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Abstract

We introduce a notion of generic local algorithm which strictly generalizes existing frameworks
of local algorithms such as factors of i.i.d. by capturing local quantum algorithms such as the
Quantum Approximate Optimization Algorithm (QAOA).

Motivated by a question of Farhi et al. [arXiv:1910.08187, 2019] we then show limitations
of generic local algorithms including QAOA on random instances of constraint satisfaction
problems (CSPs). Specifically, we show that any generic local algorithm whose assignment to
a vertex depends only on a local neighborhood with o(1n) other vertices (such as the QAOA
at depth less than e log(n)) cannot arbitrarily-well approximate boolean CSPs if the problem
satisfies a geometric property from statistical physics called the coupled overlap-gap property
(OGP) [Chen et al., Annals of Probability, 47(3), 2019]. We show that the random MAX-k-XOR
problem has this property when k > 4 is even by extending the corresponding result for diluted
k-spin glasses.

Our concentration lemmas confirm a conjecture of Brandao et al. [arXiv:1812.04170, 2018]
asserting that the landscape independence of QAOA extends to logarithmic depth—in other
words, for every fixed choice of QAOA angle parameters, the algorithm at logarithmic depth
performs almost equally well on almost all instances.

One of these concentration lemmas is a strengthening of McDiarmid’s inequality, applicable
when the random variables have a highly biased distribution, and may be of independent
interest.
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1 Introduction

Recent developments [AAB"20, GWZ"21, EWL"21] of noisy intermediate-scale quantum (NISQ)
devices [Pre18] have brought us to the door of near-term quantum computation. As experimental-
ists can now build programmable quantum simulators up to 256 qubits [EWL"21], this motivates
an important theoretical question: what computational advantage can such a NISQ device provide?

One of the constraints of NISQ devices is the inability to create high-fidelity global entanglement.
This motivates the study of the power of quantum algorithms that are local. A leading candi-
date in this regime of quantum algorithms is the Quantum Approximate Optimization Algorithm
(QAOA) [FGG14] at shallow depths. While there have been some recent results [Has19, BM21,
Mar21] that formally examine the QAOA algorithm at depth p = 1 or 2, very few results exist for
super-constant depth QAOA [FGG20a, FGG20b].

Given the imminent quest of demonstrating quantum computational advantage, it is important to
clarify for what optimization problems can near-term quantum algorithms (such as local quantum
algorithms) reliably be expected to demonstrate computational advantage.

We show that local quantum algorithms, a large natural class of NISQ algorithms, are obstructed by
a geometric property of the solution space known as the coupled Overlap-Gap Property [CGP*19].
We conjecture that this property is satisfied by most CSPs (Conjecture 9.1). Specific problems
known to have this property include the diluted k-spin glass Hamiltonian (equivalent to a max-cut
problem on random k-hypergraphs) [CGP19], independent set on random graphs [FGG20a],
planted clique [GZ19], and many other problems that so far seem to elude efficient algorithms
and be algorithmically hard [G]21]. In this manuscript, we also demonstrate that the random
Max-k-XOR problem has this property (see Section 8).

Critical to our approach is a new definition of local algorithms we term generic local algorithms
(See Section 3). Previous work relating statistical-physics-derived OGPs to local algorithms lever-
aged the factors of i.i.d. framework for local algorithms, which fails to contain local quantum
algorithms, as we demonstrate in Proposition 3.2. Our definition of generic local algorithms sub-
sumes local quantum and classical algorithms (see Proposition 3.2 and Proposition 3.3) but still
satisfies strong concentration properties (see Theorem 5.3 and Theorem 5.4), allowing obstruction
techniques for local classical algorithms [CGP*19] to apply to the quantum case. Two of our
core technical contributions involve showing that the random MAX-k-XOR problem has a coupled
Overlap Gap Property (see Section 8) by extending the techniques of Chen et al [CGP"19] and
deriving a strengthened version of McDiarmid’s inequality for highly-biased random variables
using a martingale argument (see Lemma 7.6).

The rest of the paper is organized as follows: In Section 1.1 we give a brief introduction to the
motivating spin glass literature, defining the notion of a diluted k-spin glass; in Section 1.2 we intro-
duce the relevant prior work; in Section 1.3 we state our main theorems (informally); in Section 1.4
we briefly explain the architecture of our proof and compare our techniques with those of Chen
et al. [CGP"19] and Farhi et al. [FGG20a]; in Section 2 we introduce the necessary mathematical



preliminaries and notation, including a rigorous definition of local classical algorithms, the QAOA
algorithm and Overlap-Gap Properties; in Section 3 we introduce the notion of a generic local
algorithm, how to sample from correlated runs of them, and finally show separation of different
families of local algorithms; in Section 4 we state our main theorems formally and give proof
sketches; in Section 5 we state and prove multiple concentration of measure statements about
generic local algorithms; in Section 6 we make the proof showing obstructions against generic local
algorithms using the same interpolation procedure of Chen et al. [CGP*19]; in Section 7 we state
and prove a strengthened version of McDiarmid’s inequality; in Section 8 we state and prove an
OGP for random Max-k-XOR; in Section 9 we conclude by summarizing our results and mentioning
many natural open problems closely related to and /or motivated by our work.

1.1 Diluted k-spin glasses, maximum cut of sparse hypergraphs, and Max-k-XOR

Spin glass theory is a central theoretical framework in statistical physics. The Sherrington-
Kirkpatrick model (SK model) [SK75] is one of the most well studied mathematical models in the
theory and consists of two variables: spins {0;};c,] and interactions {];}; ic;,)- A spin o; takes
values in {#1} and the interaction J; ; between two spins ¢;, 0; is a real-valued variable that captures
whether the physical system prefers the two spins to be the same (J;; > 0) or different (J;; < 0).
The goal is to understand what spin configurations o € {—1,1}" maximize the following quantity
(a.k.a. Hamiltonian):

H(o) =) _Jijoi0;.
i

The setting is easily generalized to higher order interactions, i.e., Jiy,...i, acting on k spins, and this
is known as the k-spin model. See Panchenko [Panl4a] for a comprehensive survey.

There is a natural correspondence between spin glass theory and combinatorial optimization
problems. In a combinatorial optimization problem (e.g., Max-Cut), a variable corresponds to a spin
and a constraint corresponds to an interaction. Through this correspondence, the maximization of
the above Hamiltonian H(o) serves as a proxy for maximizing the number of satisfied constraints
in the combinatorial optimization problem.

A spin glass model additionally specifies a particular distribution on the interactions {]J. i,j} for all
i,j € [n]. The quantity of interest is the asymptotic maximum value

H* := lim 1maxH(a),

n—oo 11 g

(ak.a. the ground state energy density). Also of interest are spin configurations ¢ with H(c) ~ H*.
There are many well-studied spin glass models in physics and various mathematical insights
about these have been discovered over the years [Con18, DMS17, Sen18, PT04]. For example,
for the SK model [SK75] Parisi [Par80] proposed the infamous Parisi Variational Principle to cap-
ture the exact value of H*. This was later rigorously proved by Talagrand [Tal06] and again by
Panchenko [Pan14b] in greater generality. These successes give hope to design local algorithms
that simulate the physical system and output a final configuration as an approximation to the
corresponding combinatorial optimization problem.
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While traditional spin glass models consider the underlying non-trivial interactions as either lying
on a certain physically-realistic graph (e.g., the non-zero J;; form a 2D-grid) or being a mean
field approximation (for example, where every J; ; is non-trivial), the applications in combinatorial
optimization often require the underlying constraint graphs to be sparse and arbitrary. We use two
methods of bridging the gap between the two settings:

¢ By studying the diluted k-spin glass model where one first samples a sparse hypergraph and
then assigns non-trivial interactions on top of its hyperedges. Intuitively, approximating the
H* of the diluted k-spin glass corresponds to approximating the maximum cut over random
sparse hypergraphs. This correspondence is made more precise in Section 2.1.1.

e Using the techniques of Gaussian interpolation [GT02] and Poisson interpolation [FL03, CGP*19]
from statistical physics to relate the behavior of random dense spin glass models to random
sparse CSPs. More specifically, we relate the random Max-k-XOR problem to mean-field
p-spin glasses (Section 8).

Spin glass models Combinatorial optimization problems
Spinso € {—1,1}" An assignment to boolean variables
Interactions {J;,,..i, }il,.u,ike[n] Constraints (i.e., hyperedges)
Hamiltonian H(c) Value of an assignment (i.e., valy ()
Ground state energy H* Optimal value (i.e., valy)
Mean field model (e.g., SK model) | The underlying hypergraph being complete
Diluted spin glass model The underlying hypergraph being sparse

Table 1: A dictionary between spin glass models and combinatorial optimization problems.

1.2 Related work

Constraint-satisfaction problems & hardness for classical algorithms CSPs (described formally
in Definition 1.4) are a natural class of combinatorial optimization problems that have been studied
extensively in theoretical computer science [BPS99, Kum92]. Many NP-Complete problems such as
k-SAT, k-NAE-SAT, MAX-CUT and k-XOR, can be framed as CSPs. Consequently, unless P = NP,
finding optimal solutions to these problems is infeasible. A natural question then is to understand
how well can approximate answers to instances of these problems be constructed by efficient
algorithms. Under the now widely believed Unigue Games Conjecture [KV05], upper bounds on
the approximability of CSPs are known [KKMOO07, Rag08]. These bounds, however, are only
worst-case and do not necessarily explicitly demonstrate a family of instances of a CSP that are
hard to approximate. Additionally, they remain conditional on a positive resolution to the Unique
Games Conjecture, which is still a difficult open problem in the field. In the average-case regime,
the goal is to ask how well a typical instance of a CSP can be approximated, where the instance is
chosen from a “natural” distribution over the set of instances. Perhaps surprisingly, great insight
has been drawn about the algorithmic hardness (or lack thereof) about random instances of many
CSPs based on work originating in the Statistical Physics community, particularly in Spin Glass



Theory [MP01, FLO3, PRTR14]. This was so because the problem of finding spin configurations
of particles in many spin glass models that put a system in the ground state could naturally be
interpreted as a CSP. Various iterative algorithms were proposed to study the problem of explicitly
finding near-ground states of typical instances of various spin glass models [YFW ™03, BMZ05]. It
was observed that these algorithms either consistently got better with the number of iterations,
or hit a threshold which they could not exceed. To understand this, the work of Achlioptas et
al [ARTO6] studied the solution geometry of the k-SAT problem and found that most good solutions
were in well separated clusters. Additionally, most variables in a good solution could only take a
single value (i.e., they were “frozen"). This observation was stated as an intuitive reason for the
failure of local algorithms on random instances of k-SAT. Gamarnik et al [GS14] made this more
formal and precise by showing that no classical local algorithm (described formally as factors of i.i.d.,
see Section 2.2.1) could approximate the MAX-IND-SET problem arbitrarily well on sparse random
graphs. Critical to their argument was the fact that all (not most) nearly-optimal solutions to the
problem satisfied the Overlap Gap Property - they were in well separated clusters. In various works
that followed up, many problems have been shown to have near-optimal solutions conform to this
solution geometry and algorithmic hardness for various families of classical algorithms has been
established [CGP 19, GJW20, GJ21].

Results about QAOA. In their seminal work, Farhi et al. [FGG14] introduced QAOA as a possible
way to approximately solve certain hard combinatorial optimization problems. To illustrate the
capabilities of QAOA, its performance at p = 1 was shown to achieve an approximation ratio of
at least .6924 for the Max-Cut problem on triangle-free 3-regular graphs [FGG14]. In a follow up
work, Wurtz et al. [WL20] improved this to .7559 for 3-regular graphs with p = 2 and made the
empirical observation that the bound was tight for graphs with no cycles of length < 7. Shortly
after QAOA, was proposed, however, a local classical algorithm was designed that outperformed
it on these graphs at depth 1 [Has19]. Consequently, because of a flurry of follow up results, QAOA
has been shown to be outmatched by local classical algorithms up to depth 2 [Mar21, BM21] for
the MAX-CUT problem on d-regular graphs with large girth. In fact, under the widely-believed
conjecture in the Spin-Glass Theory community that the SK model does not satisfy the Overlap
Gap Property [ACZ20], an AMP algorithm was recently proposed that outputs arbitrarily good cuts
for large (but constant) degree random regular graphs [AMS21]. However, this result [AMS21]
does not completely rule out a possibility for quantum advantage (see Section 9.4). To analyze the
performance of QAOA, on a problem that possesses an OGP, Farhi et al. [FGG20a] established that
QAOA, with depth p < elog(n) could not output independent sets of size better than .854 times
the optimal for sparse random graphs. This work suggested that the OGP may broadly prove to be
an obstacle for QAOA, while it is local as much as it does for various classical algorithms. However,
MAX-IND-SET is not a (maximum) CSP and, additionally, the prior work [FGG20a] does not give
an analysis that generalizes to CSPs. Our work establishes this generalization and also immediately
positively resolves the “landscape independence” conjecture of QAO A og(,) proposed by Brandao
et al. [BBF"18]. This immediately suggests that quantum advantage is unlikely to be found up to
this depth for CSPs with an OGP, and we conjecture that almost all CSPs will have an OGP (see
Section 9.1).



It was shown by Bravyi et al. [BKKT20] that QAOA would not output cuts better than % + O(%)
times the optimal value for some infinite family of d-regular graphs (which happen to be bipartite).
This was achieved as a corollary to their proof for a log(#)-depth version of the NLTS conjecture.
Farhi et al. [FGG20b] improved on this via an indistinguishability argument which utilized the
fact that local neighborhoods of random d-regular graphs are trees with high probability to then
conclude that there are d-regular graphs (specifically random bipartite ones) on which QAOA

wouldn’t do better than 1 + O(ﬁ) for sufficiently large n.

Local algorithms for spin glasses. The performance and limitations of various algorithms, such
as factors of i.i.d. and message passing algorithms, have been established on different models of
spin glasses [CGP 19, GJ21, Mon19, EAMS21]. In particular, the literature often provides two kinds
of results: An arbitrary approximation to the ground state in the absence of an Overlap Gap Property
via an appropriate algorithm [EAMS21, Mon19] or a barrier to arbitrary arbitrary approximation
for some family of algorithms in the presence of an Overlap Gap Property [CGP' 19, GJ21]. The
first work, to the authors” knowledge, that analyzed the performance of QAOA on a spin glass
model was by Farhi et al. [FGGZ19]. In this work, [FGGZ19] provide an analytic expression
for the expected value that QAOA,, outputs on typical instances of the SK model, which can be
evaluated by a "looping procedure" implemented on a circuit with O(16”) gates. Numerical results
are provided demonstrating evidence that at p = 11 this beats the best known SDP-based solver.
In this paper, we show that the Overlap Gap Property of diluted k-spin glasses poses an obstacle
for fixed angle QAOA, when p < elog(n). The generalization to the k-spin mean field model is
substantially more challenging to analyze, as in that setting the QAOA, algorithm is not local even
at depth p = 1. However, a coupled Overlap Gap Property is known to exist for the k-spin mean
field model [CGP " 19].

1.3 Ouwur results

In this work, we show that at shallow-depth the QAOA algorithm cannot output a spin configura-
tion that has Hamiltonian (1 — €p)-close to the H* in a random diluted k-spin glass.

Theorem 1.1 (Obstruction to QAOA over diluted k-spin glass, informal).

For every even k > 4, there exists dy € IN and the following holds: There exists €y > 0 such that if QAOA,,
outputs a solution o € {—1,1}" with H(o') being (1 — €g)-close to the H* of a random diluted k-spin glass
of average degree d > dy with probability at least 0.99, then p = Q(logn).

The formal version of the theorem is stated in Theorem 4.2. This result can be interpreted as a weak
obstruction to logarithmic-depth QAOA in approximating a random diluted k-spin glass, which is
equivalent to the random Max-k-XOR problem when all clauses check for odd parity of non-negated
variables. We also demonstrate the same result for the general case of random Max-k-XOR.

Theorem 1.2 (Obstruction to QAOA on random Max-k-XOR, informal).

For every even k > 4, there exists dy € IN and the following holds: There exists €9 > 0 such that if QAOA,
outputs a solution ¢ € {—1,1}" with H(c) being (1 — €p)-close to the H* of a random Max-k-XOR
instance of average degree d > do with probability at least 0.99, then p = Q(logn).



This is stated formally in Corollary 4.4, and answers a question of [FGGZ19], where the authors
ask if QAOA, would perform well on k-spin generalizations of the SK model, citing Max-k-XOR in
particular [CGP"19].

In fact, we can prove results stronger in three ways: (i) the same approximation resistance holds
for a more general family of algorithms defined as generic local algorithms (Definition 3.1), (ii) the
same approximation resistance holds for a broader family of optimization problems (Definition 1.4)
provided they exhibit a certain solution geometry (Definition 1.5), and (iii) we show that random
Max-k-XOR with negations is one of the optimization problems with this geometry (Theorem 8.12),
whereas previous work only handled it without negations so that all clauses needed to be of odd
parity. We begin by informally introducing generic local algorithms, random constraint satisfaction
problems (CSPs), and the coupled overlap gap property (OGP).

Generic local algorithms. As traditional notions of local algorithms do not capture QAOA!, we
generalize the definition to a broader family and call it generic local algorithms. A randomized
algorithm A on a hypergraph G = (V, E) can be viewed as outputting labels A(G) € S from a
label set S (e.g., S = {—1,1}). Asboth A and G are random, A(G) is a set of random variables and
the independence structure of A(G) captures how local A is. Next, for a hypergraph G and a vertex
set L C G, the p-neighborhood of L is the induced subgraph of G by the vertices that can reach L in

p steps.

Definition 1.3 (Generic local algorithms, informal).
Let p € IN and let S be a finite label set. We say an algorithm A (which takes a hypergraph G as an input) is
generic p-local if the following hold:

* (Local distribution determination.) For every set of vertices L C V, the joint marginal distribution of
the labels (A(G)y)ver depends only on the union of the p-neighborhoods of v € L in G.

* (Local independence.) A(G), is statistically independent of the joint distribution of { A(G),} for
every v’ that is farther than a distance of 2p from v.

The main difference between our notion of generic local algorithms and the ones used by previous
works is that Definition 1.3 captures the evolution of correlations, without assuming any concrete
model of randomness. This is crucial in the interpolation step of the proof (see Section 1.4).
See Definition 3.1 for the formal definition.

Definition 1.4 (Random (k,d)-CSP(f)).
A (signed) random (k,d)-CSP(f) instance with a local constraint function f : {—1,1}F — {0,1} is
constructed as follows:

1. Choose r ~ Poisson(dn/k).

2. Sample r clauses of size k by choosing each clause C; independently as a collection of k variables
uniformly at random from {xy, ..., xn}k, and, in the case of a signed random CSP, random signs s; 1,

I This is made formal in Proposition 3.2



-, Sik € {:|:1}

To each clause C; there are k variables associated: {x;,...,x; }. A clause is satisfied if there is some
assignment to every x;; € {=1,1}, such that, f(x;, ..., xx) = 1(or f(si1xi}, - .., SixXx,) = 1 if signed).
The value of an assignment o € {—1,1}" is defined as valy(c) = #{C; : f(oi,...,03,) = 1} (or
#{Ci: f(sin0i), ..., 8ix03 ) = 1} if signed). The optimal value of ¥ is defined as val(¥) := maxg valy ().

When unspecified, we will be referring to unsigned CSPs.

We say that a random (un)signed (k,d)-CSP(f) satisfies a coupled overlap-gap property (OGP) if,
given two instances ¥, ¥’ constructed so that they share a random ¢-fraction of clauses with the
remaining (1 — t)-fraction chosen independently, any two “good" solutions ¢ of ¥ and ¢’ of ¥’ are
either very similar of dissimilar.

Definition 1.5 (Coupled OGP, informal).

A signed or unsigned (k,d)-CSP(f) satisfies a coupled OGP if there exists g > 0and 0 < a < b < 1such
that the following hold for every t € [0,1]: Given two (k,d)-CSP(f) instances ¥,¥’ constructed so that
they share a random t-fraction of their clauses and have the remaining (1 — t)-fraction of clauses chosen
independently and uniformly at random, then for every 0 < € < €y, the overlap between any (1 — €)-optimal
solution o of ¥ and o’ of ¥' satisfies

L,
{,0') & [a,b
with high probability.

A formal definition of the property above is provided in Theorem 2.19, and the formal definition of
the interpolation used to create two “t-coupled" instances is given in Definition 2.18. Note that an
instance of a (k,d)-CSP(f) can be thought of as a random sparse k-hypergraph, and this is made
more precise in the proof of Theorem 4.5.

Now, we are able to state the most general form of our main result.

Theorem 1.6 (Obstruction to generic local algorithms given coupled OGP, informal).

For every k > 2, and a constraint function f : {—1,1}* — {0,1}, suppose there exists dy where a random
signed or unsigned (k,d)-CSP(f) satisfies the coupled OGP (i.e., Definition 1.5) for every d > dy and
p(n) is such that it satisfies the requirements of Theorem 5.3 and Theorem 5.4, then the following holds:
There exists €9 > 0 such that a generic p(n)-local algorithm cannot output a solution that is better than
(1 — eo)-optimal with high probability.

The formal version of the above theorem is stated in Theorem 4.3. The theorem effectively obstructs
any algorithm that makes assignments for variables by looking at o(#) sized local neighborhoods
irrespective of how these decisions are made and what kind of randomness is used, provided the
problem exhibits a coupled OGP.

Confirmation of landscape independence. As a consequence of our proof techniques, we also
confirm a prediction of Brandao et al. [BBF " 18] in the ®(log 1)-depth regime for QAOA by showing
that the output values of QAOA on a random (k, d)-CSP(f) instance (with depth p as stated in
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Lemma 2.20) concentrate very heavily around the expected value. Once again, the expectation here
is with respect to the input distribution as well as the internal randomness of the algorithm.

Theorem 1.7 (Confirmation of landscape independence, informal).
Given a random instance ¥ of a (k,d)-CSP(f) chosen as stated in Definition 1.4, and a QAOA, circuit
with depth p < g(d, k) log(n) for some function g, the solution o output by QAOA, with value valy (o)
concentrates as,

Pr[|valy(c) — E]valy(0)]| > dn] < 0,(1),

for every every 6 > 0 and the probability taken over both the input distribution and internal randomness of
the algorithm.

The theorem above is made formal in Theorem 4.5, and the proof follows by encoding a random
(k,d)-CSP(f) instance in a random sparse k-hypergraph and then applying Corollary 5.13 with the
local function on every hyperedge being set to f.

Discussion and open problems. Our results reveal that a coupled OGP is tightly related to the
obstruction of QAOA. This motivates many open problems that are either inspired by this work or
are closely related to it, and these are discussed in greater detail in Section 9.

1.4 Technical overview

Our proofs for the main theorems follow the analysis framework of [CGP " 19], which shows the
approximation resistance of random diluted k-spin glasses to a weaker? class of classical algorithms
called factors of i.i.d.local algorithms. We start with briefly giving an overview of their proof and
pointing out where their analysis does not extend to QAOA. See also Figure 1 for a pictorial
overview.

Chen et al. [CGP"19] analysis. They establish a coupled overlap-gap property (OGP) for diluted
k-spin glasses (Theorem 2.19). The property says that for two “coupled” random instances and
any nearly optimal solutions 01,0, € {—1,1}" of these, the solutions either have large or small
overlap on the assignment values to the variables, i.e., there exists an interval 0 < a < b < 1 such
that (0q,02)/n € [a,b]. The coupled OGP holds over an interpolation of a pair of hypergraphs
{(G1(t), Ga(t)) }1epo,1) With the following three properties: for every ¢ € [0, 1], denote 01 (t) and o7 (t)
as the outputs of a factors i.i.d. algorithm on inputs G;(t) and G,(¢) respectively. (i) when t = 0,
(G1(0), G2(0)) are independent random hypergraphs and (c1(0),02(0)) /n < a with high probabil-
ity; (i) when t = 1, G1(1) = Gz(1) are the same random hypergraph and (4 (1),02(1)) /n = 1 with
high probability; (iii) for each t € [0, 1], the correlation (7 (t),02(t)) /n between the two solutions is
highly concentrated (with respect to the randomness of G;(t), G2(t) and the algorithm) to a value
R(t), and R(t) is a continuous function of ¢. This contradicts the OGP if the solutions are nearly
optimal and hence no such factors of i.i.d. algorithm can exist. Note that it is also important to

%In particular, QAOA is not captured by factors of i.i.d.and we show a separation in Proposition 3.2. Refer to Ap-
pendix A for more details.



assert that the hamming weight and the objective function values output by the algorithm also
concentrate.

Our analysis. The key part of the Chen et al. [CGP"19] proof that does not work for QAOA is
item (iii) of step 2. Specifically, QAOA is not a factors of i.i.d. local algorithm and hence their
concentration analysis on the correlation between solutions to coupled instances does not apply.
Intuitively, this is because local quantum circuits can induce entanglement between qubits in a local
neighborhood which cannot be explained by a local hidden variable theory [Bel64]. We overcome
this issue by first generalizing the notion of factors of i.i.d.algorithms to what we call generic local
algorithms (Definition 3.1).

To establish concentration of overlap for generic local algorithms, the challenge lies in how to
capture the local correlations of G1(t) and G, (t). We achieve this by defining a new notion of a
random vector being locally independent (Definition 5.2). The locally independent structure enables
us to show concentration on a fixed instance over multiple runs of the generic local algorithm with
respect to its internal randomness (Theorem 5.3). Finally, to establish concentration between a
pair of correlated instances (G; (f) and Gy (t)), we strengthen McDiarmid’s inequality for biased
distributions (Lemma 7.6) and this allows the concentration analysis of the correlation function
R(t) to pull through (Theorem 5.1). We complete the analysis by showing that the hamming weight
and objective function values output by a generic p-local algorithm also concentrate (Corollary 5.10,
Corollary 5.13). In fact, we show this for a broader class of problems (Theorem 4.5).

(a) (b) ()

GlgO) G2(0) Gi(t) Ga(t) G1(1) = G2(1)

() T RO N
S S
A cloud of nearly optimal solutions for G1(t) a

A cloud of nearly optimal solutions for G2(t) N
t=0 \"*»\ t=1 I 4

Figure 1: Overview of the proof ideas. (a) The coupled overlap-gap property (OGP) by [CGP*19].
Pictorially, the property guarantees that the nearly optimal solutions of a pair of independent
instances form multiple disjoint clouds in the solution space {—1,1}". (b) Interpolation of a pair
of diluted k-spin glass instances. {(G1(t), G2(t))}c[o,1] describes the interpolation from totally
independent (i.e., t = 0) to totally correlated (i.e., t = 1). R : [0,1] — [0, 1] is the correlation function
of a local algorithm (e.g., QAOA) on this interpolation. The coupled OGP prevents R(t) to take
values in [a, b] (i.e., the grey area). (c) To contradict the coupled OGP, we would like to show that
R(t) is a continuous function and this requires showing that the correlation between the outputs of
Gi1(t) and that of G,(t) is concentrated. This is the main challenging step in the proof.

Comparison with Chen et al. [CGP"19] and Farhi et al. [FGG20al. We augment the techniques
of [FGG20a] to handle a coupled OGP over a continuous interpolation, as opposed to the coupled



OGP in [FGG20a] which is over a fixed discrete interpolation. The advantage of this is to enable the
use of a broader family of coupled OGPs provable using statistical mechanics methods, whereas
the coupled OGP of [FGG20a] requires reasoning about explicit sequences of instances in a way
that does not clearly generalize from their independent set analysis to the setting of CSPs. Our
statements additionally are more general and show much stronger concentration than those of
[CGP"19] which is necessary to demonstrate that polynomially many runs of the algorithm will
(with high probability) not succeed. We also show a locality bound of log n instead of constant,
requiring different techniques for analyzing locality than those used in [CGP ' 19], who study only
regimes where all neighborhoods are locally isomorphic to trees. Finally, we demonstrate the
coupled OGP (and therefore obstruct generic local algorithms) for general-case random Max-k-XOR,
rather than the case where all clauses require odd parity of their associated variables, without
negations.

2 Preliminaries

In this paper, we adopt the following conventions on notations in a CSP (in a spin glass model).
n denotes the number of variables (the number particles); k denotes the arity of a constraint (the
number of particles involved in an interaction) and k > 4 throughout the paper; m denotes the
number of hyperedges (the total number of non-trivial interactions); d denotes the degree of a
variable (the number of interactions a particle is involved in on average).

The rest of this section is organized as follows. We first recall some elementary definitions and
results from spin glass theory in Section 2.1. Then, we formally define local algorithms such as
factors of i.i.d. and QAOA in Section 2.2. We then provide the complete definition of the OGP and
coupled OGP as well as some relevant theorems in Section 2.3. Finally, in Section 2.4 we end with a
statement which states that sufficiently local neighborhoods of sparse random hypergraphs see a
vanishing fraction of the total hypergraph.

2.1 Spin glass theory

As introduced in Section 1.1, a spin-glass model is specified by a collection of interactions {J;,,..;, }
on n particles. Physicists are interested in studying Hamiltonians of the form,

where 0 € {—1,1}" is the spin configuration. Specifically, it is of importance to understand the
ground state energy, i.e., H* := H(0), as well as the spin configurations ¢ that have energy H(c)
close to H*. Note that this naturally connects spin glass theory to combinatorial optimization

..........

and H (o) is the objective function.
In condensed matter physics, it is critical to understand the average-case setting and, therefore,

.....
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common spin glass models: diluted k-spin glasses (Section 2.1.1) and the k-spin mean field model
(Section 2.1.2).

2.1.1 Diluted k-spin glasses

In the diluted k-spin glass model, the interactions are sampled from a random sparse k-uniform
hypergraph defined as follows.

Definition 2.1 (Hypergraphs on n Vertices).

A hypergraph G on n vertices with m hyperedges is characterized by its set of labelled vertices V = {1,...,n}
and hyperedges E = {ey, ..., ey }, where every hyperedge e; = (vi1,...,vix) € E is an ordered k;-tuple in
V,and k; € N, Vi € [m].

We restrict our attention to sparse instances of such hypergraphs, which amounts to asserting that
the number of hyperedges is m = nd/k = O(n). Additionally, we also restrict to the case that our
hyperedges are k-uniform, that is, each of them contains k-vertices. For the rest of the paper, we
will always assume thatd = O(1), k > 4 and k is even, and that #,, ; x denotes the set of all such
k-uniform hypergraphs over n vertices with nd /k hyperedges.

Definition 2.2 (Random Sparse k-Uniform Hypergraphs).
A hypergraph G ~ H,, 4 is chosen by first choosing the number of edges m = |E| ~ Poisson(dn/k), and
then choosing hyperedges ey, . . ., ey, i.i.d. uniformly at random from the set [n]* of all vertex k-tuples.

Let G be a sparse k-uniform hypergraph, the Hamiltonian of the corresponding diluted k-spin glass
is
mk
HG(U) = - 2H0Ui,j ’ (23)
i=1j=1
where T, denotes the spin of the j-th vertex in the i-th hyperedge. Note that maximizing this

Hamiltonian corresponds to finding a configuration ¢ such that H® (¢) is maximized.

Correspondence to Max-k-XOR. Maximizing the Hamiltonian in a diluted k-spin glass is equiva-
lent to maximizing the number of satisfying constraints in a certain instance ¥ of Max-k-XOR. Recall
that a Max-k-XOR instance consists of constraints of the form x; & --- @ Xjp = b;. Letx € {0,1}" be
a boolean assignment, the value of x on ¥ is then defined as valy(x) := Y, b; ® Xiy @ DX Let
G be a sparse k-uniform hypergraph, we associate it with a Max-k-XOR instance ¥© with constraint
Xoj @0 Xy = 0 for every i = 1,...,m. Finally, we associate a spin configuration c € {—1,1}" to
a boolean assignment x € {0,1}" by sending —1 +— 1 and 1 — 0. Thus, the product of spins on a
hyperedge e is mapped to the parity of the corresponding boolean variables:

k k
[Tow, = (-)%"
i=1
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foreachi =1,...,m. Moreover, the Hamiltonian and the CSP value have the following correspon-
dence.

HC(0) = — fﬁ% =y <z : (—1)@?:1 i 1) = 2valyc (x) — m.

That is, maximizing that Hamiltonian H® is equivalent to maximizing the value valyc. As a remark,
note that when k = 2, Max-k-XOR becomes Max-Cut. As a signed extension of the diluted k-spin
glass hamiltonian, one can define a hamiltonian for the random Max-k-XOR problem.

Definition 2.4 (Random Max-k-XOR).
Sample a hypergraph G ~ H,, 1i by the same procedure mentioned in Definition 2.2. The hamiltonian
corresponding to the random Max-k-XOR instance ¥ ¢ generated by this hypergraph G is

m k
G
Hsigned =~ ZH pijavij ’ (2.5)
i=1j=1
where every p;; ~ {£1} is an i.i.d. Rademacher random variable.

Typical behavior. It is important to understand the typical value of H® when G is a random
sparse graph. For example, the following quantity

M(k,d) = lim _E [max HG(U)], (2.6)

n=0 Gty g loef{-11}" 1
is a well-defined limit whose existence is inferred from arguments similar to those presented in
[DS04]. Furthermore, by standard concentration arguments, the ground state energy concentrates
heavily around M(k, d). The exact computation of the value of M(k, d) is beyond the scope of this
paper. However, as mentioned in Section 2.1.2, the value can be related to the free-energy of a
typical instance of the k-spin mean field Hamiltonian in the large-d regime.

2.1.2 k-spin mean field model

The k-spin mean field model is a special case of the infinite-range model with each interaction
Jit sy, = 8,y /v nk—1 where iy, are i.i.d. standard Gaussian random variables. Just as in the
case of diluted k-spin glasses, spin configurations that maximize the Hamiltonian are of particular
interest. Specifically, we are interested in typical ground state configurations in the thermodynamic
limit (n — o0). The optimal (normalized) value of the ground state is characterized by the following
term,

P(k) := lim I,I.?.,ik Ler{ne;ﬁ}n H(U)] , (2.7)
where P(k) denotes the famous Parisi constant. In a sequence of recent works [DMS17, Sen18] this
limit was precisely related to the limit of the ground state energy of diluted k-spin glasses in the
large degree limit as,

M(k,d) =% \/z - P(k) +o (\/E) . 2.8)
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2.2 Local algorithms

Alocal algorithm assigns a (random) label to each vertex v independently at the beginning and then
updates it based on the labels of a small neighborhood of v. Intuitively, the labels associated to the
vertices form a stochastic process and in the end the local algorithm assigns a value to each vertex
according to its final label. In Section 2.2.1 we introduce factors of i.i.d. algorithms [GS14, CGP"19].
These algorithms parameterize a family of local algorithms that capture most common classical
local algorithms. We then introduce the QAOA in Section 2.2.2.

2.2.1 Factors of i.i.d. algorithms

A local algorithm takes an input (hyper-) graph G and a label set S, runs a stochastic process
{XC(t)}; that associates to each vertex v a label X§ () € S at time ¢, and outputs the assignment o,
to each vertex v according to its final label. While there is a huge design space for local algorithms, a
factors of i.i.d. algorithm of radius p has the following restrictions: (i) the initial label for each vertex
v is set to be an i.i.d. set of random variables X§ (0). (ii) For each vertex v, the assignment ¢, is a
random variable that only depends on the labels from a p-neighborhood of v. (iii) The assignment
function for each vertex is the same. Common local algorithms such as Glauber dynamics and
Belief Propagation are examples of factors of i.i.d. algorithms.

To be more concrete, let us start with a formal definition of the p-neighborhood of a vertex in a
hypergraph, which is a generalization from the p-neighborhood of a graph by considering two
vertices v and w to be adjacent if they belong to the same hyperedge e.

Definition 2.9 (p-neighborhood and hypergraphs with radius p).
Let G be a hypergraph, v € V(G), and p € IN. The p-neighborhood of v is defined as

Bg(v,p) :={w € V(G) |wis p hyperedges away from v} .

Let G be a hypergraph, v € V(G), and p € IN. We say (G, v) has radius p if B,(G,) = G. Further, let
k € IN, we define

Gy := {(G,v) | (G,v) has radius p and G is connected, finite, and k-uniform}
be the collections of hypergraphs with radius at most p.

Next, to capture the fact that local algorithms assign the value of a vertex v by only looking at a
p-neighborhood, it is natural to define an equivalent classes of local induced subgraphs rooted at v
as follows.

Definition 2.10 (Rooted-isomorphic graphs).

Let Gy, Gy be two hypergraphs and v € V(Gy) NV (Gy). We say Gy and Gy are rooted-isomorphic at
v, denoted as Gy =, Gy, if there exists a hypergraph isomorphism ¢ : V(G1) — V(Gy) such that
¢(v) = v. Similarly, let L C V(G1) N V(G2), we say G1 =1, Gy if there exists a hypergraph isomorphism
¢ :V(G1) = V(Gy) with ¢(v) = v forallv € L.

13



In the future usage of Definition 2.10, we think of G; and G; as some neighborhoods. Intuitively,
when the neighborhood of v; and v, are rooted-isomorphic, then the local algorithm will give the
same output to them.

The last notion of local algorithms to capture is the assigning process f from the labels of a p-
neighborhood to a value. In particular, a local algorithm should produce the same output value
for v; and v, when the induced subgraphs of their p-neighborhood are rooted-isomorphic. For
simplicity, we focus on the case where the label set S = [0, 1].

Definition 2.11 (Factor of radius p, [CGP 19, Section 2]).
Let p € IN. We define the collection of all [0, 1]-labelled hypergraphs of radius at most p as

Ay = {(G,v,X) | (G,v) € Gpand X € [Oll]v(c)}

We say (Gy,v1,X1), (Go,v2, X2) € A, are isomorphic if there exists a hypergraph isomorphism ¢ :
V(G1) = V(Gy) such that (i) ¢p(v1) = vy and (i) Xp 0 ¢ = Xi.

Finally, we say f : A, — {—=1,1} is a factor of radius p function if (i) it is measurable and (ii)
f(G1,v1,X1) = f(Ga,v2, X3) for every isomorphic (Gy,v1, X1), (G2, v2, X2) € Ap.

Now, we are ready to define factors of i.i.d. algorithms. Intuitively, the output distribution of a
factors of i.i.d. algorithm with radius p on a vertex v is determined by the p-neighborhood of v.

Definition 2.12 (Factors of i.i.d., [CGP 19, Section 2]).
Let k, p € IN. A factors of i.i.d. algorithm A with radius p is associated with a factor of radius p function
f with the following property. On input a k-uniform hyper graph G, the algorithm A samples a random
labeling X = {X(v) }oev(g) where X(v)’s are i.i.d. uniform random variables on [0, 1]. The output of A is
o€ {=1,1}V(©) where

Oy i= f(BP<GI 0),v, {X<w)} ’weBp(G,v))

foreachv € V(G).

2.2.2 The QAOA algorithm

The algorithm. The QAOA algorithm was proposed by Farhi et al. [FGG14] as a way to approxi-
mately solve hard combinatorial optimization problems. The QAOA algorithm works by applying,
in alternation, weighted rotations in the X-basis to introduce mixing over the uncertainty in the
solution space and weighted cost e (%) ynitaries to introduce correlation spreading encoded
by the Hamiltonian of the desired cost-function to maximize. This weighting is accomplished
by giving some assignment of weights to weight vectors f = (B1,...,8p) and § = (71,...,7p),
and then running a classical optimizer to help find the ones that maximize the output of QAOA.
Various methods, including efficient heuristics, to optimize these angles are studied in the litera-
ture [BBF 18, ZWC"20].
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The QAOA circuit parametrized by angle vectors 4 and 3 looks as follows,
p . .
u]ﬂ(ﬁr /)\/) = H e_lﬁf Z;Zzl Xke_l'Y]'Hc(G) ‘
j=1

Typically, the initial state on which the circuit is applied is a symmetric product state, most notably
|0)*" or |[+)®". The expected value that QAOA outputs after applying the circuit on some initial
state |¢p) is,
(ol U"He(G)U [4ho) -

It is the expectation value above that is optimized (by maximizing) for various choices of
and 4 under a classical optimizer, and the solution corresponding to this solution comes from a
measurement in the Z-basis of the state U,(j, ) |). We will notate by QAOA(B, ¥) a QAOA
circuit of depth 2p with angle parameters 8 and 4. In our regime, we will work with any collection
of fixed angles (j,). The fixed angles regime is necessary when reasoning about the concentration
of overlaps of the solutions produced by a p-local algorithm on coupled instances with shared
randomness. If the angles of QAOA vary between the coupled instances, then we cannot assert that
the coupled instances will share randomness when labeling vertices with identical neighborhoods.

The diluted k-spin glass Hamiltonian and QAOA. We can rewrite Hy 4, as a Hamiltonian for a
quantum system by replacing o; with the Pauli Z matrix. This yields a k-local Hamiltonian that the
QAOA ansatz tries to maximize. The Hamiltonian is,

k
B ==Y @o(v), (2.13)
('01 ..... Uk)EE(G) i=1
where 0 (v;) is a 2 X 2 Pauli Z matrix for the i-th vertex (qubit) in the hypergraph G. We want to
maximize the following expectation value,

k
max (¢o| U'Hyu(G)U [ho) = max — Y <<l/)0|u+ <®Uz(vi)>u|1p0>>. (2.14)
E(G)

ajBjj<lp] ajBjj€lp] (01 00) € i1

QAOA at shallow depth. Note that the only "spreading" of correlation is introduced by the

(G)

operator e PiHc(C) which is applied only p times. The hamlitonian in consideration is k-local, and

therefore, after p operations a qubit i will interact with no more than
p
el )| < (k= 1) max 11(E(HG))

vertices, where,
IT;(E(G)) = {e € E(G) | eis a hyperedge that contains v; } . (2.15)

Proposition 3.3 makes a precise statement about the locality of QAOA with fixed angles. Bounding
the size of max;c, IT;(E(HG)) is the main subject of Lemma 2.20, which parameterizes p appropri-
ately as a function of the number of vertices n in the graph (logarithmic) as well as the parameters
of k and d so that this size is o(n). This is sufficiently small for the purposes of our obstruction
theorem.

15



2.3 Overlap-gap properties

We now state the OGP as it holds for the diluted k-spin glass model in both uncoupled and coupled
form. To do so, we begin by introducing the notion of an overlap between two spin-configurations
o1 and 07, which is equivalent to the number of spins that are the same in both configurations
subtracted by the number of different spins, normalized by the number of particles in the system.
Formally,

Definition 2.16 (Overlap between spin configuration vectors).
Given any two vectors 01,02 € {—1,1}", the overlap between them is defined as,

R(o1,02) = %(UL@) = % Y (01)i(on); -

i€[n]

We first state the OGP for diluted k-spin glasses about the overlap gaps in a single instance.

Theorem 2.17 (OGP for Diluted k-Spin Glasses, [CGP 19, Theorem 2]).

For every even k > 4, there exists an interval 0 < a < b < 1 and parameters dy > 0,0 < 9 < P(k) and
no > 1, such that, for d > do, n > ng and L = L(no,d), with probability at least 1 — Le "L over the
random hypergraph G ~ H,, 1k, whenever two spins 01, 02 satisfy

then also, |R(cq,02)| ¢ (a,b).

A more general version of the OGP excludes, with high probability, a certain range of overlaps
between any two solutions of two different instances jointly drawn from a coupled random process.
We first introduce this process, and then state the coupled version of the OGP as proven in [CGP*19].

Definition 2.18 (Coupled Interpolation, [CGP 19, Section 3.2]).
The coupled interpolation H s generates a coupled pair of hypergraphs (Gi, Go) ~ H g+ as follows:

1. First, a random number is sampled from Poisson(tdn/k), and that number of random k-hyperedges
are uniformly drawn from the set [n)* and put into a set E.

2. Then, two more random numbers are independently sampled from Poisson((1 — t)dn/k), and those
numbers of random k-hyperedges are independently drawn from [n)* to form the sets Ey and E
respectively.

3. Lastly, the two hypergraphs are constructed as Gy = (V,EU E;) and G, = (V,E U Ey).

Theorem 2.19 (OGP for Coupled Diluted k-Spin Glasses, [CGP 19, Theorem 5]).

For every even k > 4, there exists an interval 0 < a < b < 1 and parameters dy > 0,0 < 19 < P(k) and
no > 1, such that, for any t € [0,1], d > do, n > ngy and constant L = L(no, d), with probability at least
1 — Le™"/L over the hypergraph pair (G, Ga) ~ Hy 4k, whenever two spins 1, o, satisfy

HC(03) U
e (1= 555)
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then their overlap satisfies |R (01, 02)| & [a, b].

We also provide a corresponding coupled OGP for random Max-k-XOR in Theorem 8.12.

2.4 Vanishing local neighborhoods of random sparse k-uniform hypergraphs
We state a bound on sufficiently local neighborhoods of random sparse k-uniform hypergraphs.

Lemma 2.20 (Vanishing local neighborhoods of random sparse k-uniform hypergraphs).
Letk >2and d > 2 and T € (0,1). Then there exists a > 0 and 0 < A < 1, such that, for n large enough
and p satisfying

the following are true:
a

Pr [maxBg(v;,2p) > nt] <e ™™,
GrHpgp i

and

N
NI

J<e

Pr |maxBg(v;,p) > n
o r | ImaxBo(vip) >

Intuitively, the above lemma says that the local neighborhood of each vertex is vanishingly small
with high probability. To prove Lemma 2.20, we utilize a modified version of the proof of Farhi et
al. [FGG20a, Neighborhood Size Theorem] to handle the case of sparse random hypergraphs and
we defer the complete proof to Appendix B.

3 Locality and Shared Randomness

3.1 Generic p-local algorithms

We introduce a concept of “local random algorithm” which will allow for different runs of the same
local algorithm to "share their randomness", even when run on mostly-different instances. Later
we will demonstrate that QAOA is a local algorithm under this definition.

Definition 3.1 (Generic local algorithms).
We consider randomized algorithms on hypergraphs whose output A(G) € SV assigns a label from some set
S to each vertex in V. Such an algorithm is generic p-local if the following hold.

¢ (Local distribution determination.) For every set of vertices L C V, the joint marginal distribution
of its labels (A(G)y)ver is identical to the joint marginal distribution of (A(G')y)ver whenever
Uoer Bo (v, p) =L Uper Bor (v, p), and,

* (Local independence.) A(G), is statistically independent of the joint distribution of A(G),s over all
v' & Bg(v,2p).
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Consequently, it will be possible to sample A(G), without even knowing what the hypergraph
looks like beyond a distance of p away from v.

This definition is more general than the factors of i.i.d. concept used in probability theory [G514,
CGP"19]. Our definition, for instance, encompasses local quantum circuits whereas factors of i.i.d.
algorithms satisfy Bell’s inequalities and do not capture quantum mechanics.

Proposition 3.2 (Generic local strictly generalizes factors of i.i.d.).
There exists a generic 1-local algorithm as defined in Section 3 that is not a 1-local factors of i.i.d. algorithm
as defined in Section 2.2.1.

A proof of this proposition is provided in Appendix A, and consists of setting up a Bell’s inequality
experiment within the framework of a generic 1-local algorithm.

3.2 Locality properties of QAOA for hypergraphs

We show that any QAOA circuit of depth p with some fixed angle parameters (3, 4) is a p-local
algorithm. This allows us to describe a process to sample outputs of this circuit when it is run on
two different input hypergraphs.

Proposition 3.3.

For every p > 0, angle vectors f and 4, QAOA,( B, %) is generic p-local under Definition 3.1.

Proof. To see this, consider the structure of QAOA: we start with a product state |¢g) where each
qubit corresponds to a vertex in the hypergraph, apply the unitary transformation U = U, ( B, %)
to the state, and then measure each vertex v in the computational basis with the Pauli-Z operator
0>(v). Equally valid and equivalent is the Heisenberg picture interpretation of this process, where
we keep the product state |¢p) fixed but transform the measurements according to the reversed
unitary transformation U', so that we end up taking the measurements Utc(v)U on the fixed
initial state.

Because the 0 (v) operators all commute with each other, their unitarily transformed versions
Ut (v)U also mutually commute, and the measurements can be taken in any order without any
change in results. Let M(v) = U'o,(v)U and M(L) = {U'o,(u)U | u € L}.

To show that QAOA satisfies the first property of generic p-local algorithms, we need to show
that the marginal distribution of its assignments to any set L’ C V of vertices depends only on
the union of the p-distance neighborhoods of L’. To show this, since we are allowed to take the
measurements in any order, take the measurements in M(L’) before any other measurement. Then
since the action of the unitary U = U, (B,%) on qubits in L’ does not depend on any feature of the
hypergraph outside of a radius of p around L’, the operators M(L’) are fully determined by the
p-local neighborhoods of L', and since we take them before every other measurement, the qubits are
simply in their initial states when we make these measurements, thus the distribution of outputs is
fully determined.
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The same type of reasoning shows that the assignment to each v € V is statistically independent
of the assignments to any set of vertices outside of a 2p-distance neighborhood of v. Take L” C
V \ B(v,2p). Then M(v) acts on a radius-p ball around v, and each measurement in M(L")
acts on a radius-p ball around a vertex in L”, and by taking {M(v)} U M(L") before any of
the measurements in M({B(v,2p) \ {v}), we ensure that the qubits being measured by M(v) are
disjoint from and unentangled with those measured by anything in M(L"). Hence the measurement
M(v) is independent of all measurements in M(L"). We conclude that QAOA,, is a generic p-local
algorithm. O

3.3 Shared randomness between runs of a generic local algorithm

We describe a process to sample the outputs of a generic local algorithm when run twice on two
different hypergraphs, so that the two runs of the algorithm can share randomness when the
hypergraphs have some hyperedges in common.

This is not meant as a constructive algorithm, but a statistical process with no guarantee of feasible
implementation.

The idea is to start with two t-coupled hypergraphs, which for large enough 7, are likely to have
some set of vertices L™ whose p-neighborhoods are identical between the two hypergraphs. Since
these vertices have identical p-neighborhoods, a generic p-local algorithm behaves identically on
the vertices in L™. We pick a random +* fraction of the elements of L™, and assign the same labels
to those vertices in the two coupled instances. Then the remaining labels on each hypergraph are
assigned by generic p-local algorithms, conditioned on the output being consistent with the already
assigned labels.

Definition 3.4 (Randomness-sharing for generic local algorithms).

Let A be a generic p-local algorithm, (G1, Go) ~ Hg kst and S be a label set. A pair of runs with t-shared
randomness of A on G; = (V,EUE;) and G, = (V,E U E,) with some shared edge set E is defined
follows:

1. Let L be the set of all vertices v € V such that E(Bg, (v, p)) C E and E(Bg, (v, p)) C E. Generate
the vertex set L C L™ by including each element of L™ independently with probability t*.

2. Since Uyer,(Bg, (v, ) = Uper(Ba, (v, p)), the algorithm has the same joint marginal distribution
for its outputs on L when it is run on Gy or Gy. Let o € St be a sample from this joint marginal
distribution.

3. Let oy be a sample of A(G1), conditioned on (01), = 0y for all v € L. Similarly for oy being a
conditioned sample of A(G). Then o1 and oy are individually distributed the same as independent
runs of the algorithm on Gy and G, respectively, and together are the output of the two runs with
tT-shared randomness.
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4 Main Theorems

We formally state our main theorems and give the informal proof sketches in this section. The
formal proofs are provided in Section 6. First, let us specify the choice of parameters we are going
to work with in the rest of the paper.

Parameter 4.1.

For every even k > 4, there exists 19 > 0 such that the following holds: for every T € (0,1) and 0 < n < 1,
there exist dy, ng > 0 from Theorem 2.19 and we consider running a generic p-local algorithm on a random
d-sparse k-uniform hypergraph G with size n > ng, degree d > dy and p satisfying,

(1—7)logn
d(k—1 ’
10g< (ln2 )>

4.1 Obstruction for generic local algorithms on diluted k-spin glasses

2p+1<

Theorem 4.2 (Obstruction theorem for diluted k-spin glasses).
Let (k,n1,T,d, n, p) be parameters satisfying Parameter 4.1 and v > 0 from Theorem 5.1. Then, on running
a generic p-local algorithm on a random d-sparse k-uniform hypergraph G with size n and degree d, the

probability that the algorithm will output an assignment that is at least (1 — n)-optimal is no more than
e=O),

Sketch of Proof: The proof follows the coupled interpolation argument in [CGP" 19, Section
3.3], and we sketch it briefly - The expected overlap between coupled solutions is continuous
(Lemma 6.1) with the overlap being less than a at t = 0 with high probability if the solutions are
nearly optimal (Lemma 6.3). The overlap is 1 at t = 1 (Lemma 6.4). Concentration of the overlap
for any value of t is then shown by invoking Theorem 5.1. The intermediate value theorem then
immediately yields a contradiction to the coupled Overlap Gap Property (Theorem 2.19). This
completes the proof for the obstruction. O

4.2 Obstructions for generic local algorithms on (k, d)-CSP( f) with coupled OGP

Theorem 4.3 (Obstructions for (k,d)-CSP(f) with coupled OGP).

Let (k,n1,T,d, n, p) be parameters satisfying Parameter 4.1 and v > 0 from Theorem 5.1. Let ¥ be a random
problem instance of a signed or unsigned (k,d)-CSP(f) constructed as in Definition 1.4 that satisfies a
coupled OGP — That is, the hypergraph encoding Gy of Y satisfies Theorem 2.19 with the only difference
that k can be any number > 2 — as well as having the property that the (1 — no)-multiplicatively optimal
pairs of solutions to two independent instances of the CSP have overlap no more than the lower bound (a) of
the OGP. Let o be the output of a generic p-local algorithm on Gy. Then the following holds:

Prvaly(c) > (1= no)valy] < e 00

Sketch of Proof: Once again, we first encode the problem instance ¥ into a representative
hypergraph Gy. Note that, by definition, the encoded instance Gy satisfies a coupled OGP as
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stated in Theorem 2.19 over the underlying coupled interpolation stated in Definition 2.18. The
concentration of the hamming weight || of the solution is established by Corollary 5.10 and the
concentration of the objective value valy is established by Theorem 4.5. The concentration of overlap
of solutions for coupled instances over the interpolation specified in Definition 2.18 is established
by Theorem 5.1. Then, by an argument similar to the one in the proof sketch of Theorem 4.2, the
obstruction follows. O

Corollary 4.4 (Obstructions for random Max-k-XOR).
Let (k,n1,T,d, n, p) be parameters satisfying Parameter 4.1 and v > 0 from Theorem 5.1. Let ¥ be a random
problem instance of Max-k-XOR with k > 4 even. Let o be the output of a generic p-local algorithm on Gy.
Then the following holds:

Pr[valy () > (1 — no)valy] < e 00"

Y,o

Proof. Combine Theorem 4.3 with Theorem 8.12 and Lemma 8.14. O

4.3 Concentration of objective function values of QAOA

For p = O(1), concentration of the objective function value output by QAOAP(B, %) for sparse
random constraint satisfaction problems (CSPs) is shown in [BBF18]. We state a result below
which extends this to QAOA,, at depth p < g(d, k) log n. While we state the result for QAOA ,( B,9)
specifically, this result will apply to any generic local algorithm. [BBF 18] cite a barrier in applying
their techniques to QAOA,, at depth greater than p = O(1) due to the limitation of McDiarmid’s
inequality as stated. We overcome this limitation by strengthening the inequality (Lemma 7.6)
for highly biased distributions. This confirms the prediction of [BBF" 18] about the “landscape
independence" of QAOA ,( B,%) at depth greater than p = O(1).

Theorem 4.5 (QAOA, landscape independence at p < g(d, k) log n).

Let (k,17,T,d,n, p) be parameters satisfying Parameter 4.1. Let U(pB, %) be the unitary for a QAOAP(,B, %)
circuit. Furthermore, let the hamiltonian Hy encode a problem instance ¥ of a (k,d)-CSP(f) constructed as
in Definition 1.4, such that,

IE|
Hy =) H;,
i=1

where each H; is a k-local hamiltonian encoding f for the i-th clause. Then, the output |¢) = U(B, %) |s),
where |s) is a symmetric product state, has an objective value that concentrates around the expected value as,

_ . -0(n")
2ol (9 Hp 1) — B (9l Hp [9)] = e-n] <™, Ve >0,

Sketch of Proof: We encode the problem instance ¥ into a hypergraph Gy. The constraint

function f for every clause is set to be the local energy functions h; on the appropriate k-subset of
variables. Then Theorem 5.3 and Theorem 5.4 show concentration. O
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5 Concentration Analysis for Generic Local Algorithms

The most technical part of this work is to establish concentration theorems for generic local
algorithms. Recall from Figure 1 that to get obstruction from the coupled OGP, we have to show
that the correlation between the outputs of a generic local algorithm on t-coupled hypergraphs
is highly concentrated around its expected value R(t). This is formally stated in the following
theorem.

Theorem 5.1 (Generic local algorithm’s outputs overlap on coupled hypergraphs).

Let (k,n,T,d,n,p) be parameters satisfying Parameter 4.1. When two random t-coupled hypergraphs
(G1, G2) ~ Hgjns are sampled and a pair of t-shared-randomness runs of a generic p-local algorithm are
made on Gy and G, the overlap between the respective outputs o and o, concentrates. That is, ¥ &' > 0,
39’ > 0, such that,

1y

(o1, 2) — E [<0'1,(72>]‘ > 5/-4 <207,
G1,Go,01,02

Pr
Gl,Gz,U’l %)

where the probability and expectation are over both the random sample of hypergraphs and the randomness of
the algorithm.

To prove Theorem 5.1, we have to show concentration with respect to both the internal randomness
of the algorithm and the randomness from the problem instances. It turns out that the former is
quite non-trivial due to the correlation between coupled hypergraphs as well as the dependencies
introduced by each round of the local algorithm. This results in a generalization and strengthening
of [FGG20a, Concentration Theorem] and [CGP ™19, Lemmas 3.1 & 3.2].

To resolve the correlation issue, we introduce the notion of locally mixed random vectors (Defini-
tion 5.2) that capture the shared randomness between different runs of the local algorithm. We then
show in Theorem 5.3 that the correlation between a locally mixed random vector and the output of
a generic p-local algorithm will still concentrate around its expectation with high probability.

Definition 5.2 (Locally mixed random vectors).
For a hypergraph G with vertex set [n], a vector r € R™ is a (G, p)-mixed random vector over
S1,...,Sm C [n] with respect to 0 € R" if:

o |rj| <1foralljc m],

e r;is jointly independent of rj for j' where dist(S;, Sy) > 2p as well as o; for i where dist({i}, S;) >
2p, where,
dist(U,V) = min dist(u,v).
uel,veV
Remark The purpose of the r vector is to enable reasoning about functions of more than one
run of the algorithm, possibly with shared randomness between the runs. When considering
functions of the output of a single run of the algorithm, it will suffice to take r; = 1, which is
trivially (G, p)-mixed over Sy, ..., S,, with respect to o forall G, p, o, and Sy, ..., Sp.
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Theorem 5.3 (Concentration of local functions of spin configurations).

Let (k,1,7,d,n, p) be parameters satisfying Parameter 4.1. Let £, m € IN. Let ¢ be the output of a generic
p-local algorithm on a fixed hypergraph G. Let v;; € [n] for j € [m]and i € [(]. Letr = (r1,...,7n) bea
(G, p)-mixed random vector (Definition 5.2) over {vy; | i € [€]},...,{vmi | i € [€]} with respect to o for
some hypergraph G' for which G is a subgraph of G'. Now, consider a sum,

X=1) h(crvjll,. ) .,(ijlz)r]',
j€lm]
where |h| < 1. Suppose that each vertex v occurs at most C times among the different v;,;. Then, provided
that B/ (i,2p) has at most n’ vertices in it for each i € [n], the following holds:
Pr[|X — E[X]| > 6n] < e~ m/ (Cln®))
o

or

Next, we show concentration (over the randomness of the problem instances) of functions of
hypergraphs which satisfy a bounded-differences inequality with respect to small changes in the
hypergraphs. This lemma is itself an application of the strengthening of McDiarmid’s inequality,
stated in Lemma 7.6.

Theorem 5.4 (Concentration of bounded local differences on coupled hypergraphs).
Let (k,n,T,d,n, p) be parameters satisfying Parameter 4.1. Let A and a be the corresponding exponents
from Lemma 2.20. Let f be a function of two hypergraphs over n vertices V, such that

£(G1,G2) = f(Gy, Gy)| < r(n)

for some r whenever (G1, Gy) differs from (G}, G}) by the addition and/or removal of a single hyperedge
e € [n]¥ from one or both graph and

max max Bs(i,p)| < n?/2.
i€[n] Ge{Gy,Gp,Gl,Gh}

Then

>dnr(n)| <2exp —on —|—2exp<—nﬂ/2)
- - 4(2—t)d/k+25/3 '

The theorem above is a generalization of the second part of [FGG20a, Concentration Theorem)].

f(G1,G) —GFGZf(Glle)

Pr [
G1.Go~Myy ot

Organization of this section. In the rest of this section, we prove Theorem 5.3 and Theorem 5.4
in Section 5.1 and Section 5.2 respectively. Finally, we present the proof for Theorem 5.1 in Section 5.3
and show several useful corollaries in Section 5.4.

5.1 Concentration over the internal randomness of the algorithm

In this subsection, we prove Theorem 5.3 (restated below) which shows the concentration over the
internal randomness of the algorithm. The proof is based on a Chernoff-style argument with a
careful analysis on the combinatorial structure of the moment generating function.
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Theorem 5.3 (Concentration of local functions of spin configurations).

Let (k,1,7,d,n, p) be parameters satisfying Parameter 4.1. Let £, m € IN. Let ¢ be the output of a generic
p-local algorithm on a fixed hypergraph G. Let v;; € [n] for j € [m]and i € [(]. Letr = (r1,...,7n) bea
(G, p)-mixed random vector (Definition 5.2) over {vy; | i € [€]},...,{vmi | i € [€]} with respect to o for
some hypergraph G' for which G is a subgraph of G'. Now, consider a sum,

X=1) h(‘ij,1f~"f‘7vj,z)”]'f
j€lm]

where |h| < 1. Suppose that each vertex v occurs at most C times among the different v;,. Then, provided
that B/ (i,2p) has at most n vertices in it for each i € [n], the following holds:

Pr[|X — E[X]| > 6n] < e~ m/ (Cln®))
o,r o,r

Proof. We begin the proof by centering the variables X; so that we can crucially conclude that

they contribute 0 to the moment generating function when their expected value is taken. For

technical reasons (to make odd moments zero), we also introduce a global independent random

signs ~ {£1}.

o,r ]

Z] =S |:X] — gE,r[X]]:| =5 |:h(0'yj,1, e ’(Tjj,g)rj —E [h(av.,l, .. .,0']']./6)7’]'] , V] S [m] .

Note as an immediate consequence that IEW[Z]'] = 0,Vj € [m]. Also, the goal now becomes
showing Pr.[| ¥; Zj| > ém] < o~ QUe%m/ (Cint))

We start with analyzing the moment generating function of Z; as follows,

t

E Y Zl|= Y E| J] %], vteN.

. . . a,r . .
j€[m] 1<jq e <m ke{ji,jt}

For the j-th summand on the right to be non-zero, every factor Z; must be statistically dependent

on at least one other term in {Zfl’ e Zi}

We count the number of summands that can be non-zero. If any Z;. is independent from all other
Z]-i,, then the entire term is zero, since ]E[Z]-l.] = 0. Therefore if a summand is non-zero, then the
interference graph between the factors Z;;, has no isolated vertices. As a relaxation of this condition,
the interference graph contains a forest with at most /2 components as a subgraph. Therefore,
we can upper bound the number of non-zero terms by summing over all such forests the number
of ways to assign factors Z;; into vertices of that forest so that any two connected factors are not

independent from each other.

We will split up the forests by the number of components they have, so first we count the number
of forests over t vertices with w components for w < t/2. By a generalization of Cayley’s formula
[Tak90], there are wt!~™®~! such forests if we assume that the first w vertices are in different
components. Since we do not have the corresponding requirement on our factors, we may simply
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choose w vertices arbitrarily to be in different components, multiplying by (75)) to find that there are
at most (;)wtt*w*1 ways to draw a forest with w components over our ¢ indices ji, . . . j;.

We now count the number of ways to assign the m factors into these forests so that any two factors
connected by an edge are statistically dependent on each other. A vertex may be arbitrarily selected
from each component of the factor graph (say, choose the one with the lowest index in []) to be
assigned any of the m factors. Once that vertex has been assigned, each of its neighboring vertices
has at most C/n* choices of dependent factors, since each factor is dependent on at most /n* of the
spins 0;, and there are at most C factors which are a function of each spin. The same applies to all
other vertices in the component.

Therefore, there are at most

t/2 ¢
) wt = Im® (Cent)w (5.5)
w=1 \W

ways to generate a possible non-zero term.

Letay, = (;)wtt*wflmw(Can)t*w, and we will find the index w* that maximizes a,,« by computing

the ratio |
Ay w!(t;w)!wm (t—w+1)m

Ay—1 WM(W — 1)tC€1’1A (w — 1)tC€nA '

At this point, we do some casework. In the case where t < m/ (CEnA), the above ratio is greater
than 1 whenever w < 1+ t/2, so w* = t/2, recalling that we only have even moments because Z i
contains a factor of a global sign s ~ {4-1}. In the case where t > m/(C¢n?), the ratio is less than 1
whenever w > ((1+ 1/t)m + Cln?)/(m/t + Cln?), which is implied by w > 1+ m/(2C¢n?), so
w* <1+ m/(2Cen")

In the former case where t < m/(C¢n?) and w* = t/2, we have

1/t
Qe = 2<t/2> tt/th/Z(anA)t/Z < Zttt/thm(Cf?lA)tm.

In the latter case where t > m/(Cln?) and w* > 1+ m/(2Cln?),

t
Qe = <w*>w*ttw*1mw* (anA)tfw*

*
ew

(w*)®*
ew* tt—1m<C£nA)t—1

et/ztt’lm(CEnA)t’l.

w* tt—lmw* (anA)t—w*

IN

IA A

In either case,
A < 2 2mt 2 (Cn )2 4 ot 28 I (Cn) 1,
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so the number of non-zero terms in the expression of E [(} Zj)t} is at most ¢/2 times this bound on
the maximum value of a,,+, and, recalling that |Z;| < 1,
t
E Z z; < DEL/2 L2 (O AY2 %etmttm(CﬁnA)t_l

j€m]

We multiply both sides by 6" and divide by ¢! and sum over even t (recalling that the definition of
Z; contains a random global sign making all odd moments zero) to obtain a bound on the moment

generating function

0L i Zi 0,
E |:€ € [m] l} < 2 th 1tt/2+1mt/2(C€nA)t/2+ Z

o
teN even t teIN even

o] e 2ttm(Cen)t—1

We handle the two terms separately. For the first one, we reparameterize the index t and then make

use of Stirling’s approximation:

2 9 21‘ 1tt/2+1 t/2 an t/2 _ 22t 1 2t t+1 t(cgnA)t

teIN even t!

mCen)!

tt+1
802mCin”)!

EN
L@
<&V

Zt 2t+1/ze—2t<
pH1pt+1/2
- i \/Z?(Zt)zt-i-l/Ze—f—lt!
e t(2e02mClnA)t
NG EN H
0211 C A p2e0>mCint 42

NG

(862mCtn?)!

N

For the second term,

o' o2t -1 o724t AvE—1
tGNZ: TN tm(Cen?)—1 < Y — 2 e t'm(Cln”)
even teN

3/2 ANt
< m y (e’726Cln*)
22 CinA (& Vit

m
< —/—— e3/29Cn™)!
T 2V/2nCinA g\r( )

m
< .
T 221 ClnA(1 — €3/26CenA)

Putting these bounds together,

E [e" Ejelm] Z]} <

gzmcgnAeZEGZmC€nA+2 N m
7 - VT 24/2 CUnA(1 — e3/20ClnA)
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By Markov’s inequality,
—05 0y . A
Pr(Y 7 > om] <e ™" E [e jefm] J}

for all . Choosing 0 = §/(2¢3/2C¢n”) with 0 < 6 < 1, we get

52m652m/(262CénA)

0y 7 m
E jelm] “j | < .
o [e } T 4e(CtnA)m * V2 ClnA

Therefore,
52me(—Vet1)8%m/ (262 Cin?t) —62m/(2¢3/2Cent)
Pr ZijcSm < e " +me
v |5 4e(ClnA) /1 V2 CenA

The identical bound holds for Pr, [2]» Zj < —5m} .

5.2 Concentration over randomness of problem instance

In this subsection, we prove Theorem 5.4 which shows concentration of coupled hypergraphs with
respect to the randomness of problem instances. We start with stating and proving a special case
of Theorem 5.4 to illustrate the structure of the argument in a simpler setting.

Lemma 5.6 (Concentration of Bounded Local Differences on Random Hypergraphs).

Forevery p € IN, let A and a be the corresponding exponents from Lemma 2.20. Let f be a function of a hyper-
graph on n vertices, such that | f(G1) — f(Gz)| < r(n) whenever max;c, max(|Bg, (i, p)|,|Bg, (i, p)|) <
n'2 and G, differs from G, by the addition or removal of a single edge. Then

Pr

—8%n 2/2
T ‘f(G) - ]gﬂG)‘ > on 7(”)] < 2exp (4d/k—|—2§/3) + exp(—n >

Proof. The proof follows by essentially the same arguments used in the second part of [FGG20a,
Concentration Theorem], although we have to derive a strengthening of McDiarmid’s inequality
(Lemma 7.6), deferred to Section 7.

Let K, be the set of hypergraphs over n vertices V with small neighborhoods

Ky ={G € Hyx | mea‘;dBG(v,p)\ < n?/2}.
v

Let p(G, G') be equal to |E A E'| where A is the symmetric difference, for G = (V,E) and G’ =
(V,E'). Then let

§(G) = min f(G') +p(G,G')r(n).

Now g has the property that |¢(G1) — g(G2)| < r(n) whenever G; differs from G, by the addition
or removal of a single edge.

G ~ H, 4 may be viewed as the agglomeration of n* different independent random variables, one
for each possible hyperedge e, each random variable denoting the multiplicity of that hyperedge,
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distributed as Poisson(dn/n*/k) , since the sum of independent Poisson random variables is itself
another Poisson random variable. And each of these variables is highly biased, being equal to
0 with probability exp(—dn/ nk/ k) > 1—dn/n*/k. Therefore, applying Lemma 7.6 on g as a
function of n¥ independent variables, simplifying, and applying the bound 2 — dn/ nk/k <2,

—6%n
_ > < 13k L0572 |-
GNZZ,k,ng(G) Eg(G)| = onr(n)] < 2exp <4d/k n 25/3)

Finally, f(G) = g(G) whenever G € K, and by Lemma 2.20,

_,a/2
P GEK,|<e ™.
G””Ez,k,d[ Z Ky <e

Therefore, by a union bound,

—527’1 a/2
oL F(G) ~EF(G)] = dnr(n)) < 2exp (sairasrs) +ee(-172).

t
We now prove Theorem 5.4 (restated below) which shows that the expected values for certain
functions on coupled hypergraphs also concentrate. More specifically, we will assert that all

sufficiently local functions of pairs of hypergraphs will concentrate very heavily around the expected
value of the function.

Theorem 5.4 (Concentration of bounded local differences on coupled hypergraphs).
Let (k,n,t,d, n, p) be parameters satisfying Parameter 4.1. Let A and a be the corresponding exponents
from Lemma 2.20. Let f be a function of two hypergraphs over n vertices V, such that

£(G1, G2) = (G}, Gy)| < r(n)

for some r whenever (G1, G) differs from (G}, G}) by the addition and/or removal of a single hyperedge
e € [n]¥ from one or both graph and

max max |Bc(i,p)| < n/2,
i€[n] Ge{Gy,G5,G},Gh}

Then

—6%n o/
f(G1,Gy) —chzf(cl,cz) > 5nr(n)] < 2exp <4<2_t)d/k+25/3> +2exp(_n )

Proof. We mostly follow the proof of Lemma 5.6.

Pr [
G1,.Go~Hyy ot

Let p(G1, Gy, Gy, G)) = |(E1 A E}) U (Ex A E})|, where Gy = (V,Eq), G, = (V,Ey), G} = (V,E)),
and G} = (V,E}). Then let

g(G1/G2) = min f(Gi/ Gé) +P(G1/ Go, Gi/ Gé) 7’(1’1),
G €Kn,GhEKn
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so that [g(G1, G2) — §(G}, G2)| < r(n) whenever (G1, Gy) differs from (G}, G)) by the addition or
removal of a single hyperedge in [1]* from one or both graphs.

To apply Lemma 7.6, we consider ¢ as a function of n* variables, one for each possible hyper-
edge. The set of possible values for each variable is {®, {G1}, {G2},{G1, G2} }, specifying which
of the hypergraphs have that edge. In the coupled random hypergraph model according to
Definition 2.18, where here G; = (V,EUE;) and G, = (V,E U E;) each edge’s multiplicity
in E is given by a Poisson(tdn/n*/k) distribution, and its multiplicities in E; and E, are given
by Poisson((1 — t)dn/n*/k) distributions, for a total probability of (1 — exp(—tdn/n*/k))(1 —
exp(—(1—#t)dn/n*/k))* < (2 —t)dn/n*/k that this edge is in either hypergraph. Therefore,
applying Lemma 7.6,

>onr(n)| <2ex —on
= =P\ 42 - 1d/k+26/3)"

8(G1,Gz) — Glﬂ?czg(Gl/Gz)

Pr [
G1,.Go~Hyy ot

Finally, (G, G2) = g(G1, G2) whenever (G1, G,) € K, x Kj,. Since the marginal distribution of G;
in G1, Gy ~ Hy k4, is the same as the distribution of G; ~ H,, ¢ 4, and the same holds for G, by a

union bound,
a/2
P Gy, G K, x K,| < P G K P G K, <277,
G1/Gz~£ln,k,d,t[( 1:G2) £ Ku ol GlN?{n,k,d[ 1 # Kl +G2~Hrn,k,d[ 2 # Kl <

Therefore, by another union bound,

> onr(n)| < 2ex < —0%n >+2ex (—n”/z)
= ==OP\42-1d/k+26/3 P '

O]

f(G1,Gp) _cf',iczf(Gl’ Gz)

Pr [
G1.Go~Hy v

5.3 Proof of Theorem 5.1
Finally, we are ready to prove Theorem 5.1 (restated below) using Theorem 5.3 and Theorem 5.4.

Theorem 5.1 (Generic local algorithm’s outputs overlap on coupled hypergraphs).

Let (k,n,7T,d,n,p) be parameters satisfying Parameter 4.1. When two random t-coupled hypergraphs
(G1, G2) ~ Hgjns are sampled and a pair of t-shared-randomness runs of a generic p-local algorithm are
made on Gy and Gy, the overlap between the respective outputs oy and o, concentrates. That is, ¥ &' > 0,
39" > 0, such that,

/
(o, ) — E [<<71,(72>]‘ > 5"”} < 2¢79"

Pr
Gl,Gz,Ul,UZ Gl,Gz,U'l,U'z

where the probability and expectation are over both the random sample of hypergraphs and the randomness of
the algorithm.
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Proof. By Theorem 5.3, taking G = Gy, m =n,C ={ =1,0v;; = j, h(s) = s,and r; = u;,

Pr [
)
for every bounded vector u € [—1,1]", with the probability and expectation over the randomness
of the algorithm, where A corresponds to the exponent in Lemma 2.20.

(02, 1) —(IE (oo, u)| > Zén] < exp(—Q(&znl’A)) ,

G' = G1 U Gy, using the fact that (01, 02) = Yicpy(01)i(02)s,

Pr [
71,02
with the probability and expectation over the randomness of the algorithm. In the above, we

utilize the fact that G’ ~ Hyo_4) . »- To bound A’, one bounds the 2p-neighborhood of G’ using
Lemma 2.20 invoked with degree d(2 — t) < 2d.

(o1, m) — E (09,00)| > Zén} < exp(—Q(dznl_A)) +exp<—0(52n1_A/)> , (5.7)
0,09

We argue now that f(Gy1,G2) := Eg 0, (01,02) satisfies a bounded-differences inequality, so
that |f(G1,G2) — f(G}, Gy)| < 2kn” whenever max;c|, MaXGe(G,,6,,G},G) |Bg(i,p)| < n? and
|(E(G1) AE(Gy)) U(E(G2) A E(G)))| < 1. This is because by the definition of p-local, the only
coordinates of 07 or 0, that can change in marginal distribution when an edge is changed are those
that are within a distance of p from any of the k endpoints of the changed hyperedge, in G; and G},
or G and G} respectively.

Therefore by Theorem 5.4,

Pr
G1.Gy

where a is from the statement of Lemma 2.20.

0115272 <0'1/0.2> _Gll,EG2 0115272 <01/ 0.2>

. 5/)21,1
> /A < ( _ a/2
> 2ké'n n] < 2exp (4(2_t)d/k+25,/3>+2exp( n ),

By a union bound and triangle inequality with (5.7) then, and taking &' = 5/ (kn?),

- E E
(o7, 07) & E, (01,02)

—on a/2 2 1-A
209 ( g0 g pamsys) 2P () Tep(-0@n )

exp(—Q((Sznl_A/)) .

Pr >4én| <
G1,Gp,01,0

5.4 Corollaries of concentration analysis

As a corollary to Theorem 5.1, we can inherit the concentrated overlap of two independent hy-
pergraphs Gi, Go ~ H;x,. This is essential to reasoning about the fact that the overlap att = 0
between the solutions is desirably small with high probability.
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Corollary 5.8 (Generic local algorithm output overlap on independent hypergraphs).

Suppose p is as in Lemma 2.20. When two random hypergraphs Gi, Gy are sampled i.i.d. from H gy, and a
generic p-local algorithm is run on both hypergraphs, the overlap between the respective solutions oy and o
concentrates. That is, 36’ > 0and ' > 0, such that,

/
Pr [|(o1,02) — E[(01,02)]| > & -] <277, (5.9)
Gl,G2,(Tl,(72

where the probability is over both the random sample of hypergraphs and the randomness of the algorithm.
Proof. By Theorem 5.1 at t = 0 with G; independent of G,. O

We now assert the concentration of hamming weight of the solutions output by a generic p-local
algorithm over the randomness of the algorithm. This result is equivalent to the second part of
[FGG20a, Concentration Theorem] and [CGP 19, Lemma 3.2]. In our case, it is a corollary of
Theorem 5.3.

Corollary 5.10 (Concentration of hamming weight of generic local algorithm output).
Given a d-sparse k-uniform hypergraph G ~ H, k. ,, suppose that,

Pr{max B (v;,2p) > ni] <e ™,
1

and
A
Primax Bg(v;, p) > n2] < e,
1

Let o be the output of a generic p-local algorithm. Then, 3 v > 0 such that, ¥V 6 > 0,

Pr [
G,o0

where |o| = Y1 3(1 — 07) is the number of —1s in 0.

— E
ol - Ellol

> (511] < e M (5.11)

Proof. Instantiate Theorem 5.3 by asserting that the following holds for the graph G,

Pr[
o

with/ =1,C =1, m = n,v;; = j,rj = 1,and h(s) = s. We now invoke Lemma 5.6 with
f = Ey[|o]]. Now, notice that the definition of generic p-local algorithms (Definition 3.1) implies
that on adding or removing a hyperedge e, f can change by no more than 2kn?, since changes are
restricted to the p-neighborhood. Therefore, provided G is a graph with max; B(v;,2p) < n4, we
obtain,

n

Y oi —Eo]

i=1

>20n| < exp(—Q((san*A)) . (5.12)

pe |[Ellel) - EE(lo]

52
> Zk(S’nAn] < 2exp (M> —|—exp(—n”/2> )
G,o

4d/k+26"/3
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By setting 6’ = §/kn”, and taking a triangle inequality over Equation 5.12 and a union bound,
Pr [
Go

The last corollary we obtain from Theorem 5.3 is that the objective function value, that is, the energy

2 20n| < 2exp UL, W exp(—n"/2) +exp (—O(%n' 1)) .
=)= 4dk 1 25k/ (3n7)

O

— E
ol = Ellol

corresponding to the spin configuration output by a generic p-local algorithm, also concentrates
heavily around the expected value. This is equivalent to [CGP" 19, Lemma 3.1] with substantially
stronger concentration.

Corollary 5.13 (Concentration of energy of generic local algorithm output).
Given a d-sparse k-uniform hypergraph G ~ H i ,,, suppose that

a

lz;r[max Bg(v;,2p) > nf] <e ™,
1

and
A
PGr[max Bg (v, p) > n2
1

Let o be the output of a generic p-local algorithm. Then, 3y > 0, such that, V6 > 0,

Pr [
G,o0

Proof. For sufficiently large 7, the degree of the vertices in G are distributed as Poisson(d). There-
fore, by a standard Chernoff bound for the Poisson distribution [Can17, Theorem 1],

HdG,k,n((T> - CI;EO[HdG,k,n(U)]

2
> (571] <e? v

a —n”
P d >d+n2| < — .
Poisscfn(d) [ eg(v) = adn } = &P <2 (d + 1’1”/2)>

Applying a union bound to the above for every vertex v € V(G) yields that the degree of every
vertex can be upper bounded by d 4- n2 < 2n2, for sufficiently large n.

An instantiation of Theorem 5.3 on a graph G chosen so that the degree of every vertex is not more
than 212 implies that,

G c 52dn17A7u/2
Pr HHd,,m (o) — ]g[Hd,k,n(a)]’ > 20n] < exp(—Q (21«)) , (5.14)
wherem =dn, ¢ =k, C = 21% and h]-(sjll, .. .sj/k) = — Hle s;ji, where s; ; denotes the spin of the

i-th vertex of the j-th hyperedge.

We instantiate Lemma 5.6 with f = E,[H; ,|. Note that if we change one hyperedge e of G, then
because of the fact that a generic p-local algorithm will only affect the joint distribution in a p-
neighborhood around every vertex, we notice that f cannot change by more than 2Ckn“ = 4kn?+3
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when G satisfies the bounded neighborhood proposition in the hypothesis. Therefore,
Pr [
G,o
—(5/21’1 a2 —nt
2exp (4d/k—|—2(5’/3> —i—exp(—n ) + exp (2( _|_nu/2)> .
By a union bound and triangle inequality with Equation 5.14, followed by taking 8’ = 6/ (Ckn?),
Pr [
G,o
—2pl-24-a a2 —n+log(n) —Q(%dn'—474/2)

2exp <4dk+§k5/nA+u/z +exp(—n'?) + eXp( 2 [d1n/?) ) * eXp( 2%k ) '

Note that we can guarantee that 22 + A < 1 with an appropriate choice of 2, A > 0, which is made

possible by choosing an appropriate value of T > 0in Parameter 4.1. For an explicit characterization,
refer to Appendix B and [FGG20a, Equation (75), Neighborhood Size Theorem)]. ]

E [HdG,k,n (U)] - ICE;: I(E‘ [Hgk,n]

(o4

> ZCk(S’nAn] <

HS,,,(0) — E [HE,(0)]

> 4(511} <

6 Proofs of main theorems

We conclude by putting the previous results together to prove our main results. As stated prior, we
work in the setting of Parameter 4.1.

6.1 Proof of Theorem 4.2

We establish that, as a function of ¢, the expected overlap between solutions output by runs of a
generic local algorithm on t-coupled instances G; and G, with t-shared randomness is continuous.

Lemma 6.1 (Continuity of expected overlap).
If G1, Gy ~ Hyjnt and 01,05 are the random outputs of t-shared randomness runs of a generic p-local
algorithm on each hypergraph,

E  [Rn:(01,02)] is a continuous function of t forall t € (0,1).
Gl,Gz,(Tl,O'z

Proof. We express using linearity of expectation
1

E o, Ruilo1,02)] =2 E o)i(2)il=  E 01)1(02)1] -
G1,Gz,c71,vz[ nt(01,02)] nie%] o [(01)i(02)i] 61,62,01,02[( 1)1(02)1]

Let s(Hy, Hz) be the expectation value E, o, (01)1(02)1 when o1 and 07 are the results of a pair of
runs of the p-local algorithm with t-shared randomness on H; and H, respectively. Then

E R ,t(0'1,0'2) = Pr [Hl =GiANH; = Gz] S(Hl, Hz).
G1r62/01,02[ ! ] Hl;—lz G1.Go~Hy ko

Since the probability of each combination of G; and G, being sampled is a continuous function of ¢,
so then is g, 6, 01,0, [Rut(01,02)]- O
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Note that at t = 0, the hypergraphs G, G2 ~ H 4, are independent of each other. We will show
that there is very little overlap between the outputs 01,0, of a generic local algorithm on each
instance, if both solutions ¢; and o, are better approximations to the optimum value by a factor of
(1- %) This follows directly from a combination of [CGP" 19, Lemma 3.3] and Theorem 5.3. We
begin by restating [CGP 19, Lemma 3.3].

Lemma 6.2 (Hamming weight of near-optimal solutions, [CGP 19, Lemma 3.3]).
Given two independent and uniformly random hypergraphs Gy, Go ~ H 4k, and solutions o1 and o, such

that, c

fori e {1,2} and any 1o > 0. Then, |o;| < dfﬁ(éhyo)% with probability > 1 — O(e™").

The above lemma allows us to bound the overlap between two instances when presented in
conjunction with a concentration argument about the hamming weight of instances produced by a
generic local algorithm.

Lemma 6.3 (Small overlap at t = 0).
For any two hypergraphs G1, Gy ~ H g n0, let 01,02 be the random outputs of two O-shared randomness
runs of a generic p-local algorithm on the instances. If oy and o> satisfy the optimality of Lemma 6.2, then

_1
Ryo(o1,00) <d k,

with probability > 1 — e=O"),

Proof. The proof is essentially the same as that in [CGP " 19, Section 3.3] with the exception that we
provide stronger concentration via Theorem 5.3.
By Lemma 6.2, we have that,

35

=) o
n= Ji
with probability > 1 — O(e™"). Choose 179 = 3, per [CGP"19]. This implies,

|0-Z.| < d—1/2k2—1/k < d—l/Zk‘

<d V2 (4po)VE, forj=1,2,

Furthermore, because the output of generic p-local algorithms concentrate,

E [loil] < a1/,

i

with probability > 1 — e~("") (as implied by Corollary 5.10). Now, note that at t = 0, the generic
p-local algorithm is equally likely to generate 7, i € {1,2} with a given hamming-weight (in the £1
basis). Consequently, by independence, the largest expected overlap is the square of the maximum
possible hamming weight. This yields,

Ruo(0,07) < (dV/%)2 =g~k

To establish that this is less than a, simply choose d > max(dy, ak ). O
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We now assert that the output of two generic local algorithm runs with fully shared randomness on
fully coupled (and therefore identical) hypergraphs G; and G, has overlap 1.

Lemma 6.4 (Large overlap att = 1).
For any two hypergraphs Gy, Go ~ Hg x n1, given that oy, 02 are the outputs of two 1-shared randomness
runs of a p-local algorithm on the instances,

Rn,l (0’1, 0'2) =1.

Proof. By Definition 2.18, at t = 1, the two hypergraphs G; and G, sampled from H , 1 are in fact
the same. Therefore every vertex’s neighborhood is the same in G; and G, and so with t = 1in
Definition 3.4, LT = V and so ¢ = 01 = 0, and the two outputs are identical. O

The arguments above immediately yield a contradiction to the coupled OGP stated in Theorem 2.19
via the intermediate value theorem, which asserts that given the endpoints Ry(01,02) < a and
Ri(oq1,02) = 1,3t € (0,1), such that Ry (01,02) € [a,b] (with high probability) because of the
continuity of R;.

6.2 Proof of Theorem 4.5

We now sketch a complete proof of Theorem 4.5.

Proof. The input problem ¥ is a (k,d)-CSP(f) over n variables chose as in Definition 1.4. This
allows one to encode the problem instance ¥ as a random hypergraph G ~ H; , by choosing
hj = f(xj,,...,xj) to be the local cost function for the j-th clause of ¥. The collection of variables
in each clause corresponds to the variables in a hyperedge in Gy. Let the number of clauses be |E|.
By definition, |E| ~ Poisson(dn/k). Now, we set the hamiltonian as,

|E|

G
Hd,;cijn = gf(xh,. . .,x]'k) .
]:

By Lemma 2.20, with the choice of p stated in the hypothesis, the 2p neighborhood will be no larger
than n4 with probability > 1 — ¢~"". The proof then concludes by invoking Corollary 5.13 with
ka‘yn, conditioned on the fact that the largest 2p neighborhood of ka‘yn has size no more than
: 0

6.3 Proof of Theorem 4.3
We now sketch a complete proof of Theorem 4.3.

Proof. Note that, once again, ¥ can be encoded into its representative hypergraph Gy exactly as in
the proof of Theorem 4.5. Furthermore, by the hypothesis, the underlying problem (k, d)-CSP(f) sat-
isfies a coupled OGP which can be interpreted as follows: For any ¢ € [0, 1], choose Poisson(tdn/k)
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clauses independently and uniformly at random and create an instance ¥ from them. Then, inde-
pendently sample Poisson((1 — t)dn/k) clauses uniformly at random twice and create instances
¥, and ¥, from them. Let the final instances be ¥ = ¥y U ¥; and ¥’ = ¥y U ¥>. This is exactly
equivalent to the interpolation Definition 2.18 over the representative hypergraphs Gy and Gy.
Note that the hypothesis implies we can assume these hypergraphs have 2p-neighborhoods of size
no more than n# with high probability (Lemma 2.20).

G
Concentration of objective value. Set the representative hamiltonians Hde‘Yn and H, kq’; to be the
sum of f acting on their respective clauses Yo U Y1 and ¥y U ¥5. Then, by Theorem 4.5, both these
functions will be concentrated with probability > 1 — e O0"),
Concentration of Hamming Weight. By invoking Corollary 5.10 for each instance, we conclude

that the hamming weight is concentrated with near certainty.

Concentration of Overlap of Output. This follows directly by applying Theorem 5.1 to Gy and
G\I;/ .

Given these properties, the argument in the proof for Theorem 4.2 immediately implies the desired
obstruction. O

7 Strengthened McDiarmid’s Inequality for biased distributions

We introduce the notions of a martingale and a Doob martingale, followed by a concentration
result for bounded difference martingales in Fan et al. [FGL12] , and conclude with a proof of a
strengthened version of McDiarmid’s inequality for highly-biased distributions.

7.1 Martingales & concentration

Definition 7.1 (Martingales).
A martingale with respect to random variables Xy, ..., X, is given by a sequence of random variables
Z1,...,2Zy such that the conditional expectation of each Z; conditioned on all previous data points X ; in
the sequence is,

IE[ZZ | Xl, .. .,Xifl] = Zi,1 .

Furthermore, all expectations are bounded: E[|Z;|] < oo. If X; = Z;, then Z4,...,Z, is said to be a
martingale with respect to itself.

A common martingale is the so-called Doob martingale where we set the random variables Z; to be
the averages of some bounded function f acting on Xj, ..., X, conditioned on observations up to
X<1'.
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Definition 7.2 (Doob martingales).
The Doob martingale of a function f of random variables X3, ..., X, is the martingale sequence given by,

Zi=E[f(X1,....Xn) | X1,...,Xi],
solongas E[|f(Xy,..., Xn)|] < o0.
We introduce some more technical definitions below.

Definition 7.3 (Martingale difference).
The martingale difference sequence of a martingale 71, . .., Z, is given by the sequence Y; = Z; — Z;_1,
noting that E[Y;| = 0 by definition.

Definition 7.4 (Quadratic characteristic sequence).
The quadratic characteristic sequence of a martingale Z, . .., Z,, with martingale difference sequence
Y, ..., Y, consists of the values

(Z);= Y BIY? | Zy,..., Zj4).
jeli]

To prove the version of McDiarmid’s inequality with a highly-biased distribution, we will need
a result that generalizes the concentration bounds of Azuma and Bernstein, using the quadratic
characteristic sequence as the martingale analogue of the variance. The generalization is given
by Fan et al. [FGL12] and was previously used to bound deviations of functions of the indicator
variables of edges in sparse random graphs in Chen et al. [CST22].

Theorem 7.5 (Theorem 2.1 and Remark 2.1 combined with equation (11) of [FGL12]).
Let Zy, ..., Zy, be a martingale with martingale differences Y; satisfying |Y;| < 1 forall2 < i < n. For
every 0 < x < nandv > 0, we have

Pr [1Zs = Zo| = xand (Z), <v’] < 2exp <z<+/3>>

7.2 Strengthened McDiarmid’s inequality

Lemma 7.6 (McDiarmid’s inequality for biased distributions).

Suppose that Xy, ..., X, are sampled i.i.d. from a distribution D over a finite set X, such that D assigns
probability 1 — p to a particular outcome xo € X. Let f : X" — R satisfy a bounded-differences inequality,
so that

|F(x1, . X1, X, X1, - Xn) — f (X1, X1, X, X1, xn) | < €

forall xq,...,x,,x; € X. Then

)
Pr|f(X1,...,Xn) —E f(X31,...,Xn)| > €] <2exp <2np(2—p)€c2—i—2ce/3> :
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Proof. f is bounded because it has a finite domain. Therefore, let Z; = E[f (X3, ..., X,) | X1, ..., X]]
be the Doob martingale of f(X,...,X,) and let Y; = Z; — Z;_ be its martingale difference se-
quence.

We will show that |Y;| < c. We take
gi(x) :== E f(X1,o Xjo, X, X4, X))

so that by definition,
Y, = E[f(X1, ..., Xo) | Xuyerr, Xi] —ELf(Xty e, Xn) | X1, o) Xial.
= E f(Xll' . ~/Xi—1l Xi/ Xitls-- ~/x11) - E [f(Xll . -lXi—l/xi/ Xit1s-- ~/xn)]

xi+1,...,xn~D XjyeesXn~D
= 8i(Xi) — E [gi(x)]
= E [8i(Xi) —gi(x)].

Then it becomes a simple matter to compute

il = |, 5000 - 5] < B, [Jaitx) - g <

x~D

Next, we show that (Z); < (2 — p)pc*n. By definition, (Z); = ¥;cj3 ]EX].ND[Yj2 | X1,..., Xj-1] and it
will suffice to show that IEX].ND[Y].2 | X1,...,Xj-1] > (2 — p)pc?. We start with

(ng(Xj) - g(X)ﬂ

We split the expectation of Y]-2 over X; € X into two cases, one where X; = xo and one where
X; # Xo- Then

E [v] = ool = 2l B [Y? | X; = x0] + (Frol%) # 2ol (B, (Y2 [ X; # xo

E [Y?} — E
Xj~D ] Xj~D

X]-ND

Since PrX].N p[X; # xo] = pand |Yj| < ¢, we bound the second term in the above by pc?. Continuing
with the first term,

2
2 2 J— —
E |v}] <p+ (P11 = 0] (goco) ngOf))

V)

]

2
=pct+ X]PNrD[Xj = Xo] (8(7(0) = Prlx = xolg(xo) = Pr[x # xo] E [g(x)]x# XO])
2
= pet+ e [ = ol ( Pl # ols00) — Pl 10 Fyls(o < % x0])

2
= pct+ Pr [X; = xo] Pr[x # xol <g()m) - Elg(x) | x# m])
]

< pc® + (1= p)pc?.
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If we scale down the martingale Z,...,Z, by a factor of c, we obtain a new martingale with
martingale differences bounded by 1 in absolute value and with ith quadratic characteristic at most
p(2 — p)i. Therefore, by Theorem 7.5, taking v> = p(2 — p)n,

1 —¢?
Pr E|ZH—ZO| >eand (Z), §p(2—p)n] <2exp (2(2p(1—p)n+€/3)>'

Since (Z), < p(2 — p)n is always true, and absorbing a factor of ¢ into a rescaling of €,

—e2
Pr{|Z, — Zo| > €] <2exp <2np(2— p)c2+2ce/3> :

8 Overlap-Gap Property for general case random Max-k-XOR

In this section we prove that the coupled OGP exists even for signed versions of the random Max-k-XOR prob-
lem by extending the proof from [CGP 19, Section 4].

8.1 The signed Max-k-XOR hamiltonian

We extend [CGP 19, Lemma 4.1] to handle an interpolation with random signs for the variables.
Explicitly, we will consider the following hamiltonian,

m

k
G
Hsigned == Z H Pijavij , (8.1)
i=1j=1
where p;; ~ {£1} are i.i.d. Rademacher random variables (Definition 2.4). Notice that when we
deterministically fix p;; = 1 for every j-th variable in the i-th clause, this recovers the diluted k-spin
glass hamiltonian H®. Maximizing H® 4 corresponds to solving a random instance of a signed

signe
Max-k-XOR problem.

On expectation under the Rademacher distribution, the random signs will be balanced. This
property allows us to amend the Poisson integration techniques in [CGP"19, Lemma 4.1] to
preserve the asymptotic behavior of the hamiltonian to be equivalent, up to a constant shift, to the
unsigned setting under the coupled Guerra-Toninelli interpolation [GT04].

8.2 The Guerra-Toninelli interpolations

We work with two families of interpolations: The first is a gaussian interpolation between inde-
pendent copies of k-mean field hamiltonians and the second is an interpolation between a diluted
spin-glass hamiltonian and a dense one. For the gaussian interpolation, choose an instance of a
k-mean field hamiltonian Hj with independent copies H; and H,' and interpolate smoothly as

H} = VtH, + V1 - tHy, (8.2)
H? = VtH, + V1 —tHY, (8.3)
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where t € [0,1]. The diluted-to-dense interpolation is known as the Guerra-Toninelli interpola-
tion [GT04] and is given as

2
HGs, 0,0 = 1 (OHL g, () VEBHI) 84
=1 ’ ’
where Hsligneol Ry and H§igned 4(1_s) AT drawn from the distribution of the coupled interpola-

tion defined in Definition 2.18 with Poisson(4(1 — s)) edges and the additional requirement that
the Rademacher variables also be re-sampled for every t € [0, 1].

The last notion we need is that of an average with respect to the so-called Gibbs Measure, which is a
normalized probability given to every pair of configurations weighted by their coupled energy at
time s. The Gibbs measure over A C {£1}" and overlap set S C [0, 1] is defined as

exp(H(s, 0!, 0?))

: (8.5)
Lol o2e Ry oles exp(H(s, o1, 02))

Gs(al,az) =

An average of a quantity B with respect to the Gibbs measure is denoted as (53);s. The denominator
of Equation 8.5, denoted as Z, is a normalization term called the partition function.
8.3 Coupled Overlap-Gap Property for general case Max-k-XOR

Lemma 8.6 (Scaling of random Max-k-XOR under signed Guerra-Toninelli interpolation).
Forany A C {£1}",S C [0,1],t € [0,1] and d,k > 0, the following holds,

1

E E [‘71"722},&11);1,265 HSlgned( ) + H51gned( )] (87)
1 /d 1/ 1 2 <d> 1/3

=—\/TE max Hi(eYH) + H?(o)| +0O o )
n k [01’026A,|R1,2|65 k( ) k( ) k

Proof. We split the Hggne d
In the first term, we will collect the positive signed hyperedges (II'") and in the second term we

will collect the negative signed hyperedges (II ).

51gned Z H pl]UUIJ

terms in the Guerra-Toninelli interpolated hamiltonian into two terms.

i=1j=1
m k k

- Zn(pl]) H(le])
i=1j=1 I=1

where p; = H;;l (pij) areii.d. Rademacher random variables for i € [m]. This follows because each

pij is an independent Rademacher variable, and therefore, Hﬁ;l pij ~ {1} is also a Rademacher
variable. The sum is now split into positive terms (p;; = 1) and negative terms (p;; = —1).
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In other words, we may write

4 14 4 /
Hsigned,%(lfs) t H%(l s)/2,t H%(lfs)/Z,t !

where Hf;( /2 and H ( Y " are two independent copies of the coupled distribution defined

in Definition 2.18 with P01sson( (1 —s)/2) hyperedges. So in the interpolation, we write
¢(s) = % E [log Y exp Le{zlz} VsBHL(c") + 5H% (1_5)/%(# ) — 5H% (1_5)/2/(05)] ]
We break the interpolation into a sum of a Gaussian interpolation and two Poisson interpolations,
P(s) =141 +11",
so that
~E|; (Zexp( s0l0%) ¥ zlﬁﬁH,f(ag)) |= & (B|pzpmic]),
te{1,2} te{1,2} s

for which we may then apply Stein’s Lemma. A similar calculation applies for II* and II~, for
which we use the fact about Poisson random variables that

;S]Ef(Poisson(s)) = E f(Poisson(s) + 1) — E f(Poisson(s)),

as in [CGP 19, Proof of Lemma 4.1, Page 13].

Case I: Positive p;;. This is equivalent to the terms obtained by [CGP 719, Proof of Lemma 4.1, Page
15]. Namely, the following term is obtained (after Taylor Expansion),

n+:_€1ogcosh Zta“h ( E[(A(c?, o)) + (1 —t) ZZ:]E f])
1

r>1 1=

Using replicas to represent the difference term A(c!,0?) and then evaluating it under a random
choice of indices, followed by a second-order Taylor expansion of the preceding term, [CGP " 19]
obtain
+_ 4 d 1,14k 121k d 2 1,14k
I = % log cosh(d) + ey tanh(6) E[(m (o) +m(c*)")s] — tﬂ tanh(8)" E[((R)")s]

2
+ ;{m};@ E[{(R13)5)s + (R )s + £ (((RIZ))s + ((REDM):) ] + O (Z(sa) .

We divide the term in [CGP 19, Lemma 4.1] by % since we are working with half the edges (in
expectation) in the modified interpolation.
Case II: Negative p;;. This case is equivalent to that of positive signs up to a change in the sign

of a field term that depends on the overlap between two replicas. This sign flip eliminates the
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magnetization term that appears in the statement of [CGP 19, Lemma 4.1]. To this extent, we
define a modified A function called A, similar to [CGP"19].

o dt (e sl 2 1 2
I~ = —ﬂ<]ElogZepo (s,a,a)—]ElogZepo(s,a,a)>
(1—1t)d —1 2 1 2
- <IElogX:epo1 (s,0',0%) —Elog ) _expH(s,0',0 ))
(1- t)d

T <]E log) expH, (s,0',0%) —Elog ) exp H(s, (71,(72)>

(o', o) =0l ..ol 2 .. g2 Loglg?...02
A0, 07) = 0 - O )y O+ tanh(0)0, -0 0 -0

Repeating the same perturbation based calculation on the interpolated hamiltonian with p, = —1
in front of every hyperedge ¢ as is done in the positive case, it is not hard to obtain

I~ = —Z log cosh d

_ zicrool(—n“ltam;@)y (FE(a~(0"oD) + (1= [E(o}--a}) +E(c} %) ])

s S ]KS

By the arguments in the proof of [CGP*19, Lemma 4.1], introducing replicas o1 and o' for o
and 02, the first term of this Taylor series is

tanh(6) (¢E <A’(01,02)>s +(1-HE () - -a}K>s +(1-HE( >)
— tanh(J) (tIE <m(crl'1)k +m(c Yk + tanh<5)(R}g)k>s +(1-tE <m((rl'1)k + m(am)k>s)
= tanh(9) (E (m(c™")* + m(al’z)k>s + ttanh(5) E <(R%;;)">S)

We now now compute the second-order term of the Taylor expansion above and evaluate the terms

E[(A~(0,0%))?] and T2, E[(c] - -0l )2].
Using the introduced replicas and averaging over the indices of the hyperedges as in [CGP 19,
Proof of Lemma 4.1] yields

E[(A~ (0, 0%))2] = E K E [< i]ﬁ[a};’ + tanh(d) (R%:é)k> < 311 ' + tanh(d) (Rfé)k)] H

I=1r=1 I=1r=1
2 k 2k 2k
= E K Y (R2,) > + tanh(3) ((Ri%)"ZH‘le/l+ (R{;)kznajﬁi> —l—(’)(tanh((S)Z)} .
rp=1 s I=1r=1 I=1r=1
(8.8)

Asin [CGP 719, Proof of Lemma 4.1, Pg 15], for the second term we have that

Bl o} =E[{ i<R3;3>k>j |

1=1 r=1
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Using the facts that the A~ (¢!,0?) < 3 and |(Til1 e ‘Tilk| < 1, all terms of order > 3 in the Taylor

expansion are no more than L%53 for an appropriate L > 0. Putting together the expansions yields
the following bound,

- = —Z log cosh(J) — ;{tanh(é) (]E <m(01'1)k + m(al'2)k>s + ttanh(5) E <(R};;)k>s)
td tanh(5)*

2 k k 2k
T IEK Y (R2,) > + tanh(d) ((R?ﬁ)"ZH%&%(R{i)" Z]‘[aﬁ'l>+0(tanh(5)2)D

Notice that all terms of O(tanh(6)*) and higher powers therein can be absorbed into the term L4268,

This finally yields
td

I~ = —Z log cosh(d) — zitanh(é) <1E <m(c71’1)k + M((Tl’z)k>s> %% tanh(4)? (]E <(R£)k>s>

s (B [ (R2) +o (R22)" + (R12) 4 (R2)") )| +o () 9

Combining II* and II". We now add the positive and negative terms together to obtain the
equivalent of II for H sci;gn oq- As a result of the sign flip, the magnetiziation dependencies cancel out.
This finally yields

2d td
_ 1t - _ o 2 1,1\k
I=I"+1I" = - log cosh(0) * tanh(J) (]E <(R1,2) >S>

4 tanh(O) (B[ (r ()" (m2)" + (2)"+ (R2)") ) | <0 (1)

(8.10)
B = \/ztanh(é) .

This choice causes the overlap terms to cancel in ¢(s), yielding the following rate of change of the
free energy

For fixed d, k and J, we define 8 as

¢'(s) =1+1 = —% log cosh(8) + Ztanh(é)2 +0 (Zﬁ) 20 <Z53) +0 (2(54) , (8.11)

where I is defined equivalently as in the proof of [CGP 19, Lemma 4.1, Pg 13]. This immediately
yields that

$00) - 90) =5 [[¢eis=0 ().

The rest of the argument follows exactly as in [CGP 19, Proof of Lemma 4.1, Pg 16] with the final
-1/3
substitution § = (%) . O
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Having proved the key interpolation lemma about the coupled free energies in the diluted and
dense models, we now state the coupled OGP for the random signed Max-k-XOR problem.

Theorem 8.12 (Coupled OGP for random Max-k-XOR, k even).

For every even k > 4, there exists an interval 0 < a < b < 1 and parameters dy > 0,0 < 19 < P(k) and
no > 1, such that, for any t € [0,1], d > do, n > ng and constant L = L(no, d), with probability at least
1 — Le "L over the t-coupled Max-k-XOR instance pair (Y1, ¥2) ~ Hid,k,t, whenever two spins o1, 0

satisfy HYi(0) | Mk, d) ( _ ’70> ,

n

then their overlap satisfies |R (01, 02)| & [a, b].

Proof. This can be proven by an exact copy of [CGP " 19, Theorem 5], but using Lemma 8.6 instead
of [CGP'19, Lemma 4.1]. m

To obstruct local algorithms using the same framework mentioned in Section 1.4, it is critical that
the overlap between nearly optimal solutions of independent random Max-k-XOR instances (with
signs) be small. To show this, we first prove that if the overlap between pairs of solutions of two
independent instances of the k-mean field model is bounded away from 0, then they are suboptimal.

Lemma 8.13.
Consider the parameters [a,b] and no from Theorem 8.12. For large enough n, there is fj > 0 satisfying

1 > no such that

LE[ max (HAeY)+H2(02))| < 2(P(k) = 7)
no LRy lelo]

where H} and H? are random 0-coupled instances of a k-spin glass.

Proof. In the proof of Theorem 8.12 as in that of [CGP " 19, Theorem 5], the parameter 4 is chosen
from [CGP"19, Theorem 3], and the parameter 7 is chosen so that

limsup E 1 max (H}(c') + HZ(c?)) < 2P(k) — 61,

n—oo 1 |Ryp|€lab]

forall t € [0,1], where Ry, is the overlap between ¢! and ¢2, and H} and H? are t-coupled instances
of a k-spin glass.

However, in fact for the t = 0 case (as noted in the remark in the proof of [CGP*19, Theorem 5]),
the proof cites [CP18, Theorem 2], which provides a bound for |Ry | € [a,1] with |R1| € [a,b]
being a subcase of that. This implies

limsup E 1 max (H}(c') + HZ(c?)) < 2P(k) — 61,
n—sc0 1 |Ry|€[a]

att =0.
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Continuing in the special case where t = 0, then, let 57 be so that

limsupE~ max (H\(0") + H2(0?)) = 2(P(K) — 1),
n—eo T |Rqyp[€fa]]

Since 17 > 319, we choose ] = 17 + €, for some € which is allowed to be arbitrarily small as n — co.
Ul

We now extend Lemma 8.13 to setting of the diluted model with signs, and show that pairs of

nearly optimal solutions of independent random Max-k-XOR instances (signed) have low overlap.

Lemma 8.14.
Consider the parameters [a, b] and 1o from Theorem 8.12. For large enough n, there are ', L > 0 with
n' > no such that

L i (Higual0!) + Higuale®) < 2006 — )/ 4 + 0(¥a7D

ol o2e{+1}n,
! —-1/6
< 2M(k, d) <1—P’zk) +0 (<Z> ))

ISPIEL
with probability at least 1 — 2Le™'t over the random choice of 0-coupled Max-k-XOR instances H, gned and
2
Hsigned‘

Proof. By Lemma 8.13, there is a choices of 7 satisfying 77 > #o such that

EL max (H\(oY) +H2(02) < 2(P(k) — ),
ol o2e{£1}"
[Rqpl€(a 1]

where H} and H? are still 0-coupled instances of the mean-field k-spin glass and R, is the overlap
between ¢! and ¢2.

By instantiating Lemma 8.6 with S = [a,1] and A = {£1}" and t = 0, we see that

1 1 /d s
—E max (Hsligned(al) + Hszigned(az)) = \/;1E max (HI} (Ul) + HI%((72>) + O( y d/k)/
nle2e{+1yn n oloZef{+1}"

IRy 2l€(a1] IRq,2|€[a1]

Combining the two above inequalities,

1 . /d
LE max (Hlyal0h) + Higeale?) < 2P0 )y + O(VaT7R)
n gle2e{41}n

IR1,2|€la]
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By an application of Azuma’s inequality and concentration of Poisson random variables, there is
some L as a function of 77 and 79 such that

1 d
» max (H;igned<al) + Hs?igned<0'2)) S 2<P(k) - 77/) \/; + O( W)
gl o2ef{+1}n,
IR 2|20
for some 7’ satisfying 1o < 1’ < 7}, with probability at least 1 — 2Le~"/L. N

9 Discussion

Our work conclusively establishes the coupled OGP as an obstruction to all local quantum algo-
rithms on any (k,d)-CSP(f). In doing this, the work hints at and leaves open many interesting
questions for future work in areas that are at the intersection of Quantum inapproximability, Statis-
tical Physics, Random Graph Theory, Combinatorial Optimization and Average-Case Complexity.

9.1 Which CSPs have an OGP?

While various sparse CSPs such as k-SAT, unsigned max-k-XOR and k-NAE-SAT have been shown
to exhibit clustering in their solution spaces at different clause-to-variable ratios [ART06, DSS16,
CGP"19], it is not known whether this property is pervasive to most CSPs or something that
happens to a select few. Therefore, in order to understand the complexity landscape of CSPs on
typical instances better, the following open question is interesting to investigate:

Conjecture 9.1 (Random Predicate CSPs and coupled OGP).

Given a function f chosen uniformly at random from the set of functions By = {g | g: {+1}* — {0,1}},
(k,d)-CSP(f) has a coupled-OGP for sufficiently large k and d with high probability (over the choice of f
and instance ¥ ~ (k,d)-CSP(f)).

Notice that the conjecture above is specifically interested in the solution geometry of a CSP in
the unsatisfiable regime (large d). A positive resolution to the above conjecture will make the
obstructions stated in Theorem 1.6 hold for almost all CSPs for the family of generic local algorithms.
Another question of interest is which properties (if any) about a predicate f can be identified which
would conclusively imply that a random instance ¥ of a (k, d)-CSP(f) will have an OGP.

Problem 9.2 (Properties of coupled-OGP predicates).
Can we enumerate a set of necessary and sufficient conditions on f to be such that (k,d)-CSP(f) satisfies a
coupled-OGP for sufficiently large k and d?

9.2 Beyond log-depth obstructions for QAOA,?

Work on obstructing QAOA , using an OGP heavily relies on the locality of the algorithm at shallow
depths. It is interesting to investigate whether this obstruction can be extended beyond the € log(#)-
depth regime to make this a non-local obstruction. Recent work [G]JW20, Wei22] suggests that the
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OGP may actually result in stronger obstructions than just local ones, and it would be interesting to
see if these techniques can be generalized to the setting of QAOA, to yield obstructions that are
non-local.

Problem 9.3 (Poylogarithmic obstructions to QAOA, in the OGP regime).

Given a QAOA,, circuit with depth p < € (log(n))* for some ¢ > 1, does there exist €y > 0, such that
QAOA,, is obstructed on a (k,d)-CSP(f) with a coupled OGP from outputting solutions that are better
than (1 - €g) approximations to the optimal?

9.3 A Quantum OGP and lifting “classical" obstructions

The idea of the OGP obstructing families of algorithms that are stable under small perturba-
tions [GJW20] motivates the idea of a quantized version of the OGP, to apply to quantum CSPs. To
define such a property over quantum states, however, there would need to be a metric that is very
similar to the classical hamming distance over IF; and has the property that it is invariant over
permutations of the canonical basis, while still quantifying entanglement in a desired way. One such
possible metric is a quantum version of the Wasserstein distance of first order that was proposed
by De-Palma et al. [DPMTL21]. In particular, given a natural generalization of Definition 1.5 to a
quantized setting using a quantum version of the Wasserstein distance of first order, it is interesting
to investigate if a larger family of quantum circuits up to some depth p(#) can be obstructed by a
family of d-local hamiltonians { Hy },,>n, that possess a QOGP (quantized Overlap-Gap Property).
A result of this type could imply a way to generically “lift" classical obstructions for stable classical
algorithms to a corresponding family of quantum algorithms.

9.4 Message-Passing algorithm for MAX-CUT of all d-regular graphs?

Finding an efficient classical algorithm that can output cuts that are arbitrary approximations of
the optimal ones for d-regular graphs is a long-standing open problem in Random Graph Theory
and Theoretical Computer Science. Recently, this problem was nearly completely solved by Alaoui
et al. [AMS21] as they constructed a Message-Passing algorithm for random regular graphs of very
large degree under the widely believed no-OGP assumption about the SK model. However, the
problem does not provide a complete solution as it needs the degree d to be larger than O(1) in
order to output a (1 — €)-optimal cut. A natural question is whether, under a no-OGP assumption,
the result can be extended to output (1 — €)-optimal cuts for d-regular graphs for any d > 3.

Conjecture 9.4 (AMP algorithm for Random d-Regular Graphs).

There exists a poly(n, %) time algorithm A that outputs a (1 - €)-approximate cut of a random d-regular
graph G with high probability under a “no-OGP"” assumption for any d > 3.

Note that the approach of Alaoui et al. [AMS21] critically relies on the Guerra-Tonnineli interpola-
tion between the G, ; model and the SK-model which will only work for d > O (1). Consequently,
a solution that works for all d > 3 will require a fundamentally different approach. A natural
question that is motivated by the above conjecture is to then investigate if there is any range of
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degree for which the Max-Cut problem over d-regular graphs possesses an OGP. Given the belief
that the SK model does not exhibit an OGP, this would only be an interesting question in the
relatively low-degree regime.

Problem 9.5 (Random d-Regular Graphs don’t have an OGP).
Does the MAX-CUT problem on random d-regular graphs have an OGP for some d > 3? If so, for what
{do,d1} C IN does the problem exhibit an OGP?

The QAOA, algorithm was initiated and analyzed on the MAX-CUT of d-regular graphs and
positive answers to the conjectures above will close the scope for any quantum advantage on the
problem.
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A Proof of Proposition 3.2

Proof. We describe a circuit that implements a Bell experiment: a Bell pair of entangled qubits is
created, and then a unitary transformation is randomly and independently applied to each qubit
before they are measured (equivalently, a random basis is chosen for each measurement).

Consider 4 qubits |aca.b.b.) in the state ]0>®4. Apply the H gate to a., a, and b, so that they enter
into the |4 ) state, and leave b, as is. Using a, as the control qubit, apply a CNOT gate to b,. This
results in the creation of a Bell pair |¢ ) between 4, and b.. Now apply a controlled unitary C-U
to a, using a, as the control qubit. Similarly, apply the controlled unitary C-U to b, using b, as the
control qubit. Finally, measure all qubits in the Z basis.

Now, form a graph over the qubits of this circuit, with edges between pairs of qubits that are
interacted on by the same gate, as well as a self-loop on b, so as to distinguish it from a,:

G = ({ac, e, be, bc}, {{ac,ac}, {ac,be}, {be,bc}, {be}}).

An 1-local algorithm on graphs which implements the above quantum circuit when run on G is as
follows:

1. Create a qubit for each vertex, in the |0) state.
2. Apply a Hadamard gate to each vertex without a self-loop.

3. For every edge between a vertex of degree 4 with a self-loop and a vertex of degree 2, apply a
controlled-not gate from the vertex of degree 2 to the one of degree 4.

4. For every edge incident to a vertex of degree 1, apply a controlled-U gate from that vertex to
the one at the other endpoint of the edge.

5. Measure all qubits in the Z basis and output the results.

() (& v
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Figure 2: A graph G (left) on which the algorithm described in the proof of Proposition 3.2 executes

a quantum circuit (right) which performs a Bell experiment. a. and b, are entangled, as suggested
by their names. a. and b, are independent and correspond to control qubits.
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We show that this algorithm is 1-local by doing casework on each "type" of vertex. It is ok for the
output on a vertex to depend on the degree of the vertex and whether it has any self-loops, as these
are functions of the 1-neighborhood of the vertex. Thus the types of vertices are as follows:
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Degree-1 vertices The output of a vertex of degree 1is always an independent uniform distribution
over {—1,1}. The only interaction of the corresponding qubit is being the source of a
controlled-U gate. This gate commutes with Pauli-Z operators on the source qubit. Therefore,
the measurement in the Z basis commutes past the controlled-U gate, effectively making this
part of a circuit a Z measurement on a |+) state, followed by classical control determining
whether to apply a U gate on its neighbor. Since this measurement is always independent
and invariant with respect to the hypergraph, the algorithm is 1-local on these vertices.

Degree-2 vertices These can interact with degree-1 vertices and degree-4 vertices with self-loops.
If we consider the Heisenberg picture and propagate the Z measurements backward through
the circuit, the first gates we encounter are controlled-U gates from the degree-1 vertices.
Recall that we can treat those controlled-U gates as a single-qubit U gate controlled classically
by a single random bit. If the U gate happens, then a Z measurement after the U gate is
equivalent to a Ut ZU measurement before the U gate; otherwise it remains a Z measurement.
If there’s more than one degree-1 neighbor and more than one consequent U gate, then our
measurement is U%' ZU? instead, and we’ve reached the initialization of our qubit. If the other
neighbor is a degree-4 vertex with a self-edge, then there’s a controlled-NOT acting on our
degree-2 vertex, and U’ ZU after the controlled-NOT is equivalent to some linear combination
of phase changes on the degree-4 vertex multiplied by some single-qubit unitary on the
degree-2 vertex. At this point, our measurement operator has reached the initializations of 2
qubits, both in the 1-neighborhood of the degree-2 vertex we started with. If there was no
U gate applied in step 4, and only one or more controlled-NOTs instead, then a Z on the
target after a controlled-NOT gate is equivalent to the product of Z on the target and Z on the
source before the gate. Then the Z on the target will reach an initialization, while the Z on
the source commutes past other being on the source of other controlled-NOT gates, to also
reach the initialization. Thus we have described how the measurement is a function of edges
in the 1-neighborhood, and how the support of the measurement in the Heisenberg picture
is within the 1-neighborhood, so that if all other measurements also have supports in their
respective 1-neighborhoods, the algorithm is 1-local on vertices of degree 2.

Degree-4 vertices These can interact with degree-1 vertices and degree-2 vertices, but only if they
have a self-loop. The action of degree-1 vertices (in step 4 of the algorithm) is identical with
the degree-2 case above. If the backwards-propagating measurement is Z at the time when
it hits the source of a controlled-NOT gate, the Z on the source after the controlled-NOT is
equivalent to a Z on the source multiplied by an X on the target before the gate. The Z on
the source then propagates back through another controlled-NOT if it exists, remaining a Z
until it hits the initialization. The Xs on the target degree-2 vertices commute through at most
one other controlled-NOT gate on the target end until it hits the initialization of the degree-2
vertex. At the end of this process, the support of the measurement operator on the qubit
initializations is fully determined by and restricted to the 1-neighborhood of the vertex. On
the other hand, if the measurement is U ZU by the time it touches the source of a controlled-
not, it propagates backwards into a linear combination of single-qubit unitaries on the source
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and I or X operators on the target. The unitary on the source then hits the initialization of the
degree-4 vertex, while the I or the X commutes past any other controlled-NOTs the degree-2
vertex might be the target of, to hit the initialization of the adjacent degree-2 vertex. Again,
the measurements in the Heisenberg picture are fully determined by and restricted to the
1-neighborhood.

All other degrees Vertices of any other degree do not interact with other vertices in the algorithm.
By the above casework, this algorithm is 1-local.

Note that this process cannot be encoded in a 1-local factors of i.i.d. algorithm since this setup allows
for signaling strategies that violate Bell inequalities, whereas 1-local factors of i.i.d. can be explained
by using latent variables to describe the evolution of the randomness of the 1-neighborhood of
every vertex. An extension of this circuit which would involve generating p entangled qubits in a
similar process generalizes the argument to p-local algorithms. O

B Proof of Theorem 2.20

Proof. First, note that given %” hyperedges (which is the expectation of the Poisson(dn/k) distri-
bution from which the number of edges are sampled), each of size k, the expected number of
hyperedges some vertex v; shows up in is,

dn dn [ nk1 dn (1
\]E\ T(E(HG)] = T+ Pr[oree < 5 <nk> k= (n) k=d. (B.1)

Now, consider another model of a k-uniform hypergraph in which we sample n* edges indepen-
dently, each with probability p. This induces a Bin(n*, p) distribution on the number of hyperedges.
To compare this with our model, we compare the expected number of hyperedges as,

nk_dj =
PP =% P= k1

Note that the degree distribution of a vertex (which is equivalent to the number of hyperedges it
appears in) in this model is given as,
d
, k—1
Bin (kn , knk1> .

The distribution above converges to Poisson(d) in the large n limit, and its moment generating
function is dominated by that of the Poisson(d) distribution for all large but finite . Formally,

¢ <Bi” <"”kl' = )) = (1-d(1— )" < &) = p(Poisson(d))..

Therefore, the number of vertices in the 1-neighborhood of any vertex v € V(G) can be bounded
from above (in the large 7 limit) as,

(k — 1)Poisson(d) .
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So, we will consider the scaled Galton-Watson process above starting at some vertex v € V(G),
which is itself a Galton-Watson process [H"63]. We upper bound the scaled Galton-Watson
process above with the Galton-Watson process induced by the Poisson(d(k — 1)) distribution (at
an appropriate level) by comparing their respective probability generating functions. Note that
the probability generating function of (k — 1)Poisson(d) is fpsisson(a) (zF=1). To look at the x-th
neighborhood, we will use the probability generating function of the x-th level of the underlying
Galton-Watson process, denoted as fy. Now, by [H 63, Theorem 4.1],

X
—_—N—
fX: fx::flo...ofll

where fi = fpoisson(d) (ZF1) = f(k—1)Poisson(d) (). By comparing the pgf of the Galton-Watson
process of f(x_1)poisson(d) (2) and the Galton-Watson process of fpisson(d(k—1))(2), One can observe
that,

fxfl < gx,

where gy = g7, and §1 = fpoisson(d(k—1)) (2)- We now repeat the argument in [FGG20a, Neighbor-
hood Theorem] that bounds the size of a Poisson(d(k — 1)) branching process.

Let Z, denote the size of the x-th generation of a Poisson(d(k — 1)) branching process. Note that
Zy = 1, Z; = Poisson(d(k — 1)) and, more generally, one can look at the moment generating
function of the Poisson(d(k — 1)) branching process as,

E etZx] = A (k=1)(E[e“x=1]-1)
Branching(d(k—1))

We denote by ¢, () the moment generating function of the Poisson(d(k — 1)) branching process. It
is straightforward to see by an inductive argument used in [FGG20a, Neighborhood Size Theorem]

that,
n2 \”*
o () ) =evzo

Furthermore, by an application of Markov’s inequality to the moment generating function, the
following is true for any u, t > 0,

* _uf 1) i
Prd(k_l)) |:Zx >u <(d<k_1))> :| <e < In2 > ¢x(t) <e e, (B.2)

Branching( In2 -

where the last inequality follows by a choice of t = (%) "

We now bound the probability that the total number of nodes in the branching process at height x
is at least ¢ via a union bound,

x x
Pr Y Zizel <Y Pr[zi> 2]
Branching(d(k—1)) |5 i=1 X




Letc = (d(k—1))%* <d(l];_21) ) and u = dSTx, where s will be chosen later to demonstrate the existence
of A. Substituting these into Equation B.2 yields a lower bound on the size of the neighborhoods
induced by the Poisson(d(k — 1)) branching process as,

Pr
Branching(d(k—1))

x — x SX Sx
Zzizw(k—l))sx(d(k U)]Sxedxesw 2 B3
= In2

where we assume a sufficiently large choice of x. Denote by p,(v;) the probability that a vertex v;
in a random k-uniform hypergraph with p = kn’%l has a x-neighborhood with size at least that of
Equation B.3, conditioned on the hypergraph having r hyperedges. Extending the argument in

[FGG20a, Neighborhood Size Theorem] further,

7dsx/2

Y Pr[G has r hyperedges] - p,(v;) < )_ Pr[G has r hyperedges] - p-(v;) < e
r=dn/k r=0

Since an increase in the number of sampled edges will only increase p,(v;), it follows that,

Pr[G has r hyperedges| - pa,/x(vi) < o2
r=dn/k
Now, the number of edges are distributed as Poisson(dn/k). Since E[Poisson(dn/k)] = d?",

[oe]

Y Pr[G has r hyperedges] = Pr[G has > dn/k hyperedges].
r=dn/k

Note that the mean of the Poisson(dn/k) distribution is an integer. Consequently, the median of
the distribution is also %” [Cho94]. Then,

Pr[Poisson(dn/k) > dn/k| € <; — Pr[Poisson(dn/k) = dn/k|, % + Pr[Poisson(dn/k) = dn/k]) .

Now, by applying Stirling’s approximation,
1

Pr[Poi dn/k) =dn/k] < ——.
r[Poisson(dn/k) n/]_m

Consequently,
Pr[Poisson(dn/k) > dn/k| > 1_ Pr[Poisson(dn/k) = dn/k| > ESN —
- —2 B 2 \amdn/k 2

This yields an upper bound for the probability of a x-neighborhood exceeding the desired size as,

- Od,n(1> .

_4sx/2 _sx/3
Pan/k(v;) < (2+0d,n(1))€ d <e d

4

for sufficiently large x.
We set




for some T € (0,1). Then, let log = log,(_q) and define L = log,, ;) (1Z5). Consequently, the
remaining argument follows exactly as in the last part of the proof of [FGG20a, Neighborhood Size
Theorem]. Specifically, Equation B.3 reduces to [FGG20a, Eq. 75, Neighborhood Size Theorem]
with w = (1 — 7) given the parameter choices above after some algebra. O
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