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ABSTRACT Hybrid quantum-classical algorithms, such as variational quantum algorithms (VQAs), are
suitable for implementation on noisy intermediate-scale quantum computers. In this article, we expand
an implicit step of VQAs: the classical precomputation subroutine, which can nontrivially use classical
algorithms to simplify, transform, or specify problem instance-specific variational quantum circuits. In VQA,
there is a tradeoff between quality of solution and difficulty of circuit construction and optimization. In
one extreme, we find VQA for MAXCUT, which are exact, but circuit design or variational optimization
is NP-hard. At the other extreme are low-depth VQA, such as the Quantum Approximate Optimization
Algorithm (QAOA), with tractable circuit construction and optimization but poor approximation ratios.
Combining these two, we define the Spanning Tree QAOA to solve MAXCUT, which uses an ansatz whose
structure is derived from an approximate classical solution and achieves the same performance guarantee as
the classical algorithm and, hence, can outperform QAOA at low depth. In general, we propose integrating
these classical precomputation subroutines into VQA to improve heuristic or guaranteed performance.

INDEX TERMS Hybrid algorithm, noisy intermediate-scale quantum (NISQ) algorithm, quantum comput-

ing, variational quantum algorithm (VQA).

I. INTRODUCTION

Today’s noisy intermediate-scale quantum (NISQ) comput-
ers are bounded in power by size, noise, and decoher-
ence [32]. Do there exist implementable hybrid quantum-
classical algorithms that outperform the best classical al-
gorithms? Such an algorithm would exhibit a quantum ad-
vantage, perhaps the most ambitious goal of the NISQ era.
One class of algorithms which shows promise are variational
quantum algorithms (VQAs) [7], [11], [26], [28], [31], which
variationally optimize ansatz wavefunctions to extremize
expectation values of objective functions. VQAs construct
a parameterized quantum circuit U(&) in a classical pre-
computation step [see Fig. 1(b)], which is implemented on
an NISQ device and optimized in an outer classical loop
[see Fig. 1(c) and (d)].

Classical no-free-lunch (NFL) theorems for optimization
imply that algorithmic advantages rely on problem struc-
ture [43]. Quantum NFL theorems for specific cases ex-
ist [29], [36], and for VQAs suggest that the ansatz should
reflect problem structure; otherwise VQAs suffer from bar-
ren plateaus [27]. How can the structure of the problem, form
of classical algorithms, or approximate solutions be used in
the classical subroutines of VQA?
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FIGURE 1. Pictorial representation of a VQA. (a) Given some problem
instance, (b) a classical subroutine tailors a problem instance-specific
circuit, by including problem structure, simplifying or transforming the
problem, or using results and structure of classical algorithms. (c) Circuit
is run by a near-term quantum machine and (d) variational parameters
are optimized via repeated query of a classical optimizer.

A problem might be simplified or reduced as in [6], or
by exactly solving weakly connected parts of a MAXCUT
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graph as in [16]. Alternatively, a problem might be mapped or
transformed to one with better heuristics [20], [30]. Classical
insight may motivate the circuit structure as in the case of
machine learning models [4], [37], or generate an analogous
quantum version of a classical algorithm [5].

The coupled-cluster ansatz used in a quantum variational
eigensolver [31], [35] and the the Quantum Approximate Op-
timization Algorithm (QAOA) ansatz [11] reflect structure
by including the terms of the objective function in the ansatz.
Additionally, VQAs can use approximate classical solutions
in their ansatz states using the concept of warm starts, which
initialize the variational parameters with values known to
mimic a good classical solution [10], [12], [17], [39]. If
further variational optimization is possible, the VQA will
improve upon the performance of the classical algorithm.
In the worst case, improvement may not be possible due to
complexity theoretic constraints [2], [21], [24], [25].

In this article, the warm start concept is generalized to
construct problem instance-specific circuits instead of just
choosing initial variational parameters that reproduce ap-
proximate solutions in a fixed ansatz circuit structure. We
use the VQA precomputation step [see Fig. 1(b)] to generate
problem instance-specific circuits that use problem structure
from the form and solutions of classical algorithms as well
as from the objective function. Similar adaptive algorithms
have recently been proposed for iterative QAOA [47] and
quantum chemistry [14], [40], which also attempt to better
leverage classical resources.

While this precomputation step is general, we focus on
solving the particular problem of MAXCUT inspired by
a particular classical algorithm, with the hope of inspiring
other VQA algorithms with nontrivial precomputation sub-
routines. We construct the spanning tree QAOA (ST-QAOA),
a particular VQA to solve MAXCUT [15], [21]. This al-
gorithm uses approximate solutions from a classical MAX-
CUT solver as a subroutine to construct a problem instance-
specific circuit with r rounds of gates. We show that r = 1 is
guaranteed to match the performance of the classical solver,
and r — oo approaches the exact result.

We introduce the ST-QAOA in a sequence of algorithms
that illustrate the tradeoffs between quality of solution and
classical computational difficulty of the precomputation step.
First, we introduce the spanning tree algorithm, which can
produce exact solutions at the expense that circuit generation
is NP-hard. Next, we introduce the variational spanning tree
(VST) algorithm, which can produce optimal answers at the
expense that variational optimization is NP-hard. Finally, we
introduce the ST-QAOA and present numerical evidence of
its performance on random instances of 3-regular MAXCUT,
demonstrating that ST-QAOA can always reproduce the per-
formance of the classical algorithm it uses to construct its
ansatz.

IL. MAXCUT AND SPANNING TREES
First, let us define the SIGNED MAXCUT problem and the
structure of spanning trees, which will be the algorithmic
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FIGURE 2. Example SIGNED MAXCUT graph instance and approximate
solutions. A signed graph (a) is constructed of edges with positive
(dashed) or negative (solid) signature. Dashed edges are satisfied if
vertices are in the same partition, and solid edges are satisfied if vertices
are in the opposite partition. (b) Example approximate bipartition z and
(c) equivalent spanning tree 7; satisfy 9 out of 15 edges. The maximal
number of cut edges is 12 out of 15 for this graph, leaving ST-QAOA
room for improvement.

insight for ST-QAOA. A signed graph I' = (G, 0') [45] is
constructed of graph G and signature for each edge o = +1.
The goal of SIGNED MAXCUT is to find a bipartition of
vertices {X, Y} (or binary string z labeling the bipartition)
such that the maximal number of edges of I" are satisfied (or
“cut”). An edge with a negative signature is satisfied if its
vertices are in opposite partitions, and unsatisfied otherwise.
MAXCUT is the specific case where the signature of every
edge is negative. An example signed graph is shown in Fig. 2.

SIGNED MAXCUT is closely related to balance in signed
graphs [44]. A signed graph is balanced (bipartite) if there
exists a bipartition of vertices such that every edge of I' is
satisfied [19]. SIGNED MAXCUT is equivalent to the max-
imum balanced subgraph problem [34]: given some signed
graph I', what is the minimal number of edges e, which need
be removed to make I'\e balanced? Any solution z induces
some subset of edges e, which remain unsatisfied, so that I"\ e
is balanced. An optimal solution z will remove the smallest
number of unsatisfied edges e.

The bipartition z of a balanced graph can be found with a
directed spanning tree, as follows [22]. Given some balanced
graph I'\e, construct any spanning tree 7 with a unique
path between each vertex. Starting with some arbitrary origin
vertex, traverse the tree to assign each vertex to a bipartition.
If the signature of an edge is (—), assign the next vertex in
the path to the opposite partition as its parent, and the same
if (+). This satisfies every edge of the spanning tree and,
because the graph is balanced, every edge in the reduced bal-
anced graph I'\e. Any spanning tree over a balanced graph
generates the satisfying bipartition z, as z is unique [46].
Thus, the maximal bipartition z of graph I" is equivalent to
some choice of spanning tree 7. In this way, the search space
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of SIGNED MAXCUT solutions can be reduced to searching
through the set of all possible spanning trees [33], as the
optimal bipartition z is given by some particular spanning
tree(s) 7; over the signed graph I".

leen some signed graph I' = (G, o), the optimal biparti-
tion of vertices is encoded in the maximal eigenstate of the
objective function

= 3 2 +éijoied) (1)
(i)

where each clause in the sum represents an edge of the graph,
with eigenvalue +-1 if the edge is satisfied and eigenvalue O
if the edge is not satisfied, and o;; the signature of the edge.
The goal of any VQA is to optimize the expectation value
of the objective function with an ansatz wavefunction. We

write an ansatz circuit of r rounds in the general form

e 4 @)

where «, are classically optimized variational parameters.
Note that r may not correspond to circuit depth. The cir-
cuit is constructed from a restricted set of generators H;

|,IP_} — etllqlﬂ'letlgzﬂg(‘ .

for example, in QAOA, 6;65’ operators acting on all edges
of a graph (ij) € G, and c”r;' operators acting on all vertices.
The classical computers’ challenge is specifying the circuit
structure in (2) via the precomputation step [see Fig. 1(b)]
and finding particular angles [see Fig. 1(d)], which maximize
the objective function. Optimal bitstring solutions may be
read out by observing (¢ i&; |} for each qubit and assigning
the bitstring according to the measurement +1.

We will now give exact VQA algorithms for MAXCUT.
For the restricted generators of QAOA, eigenstates are cat
states due to Z, symmetry and the ansatz wavefunction lies
in the +1 sector, so an optimal state must have the particular
form of a “cat state” [12]

1
V) :EUZ}"FE)) 3

where z is the binary representation of the optimal MAXCUT
solution, and T = —z. The ansatz of (2) can generate such
states, and so VQA can be exact [12]. Consider the sequence
of unitaries between two vertices

1¥) = el 4 gy = X Gon) +110)). @)

This is the desired “cat state,” up to a global phase. Chang-
ing the sign of 6,6, generatcs the state (|11} 4 |00}) ,z‘\/_ 2.In
general, a unitary U written as a directed arrow between
two vertices

Uij': - einajjﬂe:[:mcrzcrz /4

T Q)
o o

evolves an initially unentangled X product state into a max-
imally entangled Bell pair with either the same (+) or oppo-
site (—) correlation. It is simple to generalize that products

VOLUME 2, 2021

of these unitaries along a directed tree will generate Z cat
states [12]. For example

- (101011) + [10100)).

2
| (6)

—>0
°_’<:e

If these unitaries map to a directed spanning tree of G, they
may prepare any eigenstate z of (3), by choosing signs U* of
each directed edge depending if the vertices are in the same
(+) or opposite (—) partitions. These unitaries are Clifford:
(4) is equivalent to a Hadamard on register 1, then a cNoT
between registers 0 and 1.

This is a unitary version of the spanning tree algorithm
of [22], if one chooses the sign of each unitary to be the
sign of the signature of its edge. Given some bipartition z
and associated spanning tree 7;, one can construct the state
as an ordered product of these unitaries over directed edges
(up to a global phase)

2) + 2) 0
=g |1 6715 @)
‘/5 (if)eT;

Here, 7 denotes inverse path ordering of unitaries along
the directed spanning tree 7, and o;; is the signature of edge
(ij) in signed graph I'. Note that not every bipartition z may
be constructed in this manner, as the spanning tree requires
the reduced balanced subgraph I'\ e to be connected. We call
this algorithm “spanning tree.”

This algorithm is exact in the following case. As part of
the precomputation step, some classical algorithm finds the
optimal partition z and an associated spanning tree 7. Then,
implement the circuit of (7) to generate a maximal eigenstate
of the objective function. However, this exactness comes at
the cost that generafing the sequence of gates is classically
hard. The classical algorithm that creates the optimal circuit
must first find the spanning tree(s) whose bipartition provides
the solution to the SIGNED MAXCUT problem, which is
known to be NP-hard.! This demonstrates a case in which
their exist exact quantum circuits that provide solutions to
hard problems, generating the circuit may itself be a hard
problem classically.

The spanning tree algorithm can be made variational by
allowing the unitaries of the directed edges of any spanning
tree to be a function of angles

U£4U;2U;f3Ual [+) =

5 s o ]
Uy, B) = &P% £Froied, ®)

The variational algorithm is as follows. For a signed graph
I' of N vertices, a classical algorithm generates a random

ISIGNED MAXCUT can be reduced to MAXCUT by replacing every
positive edge with two negative edges and a connectivity 2 vertex.
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FIGURE 3. Example round of ST-QAOA. A classical algorithm computes some approximately optimal SIGNED MAXCUT solution by finding an appropriate
spanning tree (left). A QAOA round alternates between o;0; unitaries on edges (red) and oy unitaries on vertices (blue). First, the complement unitary is
applied, then the tree unitary, which mimics the directed tree graph via repeated application of oz0; and oy. This is repeated r times. For r = 1 this is
guaranteed to match the performance of the classical algorithm, and for r — oo the approximation ratio approaches 1.

spanning tree 7 and outputs a circuit, which is a function
of 2N — 2 angles

07.B)=T [] OB ©

q<(ij)eT:

where ¢ indexes the edges of the tree, and 7 indicates the
path ordering of unitaries along the randomly chosen directed
spanning tree. We call this algorithm “variational spanning
tree” (VST).

By (5), extremal values y, € 47 /4 and B, = 7 /4 can
construct any state (|z) + |Z));‘\/§. It is the job of a classical
optimizer to optimize the angles and find N — 1 signs of
¥p. Which construct the optimal state. However, this VST
algorithm is classical. In the Heisenberg picture, expectation
values of operators are

6= T1

ge path i<+ j

sin(2y,) sin(2,) (10)

where q index all of the edges of the spanning tree on the
unique path between vertices i and j. Thus, the expectation
value of the objective function for any graph may be com-
puted classically. Bitstrings can also be efficiently sampled
using tensor networks [13] by recursively contracting leaves
of the spanning tree. Hence, VST is purely classical and can-
not exhibit any quantum advantage. Instead of generating the
circuit being NP-hard, the optimization itself is NP-hard [3],
[9]1, [38]. Ultimately, this is because the optimization algo-
rithm is a discrete search, finding N — 1 signs y = +m /4 or
analogously the optimal bitstring z. VST demonstrates that
while circuit generation may be easy, optimizing parameters
in and of itself may be a hard problem classically.

1. SPANNING TREE QAOA

It is reasonable to expect that if the number of variational
parameters is constant in problem size, the optimization is
more efficient. QAOA has this property [11] due to having
a more constrained ansatz. Instead of choosing individual
terms 6,6, and &, acting in serial, QAOA alternates between
acting with the objective function € and a sum of Pauli &,
terms B. The number of variational angles is 2p, independent
of problem size

s =g K UGN, (@D

There has been much work on QAOA. The approxima-
tion ratio uniformly increases in p, with the p — oo limit
converging to the exact state with an adiabatic schedule [8],
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[11], [42]. For large p, it has been observed that the optimal
parameters exhibit concentration and become independent
of graph instance [1], and optimal parameters for p can
induce the parameters for p + 1 [48]. These facts suggest
that the classical optimization may be efficient. This comes
at the cost that performance guarantees are combinatorially
difficult to compute [11], [41], and to date QAOA has not
outperformed the best classical algorithms [11], [41]. QAOA
can be contrasted with the VQAs we define above, which can
generate eigenstates of the objective function, including the
maximal state, at expense of generating the gate set, or the
optimization procedure, being NP-hard.

We now propose a combination of the spanning tree al-
gorithm and QAOA, which we call ST-QAOA. To avoid the
difficulty of parameter optimization, the circuit optimizer
will use a nonextensive number of variational parameters,
like QAOA. To avoid the difficulty of circuit design, instead
of finding the exact maximal spanning tree, the circuit con-
struction will use an approximate solution from a classi-
cal MAXCUT solver to generate spanning trees. Finally, to
mimic QAOA, the ansatz will repeat p times, and be able
to reproduce QAOA as a special case. The ST-QAOA is as
follows.

Given some signed graph I', a classical MAXCUT solver
P outputs some bitstring P(I") = z and associated directed
spanning tree” T; with root vertex v. Next, partition the edges
of the graph G into those in the spanning tree and its comple-
ment to define a ST-QAOA round

f}(}}Cs }’Tu ﬁ)E
(7 TT o7 omm)e( TT enol). a2
(ij)T; (1)eT;

An example of this circuit is shown in Fig. 3. This applies
aunitary generated by the complement edges of the spanning
tree, then the spanning tree unitary with some global angle.
An ST-QAOA procedure repeats this unitary p times as a

2 Any classical algorithm can find solutions where the reduced balanced
subgraph I"\e is connected and so will have an associated spanning tree by
adding the following subroutine: for all vertices within some disconnected
subgraph of T"\e, swap the bipartition X < ¥. This will satisfy all of the
edges of the original graph between the two previously disconnected sub-
graphs, increasing the number of satisfied edges and making the reduced
balanced graph connected.
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function of 3p variational parameters

r
[¥) = Usraoal+) = [[OG2. vf. BOI+).
g=1

(13)

Like QAOA, this algorithm has a number of parameters
independent of the problem size. Unlike QAOA, the ansatz
depends on the approximate classical solution, and can gen-
erate extensive correlations even for r = 1. Such a circuit
includes all terms in the objective function and mixing term,
except reordered to include the structure of spanning trees,
which allows the algorithm to include QAOA as a special
case. Let us now inspect the performance of this algorithm.

For r = 1, ST-QAOA can return the bitstring z produced
by the classical subroutine P. By choosing the angles y,. = 0,
yr = n /4, B = m /4, the unitary is equivalent to (7) for the
particular choice of spanning tree generated by P, and so ST-
QAOA can give the same solution as the classical subroutine.
Therefore, ST-QAOA has the same performance guarantee as
its classical subroutine.

For r = 2, it is possible to reproduce a round of QAOA.
Given QAOA angles y; and B, for the first round, choose an-
gles y. = yr = %, and B = 0. For the second round, choose
angles y. = yr = 0 and B = B,. The first round of unitaries
is equivalent to the unitary generated by the objective func-
tion, as each o0, term commutes. This is the reason why the
complement unitary, which includes all edges not in the span-
ning tree, must be added to the ansatz. The second round of
unitaries is equivalent to the unitary generated by the mixing
function for the same reason. Thus, the approximation ratio
of level 2r ST-QAOA will always be at least that of level p
QAOA. As p increases for QAOA, the approximation ratio
increases, approaching lin the p — oo limit [11]. Because
the ST-QAOA includes QAOA as a special case, ST-QAOA
will also approach the exact result as r — oo.

ST-QAOA is a useful algorithm with which to interrogate
the possibility of various forms of quantum advantage. Can
ST-QAOA exceed the performance of the best classical al-
gorithms for worst case graphs? This would be the case if
further variational optimization is possible in ST-QAOA for
all graphs when the best classical algorithm is used as a sub-
routine, and would represent quantum advantage. Such a case
cannot be established numerically, and may not be possible
due to complexity-theoretic constraints [2], [21], [24], [25].
A simpler question is whether, above some threshold value
of r, there exist subsets of graphs for which ST-QAOA has
strictly better performance. This is not quantum advantage,
as it only shows improved performance relative to a partic-
ular algorithm for a subset of graphs, which imposes addi-
tional structure that could be exploited by another specialized
classical or quantum algorithm.

To make a quantitative comparison of algorithms we use
the performance ratio

B(I') = Co(T") / Ce(T) (14)
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FIGURE 4. Comparing ST-QAOA, QAOA, random spanning tree (RST), and
GW algorithms for an ensemble of 250 random 3-regular graphs with 16
vertices. (a) Plots the performance ratio B(I'), comparing ST-QAOA
(horizontal axis) and QAOA (vertical axis) for each graph in the
ensemble. It is clear that the ST-QAOA has a performance guarantee
B(T) = 1 for p = 1. (b) Plots the average performance ratio versus the
number of repetitions of the GW algorithm. As GW is a randomized
algorithm, repeated sampling uniformly increases its performance, and
the performance ratio appears to converge to 1 from above. (c) and (d)
Plots the average performance ratio over the ensemble versus the
random spanning tree (c) and GW (d) algorithms. QAOA has advantage
over the random algorithm (black dashed) with p > 3 and advantage
over ST-QAOA with the random algorithm for p > 5.

where Cq(I') is the optimized expectation value of the ob-
jective function for a VQA applied to the signed graph I',
and Cc¢(T') is the number of satisfied edges given an output
from the competing classical algorithm P. A value B(I') > 1
indicates that the quantum algorithm can find better solu-
tions than the classical algorithm for particular problem in-
stance I". If (B) > 1 for graphs in some ensemble {I'}, then
the quantum algorithm has average case quantum advantage
over its classical competitor, as the quantum algorithm can
produce better solutions than the classical algorithm in at
least some of the graphs. For the ST-QAOA, the worst case
B(I') = 1 for all graphs relative to the classical algorithm
employed by ST-QAOA to generate the ansatz.

As a numerical demonstration, we implement ST-QAOA
on an ensemble of 3-regular graphs. We choose two classical
algorithms to generate spanning trees. The first is that of Goe-
mans and Williamson (GW) [18], which uses semidefinite
programming to achieve an approximation ratio of at least
0.878 in general graphs, and 0.932 in 3-regular graphs [23].
The second algorithm samples a random spanning tree and
achieves an approximation ratio of 2/3(1 — 1/n) for a 3-
regular graph with n-vertices [33]. Numerical results for an
ensemble of 250 3-regular graphs with 16 vertices are shown
in Fig. 4. Optimization used gradient ascent initialized from
100 random points in parameter space. From Fig. 4(a), it
is clear that B(I') = 1 for ST-QAOA and that there exist
graph instances for which the ST-QAOA exhibits advantage
over its competing classical algorithm and performs better
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than QAOA. Fig. 4(c) and (d) shows that the average per-
formance ratio (B(I')) > 1 for all p as expected, indicating
an average case advantage for the spanning tree algorithm
over its classical subroutine. Fig 4(b) shows that care must
be taken to ensure that the classical algorithm is also per-
forming optimally by illustrating the convergence of average
performance ratio to one with increased number of rounds
of GW. Each round of GW improves the classical solution
quality, reducing the room for improvement from ST-QAOA.
It may be the case that the improvement over GW is only
due to atypically poor individual solutions. Nonetheless, the
performance advantage is typically extremely low, suggest-
ing that GW may a close to optimal algorithm; further study
is beyond the scope of this work. Fig. 4(b) illustrates that
careless use of classical algorithms can create the illusion of
quantum advantage.

IV. CONCLUSION

In this article, we have expanded VQA with problem
instance-specific circuits precomputed by a classical subrou-
tine. We also highlight the computational complexity pitfalls,
which may arise from such constructions. One may design an
algorithm whose circuit yields exact answers to MAXCUT,
at the cost that the algorithm is NP-hard, as exemplified by
the spanning tree algorithm. Similarly, an algorithm which
constructs the circuit may be simple at the cost that the
variational optimization algorithm is NP-hard, as exempli-
fied by the VST algorithm. The intermediate algorithm, the
ST-QAOA, combines QAOA with the concept of spanning
trees to improve approximate classical solutions.

However, the ST-QAOA requires the use of its compe-
tition as a subroutine to generate the circuit. In practice,
any classical algorithm could integrate a similar scheme by
running multiple algorithms in parallel and choosing the
more optimal result, or use additional classical algorithms
to improve the output of one classical algorithm. This is
clear in Fig. 4(b), when the optimal result among multiple
GW queries is used as a classical solution. Because GW is
randomized, the performance uniformly increases and re-
moves any additional advantage from the ST-QAOA. Due
to this subtlety, we make no claims of quantum advantage,
even though the ST-QAOA can only increase the quality of
solutions of its classical subroutine.

While we focus on the problem MAXCUT using the con-
cept of spanning trees, the precomputation step is more gen-
eral. Using these ideas, constructing VQAs that take ad-
vantage of the precomputation step to nontrivially generate
problem instance-specific circuits may improve heuristic and
guaranteed performance on the limited quantum resources of
today’s NISQ devices.
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