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We obtain worst-case performance guarantees for p = 2 and 3 QAOA for MaxCut on uniform 3-regular
graphs. Previous work by Farhi et al. obtained a lower bound on the approximation ratio of 0.692 for p = 1.
We find a lower bound of 0.7559 for p = 2, where worst-case graphs are those with no cycles �5. This bound
holds for any 3-regular graph evaluated at particular fixed parameters. We conjecture a hierarchy for all p, where
worst-case graphs have with no cycles�2p+ 1. Under this conjecture, the approximation ratio is at least 0.7924
for all 3-regular graphs and p = 3. In addition, using an indistinguishable argument we find an upper bound on
the worst-case approximation ratio for all p, which indicates classes of graphs for which there can be no quantum
advantage for at least p < 6.
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I. INTRODUCTION

In the rapidly developing field of quantum technology,
near-term quantum devices [1] are the focus of much interest.
Such noisy intermediate-scale quantum (NISQ) devices lack
error correction and have imperfect gate implementations and
environmental isolation, which restrict them to implementing
only low-depth algorithms. Even with these constraints, can
such a device display quantum advantage?

One algorithm suitable for NISQ devices is the quantum
approximate optimization algorithm (QAOA), a hybrid quan-
tum classical combinatorial optimization algorithm [2]. In
QAOA, a classical computer optimizes 2p angles parametriz-
ing an ansatz wave function by querying a near-term quantum
device. This wave function encodes an approximate solution
to some combinatorial optimization problem. For p → ∞, it
is known that the ansatz wave function encodes the exact solu-
tion, which follows from the adiabatic theorem [3]. For finite
p, the picture is less clear. What p is needed to outperform the
best classical algorithm? Asking such questions leads to com-
petition between quantum and classical algorithms [4]. For
example, a QAOA algorithm for E3LIN2 [5] with a quantum
advantage was answered by an improved classical algorithm
[6], which prompted an improved QAOA version without an
advantage [7].

One can find worst-case performance guarantees for par-
ticular classes of problem instances in QAOA. Approximate
solutions to a problem achieve some fraction C of the exact
solution, called the approximation ratio. A worst-case perfor-
mance guarantee bounds this approximation ratio from below.
If the minimum approximation ratio Cmin obtained from the
quantum algorithm is larger than the value for the best clas-
sical algorithm, then the quantum algorithm has a quantum
advantage, as it will produce better approximate answers for
all instances. It is important to ask what this worst-case per-
formance guarantee Cmin is for QAOA as a function of p.
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In this paper, we apply QAOA to the NP-hard graph parti-
tioning problem of MaxCut [8], which partitions some graph
into two sets by cutting a maximum number of edges. We will
find that the worst-case performance guarantee for 3-regular
graphs and p = 2 is C2 � 0.7559, confirming the observation
of Ref. [2] and improving on the original result for p = 1
of C1 � 0.692, as expected. Under a conjecture that graphs
with no “visible” cycles are worst case, we find C3 � 0.7924
for p = 3. Additionally, we use an argument where fixed p
QAOA cannot distinguish between large cycles of even and
odd length to find an upper bound on expectation values,
which upper bounds the minimum approximation ratio.

The paper is structured as follows. Section II reviews
QAOA applied to the MaxCut problem. Sections III and IV
detail how expectation values and the approximation ratio can
be computed efficiently for any bounded degree graph for
fixed values of p. Section V computes the worst-case perfor-
mance guarantee for the p = 1 and 2 cases. Sections VI–IX
discuss some of the implications of the worst-case perfor-
mance, and Sec. X concludes with a discussion and interesting
future directions.

II. THE MAXCUT PROBLEM AND QAOA

The MaxCut problem is defined as follows. Given a graph
G with vertices V and edges E , the vertices are partitioned
into two sets labeled by, say, + or −. The goal is to find the
partition of vertices such that a maximal number of edges have
one vertex in each set. Restated, a solution to the MaxCut
problem separates a graph G into two subgraphs by cutting
the maximum number of edges.

This problem is encoded in qubits as follows. For each
vertex, assign a qubit. Given vertices 〈i〉 and edges 〈i j〉 for a
graph G, the maximum cut is given by the maximal eigenstate
of the objective function

Ĉ =
∑
〈i j〉

1

2

(
1 − σ̂ i

z σ̂
j
z

)
. (1)
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Each term is a clause representing an edge of the graph G,
with an eigenvalue of 1 if the edge is cut, and 0 if the edge
is not. Because Ĉ is made of a sum of commuting Pauli σ̂z

terms, any eigenstate is a product state, and the maximal state
can be simply read out in the Z basis. The partitioning of
vertices is obtained by assigning each vertex according to a
Z measurement outcome ±1.

One method of computing an approximate maximal state
of Ĉ is the quantum approximate optimization algorithm
(QAOA) [2,9–14]. QAOA optimizes a variational wave func-
tion by maximizing the expectation value of the objective
function with respect to a set of parameters {γ }, {β},

F (γ , β ) = 〈γ , β|Ĉ|γ , β〉,
Fmax = MAX

γ ,β
: F (γ , β ). (2)

The state preparation and evaluation of the expectation value
〈Ĉ〉 can be done on a small quantum device, while the opti-
mization of variational parameters {γ }, {β} can be performed
on a classical computer. The QAOA ansatz wave function
|γ , β〉 is defined as [2]

|γ , β〉 = e−iβpB̂e−iγpĈ (· · · )e−iβ1B̂e−iγ1Ĉ |+〉, (3)

where B̂, the “mixing Hamiltonian,” is defined as B̂ = ∑
i σ̂

i
x

and |+〉 is the equally weighted superposition state or anal-
ogously the largest eigenstate of B̂. Ellipses represent p
iterations of unitarily evolving the wave function alternatively
with generators Ĉ and B̂. In the limit p → ∞ the optimal state
|γ , β〉 approaches the exact maximal state [2].

Given an approximate wave function with expectation
value 〈Ĉ〉, the state can be repeatedly measured m times in the
Z basis to find a bit string whose expectation value evaluates
to at least 〈Ĉ〉(1 − 1/m) as an approximate MaxCut solution.
This is due to the phenomena of concentration, wherein the
variance of expectation values is much smaller than the ex-
pectation value itself [12].

The approximation ratio for MaxCut is

C(γ , β ) = F (γ , β )

Cmax
, (4)

where Cmax is the maximum number of edges cut for an ideal
partition of a particular graph G. A number in between 0
and 1 measures how close the variational state is to the exact
maximal state. A larger number indicates better performance,
as bit strings from the measurement procedure will have a
better MaxCut value. If Fmax = Cmax, then the variational state
is the exact maximal state, and the approximation ratio is 1.
Note that in practice,Cmax may not be known, so bounding the
approximation ratio from below requires Cmax to be bounded
from above.

III. FIXED-p ALGORITHM

It was found by Farhi et al. in 2014 [2] that for a fixed
graph degree ν and particular value of p, the numerical dif-
ficulty of simulating QAOA evolution grows at most doubly
exponentially in p, and linearly with the number of vertices
N . In the interests of fixing notation and making the present
paper self-contained let us begin by repeating the derivation
of Ref. [2] here.

The expectation value F (γ , β ) is

F (γ , β ) =
∑
〈i j〉

f〈i j〉(γ , β ),

with

f〈i j〉(γ , β ) = 1
2

〈
γ , β

∣∣1 − σ̂ i
z σ̂

j
z

∣∣γ , β
〉
, (5)

where the expectation value F (γ , β ) has been broken into a
sum of terms f〈i j〉(γ , β ) corresponding to individual edges
〈i j〉. For a particular value of p, each value of f〈i j〉(γ , β ) may
be computed as

1
2 − 1

2 〈+|(· · · )eiγpĈeiβpB̂σ̂ i
z σ̂

j
z e

−iβpB̂e−iγpĈ (· · · )|+〉, (6)

where ellipses denote the action of the other 2p− 2 genera-
tors.

In the Heisenberg picture, this expectation value can be
computed for any value of N . The first generator B̂ rotates
each objective function clause as

σ̂ i
z σ̂

j
z →[

cos(2βp)σ̂
i
z + sin(2βp)σ̂

i
y

]
× [

cos(2βp)σ̂
j
z + sin(2βp)σ̂

j
y

]
, (7)

keeping the Heisenberg rotated operator local to the span
of the two sites i, j. Terms σ̂ k

z σ̂ l
z in the second generator Ĉ

commute and cancel unless the edges j, k overlap with i or j.
In that case, the σ̂y are rotated into σ̂x and σ̂z by terms σ̂ k

z σ̂ i
z ,

growing to a span supporting the three sites i, j, k for terms
such as σ̂ k

z σ̂ i
yσ̂

j
y . Repeating this one layer deeper can rotate

Pauli operators on site k, and so forth. From this argument, it
can be seen that after p steps, the operator will have a support
over a subgraph with vertices at most p edges away from the
initial vertices i, j.

Given a graph G and edge 〈i j〉, in order to compute a
value f〈i j〉(γ , β ) one may truncate the graph to an induced
subgraph only including vertices which are at most p edges
away from either i or j, and the presence of the other vertices
does not contribute to the expectation value. We denote such
a subgraph of edge 〈i j〉 within graph G to depth p as G p

〈i j〉.
For a fixed p and graph degree ν, there are a finite number
of unique subgraphs. For 3-regular graphs, there are exactly
three edges incident on the vertex, and for p = 1 there are
three subgraphs, with at most six vertices; for p = 2, there are
123 subgraphs with at most 14 vertices; for p = 3, there are
913 088 subgraphs with at most 30 vertices. See Appendix B
for more details, and the table in the Supplemental Material
[15] for enumerated subgraphs for p = 1 and 2. We will
focus on 3-regular graphs, but these results generalize to other
graphs with a small bounded degree.

As a technical note, because only vertices within p steps
of the edge 〈i j〉 need be considered to compute f〈i j〉(γ , β ),
such expectation values may be efficiently calculated in the
Schrödinger picture. Because a σ̂zσ̂z operator only spreads
to a span over the subgraph, one need only apply unitary
operators over the subgraph. If the wave function is evolved in
the Schrödinger picture under these unitaries, the state on all
other sites remains an unentangled |+〉 product state, and thus
one can consider the wave function only acting on the reduced
Hilbert space of the n vertices of the subgraph. This allows
computation with the order 2n values of the wave function on
the subgraph, instead of the order 4n values from a general
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FIG. 1. An example graph with subgraph assignments for p = 1.
Each edge (red) exists in a subgraph of edges and vertices a dis-
tance p � 1 away (gray circle). Edges within one step of the red
edge (black) uniquely define the subgraph assignment of the edge.
For this graph, there are four instances of subgraph 0 (“the tree”),
ten instances of subgraph 1 (“single triangle”), and one instance of
subgraph 2 (“two triangles”). The subgraph of each edge is labeled
on the edge. A more detailed visual of this decomposition is shown
in Fig. 2.

operator acting on the subgraph in the Heisenberg picture, or
order 2N values of the wave function on the entire graph.

The procedure for computing the expectation value
F (γ , β ) for a particular graph G of bounded degree ν and
fixed p is as follows. For each edge 〈i j〉, identify the subgraph
G p

〈i j〉 of all edges and vertices within p steps of i and j (see
Fig. 1). This defines a collection of subgraphs {G p

〈i j〉|〈i j〉 ∈ G},
one for each edge, for which each f〈i j〉(γ , β ) can be computed
in parallel. This collection of subgraphs can be further decom-
posed by counting the number Nλ(G ) of each kind of subgraph
λ, Sλ ∈ {S} in the collection of all subgraphs of depth p, with
each edge of the graph given a particular subgraph assignment
〈i j〉 → λ. The expectation value is then

F (γ , β ) =
∑

subgraphs λ

Nλ(G ) fλ(γ , β ), (8)

where fλ(γ , β ) is the expectation value of the center edge of
the λth subgraph.

IV. LOWER BOUNDS ON THE APPROXIMATION RATIO

A performance guarantee for QAOA can be obtained by
computing a lower bound of the approximation ratioCp(G ) =
FM/CM of any graph, then finding the graph(s) with the lowest

lower bound. Such a lower bound is given by the ratio of a
lower bound on the maximum expectation value FM , and an
upper bound on the best MaxCut value CM .

A. Lower bound on the maximum expectation value FM

The value FM is bounded from below by

FM = MAX
γ ,β

: F (γ , β ) �
∑

λ

Nλ(G ) fλ, (9)

where fλ ≡ fλ(γ , β ) is the expectation value of the center
edge of the particular subgraph λ, chosen for a particular set
of values (γ , β ).

The sum on the right-hand side of Eq. (9) is guaranteed to
be less than or equal to the global maximum Fmax, which si-
multaneously optimizes (γ , β ) for all clauses. We may choose
the set of values for which to compute fλ; we use the following
set of angles,

p = 1 : {γ1, β1} = {35.3◦, 22.5◦},
p = 2 : {γ1, β1, γ2, β2} = {28.0◦, 31.8◦, 51.4◦, 16.8◦}.

(10)

These values are one of the optima for the tree subgraph,
which does not have any cycles (see Fig. 1, bottom left). For
more details on this choice of angles, see Sec. VI.

B. Upper bound on the MaxCut value CM

It is hard to find the exact MaxCut valueCM , which is after
all one of the objectives of the QAOA algorithm. Fortunately,
it suffices to find an upper bound ofCM to yield a lower bound
on the approximation ratio. Equivalently, we may find a lower
bound on the number of uncut edges in a partition of a graph,
RM (G ), to find the upper bound on the number of cut edges
CM = N (G ) − RM (G ). While these two views are equivalent,
we find it more convenient to count uncut edges.

The lower bound on the number of uncut edges can be
found by considering only the local structure of a graph.
Locally, there is some amount of “visible” frustration, which
forces a minimum number of edges to remain uncut. For
example, a triangle of three vertices requires at least one edge
uncut. Additional edges may remain uncut due to a global
structure which is not “visible” locally. We will use the local
structure of a graph to get the tightest possible lower bound on
the number of uncut edges. While other simpler methods such
as semidefinite program (SDP) relaxations [16] find upper
bounds on the MaxCut value, they do not use a local structure,
as will be necessary for the proof. This locally computed
MaxCut bound generalizes that of Ref. [2] beyond p = 1. The
bound will be done in three steps, each of which tighten the
bound.

As a first step, a trivial underestimate of the number of
uncut edges is that no edges remain uncut in the graph, and
so the MaxCut value is bounded from above by the number
of edges in the graph. This bound is not tight, and does not
take into account any of the structure of the graph. This trivial
bound can be tightened by considering the local structure.

As a next step, consider for a graph G, a graph Hp which
is a collection of disconnected subgraphs G p

〈i j〉, one for each
edge 〈i j〉 in G. An example of this decomposition is shown in
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FIG. 2. A lower bound on the approximation ratio can be found by a decomposition into subgraphs. Any graph G (center) can be
decomposed into the subgraph graph Hp. A lower bound on the expectation value is given by a sum over all subgraphs [Eq. (8)] where
the center edge is in red. An upper bound on the MaxCut value is found by a careful counting of uncut edges. A particular edge (green) appears
five times inH1 (left) and nine times inH2 (right). A subgraph contributes to the sum (15) if the green edge participates in an odd length cycle
of a subgraph. For this particular graph environment, three of five subgraphs contribute for p = 1 and all nine subgraphs contribute for p = 2;
Eq. (15) is 3/5 for p = 1 and 452/495 for p = 2.

Fig. 2. Heuristically, the graph Hp “sees” the local structure
of G out to a distance p.

Each edge 〈i j〉 in G appears in multiple subgraphs of G
and therefore of Hp. It appears in the subgraph G p

〈i j〉 as the
center edge, but it also appears in all subgraphs G p

〈kl〉 whose

FIG. 3. The six p = 1 graph environments, which fix edges to
particular subgraphs, as shown by edge labels. Black edges are of
the center subgraph, while gray edges are the choice of subgraph
environment, and red is the special center edge. These graph envi-
ronments mean that certain subgraphs cannot appear in isolation, and
there are adjacency restrictions for certain subgraphs.

center edge 〈kl〉 is �p steps from edge 〈i j〉. Because distance
is symmetric, the number of edges in subgraph G p

〈i j〉 is equal
to the number of subgraphs in which 〈i j〉 appears.

The subgraphs in which edge 〈i j〉 appears are thus iden-
tified by all edges within a distance 2p, because distance is
symmetric. The first p steps identify the subgraph assignment
of the center edge, while the second p steps identify the
subgraph assignment of the edges 〈kl〉 within a radius p of
〈i j〉 containing edge 〈i j〉.

FIG. 4. Some example graph environments for p = 2 graphs.
Subgraph edges fixed by the environment are shown by edge labels.
(a) and (b) show two example environments for subgraph 5, while
(c) and (d) show some example environments for subgraphs 11
and 15.
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We call the surroundings G2p
〈i j〉 which fix the subgraph as-

signment of adjacent edges to depth p the graph environment
of edge 〈i j〉. The set of all possible graph environments of
depth p is the set of all unique combinations of subgraph
assignments on the edges of all subgraphs of depth p. It is also
all possible combinations of subgraphs that an edge 〈i j〉 can
appear in. This set of graph environments allows for a search
through all possible local graph structures, without needing to
be concerned with the global structure of the arbitrarily larger
graph.

The six subgraph environments for p = 1 are shown in
Fig. 3. There are three combinations of subgraph assignments
for subgraph 0, “the tree” [Figs. 3(a)–3(c)], two combinations
of subgraph assignments for subgraph 1, “single triangle”
[Figs. 3(d) and 3(e)], and one combination for subgraph 2,
“two triangles” [Fig. 3(f)].

These graph environments restrict which subgraph assign-
ments are allowed to be adjacent. For instance, consider
subgraph 2, “two triangles.” There is only one graph en-
vironment in which it is the center edge, and the adjacent
edges must be assigned to subgraph 1, “one triangle.” Thus,
every instance of subgraph 2 in a graph must have at least
four instances of subgraph 1. Equivalently, the set of graph
environments are the set of all possible combinations of
subgraphs which an edge can appear in. Some example graph
environments for p = 2 are shown in Fig. 4.

The set of graph environments is a subset of all subgraphs
of depth 2p. It is a subset because subgraphs of depth 2pmay
have cycles of length more than 2p+ 1, which the subgraph
assignments of depth p cannot distinguish. Because of this
fact, the set of all graph environments is equivalent to the set
of subgraphs of depth 2p, subject to the constraint of no cycles
greater than 2p+ 1 in the minimum cycle basis [17].

Now, consider any partition P of vertices of the graph G,
including the MaxCut partition M. The partition leaves some
edges 〈i j〉 uncut, denoted by the characteristic function rP,

rP〈i j〉 =
{
1, if edge 〈i j〉 is uncut in the partition P of G,

0, otherwise.

The number of uncut edges in G given partition P is the sum
over edges RP(G ) = ∑

〈i j〉 rP〈i j〉.
Similarly, consider any partition P of vertices of the graph

Hp, including its MaxCut partition M. An edge of Hp is
labeled by the index of its parent edge 〈i j〉 in G, as well as
the center edge 〈kl〉 of the subgraph it participates in. The
partition P leaves some edges 〈i j〉 of the subgraph G p

〈kl〉 uncut.
These cuts are labeled by the characteristic function rP ,

rP
〈kl〉
〈i j〉 =

⎧⎪⎪⎨
⎪⎪⎩
1, if edge 〈i j〉 is uncut in the partition

P of subgraph G p
〈kl〉,

0, if edge 〈i j〉 is cut in the partition
P of subgraph G p

〈kl〉 or if 〈i j〉 	∈ G p
〈kl〉.

The number of uncut edges inHp given partition P is the sum
over edges,

RP (Hp) =
∑
〈i j〉

∑
〈kl〉

rP
〈kl〉
〈i j〉 .

The MaxCut M of G induces a partition of Hp, M 
→ I, in
which each vertex of Hp is assigned to the same set as its

parent vertex in G. This implies that all copies of cut edges in
M of G are cut inHp, e.g., rI

〈kl〉
〈i j〉 = rM〈i j〉 ∀〈kl〉 ∈ G.

The set of cuts ofHp is a superset of the cuts of G because
the vertices of G appear multiple times in Hp. The number of
uncut edges in the MaxCut of Hp is therefore bounded above
by the number of uncut edges in the partition I induced by the
MaxCut of G: RM(Hp) � RI (Hp).

Additionally, each edge 〈i j〉 of G appears N (G p
〈i j〉) times in

Hp. This number is bounded from above by the largest pos-
sible subgraph N (S p

λ′ ). For p = 1, every subgraph has exactly
five edges. For p = 2, the largest subgraphs have 13 edges.

Using the fact that the number of times each edge 〈i j〉
appears inHp is bounded, and solutions onHp can be induced
from G, we may bound the number of uncut edges in the Max-
Cut of G from below. For p = 1 we may write the following
inequalities,

RM(H1) � RI (H1) =
∑

〈i j〉,〈kl〉
rI

〈kl〉
〈i j〉

=
∑

〈i j〉,〈kl〉
rM 〈i j〉 = 5

∑
〈i j〉

rM 〈i j〉

⇒ 1

5
RM(H1) � RM (G ). (11)

Similarly, for p = 2,

RM(H2) � RI (H2) =
∑

〈i j〉,〈kl〉
rI

〈kl〉
〈i j〉

=
∑

〈i j〉,〈kl〉
rM 〈i j〉 � 13

∑
〈i j〉

rM 〈i j〉

⇒ 1

13
RM(H2) � RM (G ). (12)

Because Hp is separated into disconnected subgraphs, it is
simple to find the MaxCut partition of Hp for any size graph.
This method of computing upper bounds on the MaxCut value
reproduces that of Ref. [2]. The bound on the MaxCut used in
Ref. [2] counted the number T of isolated triangles (“single
triangle” subgraphs) and S of crossed squares (“two triangle”
subgraphs). Each isolated triangle and crossed square will
have one uncut edge, so a 3-regular graph with n vertices
and 3n/2 edges has at least S + T uncut edges and thus at
most 3n/2 − S − T cut edges. Similarly, the number of p = 1
subgraphs present inH1 are then functions of S and T . Specif-
ically, there are S subgraphs of type 2 (“two triangle”), and
4S + 3T subgraphs of type 1 (“single triangle”). Each of these
subgraphs has one uncut edge, and so Eq. (11) upper bounds
the MaxCut of G to 3n/2 − (S + 4S + 3T )/5. This bound is
looser than that obtained from directly counting S and T in G
because H1 mistakes some of the crossed squares for isolated
triangles. For p = 2 the number of edges per subgraph in H2

varies and the use of Eq. (12) will give looser bounds.
The third and final step for finding a tighter bound for

p > 1 can be found by considering the local structure of
subgraphs Gp

〈kl〉. This requires the following fact: If an edge
of some graph G participates in no odd length cycles, it must
be cut in the MaxCut solution. This is a consequence of
balance in signed graphs [18]. This condition is labeled by
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FIG. 5. An example of the function δ
〈kl〉
〈i j〉 on an example graph.

Here, δ = 1 for dark edges, which participate in odd cycles of length
3 or 5. Similarly, δ = 0 for light edges which do not participate in odd
length cycles. This can occur even if the graph has odd length cycles,
because parts of the graph are connected by only a single edge.

the characteristic function,

δ
〈kl〉
〈i j〉 =

⎧⎨
⎩
1, if edge 〈i j〉 in subgraph G p

〈kl〉
participates in at least one odd length cycle,

0, otherwise.

An example of this function on a graph is shown in Fig. 5.
For large connected graphs, δ = 1 for almost every edge,

suggesting this function is not very interesting for graphs with
few “loose edges,” where a loose edge is defined as an edge
connecting a vertex of degree one to the graph. However, the
subgraphs Gp

〈kl〉 have many loose edges (see the table in the
Supplemental Material [15]). Given some subgraph Gp

〈kl〉 with
MaxCut solutionM, this implies rM

〈kl〉
〈i j〉 = rM

〈kl〉
〈i j〉δ

〈kl〉
〈i j〉 .

With this fact, let us follow the same procedure as above,
inducing a solution I on subgraph Gp

〈kl〉 from the MaxCut

solution M on graph G, with rI
〈kl〉
〈i j〉 = rM 〈i j〉. It is simple to

see that there exists a different partition I ′ for which

rI ′ 〈kl〉〈i j〉 = rI
〈kl〉
〈i j〉 when δ

〈kl〉
〈i j〉 = 1,

rI ′ 〈kl〉〈i j〉 = 0 when δ
〈kl〉
〈i j〉 = 0.

The partition I ′ exists based on the fact that δ = 0 only on
“loose edges” of a subgraph that are only connected by a sin-
gle edge, and thus the loose edges can be solved independently
from the rest of the subgraph.

These facts lead to a chain of inequalities, where the sum is
partitioned into edges which participate in odd length cycles,
and those that do not,

RI
(
G p

〈kl〉
) =

∑
〈i j〉

[
rI

〈kl〉
〈i j〉δ

〈kl〉
〈i j〉 + rI

〈kl〉
〈i j〉

(
1 − δ

〈kl〉
〈i j〉

)]

� RI ′
(
G p

〈kl〉
) =

∑
〈i j〉

[
rI ′

〈kl〉
〈i j〉δ

〈kl〉
〈i j〉 + rI ′

〈kl〉
〈i j〉

(
1 − δ

〈kl〉
〈i j〉

)]

=
∑
〈i j〉

rM 〈i j〉δ
〈kl〉
〈i j〉

�
∑
〈i j〉

rM
〈kl〉
〈i j〉 = RM

(
G p

〈kl〉
)
. (13)

The first step is from the partitionM′ having a larger MaxCut
than M; the second step is from properties and definitions
of the partition M′ as induced from M as induced from M.
The third step is from the MaxCut partition M being larger
than the partitionM′.

FIG. 6. The worst-case graph environments which bound the
value of μp for (a) p = 1 and (b) p = 2, found by enumeration of all
possible graph environments. These particular graph environments
count the contribution of the central (red) uncut edge the maximal
amount. There are seven graph environments which have a larger
sum than (b), shown as (c)–(i), which are excluded due to additional
uncut edges.

Next consider the following inequality,

∑
〈kl〉

∑
〈i j〉 rM

〈kl〉
〈i j〉

N
(
G p

〈kl〉
) �

∑
〈i j〉

rM 〈i j〉

(∑
〈kl〉

δ
〈kl〉
〈i j〉

N
(
G p

〈kl〉
)
)

, (14)

which follows from Eq. (13). It gives a lower bound on a
weighted sum over edges present in the MaxCut of G. The
maximum coefficient in the parentheses is

MAX
〈i j〉

:
∑
〈kl〉

δ
〈kl〉
〈i j〉

N
(
G p

〈kl〉
) = 1

μp
(15)

for some yet undetermined factor μp. This term gives the con-
tribution from the worst-case graph environment and implies

∑
〈kl〉

∑
〈i j〉 rM

〈kl〉
〈i j〉

N
(
G p

〈kl〉
) �

∑
〈i j〉

∑
〈kl〉

rM 〈i j〉δ
〈kl〉
〈i j〉

N
(
G p

〈kl〉
) � 1

μp

∑
〈i j〉

rM 〈i j〉. (16)

It thus suffices to search through every possible graph envi-
ronment and thus every possible combination of subgraphs an
edge can participate in to find the worst-case graph environ-
ment which gives 1/μp. Equation (15) ultimately bounds how
much each edge is counted in the sum over subgraphs.

For p = 1 there are six possible graph environments
(shown in Fig. 3). The worst-case graph environment is
Fig. 6(a), which is the central edge of two triangles. In this
graph environment, the edge 〈i j〉 participates in an odd length
(triangle) cycle in five subgraphs where each have five edges,
and so Eq. (15) sums to 1. Thus, μ1 = 1.

For p = 2 there are a large number of graph environments.
As the p = 1 case, the value μ2 can be found by searching
through every possible combination of subgraphs an edge
can participate in, e.g., all graph environments, and finding
the largest value of the sum. This search can be simplified
by avoiding trivial instances of graph environments. If the
edge 〈i j〉 does not participate in an odd length cycle in the
subgraph where it is the center edge, it will not participate
in an odd length cycle in any other subgraph of the graph
environment. This excludes all subgraphs for which the center
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edge is the only connection between two sides, such as the tree
graph, and so reduces the number of graph environments to a
manageable amount. Under this exclusion, there are 1 002 191
graph environments to search for p = 2.

Evaluating the sum from Eq. (15) for each graph envi-
ronment finds 117 for which μ2 < 1. The worst-case graph
environment is shown in Fig. 6(c). The central edge partic-
ipates in an odd length cycle for all 13 of the subgraphs it
appears in; one subgraph has 13 edges, four have 12 edges,
and eight have nine edges, and so Eq. (15) gives μ2 as

1

13
+ 4

12
+ 8

9
= 152

117
= 1

μ2
. (17)

However, for this graph environment and the six following
as ordered by Eq. (15) [Figs. 6(c)–6(i)] we can evaluate the
weighted sum on the right-hand side of (14) directly. We find
that these graphs have at least one additional uncut edge in the
MaxCut partition. For example, for the subgraph environment
shown in Fig. 6(c), the center edge plus the two additional
uncut edges give the weighted sum on the right-hand side
of (14) as 152/117 + 95/126 + 95/126 < 3, and similar for
Figs. 6(d)–6(i). Thus, these graph environments may be ex-
cluded to get a tighter bound on R(G ).

The eighth graph environment [Fig. 6(b)] has only one
uncut edge in a MaxCut solution and so sets μ2. The central
edge participates in an odd length cycle for all 13 of the
subgraphs it appears in; five of these subgraphs have 13 edges,
and eight have 11 edges. Using Eq. (15), this worst-case graph
environment bounds μ2 to be μ2 = 143/159. Equation (16)
thus simplifies to a lower bound on the number of uncut edges
in a graph G, using the fact that R(G p

〈kl〉) = ∑
〈i j〉 r

〈kl〉
〈i j〉 and

similar for r〈i j〉,

143

159

∑
〈kl〉

R
(
G2

〈kl〉
)

N
(
G2

〈kl〉
) � RM (G ). (18)

The constantμp serves as a guarantee that uncut edges in G are
not overcounted in the sum over subgraphs G p

〈kl〉. Equivalently,
the number of cut edges is a sum over subgraphs,

CM �
∑

λ

Nλ(G )cλ, cλ = 1 − 143

159

R(Sλ)

N (Sλ)
, (19)

where cλ is the local MaxCut fraction for subgraph λ. Values
for cλ are enumerated in the table of subgraphs in the Supple-
mental Material [15]. This combinatoric search emphasizes a
thesis of the paper: There could be some unexpected graph
structure (as here) which in fact is a worst-case graph that
cannot be generated from simple intuition. Thus, any proof
of performance guarantees must be combinatoric in nature.

C. Bounding the approximation ratio as a fraction of sums

The numerator FM is a lower bound and the denominator
CM is an upper bound and so a fraction of sums serves as a
lower bound on the approximation ratio,

Cp(G ) �
∑

λ Nλ(G ) fλ∑
λ Nλ(G )cλ

. (20)

Values for fλ and cλ for the enumerated subgraphs of p = 1, 2
and fixed degree ν = 3 are shown in the table in the Supple-

mental Material [15], and details of the computation of fλ are
shown in Appendix A.

As an example, consider the graph shown in Fig. 1. Each
edge is labeled by the index of the unique subgraph identified
from G p

〈i j〉. For p = 1, there are four instances of subgraph 0
(“the tree”), ten instances of subgraph 1 (“single triangle”),
and one instance of subgraph 2 (“two triangles”). For p = 2
there are six different kinds of subgraphs. Equation (20) lower
bounding the approximation ratio for p = 1 becomes

C1(G ) �
4 f0 + 10 f1 + f2
4c0 + 10c1 + c2

. (21)

Using the table of subgraphs in the Supplemental Material
[15], one can look up the expectation values and local MaxCut
values. The upper bound on the MaxCut value is 12.8 � 12,
the exact value, and the approximation ratio for this particular
graph will be at least C1 � 0.759 and C2 � 0.808 for p = 1
and 2, respectively.

In this way, a lower bound on the approximation ra-
tio of any graph can be found. This lower bound is rather
pessimistic, as it chooses seemingly arbitrary angles (γ , β ).
However, the particular choice of angles given by Eq. (10)
appears to still have large expectation values for all subgraphs.
This fact will be discussed later.

V. WORST CASE FOR 3-REGULAR GRAPHS

What is the worst-case approximation ratio for a particular
fixed value of p and given set of graphs {G}? There exists
some graph G∗ ∈ {G} which can be chosen maliciously such
that the maximal approximation ratio C(G∗) is minimal in
{G}. This graph G∗ represents a problem instance for which
a QAOA device with fixed p has the worst performance. Any
other graph will have a larger approximation ratio and thus
this worst case is a performance guarantee on QAOA.

Naively, finding such a graph G∗ is hard. The number of
possible graphs is exponential in the number of vertices and
we are interested in the general performance for arbitrarily
large graphs, so a simple search through many graphs will not
work. Because of this, a more careful approach must be taken
to find lower bounds on the approximation ratio. Two methods
are presented below.

The first method obtains a lower bound by finding worst-
case combinations of subgraphs which may or may not form a
consistent graph. By considering more and more complicated
combinations of subgraphs, one can get a tighter bound from
below on the minimum approximation ratio. This is the ap-
proach used for the original p = 1 bound by Farhi et al. [2].

The second method presents a graph hierarchy which finds
that the class of graphs with no cycles less than 4 (for p = 1)
or 6 (for p = 2) are worst case. This is done by finding
that, given a graph G, there always exists a new graph G ′
with a smaller or equal approximation ratio. This is done by
replacing edges with a subgraph to reduce the number of small
cycles in the graph.

A. Lower bounds for p = 1

Instead of finding the exact approximation ratio of the
worst-case graph, one can instead bound the worst-case
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approximation ratio from below, by only including subgraphs
with a small approximation ratio. This is an extension of the
original analysis of Farhi et al. [2]. By Eq. (20) a lower bound
can be found by decomposing a graph G into subgraphs of a
particular set {Sλ}. Consider the inequality

F

C
� f ′

c′ ⇔ F

C
� F + f ′

C + c′ � f ′

c′ (22)

for all f , c,F,C > 0. In the context of Eq. (20), the terms are
expectation values F, f and local MaxCut values C, c of two
sets of subgraphs. One can order all subgraphs Sλ by their own
local approximation ratio Cλ = fλ/cλ and constructively add
subgraphs, starting with the subgraph with the smallest local
approximation ratio.

By Eq. (22), including only the worst subgraph of a graph,
or excluding the best subgraph, gives a lower bound on the
global approximation ratio. Including any other subgraph with
a larger local approximation ratio will only increase the value,
and excluding a subgraph with a larger local approximation
ratio will only decrease the value.

Taking Fig. 1 as an example graph, one can order the
local approximation ratios f0/c0 � f2/c2 � f1/c1. Successive
lower bounds on the approximation ratio of the graph can be
found by including more and more subgraphs, e.g.,

4 f0
4c0

� 4 f0 + f2
4c0 + c2

� 4 f0 + 10 f1 + f2
4c0 + 10c1 + c2

� C1(G ). (23)

Adding additional subgraphs to the count gets a larger lower
bound on the approximation ratio of the graph. If the graph
G was worst case, then this ordering results in a strict lower
bound on the approximation ratio.

The worst-case graph will include some number of each
subgraph in its count Nλ(G∗). It is simple to iterate through
the three possible subgraphs as enumerated in the table in the
Supplemental Material [15] to find that subgraph 0, the tree, is
minimal, with f0/c0 = 0.692/1.000. Thus, the approximation
ratio for the worst-case graph G∗ is bounded from below by
only including the minimal subgraph,

C1(G ) � Cmin � 0.692. (24)

The analysis for the minimum approximation ratio for the
p = 1 case ends here. This is because there are graphs which
only include the tree subgraph, which have no cycles less than
4. The minimum approximation ratio Cmin � C(G ) for any
graph G by definition; however, Cmin � C([tree]) = 0.692,
and so the exact minimum approximation ratio for p = 1 is
this value. This is the analysis of Farhi et al. [2]: They observe
that the worst graph is made only of the tree subgraph, and
then observe that such a graph exists. This analysis does not
hold for the p = 2 case.

B. Graph hierarchy for p = 1

Before continuing to the more difficult p = 2 case, let us
introduce a hierarchy of graphs for p = 1 where, heuristically,
graphs with fewer small cycles have a smaller approximation
ratio. We will show that, given a graph G, one can always find
a new graph G ′ with C1(G ) � C1(G ′) unless the graph is of
a specific class of graphs with no cycles of length �3. We
denote such graphs as “1-tree graphs,” which are constructed

FIG. 7. Edge replacements for p = 1 and p = 2 graphs. Given
an edge E , the edge is replaced by this subgraph, where red dashed
indicates the original edge. The left replacement has no cycles �3,
while the right has no cycles �5, appropriate for p = 1 and p = 2,
respectively.

only out of the p = 1 tree subgraph (see Fig. 1 bottom left and
Fig. 9). Similar graphs can be defined for p-tree graphs, which
have no cycles of length �2p+ 1.

Given a graph with small cycles, a new graph can be found
with a worse approximation ratio, which proves inductively
that the graph with no small cycles is the worst-case graph via
recursion. Given a worst-case candidate graph G which is not a
1-tree, a 1-tree graph can be shown to have a smaller approxi-
mation ratio by recursion G → G ′ → G ′′ → · · · → G[1-tree] =
G∗. Thus, 1-tree graphs have a lower approximation ratio
than any other graph. Let us continue by proving the graph
reduction G → G ′.

For a graph G, choose an edge E which participates in at
least one cycle of length 3. Then, replace the edge with the
6-vertex subgraph of Fig. 7(a). This creates a new graph G ′,
where the cycle of length 3 that the original edge participated
in is replaced with a new cycle of length 7. An example is
shown in Fig. 8. Let us prove that this new graph has a smaller
approximation ratio.

When this edge is replaced, the graph is modified and
so the subgraphs G p

〈i j〉 of the surrounding edges may also
be modified. To prove the graph reduction, we must show
that this replacement reduces the approximation ratio for all
possible modifications of the edges. All possible combinations
of subgraph assignments to the edges of G p

〈i j〉 are the set of
graph environments of an edge, and so one may prove the
graph reduction by checking some condition for all possible
graph environments.

A subset of graph environments is the relevant graph
environments, which only includes edges whose subgraph
assignment is modified under replacement of the center edge.
For p = 1, there are four relevant graph environments, as
replacing the central edge of Figs. 3(a)–3(c) does not change
the subgraph assignment of its surroundings. Thus, the graph
reduction will involve checking a condition for all possible
relevant graph environments.

Now, consider replacing a particular edge of some graph G
with the subgraph of Fig. 7(a) yielding a graph G ′. The edges
of the graph can be partitioned into two sets: edges which
are replaced or have their subgraph assignment modified by
the replacement procedure, which are found in the relevant
graph environment, and edges which are not modified. The
edges which are not modified have expectation values which
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FIG. 8. An example edge replacement operation. The red center
edge in some graph environment (a) is replaced with ten edges and
six vertices (b), removing the original size-3 cycle. The new graph
with the replaced edges will have a smaller approximation ratio. Two
additional edges’ subgraphs (labeled) are also modified.

sum to F and local MaxCut sum C, and the edges which are
replaced or modified have an expectation value sum f and
local MaxCut sum c. The replaced or modified edges have a
new expectation value sum f ′ and local MaxCut sum c′, which
include the additional ten edges of the replacement operation.
Now, consider the following clauses and their implication:

A :
F

C
� f

c
,

B :
f

c
� f ′ − f

c′ − c
,

C :
F + f

C + c
� F + f ′

C + c′ ,

A ∧ B ⇒ C. (25)

Clause A is a restriction on choice of edge E . One must
choose an edge such that, if the replaced or modified edges are
removed from the count of subgraphs, the approximation ratio
will decrease. By Eq. (22), this choice of edge will always
exist by the ordering of subgraphs.

Clause B is a condition on modifying subgraph assign-
ments of an edge and its surroundings under replacement. This
can be checked for every graph environment. For c′ − c > 0,
which is the case when adding more edges under replacement,
this clause is equivalent to f /c � f ′/c′, that the new subgraph
has a smaller local approximation ratio. Clause B generalizes
to other graph modifications, such as reducing a 3-cycle to a
single vertex.

Clause C compares the lower bound approximation ratios
for the graphs G and G ′ before and after a replacement pro-
cedure. The inequality states that the approximation ratio of
the new graph will be smaller. If clauses A and B are true,
then the new graph has a smaller approximation ratio, which
proves the graph reduction for a particular choice of edge
replacement.

As an example, consider Fig. 8, performing an edge
replacement within some graph with the particular graph en-
vironment of Fig. 3(e). Here, there are three edges whose
subgraph assignments will be replaced or modified by

(a) (b)

FIG. 9. An example graph reduction. Each edge of some original
graph G (a) is iteratively replaced with a 6-vertex subgraph, until
eventually every edge is replaced to find a worst-case graph G[1-tree]

(b).

the replacement procedure, specifically the three edges of
the triangle. Two edges have a subgraph assignment of 1
(single triangle), and one has a subgraph assignment of 2
(two triangles). After the procedure, there are 11 copies of
subgraph 0 (the tree), and one copy of subgraph 1 (an edge of
a triangle): two from the original graph environment, plus an
additional ten from the cut replacement of Fig. 7. Using the
table of subgraphs in the Supplemental Material [15], one can
compute

f = 1.911, f ′ = 8.253, c = 2.4, c′ = 11.8.

It is simple to check that these values satisfy clause B of
Eq. (25). To prove that there always exists a graph reduction
G → G ′, one can check all four of the relevant graph envi-
ronments. It is found that clause B is true for all relevant
environments. Thus, it is shown that, given a graph G, a new
graph G ′ can be constructed which will have a smaller or
equal approximation ratio, done by replacing edges to remove
cycles of length 3 in the graph. This creates a hierarchy
of graphs for which graphs with fewer small cycles have a
smaller approximation ratio,

C(G ) � C(G ′) � · · · � C(G[1-tree] ) = 0.6924, (26)

here proved for the p = 1 case and consistent with the lower
bound and original results [2]. An example graph reduction to
a 1-tree is shown in Fig. 9. This hierarchy holds for the fixed
angles of Eq. (10), and so this performance guarantee holds
for any graph evaluated at these fixed angles.

C. Lower bounds for p = 2

Finding a lower bound for p = 2 is more complicated,
because each edge lives in a larger graph environment. These
larger graph environments mean that the simple lower bound
method for p = 1 is no longer exact. This is because the
subgraph assignment of an edge constrains the subgraph as-
signments of neighboring edges, as there are only a finite
number of graph environments. As an example, consider
Fig. 3(f), which is the only p = 1 graph environment for
the two-triangle subgraph 2. Any graph which includes this
subgraph must by necessity also include at least four instances
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FIG. 10. The three first worst-case graph environments for p =
2. For N = 1 (a), the approximation ratio is 0.4886. For N � 5
(b), it is 0.7376. For N � 14 (c), it is 0.7424. Each of these graph
environments serves to find the lower bound on the approximation
ratio of the worst-case graph.

of subgraph 1 (an edge of a triangle). One cannot construct a
graph out of just subgraph 2 for p = 1.

More generally, even though one may have some count
of subgraphs Nλ, there is no guarantee that there exists a
graph which has that particular count Nλ 	= Nλ(G ) ∀G. A
similar constraint holds for p = 2: Neighboring and next-
nearest-neighboring edges may be constrained to particular
configurations of subgraph assignments, due to the finite num-
bers of graph environments.

The worst-case graph is constructed out of some count of
each kind of subgraph. A lower bound on its approximation
ratio can be found by only including a certain subset of its
subgraphs with a small local approximation ratio, even though
the subset may not have an associated graph. As a first step,
one can ignore this constraint and search through the 123
unique p = 2 subgraphs of the table in the Supplemental
Material [15] to find the subgraph with the smallest local
approximation ratio. This is shown in Fig. 10(a), with f7/c7 =
0.4258/0.8571 = 0.4968. By the argument of Sec. VA,
adding any kind of any other subgraph will increase the
approximation ratio, and so this number serves as a lower
bound on the minimum approximation ratio for the p = 2
case.

However, as is clear from inspecting this subgraph, it is
impossible to construct a graph out of only this subgraph. This

means that any graph which includes this subgraph will also
include some combination of other subgraphs, the inclusion
of which increases the approximation ratio.

Thus, this lower bound is loose, as no graph can be
constructed with this approximation ratio, but any graph is
guaranteed to have a larger approximation ratio. In fact, this
bound is so loose that it is below the original p = 1 bound,
which still holds for p = 2. This contrasts with the p = 1
case, where there were graphs constructed out of only the
worst-case subgraph and the bound was tight.

The next step in tightening this bound is to search through
larger graph environments which also identify the subgraphs
of the four neighboring edges to find a larger minimum
approximation ratio. This graph environment is shown in
Fig. 10(b), and has an approximation ratio lower bounded by
0.7431, with two kinds of subgraphs. Again, it is impossible
to construct a full graph out of just this graph environment:
The outer edges are not allowed to be built of those two
subgraphs, and thus any graph will have a strictly larger
approximation ratio.

Including graph environments one step larger identifies
edges out to a depth 2 and finds the graph environment of
Fig. 10(c), with an approximation ratio of at least 0.7461.
Beyond this limit, it becomes infeasible to find larger graph
environments, due to the rapid growth in their number.

Note that, unlike the simpler p = 1 case, one cannot get
an exact lower bound, and is instead recursively improvable
by searching through larger and larger graph environments. In
the next section we consider how to approach the exact lower
bound from above using the graph hierarchy.

D. Graph hierarchy for p = 2

Let us proceed by repeating the graph hierarchy argument
of p = 1 for the p = 2 case. This case is complicated by hav-
ing many more potential graph environments, because each
subgraph is sensitive to a larger portion of its surroundings.
Given a graph G, a new graph G ′ can be found with C2(G ) �
C2(G ′). As in the p = 1 case, this is done by choosing a
specific edge and replacing it with that of in Fig. 7(b), which
is a subgraph of 16 vertices and 25 edges.

Similarly to the p = 1 case, one can show that this graph
reduction G → G ′ leads to a smaller approximation ratio by
doing an edge replacement for every possible relevant graph
environment, and checking the clauses of Eq. (25) for each.
When an edge is replaced, edges up to two steps away
from the replaced edge may have their subgraph assignments
changed, as such subgraphs include all vertices within two
steps of their center edge. Thus, one must check all p = 2
graph environments. These can be found via the methods
discussed in Appendix B, finding all p = 4 subgraphs subject
to the constraint that there are no cycles >5 in the minimum
cycle basis [17].

However, there are at least 3 × 1010 p = 2 graph environ-
ments, which is found by estimating a combinatorial lower
bound on the number of graph environments for the p = 2
tree subgraph. Instead, we find only the relevant graph en-
vironments. These relevant graphs are found by attempting
to enumerate all relevant p = 4 subgraphs in parallel starting
with p = 3 seed subgraphs, only including edges whose sub-
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graph assignment is modified under center edge replacement.
There are found to be 7058 such relevant graph environments;
some examples are shown in Fig. 4.

The proof of graph reduction for p = 2 is as follows. For
each relevant p = 2 graph environment, replace the special
center edge and check the clauses A ∧ B of Eq. (25). We find
that clause B is not satisfied for every relevant graph environ-
ment; however, there are no relevant graph environments for
which A (the condition on the choice of edge) is false and
B is true. This puts a condition on the choice of edge to be
replaced: One must choose an edge such thatA is true, by only
choosing edges whose inclusion increases the approximation
ratio, for which B will be true.

This confirms the graph hierarchy for p = 2. For each
graph G with some cycles of length �5, choose an edge
and surrounding relevant graph environment G2p

〈i j〉 which, upon
removing it from the calculation of the approximation ratio,
decreases the approximation ratio. This is forced by clause A
of Eq. (25). Upon replacing this edge with the 16-vertex edge
replacement subgraph, the new graph G ′ will be guaranteed to
have a smaller (or equal) approximation ratio.

Inductively, this constructs a graph where every edge is
replaced by the subgraph of Fig. 7 and has no cycles of length
�5, constructed only out of the tree subgraph. The expectation
value of the tree subgraph and thus minimum approximation
ratio is

C2 � 0.7559, (27)

where worst-case graphs are 2-trees, which have no cycles
�5. This is consistent with the observation in Ref. [2].

In this section, we have found worst-case approximation
ratios for p = 1 and 2 QAOA. Extending the original methods
of Ref. [2], we find a recursively improvable lower bound
of C2 � 0.7424, by considering larger and larger graph en-
vironments. Unlike the p = 1 case, this lower bound cannot
be made exact due to the adjacency restrictions implicit in the
construction of graph environments. Using a recursive graph
reduction and combinatoric proof, we find that 2-tree graphs,
which have no cycles �5, are exactly worst case. For every
graph which is not a 2-tree graph, a new graph can be found
with a smaller approximation ratio by finding some particular
edge and replacing it with a 16-vertex subgraph which has
no cycles �5. Applied recursively, this eventually turns every
edge of the original graph into one of these subgraphs, which
is a worst-case 2-tree graph.

VI. FIXING VARIATIONAL PARAMETERS

We have shown that every graph G has an approximation
ratio of C2 � 0.7559. However, this result is more general.
The choice of angles (γ , β ), instead of being optimized for
the particular graph, is fixed to a particular choice given
by Eq. (10). This means that this performance guarantee is
stronger: For fixed angles and any graph G, the bound still
holds,

C1(G, {35◦}, {22◦}) � 0.6924, (28)

C2(G, {28◦, 31◦}, {51◦, 17◦}) � 0.7559. (29)

TABLE I. The angular parameters for the four degenerate max-
ima of the p = 1 tree subgraph, and eight degenerate maxima of the
p = 2 tree subgraph. The expectation value of the objective function
of any 3-regular graph evaluated at any of these angles is equal, and
the approximation ratio is guaranteed to be above 0.6924 and 0.7559,
respectively.

γ1 β1 γ2 β2

35.3◦ 22.5◦

144.7◦ 22.5◦

215.3◦ 67.5◦

324.7◦ 67.5◦

28.0◦ 31.8◦ 51.4◦ 16.8◦

28.0◦ 31.8◦ 231.4◦ 73.2◦

152.0◦ 31.8◦ 128.6◦ 73.2◦

152.0◦ 31.8◦ 308.6◦ 16.8◦

208.0◦ 58.2◦ 51.4◦ 73.2◦

208.0◦ 58.2◦ 231.4◦ 16.8◦

332.0◦ 58.2◦ 128.6◦ 16.8◦

332.0◦ 58.2◦ 308.6◦ 73.2◦

This particular set of angles is useful for experiments: Using
them with any graph guarantees a particular approximation
ratio without the need for a classical optimizer back end.
Additionally, we find numerically that gradient descent op-
timization from these angles finds the global optimum for
almost every graph.

It is clear why these angles were chosen: This set of angles
is optimal for the worst-case p-graphs. The minimum approx-
imation ratio is found by minimizing over the set of all graphs
while maximizing over angles. Any other choice of angles
may have been valid, but may not have resulted in a tight
minimum approximation ratio or even have the graph hierar-
chy be true. In fact, this particular choice of angles generates
expectation values on subgraphs which are close to the global
maximum of each subgraph, which can be seen comparing
rows 3 and 5 in the table of subgraphs in the Supplemental
Material [15]. There is no reason a priori for this to be so.

We also find that these angles are not unique. The land-
scape of expectation values F (γ , β ) is periodic modulo 2π
in γ and modulo π/2 in β. This is due to SU(2) and Z2

symmetry (see Appendix A for details). Within these bounds,
we find four degenerate maxima for p = 1, and eight de-
generate maxima for p = 2. The angles for the p = 1 and 2
tree subgraphs are shown in Table I. Further, we find that for
each subgraph, the expectation value of the center edge of that
subgraph is the same evaluated at each of the eight angles of
any other subgraph.

This means that for all graphs, the expectation value of the
objective function will be the same for each of the four angular
maxima of any subgraph; for example,

C1(G, 35◦, 113◦) = C1(G, 145◦, 23◦) � 0.6924 (30)

for any graph and p = 1, within numerical precision, and so
forth for the additional two angles of Table I. Any of these
angles provides a good starting point for an experimentalist
needing good variational parameters.
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VII. CONJECTURE: p-TREE GRAPHS ARE WORST CASE

We found that replacing an edge with a subgraph with no
small cycles results in a smaller approximation ratio for the
p = 1, 2 cases. It is reasonable to expect that this behavior
should extend to larger p. This naturally leads to the following
conjectures

Graph hierarchy conjecture. For any fixed p, graph G, and
fixed angles �γ , �β optimal to the tree subgraph, there exists
an edge replacement with a subgraph generalized from Fig. 7
which results in a graph with a smaller approximation ratio.

In other words, there is a hierarchy of graphs, for which
graphs with many small cycles less than 2p+ 2 will have a
better quality QAOA result than graphs with few cycles. This
is shown to be true for p = 1 and 2 in Secs. VB and VD.
For larger p the edge replacement must be a larger subgraph
with no cycles less than 2p+ 2. This conjecture has two
corollaries.

Large loop conjecture. The worst-case graphs for fixed p
are p-trees, which have no cycles less than 2p+ 2.

This conjecture is well motivated physically. When an edge
is replaced, the algorithm “sees” less of the full graph, due to
the fact that it only knows of relations between vertices �p
steps away [19]. This lesser knowledge of the full graph leads
to worse answers, as the QAOA algorithm is then oblivious to
improved solutions which “see” more of the graph. Similarly,
having no “visible” cycles means the algorithm cannot distin-
guish between large cycles of even versus odd length, and thus
cannot make good cut estimates which require this distinction.
The worst-case graph for all p would be the Bethe lattice.

Fixed-angle conjecture. Any graph evaluated at fixed an-
gles optimum to the tree subgraph will have an approximation
ratio larger than the guarantee.

Angles optimal to the tree subgraph for larger p (e.g., an
expansion of Table I) should result in MaxCut answers to
any graph approximation ratios guaranteed to be above some
value. These angles could be used as initial points for optimiz-
ers, or even excluding the optimization loop to compute good
answers without feedback. The computation of these optimal
angles for larger p is left to future work. This conjecture is
consistent with the phenomena of concentration [20], wherein
optimal angles appear to be mostly independent of graph
instance.

Worst-case approximation ratio for p = 3

Under the large loop conjecture, worst-case graphs for
p = 3 are 3-trees, with no cycles�7 and constructed only out
of the 30-vertex tree subgraph, which has no cycles. Using
the same methods for the p = 1 and 2 case it is possible to
compute the expectation value f0 for this subgraph, which is
thus the worst-case performance guarantee for p = 3 under
the large loop conjecture. This subgraph has 30 vertices with
a Hilbert space dimension of 230. Using the symmetries of
the tree subgraph, this can be reduced to a dimension of
1 631 721 ≈ 220.6, with an additional factor of 1/2 due to
spin-flip symmetry (see Appendix A for details). Optimization
of angles using the methods of Appendix A finds

C3 � 0.7924 (31)

under the large loop conjecture that 3-tree graphs are worst
case for p = 3. In principle, this bound can be made rigorous
by searching through every possible p = 3 graph environment
and checking the inequalities of Eq. (25) for each. However
there are 913 088 unique p = 3 graphs and a much larger
number of graph environments, which must extend up to six
steps away from the replaced edge. While the combinatoric
proof is in principle possible as the task is extremely paral-
lelizable, we leave this challenging calculation to future work.

VIII. COMPARISON TO CLASSICAL ALGORITHMS

Here, we compare performance bounds to the best classical
algorithms. The most naive classical algorithm is a random
guess; it is simple to see that this cuts on average half the
edges and so has an approximation ratio of at least 0.5 [21]. It
is known that calculating a cut with an approximation ratio
�16/17 ≈ 0.9412 is NP-hard [22]. The algorithm of Goe-
mans and Williamson [16] gives an approximation ratio of at
least 0.8786 using semidefinite programming, and holds for
any graph. For particular subsets of graphs this approximation
ratio can be higher; for example, planar graphs can be solved
efficiently in polynomial time [23]. The 3-regular graphs,
which are the subject of this paper, have a lower bound of
at least 0.9326 [24], also using semidefinite programming.

Even comparing to the general Goemans-Williamson al-
gorithm, p = 2 QAOA does not achieve quantum advantage,
as 0.7559 < 0.8786. This does not discount the possibility
that QAOA has better performance on a subset of graphs
than any classical algorithm on the same subset. Finding such
subsets of graphs is challenging for two reasons. First, for
a particular subset of graphs there may exist some classical
algorithm improving on the Goemans-Williamson bound, as
for planar graphs or 3-regular graphs, but finding such a
specialized algorithm may be nontrivial. Second, the analysis
of the subgraph structure of the subgraphs of the table in
the Supplemental Material [15] dictates the subset of allowed
graphs. By the graph ordering conjecture, graphs with many
cycles will have better approximation ratios and thus have
the most potential for finding instances with a quantum ad-
vantage. Finding such subsets is beyond the scope of this
paper.

It is a curious fact that while the classical algorithms of
this paper might be able to findMaxCut instances which have
a quantum advantage, it may not be possible to solve those
instances classically. This is because sampling bit strings from
a QAOA wave function is in complexity class #P, and having
such an algorithm would collapse the polynomial hierarchy at
the third level [25].

IX. UPPER BOUNDS ON MINIMUM
APPROXIMATION RATIO

While computing the minimum approximation ratio for
p > 3 is challenging, it is reasonable to ask how the minimum
approximation ratio behaves with p. As p → ∞, the approx-
imation ratio approaches 1 in accordance with the adiabatic
theorem [2]. How does it do so? One way to compute this
behavior is to bound the minimum approximation ratio from
above: For a particular p, it can be at most some value.
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FIG. 11. p = 2 QAOA cannot distinguish between a tiling of
hexagons (G1) or heptagons (G2), as both are constructed only from
the tree subgraph. Graph G1 has a partition which cuts every edge,
while graph G2 has at least one uncut edge per heptagon due to the
odd length cycles. This puts upper bounds on the expectation value
of the tree graph, and thus the minimum approximation ratio. This
generalizes for all p and graph connectivity ν.

One way of finding such a bound is to consider pairs
of graphs which are indistinguishable under some fixed p
QAOA. First, construct a bipartite graph G1 as a tiling of
q-gons with cycles of length q = 2p+ 2. For example, for
p = 1 this is a square ladder, while for p = 2 this is a hexag-
onal honeycomb lattice (see Fig. 11). Because all cycles are
of even length, it is simple to find a partition which cuts every
edge, so that Cmax = nedges.

Next, construct a graph G2, which is a tiling of q-gons with
cycles of length q = 2p+ 3. As an example, for p = 1 or 2
this can be seen as pentagons or heptagons (nonmetrically)
tiled on some curved surface (see Fig. 11). For N q-gons, there
are Nq/2 edges. Because the cycles are of odd length, at least
one edge per q-gon must remain uncut. Each edge is shared by
two q-gons and so for N q-gons there are at least N/2 uncut
edges and Cmax = N (2p+ 2)/2 cut edges.

For both graphs, there are no cycles of length �2p+ 1,
which means only the tree subgraph contributes to the ex-
pectation value. Critically, the tree graph cannot distinguish
between the two graphs, even though they have different
MaxCut values. Consider

C(G1) = nedges f0
Cmax

= f0, (32)

and the approximation ratio of the bipartite graph G1 is sim-
ply the expectation value of the tree graph, as every edge is
cut. By definition, Cmin � C(G1). One may also compute the
approximation ratio of G2, which is bounded from above by 1:

C(G2) = nedges f0
Cmax

= (2p+ 3) f0
(2p+ 2)

� 1. (33)

This bound from above puts an upper bound on the expecta-
tion value f0. In combination, Eq. (32) gives an upper bound
on the minimum approximation ratio,

Cmin � C(G1) = f0 �
2p+ 2

2p+ 3
. (34)

For p large the bound goes as

Cmin � 1 − 1

2p
. (35)

FIG. 12. Results of the paper: Approximation ratios vs p. The
blue line is the worst-case approximation ratio for p = 1, 2, 3; the
p = 3 case (star) assumes the large loop conjecture. Red dashed
are the Goemans-Williamson [16] and 3-regular [24] bounds. The
minimum worst-case approximation ratio is guaranteed to be below
the black dashed line, which converges as 1 − 1/2p.

This bound is independent of the graph connectivity and is
consistent with the convergence of 2-regular graphs observed
in Ref. [2].

Given a particular malicious MaxCut instance with no
small cycles, the convergence of QAOA will be inverse poly-
nomial with a power of at most 1. Note that other graphs may
converge much faster, as this bound only holds for graphs
which have no cycles �2p+ 1, which are exponentially large
in p. This means for a fixed cycle length, after some very large
p convergence can be faster than this bound; the p → ∞ be-
havior occurs only for the Bethe lattice, which has an infinite
cycle length. The upper bound of Eq. (34) is plotted in Fig. 12.
The computed values for 1, 2, and 3 do not come close to this
limit, as this bound is loose. From Sec. VIII, the best classical
algorithms for 3-regular MaxCut have an approximation ratio
of at least 0.9326; thus, p must be at least greater than 5
to have quantum advantage for a general 3-regular graph.
This argument is based on a particular graph feature and the
p � 3 guarantees tend below the bound, and so one might
have a more pessimistic estimate on p due to special purpose
classical algorithms and performance guarantees which may
not saturate the bounds.

X. CONCLUSION

Bounding the performance of near-term quantum algo-
rithms is critical to understand where, how, and why quantum
computers may gain advantage in the NISQ era. In this paper,
we find a worst-case performance guarantee for p = 2 QAOA
solving MaxCut on 3-regular graphs. This performance guar-
antee was found to beC2 � 0.7559, which holds for any graph
evaluated not just at its optimized angles, but for a fixed set of
angles given by Table I. Because this set of angles is fixed,
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they can act as good initial guesses for a classical optimizer
with a guaranteed approximation ratio.

More important than the number itself, the methods and the
particular worst-case graphs for which the bound was derived
may be able to motivate particular ensembles and problem
classes of graph instances for which QAOA exhibits quantum
advantage.

The worst-case graphs for p = 1 and 2 were proved to
be graphs with no cycles �2p+ 1. This was done via a
graph reduction, replacing an edge with an expanded sub-
graph which distances the two original vertices of the edge
and removes small cycles. The QAOA algorithm can only
“see” the structure of a graph within some small number of
steps, and so the effect of the graph reduction is twofold.
In removing and lengthening cycles, due to its local nature
the algorithm cannot distinguish between large even and odd
length cycles. In expanding the edge into a larger subgraph,
the two previously adjacent vertices of the edge are distanced
so their previous relation is obscured to the algorithm.

These two properties stemming from the graph reduction
suggest which graphs may have good QAOA solutions. Good
graphs should have many small cycles, and should have a
small-world structure [26] where only a logarithmic number
of steps is necessary to move from one vertex to any other.

The properties presented here are heuristic and stem from
the graph hierarchy, which is proved for p � 2 but can only
be conjectured for p > 2. Future work remains to find more
rigorous specifications and properties of graphs and problem
instances on which it may be possible to demonstrate a quan-
tum advantage in QAOA.
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APPENDIX A: COMPUTING OPTIMAL PARAMETERS γ, β

This Appendix details computing the optimal objective
function fλ for particular subgraphs. For each subgraph Sλ ∈
{S}, we wish to compute MAX : fλ(γ , β ). First, generate the
local objective function for the subgraph by including one
clause 1

2 (1 − σ̂ i
z σ̂

j
z ) per edge 〈i j〉 in the subgraph, and similar

for the local objective function on the special edge 〈0, 1〉 and
mixing Hamiltonian B̂ of σ̂ i

x for each vertex i in the subgraph.
We can compute expectation values exactly, which similarly
enables access to derivatives of the objective function

∂γ1〈Ĉ〉 = [∂γ1〈γ , β|]Ĉ|γ , β〉 + 〈γ , β|Ĉ[∂γ1 |γ , β〉],
∂γ1 |γ , β〉 = −ie−iβpB̂e−iγpĈ (· · · )e−iβ1B̂

(
Ĉeiγ1Ĉ

)|γ , β〉, (A1)

and similar for the other γ , β, with the ellipsis denoting the
other 2p− 4 generators. With access to both the exact expec-
tation values and derivatives, the parameters were optimized
via a multistart gradient ascent algorithm. For each subgraph,
the initial parameters were chosen uniformly in parameter
space, which is compact in {[−π/4, π/4), [−π, π )}p. Note
that unlike for general QAOA, β is periodic modulo π/2, due

FIG. 13. Recursively constructing some p = 2 subgraphs. Start-
ing from some seed p = 1 subgraph (top), edges are added (arrows)
to vertices which do not have three edges already, connecting to
new or existing edges. Recursion through all possibilities finds all
subgraphs, up to isomorphisms. The other two p = 1 subgraphs have
larger recursive trees, eventually finding all 123 p = 2 subgraphs.

to Z2 symmetry, e.g., σ̂z → −σ̂z. This is because the unitary
over the mixing term

ei(β+π/2)B̂ =
(∏

i

eiπ/2σ̂ i
x

)
eiβB̂ = Ẑ2e

iβB̂, (A2)

and [Ẑ2, B̂] = [Ẑ2, Ĉ] = 0. For each optimization, 25 random
initial parameters were chosen to find maxima with high
probability. To find all degenerate maxima of a subgraph, the
initial parameters were chosen on a mesh, and each also opti-
mized with a gradient descent. At each step, the parameters
are updated to change along the direction with the largest
gradient, with size 0.075| �∇〈C〉|, where the constant is an im-
plicit choice of the maximum second derivative. A particular
optimization ends when the expectation value changes by less
than 10−5.

For the p = 3 tree, a free optimization was used to speed up
the calculation by reducing the Hilbert space using symmetry.
Every graph has a certain set of isomorphisms, e.g., relabeling
of each vertex. These isomorphisms define SWAP operators
which commute with the generators B̂ and Ĉ, and thus the
eigenvalues are good quantum numbers defining conserved
subspaces of the Hilbert space. The initial wave function |+〉
is unchanged under any relabeling of indices, and so lives in
the +1 subspace of all isomorphisms. While this reduction
is in principle possible for any subgraph, it is particularly
simple for the recognizable SWAP symmetries of the tree.
Swapping any two “branches” of the tree leaves the wave
function invariant, and so only symmetric combinations re-
main. For two vertices (e.g., p = 0), this is only three states:
both up, both down, and the triplet state. For six vertices,
there are three isomorphisms: swapping the left or right two
vertices, or reflecting the three left with three right. Under
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these symmetries there are 21 states. This can be done re-
cursively by knowing that given two indistinguishable Hilbert
spaces of dimensionD, there are onlyD(D + 1)/2 symmetric
combinations. Using this, for p = 2 there are 903 states; for
p = 3 there are 1 631 721 ≈ 220.6; and for p = 4 there are
5 325 028 475 403 ≈ 242.3. There is an additional factor of≈2,
as the generators have a Z2 spin-flip symmetry σ̂z ↔ −σ̂z. In
principle, it may be possible to simulate the worst-case 4-tree
exactly, as 41 qubits is within the range of classical simulata-
bility, but is beyond the scope of this work. It is reasonable to
expect that these tree subgraphs can be simulated with tensor
methods [27] up to p ∼ 10.

APPENDIX B: SUBGRAPH GENERATION FOR FIXED p

In order to efficiently compute the expectation values of
graphs, one must go “in reverse” to find all possible subgraphs
G p

〈i j〉. This Appendix details the enumeration of the set of these
subgraphs, denoted as {Sλ}p. First, find the set of all subgraphs
{Sλ}p−1. For example, for p = 1 this is the two-vertex graph
connected by an edge; for p = 2 these are the three p = 1 sub-

graphs, and so forth, generated recursively. Next, for each of
these subgraphs, find all the exterior vertices which have less
than three edges (see Fig. 13). Then, iterate through adding
one, two, or three edges. One may add one edge connecting
two vertices of the original seed subgraph (Fig. 13 right), or
add one edge connecting a vertex to a new vertex (Fig. 13
middle). Additionally, one may add two edges connecting two
vertices to a new vertex (Fig. 13 left) or three edges connect-
ing three vertices to a new vertex (not shown by Fig. 13).
Iterating by adding these graphs to a heap, additional edges
are added until all exterior vertices of the original subgraphs
have three edges, and the heap is empty. This is guaranteed
to find all subgraphs, as it searches through every possible
permutation of new vertices connected to every combination
of exterior vertices of the seed subgraph. When constructing
all unique subgraphs, if a subgraph was isomorphic to an
already-discovered graph, it is excluded from the heap.

Using this recursion, there were found to be three sub-
graphs for p = 1, 123 subgraphs for p = 2, and 913 088
subgraphs for p = 3. The p = 1 and p = 2 subgraphs are
enumerated in the table in the Supplemental Material [15].
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