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We describe a simple protocol for the single-step generation of N-body entangling interactions
between trapped atomic ion qubits. We show that qubit state-dependent squeezing operations and
displacement forces on the collective atomic motion can generate full N-body interactions. Similar to
the Mglmer-Sgrensen two-body Ising interaction at the core of most trapped ion quantum computers
and simulators, the proposed operation is relatively insensitive to the state of motion. We show
how this N-body gate operation allows the single-step implementation of a family of N-bit gate
operations such as the powerful N-Toffoli gate, which flips a single qubit if and only if all other N-1

qubits are in a particular state.

The central ingredient in a quantum computer is
the controllable quantum entanglement of its degrees
of freedom, allowing the system to evolve over an expo-
nentially large state space that can encode certain prob-
lems that are otherwise intractable. The qubit and gate
model of a quantum computer employs a universal set of
operations, such as single-qubit rotations and two-qubit
controlled-NOT gates [1]. While such few-qubit inter-
actions are sufficient for general computation, and can
be used to construct many-body entangled states [2—
6], many-qubit interactions can dramatically simplify
quantum circuit structures, speed up their execution,
and extend the power of quantum computer systems
facing decoherence. For example, direct N-qubit opera-
tions such as the N-qubit Toffoli gate [7] are expected to
find native use in quantum adders and multipliers [8],
Grover searches [9-11], error-correction encoding [12—
14], variational quantum algorithms for calculating elec-
tronic properties of molecules and materials [15-17], and
simulations of nuclear structure and lattice gauge theo-
ries [18, 19].

Quantum gates based on many-body interactions
have been proposed in several leading physical quan-
tum platforms, from trapped ions [10, 20-22] and neu-
tral atoms [23-27] to superconducting systems [26, 28].
Here we concentrate on trapped ion qubits, which fea-
ture a high degree of control, very long qubit coher-
ence times, high quantum gate fidelities and dense qubit
connectivity [29-31]. There have been proposals to re-
alize N-body interactions between trapped ions using
photons controlled by external optical cavities [21] or
phonons underlying the Coulomb-coupled motion of the
ions [10, 20, 22]. All of the above proposals rely on
either having N or more steps, special auxiliary qubit
level structures, or exquisite control or pure-state prepa-
ration of the mediating phonons/photons.

* Corresponding author: or.katz@duke.edu

Here we discover a simple single-step protocol for
N-body entangling interactions between trapped ion
qubits or effective spins. The operation is similar to
the workhorse Mglmer-Sgrensen (MS) two-body inter-
action [32-35], which relies upon qubit state-dependent
displacement forces. @ We show instead, that state-
dependent squeezing forces can generate tunable N-
body interactions between the qubits. We further
demonstrate construction of the N-Toffoli gate in a sin-
gle step, and discuss other classes of N-body spin Hamil-
tonians that can be similarly generated. As in the stan-
dard two-qubit MS protocol [10, 32-35], this scheme
does not rely on a pure initial phonon state and can
be relatively insensitive to thermal motion. (We note
that spin-independent motional squeezing has recently
been used to enhance MS gate performance, but without
changing the form of the underlying two-body interac-
tion [36-38].)

The central idea behind trapped ion quantum gates
is the coupling between spins and motion (phonons)
through spin-dependent forces [20, 32-35], as illustrated
in Fig. 1. Owing to the Coulomb interaction between
the trapped ions, their motion around equilibrium can
be expressed by collective normal modes of harmonic
oscillation. We focus on the coupling through a single
phonon mode through a near-resonance driving force,
although generalization to multiple modes is straightfor-
ward [41, 42]. We represent the phonon state of mode m
in a frame that rotates at the mode oscillation frequency
wpm, using the phase space position and momentum op-
erators T, = 20 (4l + Gn) and P, = ipd (al, — am)-
Here, G, (d,,) are the bosonic creation (annihilation) op-
erators and 20 = \/h/2Mw,, (9, = \/AMw,,/2) are
the zero-point spread in position (momentum) associ-
ated with mode m, where M is the mass of a single ion.
The spin-motion coupling is parametrized by the Lamb-
Dicke parameter 7, = bimmm, Where 1, = ka0  k is
the effective wavenumber of the radiation field driving
the motion [39] and b;,, is the mode participation ma-
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Figure 1. Quantum Phase Gates with trapped ions. (a) A chain of trapped ions whose many-body spin state |¢) is decoupled
from the motional state |n)., of a single harmonic phonon mode m represented by vibrational integer index n > 0. Ions
are addressed with bi-chromatic Laser fields with carrier spin-flip Rabi rates Q;. (b) Motional sideband transitions driven
by the laser field. Tuning the laser field on resonance with the first red and blue sideband transitions at frequency +wm,
from the carrier [39] generates a spin-dependent force through the absorption and emission phonons. Tuning the tones at
the second red and blue sidebands at +2w,,, from the carrier generates spin-dependent squeezing by absorption and emission
of pairs of phonons. (c) Displacing the motion of mode m in a closed loop of phase space adds a phase ® to the quantum
state that is given by the area of the enclosed contour. (d) The MS gate using spin-dependent displacements result in a spin-
dependent phase linear in the spin operators. When applied to multiple ions, the resulting phase ® is thus quadratic in the
spin operators, corresponding to 2-body MS interaction [35, 40]. (e) Motional-squeezing shrinks one direction in phase space
but expands the other to conserve the phase space element area. (f) N-body entangling gate. Synchronized spin-dependent
squeezing (cross symbols) applied in between displacements produces squeezing of the motion along momentum axis. The
phase ® now depends exponentially on the spins, and therefore contains products of N spin operators. The phase space axes
are displayed with dimensionless units ., = & /(225,) and Pm = Pm/(20%,), with the convention [Zy, pm] = /2.

trix between ion ¢ and mode m, with ZZ bimbin = Onm
and Zm bimbjm = (5”

The MS interaction arises by addressing multiple
ions on the first red and blue sidebands of mode m
from the spin-flip carrier, with relative phase d¢; and
zero-point Rabi rate 7;,,€2;(t) for ion i. Here the car-
rier Rabi frequency Q;(¢) is proportional to the drive
strength, and we assume the motion is confined within
the Lamb-Dicke regime where 7, (al, + @) < 1 [39].
This spin-dependent force displaces the phonon state in
phase space by position A( t) = >, Ailt )ox and mo-

mentum B(t) = > Bilt )crz ) where 68 are the Pauli
spin flip operators (chosen uniformly along z for con-
venience), and the position and momentum displace-

ment amplitudes are A;(t) = %T]im fot dt’'Q); sin d¢; and
B;(t) = %mm fot dt'Q; cos d¢; [32]. Note we have scaled
the position (momentum) variables by 220, (2pY,).

Geometric phase gates such as the MS gate displace
the ions in closed phase space loops [Fig. 1(c) and (d)].
By the end of the gate at time T, the spin state of
the ions is decoupled from the phonons but has evolved

according to Uns(T) = e *®, with geometrical phase
operator

R T dA(t)

b= —2/ B =t (1)

Because A(t) and B(t) are linear in the spin operators,
the gate phase operator d is quadratic in the spin op-
erators [43, 44], limiting the standard MS gate to just
two-body (Ising) interactions.

To generate an N-body spin interaction, we now con-
sider the effect of spin-dependent motional squeezing on
a phase gate operation. Spin-dependent squeezing can
be generated by driving the second red and blue side-
bands of a single phonon mode m, as shown in Fig. 1(b)



[39]. Setting the zero-point 2"¢ sideband Rabi rates
equal to n2,9Q;/2 and the relative phase between the
drives constant across the chain (d¢; = d¢), the spin-
motion interaction becomes (in the Lamb-Dicke regime),

, N
LTI —idp At2 2 NG
Hg = T (e a;, —e am) §mm§2ia¢i . (2)

~

Here Us;) = 69(51) cos ¢; + 6151) sin ¢; is the Pauli spin-flip
operator of spin 7 set by the average phase ¢; of the
ith pair of drives. The phonon operator in Eq. (2) is
the generator of quadrature squeezing along the axis
rotated by 0¢/2 and anti-squeezing along (7 + d¢)/2.
Setting d¢ = 0 squeezes phase-space in position and
anti-squeezes in momentum whereas d¢p = 7 does the
opposite. For simplicity, we fix d¢ = 0 throughout
the paper. Under the time-dependent Hamiltonian Hg
of Eq. (2), the quantum state evolves by the spin-
dependent squeezing operator

Se(t) = e2O@ -~ 3)

where the spin-dependent squeezing amplitude is

. . 1 ) t
() = Z‘fi(t)f?c(/;) =3 35;)?771‘2771/0 Qi(r)dr.  (4)
3 K3

To illustrate the effect of squeezing on a phase gate
operation, we first consider an alternating sequence of
spin-dependent squeezing operations and displacement
forces, here assumed to be spin-independent. Specif-
ically, we apply four discrete displacements along a
rectangular-shaped closed-loop in phase space [35] in-
terspersed with four alternating squeezing operators ap-
plied at the corners of the rectangle that ultimately de-
couple the motion, as depicted in Fig. 1(f). The dis-
placements in position A(tI) = A1l and momentum
B(tp) = B1 are applied for times ¢, and t,, respectively,
where A =% A;(t),B =), B;i(t) and 1 is the identity
spin operator. The squeezing operators are interspersed
with spin-dependent squeezing amplitude £(tg) for time
ts, for a total gate time of T' = 4tg + 2t, + 2t, ~ 4tg.
The evolution operator of this sequence is written

Useq(T) = SETD(—iB)SéD(—A)SgD(iB)SéD(A) (5)
= D(—iBef)D(—A)D(iBe®)D(A) (6)

— e—z@seq ; (7)

where D(@) = e~ an ig the displacement opera-
tor, which moves the phonon state in phase space by
220 Re(a) along the #,, coordinate and by 2p? Im(a)
along p.,. The squeezing operations produce a net dis-
placement whose magnitude is dilated or contracted de-

pending on the spin, since S;[D(iB)Sé = (z’Beé). Be-

cause f is linear in the spin operators from Eq. (4), the
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Figure 2. 3-body entangling gates. (a) Phase space evo-
lution for three spins, following the sequence of alternating
spin-independent displacements and spin-dependent squeez-
ing operations [c.f. Fig. 1(f) and Eq. (5)]. Each ion squeezes
(anti-squeezes) the momentum quadrature of the mth mo-
tional mode by a factor e~¢ (e°) if its spin points downwards
(upwards). The state-dependent phase-space area éseq ac-
cumulated in the evolution generates the gate Useq = efi'i)scq
with a maximal squeezing of the oscillator mode by a fac-
tor e™¢ when all spins are aligned. (b) Overlap between the
proposed many-body gate in Eq. (8) (accompanied by single-
qubit rotations on the third qubit as described in the main
text) and the N-Toffoli gate TJ(\,N) depending on the maximal
squeezing of phase-space area in dB (5_43 = 10§_log10 e) for
N = 3,4. Inset: ideal TS(S) operator in the computational
basis.

gate phase operator is exponential in the spin operators:

N
Beq = 2ABet = 2AB]] (1 cosh &; + 64 sinh gi) :
=1
(8)

corresponding to an effective N-body Hamiltonian
Heg = h®geq/T. This remarkable construction features
many-body in interaction terms, where the relative con-
tribution of the N-body term scales as [, tanh &;, which
is sizeable for & 2 1.



In the limit &; > 1, the gate phase operator becomes
— N .
Booq — 24BN ] 4 (11 v &;?) : 9)
i=1

where € = >;&/N is the mean squeezing amplitude
of the spins. Eq. (9) is proportional to the projection
operator on the state |14 ---1T4), in which each spin

)

points upward along an eigenstate of 6(2,. This ren-

ders Useq into the N-qubit controlled—phasle gate, which

appends the phase factor exp(—2iABe” 3 ) to the state
[te -+~ T¢). From here, it is easy to construct the N-

bit Toffoli gate T ](Vn), which flips qubit n if and only
if all other N — 1 qubits point up along cAr((;i) [7, 20].
By setting 2ABeN¢ = 7 and surrounding this opera-
tion by single-qubit 7/2 rotations on qubit n, we find
T = R (1/2)Useq R (—7/2).

We illustrate the phase space trajectories of the many-
body quantum gate for N = 3 qubits in Fig. 2a for
& = €. The phase accumulated by the quantum state
depends exponentially on the number of spins that are
in the state |T4). In Fig. 2(b) (inset) we exemplify the

operation of the 3-Toffoli gate (T3§3)) on three qubits in
the computational basis. We find that the overlap [45]
of the proposed gate Useq with the ideal Toffoli gate in-
creases as the maximal degree of squeezing of the oscilla-
tor mode is increased and plot the overlap for N = 3, 4.

We next generalize this result and show that vari-
ous N-body Hamiltonians can be generated by simulta-
neous application of displacements and spin-dependent
squeezing. Displacements are generated in the interac-
tion picture by the Hamiltonian

Hp = 220,&(t)pm — 209, B(t)&m.- (10)

where the forces &, /3’ are Hermitian, and their spin-
dependence is determined by the underlying mechanism
from which they are produced. For example, fields pro-
duced by the trap’s electrodes couple to the ions’ charge
and can generate state-independent displacements [29],
whereas optical dipole forces [46-48] or near-field mi-
crowave fields [49, 50] can generate displacements linear
in the spin operators.

The total Hamiltonian of the system is then given by
H(t) = Hs(t)+ Hp(t), and the total evolution operator
can be represented in time-ordered form [51]

U(t) = Se(Ub (). (11)

The operator Up describes the contribution of phase-
space displacements to the evolution and is generated
by the Hamiltonian

H}, = SUHp S = 22%,6(0)e Wy, — 200, B(t)e Oy,
(12)
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Figure 3. Sample sequences of simultaneous displacement
and squeezing to generate N-body spin Hamiltonians. (a)
Spin-independent forces «(t) and B(t) displace the motion
of a single mode along the position and momentum quadra-
tures, respectively. (b) Sequences of discrete modulation of
d¢, the relative phase of the red and blue tones, alternate
between squeezing (anti-squeezing) of the Z,, quadrature for
d¢ =0 (0¢ = m). At the end of each sequence, any corre-
lations developed between motion and spins during the evo-
lution are erased, manifesting the evolution by an effective
spin Hamiltonian Heg,1, Hes,2 or Heg,3 described in the main
text. Grey shaded area indicate regions in which the beam
is turned off Q(t) = 0.

provided that &, B and é commute at all times during
the gate. Spin-dependent squeezing thus renders the
standard forces @, 8 as nonlinear in the spin operators,

via the exponential terms e*E® i Eq. (12). Yet, the
evolution of Up is identical to that of the MS gate under

the simple transformation & — deé, B — Be_f and is
therefore described by [40]

Up(t) = e **D(iB) D(A). (13)

The phase operator @(T) is given by Eq. (1) and the
Hermitian phase-space displacements are

to ’
A(t) :/ eSO a(t)dt!
o (14)
B(t) :/ e~ B(tat'.
0
Similar to the MS gate, the operator U in Eq. (11)

entangles the internal spin state with the motional state
during the gate operation. To realize a gate that is



independent of motion for all input states, we require
that at t =T,

~

A(T) =B(T) = (1) =0. (15)

This decouples the motion (both in displacement and
squeezing) so that the net evolution operator contains
only spin operators, yielding U(T) = e,

We now present sample sequences of simultaneous
squeezing and spin-independent displacements that pro-
duce various N-body spin Hamiltonians. The sequences
we consider follow a rectangular-shaped trajectory in

phase space given by

8(t) = 10(t) = # [w(t.0.1) —w(t. 3, 20)] (1)
B(t) = ]lﬁ(t) = % [w(tv %a %) - w(tv %7T)] (17)

where w(t, to, t1) is the rectangular window function re-
turning 1 if ¢t¢ < t < t; and zero otherwise. For the
squeezing operation, we assume constant Rabi frequen-
cies €; but alternate d¢(t) between the two binary val-
ues 0 and m, yielding &;(t) = 312, fot et gy,

In Fig. 3(b), we display three different sequences
that satisfy the spin/motion disentanglement condi-
tions of Egs. (15) and generate three effective spin-
Hamiltonians.  The first sequence (Fig. 3(b) top)
squeezes only during displacements along Z,, (the
squeezing beam is turned off in the grey shaded area),
yielding

0o j(]; .
_ Y a1 Js
Heg1 =2 L (e 2 1) . (18)
where the collective spin operator is
i

The Hamiltonian is composed of an infinite series of
powers of j¢. The approximate form in Eq. (18) is an
equivalent convergent representation of the sum for in-
vertible Jg. The second sequence (Fig. 3(b) middle)
generates the spin Hamiltonian

00 j2k
— ¢ ~ 9T 2ann2( T
Hefio = kZZO @h a1 = 2J, " sinh”(Jy), (20)

which contains only even powers of j¢, and the
third sequence (Fig. 3(b) bottom) generates Hegs =
(Het1)® /2.

We now consider the speed of the N-body gate, espe-
cially given that it relies on 2°? order motional side-
bands, which in the Lamb-Dicke limit are consider-
ably weaker than the 1°% order sidebands in the con-
ventional MS gate. For two-body MS gates through
single mode m [40], the gate time can be as short as

Tus = T/ N/(n9), where the Rabi frequency € is
taken to be uniform over the involved ions. The N-body
gate presented here based on resonant spin-dependent
squeezing gives a gate time of T ~ 8N¢&/(Qn2,). Here
we have assumed that the mode participation scales as
bim ~ 1/ VN, although if modes are more localized, the
gates can be tailored to be faster for certain subsets of
ions.

Our analysis focuses on the interactions generated
via resonant coupling with a single phonon mode.
However, spin-dependent squeezing through 2°¢ side-
bands can also drive off-resonant sidebands on pairs
of modes p,v detuned by A, = 2w, — w, — wy.
This results in multi-mode squeezing in a potentially
dense sideband spectrum, with the possibility of near-
degeneracies. These off-resonant couplings can be sup-
pressed by judiciously shaping the axial ion trap po-
tential and choosing the target mode so that the un-
wanted sidebands are sufficiently far from the desired
squeezing sideband. For example, the lowest frequency
(zig-zag) radial normal mode is relatively isolated, and
the resulting off-resonant coupling with the nearest 24
sideband detuned A, from the drive scales with rate
D 075 % | Ay, while the desired squeezing inter-
action rate scales as n2,Q2/(2N). Thus the gate error
probability is expected to be € = n2Q/(2NA,,,,) and
can be made small by ensuring n2,Q/N < A,.,. By
shaping the mode spectrum such that A, ~ B/N for
instance, where B is the bandwidth of modes, we find
that for fixed €, the error from off-resonant excitations
does not grow with V. We finally note that it is possible
to apply pulse-shaping techniques to control all multi-
mode squeezing operations for the N-body gate opera-
tion while decoupling all motional modes, exactly has
been demonstrated for multimode MS gates [41, 42].

We finally note that the emergence of N-body interac-
tions discovered here can be seen from the expanded Lie
algebra generated by the combined squeezing and dis-
placement Hamiltonians. This is evident from the Mag-
nus expansion representation of the evolution operator
[52], a sequence of nested commutators of the Hamil-
tonian with itself. For the MS interaction, the series
terminates after the second term because [£,, pm]| = ih.
Here instead, the series does not terminate because for
instance [(a2, — a12)d, D, 2] = 280V, thus carrying
products of further spin operators along in the expan-
sion. This interaction thus represents a new degree of
freedom in controlling trapped ion quantum states, and
may significantly expand the expression of trapped ion
quantum logic operations.

ACKNOWLEDGMENTS

This work is supported by the ARO through the
TARPA LogiQ program; the NSF STAQ program; the



DOE QSA program; the AFOSR MURISs on Dissipation
Engineering in Open Quantum Systems, Quantum Mea-

surement/Verification, and Quantum Interactive Proto-
cols; and the ARO MURI on Modular Quantum Cir-
cuits.

[1] M. A. Nielsen and I. L. Chuang, Quantum Computa-
tion and Quantum Information (Cambridge University
Press, Cambridge, UK, 2000).

[2] C. A. Sackett, D. Kielpinski, B. E. King, C. Langer,
V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette,
W. M. Itano, D. J. Wineland, and C. Monroe, Nature
404, 256 (2000).

[3] T. Monz, K. Kim, W. Hénsel, M. Riebe, A. Villar,
P. Schindler, M. Chwalla, M. Hennrich, and R. Blatt,
Phys. Rev. Lett. 102, 040501 (2009).

[4] T. Monz, P. Schindler, J. T. Barreiro, M. Chwalla,
D. Nigg, W. A. Coish, M. Harlander, W. Hénsel,
M. Hennrich, and R. Blatt, Phys. Rev. Lett. 106,
130506 (2011).

[5] A. Omran, H. Levine, A. Keesling, G. Semeghini, T. T.
Wang, S. Ebadi, H. Bernien, A. S. Zibrov, H. Pichler,
S. Choi, et al., Science 365, 570 (2019).

[6] C. Song, K. Xu, H. Li, Y.-R. Zhang, X. Zhang, W. Liu,
Q. Guo, Z. Wang, W. Ren, J. Hao, H. Feng, H. Fan,
D. Zheng, D.-W. Wang, H. Wang, and S.-Y. Zhu, Sci-
ence 365, 574 (2019).

[7] T. Toffoli, in Automata, Languages and Programming,
edited by J. de Bakker and J. van Leeuwe (Springer,
Berlin, Heidelberg, 1980) pp. 632-644.

[8] V. Vedral, A. Barenco, and A. Ekert, Phys. Rev. A 54,
147 (1996).

[9] L. K. Grover, in Proceedings of the twenty-eighth annual
ACM symposium on Theory of computing (1996) pp.
212-219.

[10] X. Wang, A. Sgrensen, and K. Mglmer, Phys. Rev. Lett.
86, 3907 (2001).

[11] C. Figgatt, D. Maslov, K. A. Landsman, N. M. Linke,
S. Debnath, and C. Monroe, Nat. Commun. 8, 1 (2017).

[12] A. Paetznick and B. W. Reichardt, Phys. Rev. Lett.
111, 090505 (2013).

[13] A. Y. Kitaev, Annals of Physics 303, 2 (2003).

[14] M. Miiller, K. Hammerer, Y. Zhou, C. F. Roos, and
P. Zoller, New J. Phys. 13, 085007 (2011).

[15] P. J. J. O'Malley et al., Phys. Rev. X 6, 031007 (2016).

[16] Y. Nam, J.-S. Chen, N. C. Pisenti, K. Wright, C. De-
laney, D. Maslov, K. R. Brown, S. Allen, J. M. Amini,
J. Apisdorf, et al., npj Quantum Information 6, 1
(2020).

[17] J. T. Seeley, M. J. Richard, and P. J. Love, J. Chem.
Phys. 137, 224109 (2012).

[18] M. C. Banuls, R. Blatt, J. Catani, A. Celi, J. I. Cirac,
M. Dalmonte, L. Fallani, K. Jansen, M. Lewenstein,
S. Montangero, et al., Eur. Phys. J. D 74, 1 (2020).

[19] A. Ciavarella, N. Klco, and M. J. Savage, Phys. Rev. D
103, 094501 (2021).

[20] J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091
(1995).

[21] H. Goto and K. Ichimura, Phys. Rev. A 70, 012305
(2004).

[22] J. D. Arias Espinoza, K. Groenland, M. Mazzanti,
K. Schoutens, and R. Gerritsma, Phys. Rev. A 103,
052437 (2021).

[23] H. Weimer, M. Miiller, 1. Lesanovsky, P. Zoller, and
H. P. Bichler, Nature Physics 6, 382 (2010).

[24] L. Isenhower, M. Saffman, and K. Mglmer, Quantum
Inf. Process. 10, 755 (2011).

[25] H. Levine, A. Keesling, G. Semeghini, A. Omran, T. T.
Wang, S. Ebadi, H. Bernien, M. Greiner, V. Vuleti¢,
H. Pichler, and M. D. Lukin, Phys. Rev. Lett. 123,
170503 (2019).

[26] M. Khazali and K. Mglmer, Phys. Rev. X 10, 021054
(2020).

[27] T. H. Xing, P. Z. Zhao, and D. M. Tong, Phys. Rev. A
104, 012618 (2021).

[28] E. Zahedinejad, J. Ghosh, and B. C. Sanders, Phys.
Rev. Lett. 114, 200502 (2015).

[29] D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried,
B. E. King, and D. M. Meekhof, J. Res. Nat. Inst. Stand.
Technol. 103, 259 (1998).

[30] K. R. Brown, J. Kim, and C. Monroe, npj Quantum Inf.
2, 16034 (2016).

[31] T. Lubinski, S. Johri, P. Varosy, J. Coleman, L. Zhao,
J. Necaise, C. H. Baldwin, K. Mayer, and T. Proctor,
arXiv:2110.03137 (2021).

[32] K. Mglmer and A. Sgrensen, Phys. Rev. Lett. 82, 1835
(1999).

[33] A. Sgrensen and K. Mglmer, Phys. Rev. Lett. 82, 1971
(1999).

[34] E. Solano, R. L. de Matos Filho, and N. Zagury, Phys.
Rev. A 59, R2539 (1999).

[35] G. Milburn, S. Schneider, and D. James, Fortschritte
der Phys. 48, 801 (2000).

[36] W. Ge, B. C. Sawyer, J. W. Britton, K. Jacobs, J. J.
Bollinger, and M. Foss-Feig, Phys. Rev. Lett. 122,
030501 (2019).

[37] W. Ge, B. C. Sawyer, J. W. Britton, K. Jacobs, M. Foss-
Feig, and J. J. Bollinger, Phys. Rev. A 100, 043417
(2019).

[38] S. Burd, R. Srinivas, H. Knaack, W. Ge, A. Wilson,
D. Wineland, D. Leibfried, J. Bollinger, D. Allcock, and
D. Slichter, Nature Physics , 1 (2021).

[39] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland,
Rev. Mod. Phys. 75, 281 (2003).

[40] A. Sgrensen and K. Mglmer, Phys. Rev. A 62, 022311
(2000).

[41] S.-L. Zhu, C. Monroe, and L.-M. Duan, Phys. Rev. Lett.
97, 050505 (2006).

[42] S. Debnath, N. M. Linke, C. Figgatt, K. A. Landsman,
K. Wright, and C. Monroe, Nature 536, 63 (2016).

[43] Y. Lu, S. Zhang, K. Zhang, W. Chen, Y. Shen, J. Zhang,
J.-N. Zhang, and K. Kim, Nature 572, 363 (2019).

[44] C. Figgatt, A. Ostrander, N. M. Linke, K. A. Landsman,
D. Zhu, D. Maslov, and C. Monroe, Nature 572, 368


https://doi.org/10.1038/35005011
https://doi.org/10.1038/35005011
https://doi.org/10.1103/PhysRevLett.106.130506
https://doi.org/10.1103/PhysRevLett.106.130506
https://www.science.org/doi/abs/10.1126/science.aay0600
https://www.science.org/doi/abs/10.1126/science.aay0600
https://doi.org/10.1103/PhysRevLett.86.3907
https://doi.org/10.1103/PhysRevLett.86.3907
https://doi.org/10.1103/PhysRevA.103.052437
https://doi.org/10.1103/PhysRevA.103.052437
https://doi.org/10.1103/PhysRevLett.123.170503
https://doi.org/10.1103/PhysRevLett.123.170503
https://doi.org/10.1103/PhysRevLett.114.200502
https://doi.org/10.1103/PhysRevLett.114.200502
https://doi.org/10.1038/npjqi.2016.34
https://doi.org/10.1038/npjqi.2016.34
https://doi.org/10.1103/PhysRevA.59.R2539
https://doi.org/10.1103/PhysRevA.59.R2539
https://doi.org/10.1103/PhysRevLett.97.050505
https://doi.org/10.1103/PhysRevLett.97.050505
https://doi.org/10.1038/nature18648

(2019).

[45] We calculate the overlap as the entanglement fidelity of
the two Unitary processes. c.f. [53].

[46] C. Monroe, W. C. Campbell, L.-M. Duan, Z.-X. Gong,
A. V. Gorshkov, P. W. Hess, R. Islam, K. Kim, N. M.
Linke, G. Pagano, P. Richerme, C. Senko, and N. Y.
Yao, Rev. Mod. Phys. 93, 025001 (2021).

[47] K. A. Gilmore, M. Affolter, R. J. Lewis-Swan, D. Bar-
berena, E. Jordan, A. M. Rey, and J. J. Bollinger, Sci-
ence 373, 673 (2021).

[48] P. C. Haljan, K.-A. Brickman, L. Deslauriers, P. J. Lee,
and C. Monroe, Phys. Rev. Lett. 94, 153602 (2005).

[49] T. Harty, M. Sepiol, D. Allcock, C. Ballance, J. Tarlton,
and D. Lucas, Phys. Rev. Lett. 117, 140501 (2016).

[50] R. Srinivas, S. Burd, H. Knaack, R. Sutherland,
A. Kwiatkowski, S. Glancy, E. Knill, D. Wineland,
D. Leibfried, A. C. Wilson, et al., Nature 597, 209
(2021).

[51] J. Wei and E. Norman, J. Math. Phys. 4, 575 (1963).

[62] W. Magnus, Communications on Pure and Applied
Mathematics 7, 649 (1954).

[63] M. Horodecki, P. Horodecki, and R. Horodecki, Phys.
Rev. A 60, 1888 (1999).


https://doi.org/10.1103/RevModPhys.93.025001
https://doi.org/https://doi.org/10.1002/cpa.3160070404
https://doi.org/https://doi.org/10.1002/cpa.3160070404

