symmetry, are even less likely to exhibit revivals
as entanglement spreads throughout the system. In fact, classically intractable systems are intractable precisely
because quantum correlations spread quickly throughout the system. Furthermore, quantum simulation algorithms
that generalize to larger systems, such as product formulas, typically have gate depths that monotonically increase
with the simulation time. This relationship is also directly true for analog quantum simulation. Noise in these cases
will lead only to a broadening of spectral peaks, and cannot imprint any artifact frequencies on the measured signal.
Therefore, artifact peaks are unlikely to be a common concern during quantum simulations of NMR experiments.
Even in small, highly symmetric systems where the peaks might appear, circuit padding is a cheap way to remove
these artifacts.

S3. RESOURCE ESTIMATES FOR NMR SIMULATION

The standard Hamiltonian simulation task (e.g. by Suzuki-Trotter product formula, hereafter product formula),
seeks to approximate exact unitary dynamics within a finite precision € (clarified below). However, the spectral
resolution—alternatively, the line-width—of NMR experiments are set by the dephasing of the nuclear spins. The
inherent dephasing in the experiments we seek to simulate reduces the resource cost simulation compared to purely
coherent systems. In what follows, we show how this discrepancy between the standard Hamiltonian simulation
task (simulating a unitary to finite precision) and the task of employing Hamiltonian simulation as a sub-routine to
compute an NMR spectrum (with finite spectral resolution) can yield gate counts that are several orders of magnitude
smaller for the latter task, making it tractable on NISQ devices. To perform Hamiltonian simulation, we proceed by
using a variant of first-order product formula that exploits the clustered structural motif present in many molecules
that are classical challenging to simulate. In what follows, we first elucidate the distinction between the standard
Hamiltonian simulation task and the task at hand and provide bounds on the requisite two-qubit gate fidelity and
gate counts for computing NMR spectra with finite resolution. We round out our discussion by providing commutator
bounds relevant to estimating the quantum resources required to simulate the NMR spectra of molecules with a
clustered interaction structure.
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Figure S6: Noisy circuit simulation. The zero-field NMR spectrum of acetonitrile computed using noisy circuit
simulations with and without padding. The padded circuits no longer have depths that oscillate in accordance with
the system’s entanglement, and therefore do not exhibit the artifact peak at J/2. Noise was simulated by by adding
a depolarizing channel to each gate, with a rate of 10™2 for single-qubit gates and 10~2 for two-qubit gates.

A. Approximating Hamiltonian Dynamics for NMR Simulations

We begin by clarifying the difference between a standard Hamiltonian simulation task and the task of using Hamil-
tonian simulation to simulate NMR experiments. We consider performing Hamiltonian simulation via first order
Trotterization, a simple but powerful and gate efficient method for simulating Hamiltonian dynamics. Keeping our
discussion somewhat general for the moment, let’s say we have a Hamiltonian H =) u h,, composed out of a number

of N, terms h,. We’d like to replace the time-evolution operator U = e *AtHfor some small time-step At by our
simple product formula:

Ne

U — H e iAthy

p=1

It follows from Baker-Campbell-Hausdorff (BCH), by keeping only lowest order contributions in At, that

(At)? &
2

U 0] < > s bl (S:3)

I
p=1 v>p
as obtained in Ref. [9]. Consequently, we could also write the fidelity of the simulation as

N.

Fse = |UT|| > e PAD*/2 where B = > [h bl (S.4)
7

|
=1 v>u

Let’s say we’d like to evolve for a total time T' = rAt, then the total fidelity will be

For(T) = [ Fir. = 00712 = oxp (-5, (55)
i=1

€

If we want a precision ¢, then we need F =1 — ¢ &~ e~ €. This sets the Trotter number r to achieve a precision e:

r——BT2
€T 2
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Achieving this can be quite challenging for even intermediate times, in particular in NISQ settings.

The task of simulating the relevant dynamics corresponding to an NMR experiment does not, however, require the
approximation of unitary dynamics generated by the Hamiltonian to finite, time-independent precision €. It requires
instead the simulation of a spectrum to finite spectral resolution A f. In an NMR experiment, Af ~ -, the dephasing
rate of a single nuclear spin in experimentally interrogated sample. Thus, the task of simulating an NMR experiment
with resolution Af is equivalent to simulating Hamiltonian dynamics of a sample of N spins in which each spin
decoherences independently with an effective dephasing rate v = %—ﬂ. Such dephasing exponentially degrades the
fidelity, vis-a-vis perfect unitary dynamics given by the Hamiltonian, as Fyarr ~ e~ YNt. Thus, there is a subtle but
essential distinction between the task of approximating a unitary to multiplicative error ¢ and performing Hamiltonian
simulation to compute a spectrum with finite spectral resolution A f. If, for the moment, we neglect decoherence in
our quantum hardware and consider only algorthmic error due to our product formula, as given in S.5, then setting
Fpr(T) = Fnur(T) we find a upper bound for the minimal necessary Trotter number:

BT

PN (S.7)

'NMR =

As typical experiments interrogate regimes up to where vI' ~ 1, the number of Trotter steps r is reduced by a factor
of % as compared to the case of fixed precision—for the examples examined in the Main Text, this corresponds to a
0O(10® — 10%)-fold decrease in the number of steps required to realize the longest dynamics relevant to experiment.

For a more careful estimate of the necessary resources, we also account for the decrease in fidelity due to decoherence
in our quantum hardware. We describe the decaying fidelity of our experiment due to hardware error as 7 (T) ~ F™Vs
where F' is the two-qubit gate fidelity, r is the Trotter number, and NN, is the number of two-qubit gates required to
realize a particular Trotter step. Note that by such a description, we assume that hardware error and algorithmic
error are independent of each other and that two-qubit gates dominate the hardware error. The product of F,(T)
and FppT must be greater than or equal to Fyp g in order to perform reliable simulation. We obtain, the following
requirement:

— N, log(F) + B(At)?/2 < yNAL. (S.8)
This will have a solution for the Trotter time step At as long as
F > e WNAt/Ng, (S.9)

Requiring our quantum simulation fidelity to match the fidelity of the experiment —thereby recasting S.8 as an
equality —and re-arranging, we can establish an equation for v ~ Af:

_ 1 AtB Nylog(F)

= S.10
N2 At ) (8.10)
By optimizing over the Trotter step At, we can set the ultimate resolution A f,,; of our experiment:
_ Yopt _ 1
Afopt ——1/2N,Blog(1/F) (S.11)

" 21 27N

Note that this optimal resolution is a simple function of the fidelity of the quantum hardware employed, given by
F, and the efficiency of the algorithm used, as encoded by 8 and N,. On the hardware side, improving gates and
thereby improving the gate fidelity, parametrized by F', would lower the resolution. Similarly, on the algorithmic side,
finding more efficient circuits to realize a single Trotter step (lowering NN,) or better product formulae (lowering 5),
would improve the resolution—in what follows, we provide strategies on how to achieve both of these algorithmic
improvements.

B. Commutator Bounds for Clustered Hamiltonians

As implied by Eq. (S.11), decreasing 8 (defined above in Eq. (S.4)) small would improve the resolution of the
simulation. In what follows, we compute g, assuming an NMR Heisenberg Hamiltonian with clustered interactions,
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first in the standard way and then by taking advantage of the cluster motif. We show that by doing the latter, we
can reduce 8 substantially.

Before beginning this program, it is useful to establish some intuition for how clustered interactions reduce /3 vis-
a-vis the case of all-to-all couplings. If we take an all-to-all model with some typical coupling J/ VN (taking into
account Kac normalization to keep the energy extensive in the system size N), we find

2
B =0(J*N?), suchthat 7~ (‘Jé\f) (vT). (S.12)

The situation changes for clustered Hamiltonians where each spin typically interacts with a sub-extensive number
of spins k. For each term in the latter, only k terms contribute in the commutator and there are kNN terms, yielding:

2
B ~Kk*NJ? suchthat 7~ (Jj) (~T). (S.13)

Note that, due to the clustered nature of the interactions, r» does not scale with INV: Increasing the number of spins
does not increase the Trotter number.

Having established an heuristic derivation for the scaling of 8 and thereby the Trotter number, we turn to the
present situation of a Heisenberg model with local fields.

H =" "J;(SISy+S/SY+S78:)+ > hiS;. (S.14)

1] 7

where all terms can be labeled by pu = (i,7,0), indicating the bond and the operator that is acted with. If we
perform a scheme which alternates all Ising-X X gates with all Ising-Y'Y's and all Ising-ZZs, then § is comprised of
three terms, defined below: 31, Bs, f3.

We first bound 1, given by:

Br="Y_ il Y JulSESy + Sist, sisil, (S.15)
ij Kl
Straightforward algebra brings us to

Br= 1l D (2Tki(SESY — SYST)ST + 20 (S S} — SLST)SE) - (S.16)

ij k
where the fact that J;; = J;; is used. We therefore have:

B <D 20l Y (1ki(SESY — SYSE)S5 + iy (S SY — S1S7)SEN) (5.17)

ij k
which can again be bounded as:

Br<2y gl Y [ illl(SiESY — SESH)SF N + 1kl (S5 S} — S7S7)SE) - (S.18)

ij 3
Computing the norm directly—||(S¥.Sy — S}/S7)S?|| = 1/4 —we arrive at:

B <Y ikl Twil (S.19)

ijk
We can similarly bound S5, which is given by:

Bo =Y il Y JmlSysy. 578, (5.20)
ij ki
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as

1
P2< 5 Z | ik || Tk (S.21)

ijk

Finally there are local field terms, which if we do them together with the ZZ gates would give

By = S il S Julsysy + Stst. S2ll, (5.22)
7 kl
which gives
By =23 il S (S SV — SEST. (5.23)
7 k
and thus
By < 3 Ihill | (5.24)
i

However, one can obtain a tighter bound by treating the Z-gates as a single global gate. Doing so yields:

Bs = | Z Ju[SES] + SZSf7ZhiSf]II, (S.25)
kl i
in which case we’d arrive at

~ 1
Bs < 3 Z |hi — hjl|Ji | < Ba. (S.26)

j

Therefore, we have that the total spectral norm of the nested commutator 8 is bounded by:

= 3 1
BBt ot < Q%Cjumum + 52} (i = B 11 (8:27)

For many molecules, the interactions between nuclear spins follows a clustered motif. In particular, we examine
the computational resources to simulate classically hard molecules that are composed of strongly-interacting clusters
tethered together with weakly interacting links. We leverage the clustered motif by performing a variant of first-order
Trotter formula wherein the dynamics of the small clusters are numerically synthesized to high precision, using for
example the algorithm of Ref. [14], while weak interactions between such clusters are rendered via a pairwise Trotter
decomposition of the Hamiltonian.

To understand how this modifies 8, we consider the following Hamiltonian:

H=H.+Y Jij(STS7°+ VSV + 87879 + Y hiS7, (S.28)
%) i
and
He = Via(SpeSye + 8PSy + S7°879) + > hiSpe, (S.29)
k.l 2

where the superscript simply indicates that the operator belongs to the cluster H.. If we could synthesize the
Hamiltonian of the cluster efficiently (see below), we find:

3 3 1
b < 3 Z |Ji’ka’j| + 3 Z |Ji’ka}j| + B Z | Ji k|| Pk — P (S5.30)

.5,k .5,k i,k

By comparing Eq. (S.30) with Eq. (S.27), we see that the latter avoids terms with intra-cluster couplings (i.e. terms
like V; ;Vi1). For the cases considered in the Main Text, making use of the cluster structure in this manner reduces
the Trotter number by one to two orders of magnitude.
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